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Abstract

In this article we construct maximal partial 2-spreads in PG(8, q) of de-
ficiency δ = (k−1) · q2, where k ≤ q2 + q+ 1 and δ = k · q2 + l · (q2−1) + 1,
where k+ l ≤ q2 and δ = (k+ 1) · q2 + l · (q2 − 1) +m · (q2 − 2) + 1, where
k + l + m ≤ q2. Using these results, we also construct maximal partial
2-spreads in PG(3m− 1, q) of various deficiencies for m ≥ 4.
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1 Introduction

A set of t-dimensional subspaces partitioning the points of PG(m, q) is called a
t-spread. A (t+ 1)-spread of a linear space is a set of (t+ 1)-dimensional linear
subspaces such that projectively they constitute a t-spread. If t = 1 or t = 2 one
may call it a line-spread or plane-spread, resp. A partial t-spread in PG(m, q) is
a set of pairwise disjoint t-dimensional subspaces. A partial t-spread is maximal
if it is not contained in a larger partial t-spread.

There exists a t-spread in PG(m, q) if and only if t+1 is a divisor of m+ 1. In
this case one can define the deficiency of a partial t-spread of PG(m, q) which is
the difference of the cardinalities of a t-spread and the partial t-spread consid-
ered. For more on spreads, reguli and Segre-varieties the reader can consult [2].

∗This work was supported by OTKA F043772, T043758, T049662, a Hungarian-Spanish TÉT
and a Bolyai grant.
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1.1 Two aspects of a 2-regular Desarguesian 2-spread

A t-spread is called r-regular if whenever some spread-elements together define
an (r, t)-regulus then each element of this regulus belongs to the t-spread.

Lavrauw describes in [3] how one can construct r-regular t-spreads by using
the Sr,t Segre-variety.

We interpret the elements of the finite field GF(qr) as r-dimensional vectors
over GF(q). Similarly, GF(qt) can be viewed as GF(q)t. Consider the vector
space V = GF(q)r ⊗ GF(q)t of rank rt over GF(q). For a pure tensor v ⊗ w
and for λ ∈ GF(qr) let λ · (v ⊗ w) := (λ · v) ⊗ w. For a pure tensor v ⊗ w and
for µ ∈ GF(qt) let (v ⊗ w) · µ := v ⊗ (µ · w). The left-multiplication makes V
a GF(qr)-vector space, and the right-multiplication makes V a GF(qt)-vector
space.

For v ∈ V we define the following subspaces of V :

Sr(v) = {α · v ‖ α ∈ GF(qr)} ;

St(v) = {v · β ‖ β ∈ GF(qt)} .
Lavrauw proves the following

Theorem 1.1. [3]. The set Sr = {Sr(v) ‖ v ∈ V } is a Desarguesian r-spread of
V. The set St = {St(v) ‖ v ∈ V } is a Desarguesian t-spread of V .

So the elements of the 2-regular 2-spread of PG(8, q) can be considered as
points of PG(2, q3), this will be called the plane-representation of the 2-spread
(or briefly the plane of the spread-elements) and denoted by Ŝ.

Let S denote the set of the spread-elements as planes in PG(8, q) (i.e. the
conventional representation).

Lemma 1.2. The (1, 2)-reguli of S are the sublines ' PG(1, q) of Ŝ = PG(2, q3).
The (2, 2)-reguli in S are the subplanes ' PG(2, q) of Ŝ = PG(2, q3).

Proof. A (1, 2)-regulus of S is a set of q + 1 spread-elements that constitute the
plane-class of an S1,2 Segre-variety in PG(8, q).

A (2, 2)-regulus of S is a set of q2 + q + 1 spread-elements that constitute
either of the two plane-classes of an S2,2 Segre-variety in PG(8, q).

1.2 Intersections

Two different lines in PG(n, q) either meet or not. But there are three different
ways in which two different planes can intersect each other, which makes the
situation more complicated than in the case of line-spreads. Their intersection
can be the empty set or a point or a line.
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Opposite and irregular planes. Therefore a plane Π not contained in the 2-
regular 2-spread can intersect the spread in two ways. Either q2 + q+ 1 spread-
elements meet this plane (each of these spread-elements has only one point
in common with Π) or q2 + 1 spread-elements intersect this plane (there is one
spread-element that has a common line with Π and there are q2 spread-elements
each of which has one common point with Π).

Remark 1.3. A plane that intersects q2 + q + 1 spread-elements is an opposite
plane of one of the reguli of S, so the q2 + q+ 1 spread-elements which intersect
such a plane constitute (in the plane-representation of the 2-spread) a subplane
of order q of Ŝ .

Definition 1.4. Let a plane that intersects only q2 +1 spread-elements be called
an irregular plane. The set of the spread-elements which intersect an irregular
plane will be called (in the plane representation) a club and the spread-element
that meets the irregular plane in a line will be called (in the plane representa-
tion) the head (of this club).

Lemma 1.5. In the plane-representation of the 2-spread, a club constitutes a
GF(q)-linear set. This linear set is the union of the pointsets of q + 1 different
sublines of order q of a particular line of Ŝ .

Proof. Let Σ denote the irregular plane and let Π denote the spread-element
that meet Σ in a line `. For the sake of simplicity, let ` be the ideal line. The
affine points of Σ represent q2 distinct spread-elements. (The point P represents
the spread-element Γ if and only if Γ ∩ Σ = P .)

Let P and Q be two arbitrary affine points in Σ. The affine points of the
line PQ represent q spread-elements and the ideal point of PQ belongs to Π.
Because of the property of 2-regularity, the spread-elements represented by the
affine points of PQ and Π together constitute a (1, 2)-regulus of S (i.e. an S1,2

Segre-variety in PG(8, q)) that is (in the plane-representation) a subline of order
q of Ŝ. So the spread-elements intersecting Σ constitute some sublines of order
q in Ŝ = PG(2, q3).

Choose two lines in Σ which have a common affine point P . The points
of these two lines represent two sublines of order q in Ŝ = PG(2, q3) which
have two common points (one represents the spread-element Π the other one
represents the spread-element represented by P ). So any two sublines of order
q among the above sublines are in the same line of order q3.

(Note that the plane-spread is Desarguesian, the spread-elements intersect-
ing the affine part of Σ together constitute an affine plane; thus the points of
the club, except the head, is an affine pointset.)
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Remark 1.6. A club in PG(1, q3) is projectively equivalent to the set of points
{x ∈ GF(q3) ‖ Tr(x) = x+ xq + xq

2

= 0} ∪ {∞}, where {∞} denotes the head
of the club.

Lemma 1.7. There are q2 + q + 1 irregular planes that belong to the same club.

Proof. In the plane-representation a club is a subset of a line ` (of order q3); in
the conventional representation this line ` is a PG(5, q). In the PG(5, q) of the
club, there are (q3 + q2 + q+ 1− 1)(q2 + q+ 1) = q(q2 + q+ 1)2 irregular planes
that meet the head in a line (of order q). In the line ` (of order q3) there are
q(q2 + q + 1) clubs having the same head.

Definition 1.8. In general, let ∆ be a subplane PG(2, q) in PG(2, qh), h ≥ 2,
and let L is a line PG(1, qh). In L = PG(1, qh), a club C is a projected image
of ∆ a onto L from a center C which is on an extended line of ∆ but not in ∆.
Hence |C| = q2 + 1 and C has a special (‘multiple’) point H called the head of
the club. By a subline we always mean a PG(1, q) contained in L.

Obviously the lines of ∆ are projected to sublines contained in the club. Each
of these sublines will contain the head since their preimages in ∆ intersected
the line which is the preimage of H .

Lemma 1.9. If h is odd then there are no other sublines contained in the club. If
h is even then there can be other sublines, each of which is the projected image of
some conic of ∆:

• In this case the club, with the (ordinary and extra) sublines it contains,
form a Moebius plane. I.e. for any 3 points of C there is a unique subline
containing them, and this subline is contained in C as well.

• Also in this case every point of the club is equivalent geometrically, any point
can play the role of the head.

Corollary 1.10. A club and a subline intersect in 0, 1, 2, 3 or q + 1 points. In the
Moebius case the intersection size 3 does not occur.

Note that for h = 2, so for Baer sublines, it is well-known. We could not find
a reference for this statement so we give the proof for completeness.

Also note that even if h is even and at least 4, there are clubs which do not
contain extra sublines, this depends on the center C of projection, see the proof
below.

Proof. We use (homogeneous) coordinates. Let ∆ = {(x1, x2, x3) ‖ x1, x2, x3 ∈
GF(q)} \ {(0, 0, 0)}, L = [0, 1, 0], the center of projection C = (−ω, 1, 0), so
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the head is H = (1, 0, 0) and the projected image of any point (a, b, 1) is (a +

bω, 0, 1). So the club consists of the head plus a two dimensional vectorspace
over GF(q) contained in AG(1, qh). Lets identify L\H = AG(1, qh) and GF(qh)

with (x, 0, 1) 7→ x. Then this two dimensional vectorspace contains GF(q) and
it is generated over GF(q) by the ‘vectors’ 1 and ω.

Consider four non-head points of the club, w.l.o.g. they can be chosen as
0, 1, a = a1 + a2ω, b = b1 + b2ω. Suppose that they are contained in a subline,

it means that their cross-ratio, y =
0− a
0− b ·

1− b
1− a is in GF(q). It gives 0 =

(1 − y)ab + yb − a, substituting a = a1 + a2ω, b = b1 + b2ω we get a quadratic
equation for ω, with coefficients from GF(q). The coefficient of ω2 is (1−y)a2b2.
Here y = 1 would mean a = b.

If h is odd then the minimal polynomial of ω cannot be quadratic, hence,
using ω 6∈ GF(q), one of a2 and b2 is 0, but 0 = (1− y)ab+ yb− a implies that
if one of a and b is in GF(q) then the other is as well. So the four points were
contained in the subline GF(q) ∪ {H}.

So only for h = even can it happen that a2b2 6= 0. In this case ω gives
a quadratic extension of GF(q) and in fact our two dimensional vectorspace
{x + yω ‖ x, y ∈ GF(q)} is the unique GF(q2) itself. Now consider the points
of the subline through 0, 1, a, b. This consists of the points c for which the cross-

ratio y of 0, 1, a and c is in GF(q) ∪ {∞}. We have y =
0− a
0− c ·

1− c
1− a , and the

values y = 0, 1,∞ give c = 1, a, 0. Note that c = ∞ = H is impossible as it
would imply y =

a

a− 1
which is not in GF(q) unless a ∈ GF(q) and the subline

is GF(q) ∪ {∞}.

So for the subline we have
{
c =

a

(1− y)a+ y

∥∥∥ y ∈ GF(q) ∪ {∞}
}

. But

when calculating c =
a

(1− y)a+ y
, we work within GF(q2), so within the club,

hence the subline through 0, 1, a, b will be contained in the club completely.

The previous two paragraphs can be substituted by the argument, that if we
know that ω is in the quadratic extension then already the projection can be
done within the canonical PG(2, q2) and we can use the remark about Baer
sublines of PG(1, q2).

Finally we remark that the case when the head is one of the four points
(Q1, Q2, Q3 and H) is easy to verify: consider Q′2, Q

′
3 ∈ ∆, the preimages of Q2

and Q3 before the projection, and let Q′4 be that preimage of H collinear with
Q′2 and Q′3. Then suppose that there is a subline in L containing Q1, Q2, Q3 and
H . As there is another subline (which is the projected image of the line Q′2Q

′
3 of

∆) containing Q2, Q3 and H , and the subline through 3 points of L is unique,
they must coincide.
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2 Constructions

Let us first consider the set of elements of the 2-regular 2-spread of PG(8, q) that
can be viewed as the pointset of Ŝ = PG(2, q3). We drop out some elements of
the spread, and then substitute them with a fewer number of opposite elements.
When we drop out the elements of one of the (2, 2)-reguli of the 2-spread and
substitute them with an opposite element, then the elements dropped out can-
not be taken back. This procedure can be performed several times. If we do
it in a proper way then we can achieve that the partial spread constructed this
way cannot even be completed with other planes not contained in the original
2-spread.

Construction 1. Let `∞ denote the ideal line of the ‘plane of the spread-
elements’ (Ŝ = PG(2, q3)) and let `′ denote an arbitrary subline of order q
of `∞. Let Π denote a subplane of order q of the affine part of Ŝ so that the
ideal line of Π is `′. Π and its proper q4 translates are partitioning the affine
part of Ŝ. From now on Π and these translates will be called ‘the tiles’.

In the conventional aspect, the points of `∞ are the spread-elements (of S)
which constitute a 2-spread in an ideal PG(5, q)-subspace of PG(8, q). This 2-
spread is a 1-regular subspread of the original 2-regular 2-spread and let this
subspread be called the ‘ideal subspread’. The points of `′ constitute a (1, 2)-
regulus, i.e. the plane-class of an S1,2 Segre-variety. Π and its translates together
with `′ are (2, 2)-reguli of the original 2-spread which meet the ideal sub-spread
in a common (1, 2)-regulus that is `′.

Let us choose k arbitrary translates (‘tiles’) and drop out their points (which
are in fact spread-elements) out of the original 2-spread. Let us also drop the
points (i.e. spread-elements) of `′ out of the original 2-spread.

The opposite objects of the subspread-elements which are determined by the
points of `′ are q2 + q + 1 lines of PG(5, q). (Remember, the subspread is a
1-regular 2-spread of the subspace PG(5, q).) An opposite object of the spread-
elements which are determined by the points of a tile (and `′) is a plane of
PG(8, q) that meets PG(5, q) in one of the opposite-lines.

Choose opposite-planes for each of the q2 +q+1 opposite-lines in such a way
that there should be at least one chosen opposite plane in each chosen translate
of Π (in each chosen tile). #

Construction 1 produces a partial 2-spread of deficiency

δ = kq2 + (q + 1)− (q2 + q + 1) = (k − 1)q2 .

Lemma 2.1. As each point of this certain ideal PG(5, q) is covered by the above
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constructed partial 2-spread, therefore this partial spread cannot be completed with
other opposite planes of the abovementioned reguli.

Proof. Each opposite plane of these reguli intersects the above PG(5, q).

The partial 2-spread cannot be completed with either opposite or irregular
planes if there is at least one element of the partial 2-spread that originates
from the original regular total 2-spread which meets it. An element of the
original 2-spread meets an opposite or irregular plane if and only if the point of
PG(2, q3) which represents this spread-element belongs to the set of points of
PG(2, q3) which represents the spread-elements that intersect the opposite or
irregular plane. (It is only a tautology but it is worth mentioning.)

Theorem 2.2. There are certain 48 · q2 · (log q + 1) tiles so that each projective
subplane of order q that does not meet the ideal line and each club that does not
meet the ideal line intersect at least one of these tiles.

We need three lemmas; the first one is the key lemma of Lovász’s τ ∗-method
[4].

Lemma 2.3 (Lovász). Let G be a bipartite graph with bipartitionA∪B. Suppose
that the degree of the points in B is at least d. Then there is a set A′ ⊂ A,

|A′| ≤ |A| · 1 + log |B|
d

, such that any b ∈ B is adjacent to a point of A′.

We need two more lemmas.

Lemma 2.4. If a projective subplane Σ of order q does not meet the ideal line `∞
then Σ has at most three common points with each tile.

So a subplane Σ of order q that does not meet the ideal line intersects at least
q2 + q + 1

3
tiles.

Lemma 2.5. If a club Ω does not meet the ideal line then Ω has at most three
common points with each tile.

So a club Ω that does not meet the ideal line `∞ intersects at least
q2 + 1

3
tiles.

Proof of Lemma 2.4. If a subplane Σ of order q has 4 common points with one
of the tiles such that no three among them are collinear then the affine part of
Σ is the tile itself so Σ contains some points of the ideal line `∞.
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If Σ has 4 common points with a tile Π′ and there are at least three points
collinear then there exists a unique line ` of order q that contains these three
common points and ` is a common line of Σ and Π′. A tile is an affine subplane
of order q (a translate of Π) which has (projectively) an ideal line `′ that is a
subline of the ideal line `∞, so ` intersects the ideal line `∞.

Proof of Lemma 2.5. The corollary of Lemma 1.9 proposed that a club Ω and a
subline ` intersect in 0, 1, 2, 3 or q + 1 points. Suppose that Ω has at least 4
common points with a tile Π′. These common points are collinear, so Ω has 4
common points with a line ` (of order q) of the projective subplane Π′ ∪ `∞ and
so each point of ` (also ` ∩ `∞) belongs to Ω.

Proof of Theorem 2.2. Let (A ∪ B;E) be a bipartite graph, where A is the set of
the tiles, B = B1 ∪ B2 is the union of the set B2 of all subplanes Σ of order
q that do not meet the ideal line `∞ and the set B1 of all clubs Ω that do not
meet the ideal line `∞. A tile is connected with Σ (or with Ω) if and only if
the tile intersects Σ (or Ω). In this graph each point in B is of degree at least
D = (q2 + 1)/3, so because of Lemma 2.3 there exists a subset A′ ⊆ A such that
any b ∈ B is adjacent to a point a ∈ A′ and |A′| ≤ |A| · (1 + log |B|) /D.

We know that |A| = q6/q2 = q4. By counting the choices of the base points
we have

|B2| ≤
q6(q6 − 1)(q6 − q3)(q6 − 3q3 + 3)

q2(q2 − 1)(q2 − q)(q2 − 3q + 3)
≤ 21

2
q16

and by counting the choices of the head of the club, the choices of line of the
club and the choices of two other points of the club, we have

|B1| ≤ q6 · q3 ·
(
q3 − 1

2

)
≤ q15 ≤ 1

2
q16 .

Thus, |B| ≤ 11 · q16, and so log |B| ≤ 16 · log q + log 11 ≤ 16 · log q + 2.4, and
hence

|A′| ≤ 3 · q4 · 1 + 16 · log q + 2.4

q2 + 1
≤ 48 · q2 ·

(
log q +

1

4

)
.

Theorem 2.6. If q ≥ 16 then there exist maximal partial 2-spreads in PG(8, q) of
deficiency δ = (k − 1)q2 where

1 ≤ k ≤ min

{
q4 − 48 · q2 ·

(
log q +

1

4

)
, q2 + q + 1

}
.

Proof. Since the ideal line `∞ represents the ideal PG(5, q) that is completely
covered by the partial 2-spread, we should only prove that every subplane of
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order q of PG(2, q3) and every club contains at least one point that either repre-
sents a spread-element not dropped out in the construction or is a point of the
ideal line `∞.

Because of the previous theorem we can choose 48 · q2 · (log q + 1/4) tiles so
that these tiles and the ideal line intersects each subplane of order q and each
club. If in the course of Construction 1 we do not drop out the spread-elements
that belong to the above chosen tiles then the constructed partial 2-spread will
be maximal.

2.1 MPPS’s in PG(8, q) of some other deficiencies

Let us consider the set of elements of the 2-regular 2-spread of PG(8, q) that can
be considered as the pointset of PG(2, q3). Again we drop out some elements
of the spread, and then substitute them with some planes. But now the con-
struction is based on sublines of order q in PG(2, q3), so the basic step of this
construction is substituting some spread-elements with irregular planes.

Construction 2. Choose k + l lines through the point P in such a way that
neither subplane of order q is covered by these lines.

Choose l clubs (one in each of l lines above) in such a way that these clubs
contain the point P but P is not the head of either of these clubs. Choose k
disjoint clubs (one in each of the other k lines above) in such a way that these
clubs do not contain the point P .

Drop the elements of the above k+l clubs and substitute them by k+l disjoint
irregular planes (one in each club) in such a way that the l irregular planes in
the first l (not disjoint) clubs intersect the plane represented by P in distinct
points. #

Construction 2 produces a partial 2-spread of deficiency

δ = 1 + l · q2 + k · (q2 + 1)− k − l = k · q2 + l · (q2 − 1) + 1 .

Theorem 2.7. The above constructed partial 2-spread is maximal if k + l ≤ q2.

Proof. There is no opposite plane which can be added to the above constructed
partial 2-spread because neither subplane of order q is covered by the k+l lines.

There is no irregular plane which can be added to the partial spread because
its club has q2 + 1 points.

Construction 3. Choose an arbitrary club in PG(2, q3) and let this club be
called the ‘Cross Club’. Drop the elements of the Cross Club out of the spread
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and substitute them by one of the q2 + q + 1 irregular planes which meet the
spread-elements dropped out. Then choose a point P not in the line of the Cross
Club.

We will use four types of clubs in the lines through the point P . A club of
first type does not intersect the Cross Club and does not contain the point P . A
club of second type intersects the Cross Club and contains the point P . A club
of third type intersects the Cross Club but does not contain the point P . A club
of fourth type does not intersect the Cross Club but contains the point P . P is
not the head of these clubs and the intersection-points of the Cross Club with
these clubs are not the head of either of these clubs and are not the head of the
Cross Club.

Choose k+ l+m1 +m2 lines through the point P and choose k clubs of first
type, l clubs of second type, m1 clubs of third type and m2 clubs of fourth type
(one in each above line).

Drop the elements of the above clubs and substitute them by irregular planes
(one in each club) in such a way that these irregular planes do not meet the
irregular plane in the Cross Club and in such a way that the irregular planes in
the (not disjoint) clubs of second and fourth type intersect the plane represented
by P in disjoint points. #

Construction 3 produces a partial 2-spread of deficiency

δ = (k + 1) · q2 + (m1 +m2) · (q2 − 1) + l · (q2 − 2) + 1 .

Theorem 2.8. Let m = m1 + m2. The above constructed partial 2-spread is
maximal if k +m+ l ≤ q2.

Proof. Construction 3 has been done in such a way that there is no subplane of
order q of S that contains only dropped spread-elements. So there is no opposite
plane that can extend the constructed partial 2-spread.

As k +m+ l ≤ q2, there is no club that contains only dropped spread planes
and not contains an irregular plane of the constructed partial 2-spread.

Results in PG(8, q). The first three constructions yield maximal partial plane-
spreads in PG(8, q) of deficiency δ = (k − 1) · q2, where k ≤ q2 + q + 1 and δ =

k·q2+l·(q2−1)+1, where k+l ≤ q2 and δ = (k+1)·q2+l·(q2−1)+m·(q2−2)+1,
where k + l +m ≤ q2.
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2.2 MPPS’s in PG(3m− 1, q)

If we can do the abovementioned constructions in such a way that the original
spread-elements that cover a particular PG(5, q) are not affected by the con-
struction then we can generalize these constructions for PG(3m− 1, q), m ≥ 4,
in the following way.

Construction 4. Let us choose a PG(5, q) in PG(3m − 1, q) and let us factor-
ize PG(3m − 1, q) with this chosen space. The factor geometry is a PG(3(m −
2) − 1, q), that contains total 2-spreads. Construct a (total) plane spread in
the PG(3(m − 2) − 1, q) factor geometry. The elements of this spread are
8-dimensional spaces of PG(3m − 1, q) intersecting each other in the chosen

PG(5, q). The number of these 8-dimensional spaces is
q3(m−2) − 1

q3 − 1
.

Construct 2-regular 2-spreads in these 8-dimensional spaces in such a way
that each 2-regular 2-spread generates a sub-spread in the chosen PG(5, q) and
these generated sub-spreads are the same.

The abovementioned constructions can be done in some 8-dimensional spaces
in such a way that the spread-elements in the chosen PG(5, q) are not dropped
out from either original 2-spreads. #

Construction 4 produces a partial 2-spread of deficiency

δ =
(
x · (kx − 1) + y · ky + z · (kz + 1)

)
· q2 + (y · ly + z · lz) · (q2 − 1)

+ z ·mz · (q2 − 2) + y + z

= (y + z) · (q2 + 1) +
(
x · (kx − 1) + y · (ky − 1) + z · kz

)
· q2

+ (y · ly + z · lz) · (q2 − 1) + z ·mz · (q2 − 2) .

Notation. In a bipartite graph (A∪B;E) let A be the set of the elements of the
2-spread of the factor geometry (i.e. the set of the abovementioned 8-dimen-
sional spaces). Let B contain all the other planes of the factor geometry. A′

will be the set of such spread-elements in the factor geometry, which are those
8-dimensional spaces in which the (total) 2-spreads remain (total) 2-spreads
after the construction. Let N = 3(m− 2)− 1 = 3m− 7.

Lemma 2.9. There exists a subset A′ ⊂ A, such that any b ∈ B is adjacent to a
point a ∈ A′ and

|A \A′| ≥ max

{
q2 ,

qN+1 − 1

q3 − 1
· q

2 − 3N log q

q2 + 1

}
.
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Proof. We know that deg(b) ≥ q2 + 1 ∀b ∈ B because a plane b intersects either
q2 + q + 1 or q2 + 1 elements of A. (See the paragraph ‘Opposite and irregular
planes’ in subsection ‘Intersections’.) So for arbitrary A′, if |A \ A′| ≤ q2 then
any b ∈ B is adjacent to a point a ∈ A′.

Because of Lemma 2.3 ∃A′ ⊂ A such that |A′| ≤ |A|1 + log |B|
q2 + 1

; and any

b ∈ B is adjacent to a point a ∈ A′.

Since |A| = qN+1 − 1

q3 − 1
, the number of all planes of PG(N, q) is

|A|+ |B| = qN−1 − 1

q − 1
· q

N − 1

q2 − 1
· q

N+1 − 1

q3 − 1
=
q3m−8 − 1

q − 1
· q

3m−7 − 1

q2 − 1
· |A| .

So

|B| = |A| ·
(

(qN−1 − 1)(qN − 1)

(q − 1)(q2 − 1)
− 1

)

and hence

log |B| ≤ log |A|+ (N − 1) · log q +N log q ≤ 3N log q.

Therefore

|A \A′| ≥ |A|
(

1− 1 + log |B|
q2 + 1

)
≥ qN+1 − 1

q3 − 1

(
1− 1 + 3N log q

q2 + 1

)

=
qN+1 − 1

q3 − 1
· q

2 − 3N log q

q2 + 1
.

Theorem 2.10. In PG(3m− 1, q), m ≥ 4, there are maximal partial 2-spreads of
deficiency

δ =
(
x · (kx − 1) + y · ky + z · (kz + 1)

)
· q2 +

(
y · ly + z · lz

)
· (q2 − 1)

+ z ·mz · (q2 − 2) + y + z ,

where
kx ≤ q2 + q + 1, ky + ly ≤ q2, kz + lz +mz ≤ q2,

and

x+ y + z ≤ max

{
q2 ,

q3(m−2) − 1

q3 − 1
· q

2 − 3 · (3m− 7) · log q

q2 + 1

}
.

Proof. We know that the above constructed partial 2-spread cannot be extended
with planes that are completely contained in either of the 8-dimensional spaces
above because the partial 2-spreads in these 8-dimensional spaces are maximal.
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So, we should only prove that the above constructed partial 2-spread cannot
be extended with planes that are not completely contained in either of the 8-
dimensional spaces above.

If a plane of PG(3m − 1, q) intersects the chosen PG(5, q) then this plane
cannot be added to the partial spread.

A plane of PG(3m− 1, q) which does not meet the chosen PG(5, q), together
with the PG(5, q) generates one of the planes of the factor geometry. If this
generated plane of the factor geometry meets a plane of the factor geometry
which is an 8-dimensional space totally covered by the partial 2-spread then the
plane of PG(3m−1, q) (which generates the above plane of the factor geometry)
cannot be added to the partial 2-spread. Because of Lemma 2.9 there exists a
set A′ of the abovementioned 8-dimensional spaces such that every plane of
PG(3m − 1, q) which does not meet the chosen PG(5, q) meets at least one
element of A′ and

|A \A′| ≥ max

{
q2 ,

qN+1 − 1

q3 − 1
· q

2 − 3N log q

q2 + 1

}
.

If we construct partial 2-spreads only in the elements of A \ A′ then the
constructed partial 2-spread in the PG(3m−1, q) cannot be completed with such
planes that are not completely contained in either of the above 8-dimensional
space. And if these above constructed partial 2-spreads are maximal then the
partial 2-spread in PG(3m− 1, q) is also maximal.

3 Remarks

These constructions are generalizations of the Gács–Szőnyi construction [1]. It
seems to be hard to continue this way of generalization to t-spreads (t ≥ 3)
since this method is based on the examination of the possible intersection-
configurations which becomes more and more complicated as t is increasing.

Acknowledgments. The authors are grateful to Jef Thas for the discussions
which resulted in Lemma 1.9.
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Péter Sziklai
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