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Abstract

In this note we determine the automorphism groups of finite projective
planes defined by monomial planar functions. We also decide the isomor-
phism problem for such planes.
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1 Introduction

Let M,N be finite groups. A map f : M → N is called a planar function [6],
[7] if for every 1 6= a ∈ M the mapping ∆f,a : M → N, x 7→ f(ax)f(x)−1 is a
bijection. One can define an affine plane A(f) by taking as points the elements
of the group M ×N . The lines are defined by:

L0(a, b) = {(x, y) |x ∈M, y = f(xa−1)b}, (a, b) ∈M ×N,
L0(c) = {(c, y) | y ∈ N}, c ∈M.

The projective completion P(f) is obtained by adding the symbols (∞), (a);
a ∈ M, to the point set and adding a new line L∞ = {(∞), (a) | a ∈ M}. The
old lines are extended by L(a, b) = L0(a, b) ∪ {(a)} and L(c) = L0(c) ∪ {(∞)}.
The natural action of the group M ×N induces a group of collineations which
is faithful and regular on the affine points M × N and has on L∞ the orbits
L∞ − {(∞)} and {(∞)}. The group N induces the full group of translations
with axis L∞ and center (∞).

In [5] Coulter and Matthews consider the special case where M ' N ' F

is the additive group of F = GF(pn) for an odd prime p. A mapping on F can
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be described uniquely by a polynomial f ∈ F [X ] of degree < pn. Note that
P(f) ' P(g) if g = fp

k

, k arbitrary. It is known [7] that P(X2) is desargue-
sian and P(Xpa+1), 0 < a < n, is a commutative twisted semifield plane if
n/(n, a) is odd. Coulter and Matthews show that for p = 3 and α odd the planes
P(X(3α+1)/2), with (α, n) = 1 and α 6≡ ±1 (mod 2n), are not translation planes.
We extend these investigations on monomial planar functions and show:

Theorem 1.1. Let Xm and Xm′ be planar functions on F ' GF(pn).

(a) P(Xm) and P(Xm′) are isomorphic iff m′ ≡ mpk (mod pn) for a suitable k.

(b) P(Xm) is a translation plane or a dual translation plane iff this plane is
desarguesian with m ≡ 2pk (mod pn) or a commutative twisted semifield
plane with m ≡ (pa + 1)pk (mod pn), 0 < a < n, and n/(n, a) odd.

The automorphism groups of the desarguesian planes and the twisted semi-
field planes are known [1], [2], [3]. For the remaining cases we have:

Theorem 1.2. Assume that P(Xm) is not a translation plane. Then

Aut(P(Xm)) ' Γ · (F × F ), Γ ' ΓL(1, pn).

This theorem shows that in the case of a non translation plane the “obvi-
ous” automorphisms comprise the full automorphism group. Note that F × F
corresponds to the group M × N . An element a ∈ F ∗ induces the automor-
phism εa : (x, y) 7→ (ax, amy) and the Frobenius automorphism induces the
collineation δ : (x, y) 7→ (xp, yp).

2 The proofs

The following lemma is well known:

Lemma 2.1. Let Z be a cyclic group of order pn − 1, V an n-dimensional GF(p)-
space and D : Z → GL(V ) a faithful representation.

(a) Let D′ : Z → GL(V ) be an irreducible representation. Then D′ is equivalent
to a representationDk : Z → GL(V ) for a suitable value k ∈ {0, . . . , pn−1}
where Dk is defined by Dk(x) = D(x)k .

(b) Two irreducible representations Dk and D` are equivalent if and only if ` ≡
kpa (mod pn) with 0 ≤ a < n suitable.
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Let P = P(Xm) be a projective plane as defined in the introduction with
respect to the group M × N ' F × F . Use the notation from the end of the
introduction and denote by Z ' F ∗ the cyclic group generated by the mappings
εa : (x, y) 7→ (ax, amy) and by D ' Cn the group generated by δ : (x, y) 7→
(xp, yp). Set further A = Aut(P(Xm)) and A0 = DZMN .

Lemma 2.2. Assume that P is not a translation plane or a dual translation plane.

(a) A leaves L∞ and (∞) fixed.

(b) N is the group of all central collineations with axis L∞. In particularNEA.

(c) CA(N) = 〈z0〉MN , where z0 is the involution in Z. In particular M =

[CA(N), CA(N)]EA.

Proof. (a) If L∞ or (∞) are not fixed by A, suitable conjugates of N would
form the translation group with respect to a translation line or a translation
point. This contradicts the assumption.

(b) Let K be the group of central collineations with axis L∞. Assume that
K −N contains a translation. Using the action of M we even find a trans-
lation 1 6= τ with center (0). But then 〈τZ〉 is the full elation group with
respect to the flag ((0), L∞) and P is a translation plane, a contradiction.
Therefore K − N is a set of homologies. If this set is not empty we get
(using the group action as before) a homology 1 6= κ with center (0, 0). The
involution z0 is a homology with axis L(0) and center (0) since m is even
[5, Prop. 2.4]. Thus z0κ = κz0. Moreover [M ×N, κ] ≤ CA(N) ∩K = N

and [M ×N, z0] = M which shows [M,κ] = 1. But then M fixes the center
(0, 0) of κ, a contradiction.

(c) Take γ ∈ CA(N). Replacing γ by a suitable element from γM we may
assume that γ fixes the line L(0). Again replacing γ by a suitable element
from γN we may even assume that γ is a central collineation with axis L(0).
Assume γ 6= 1. As γ fixes L∞ the center of γ lies on this line. If γ is an
elation with center (∞) then 〈γZ〉 is the full elation group with respect to
the flag ((∞), L(0)) and P is a dual translation plane, a contradiction. Thus
γ is a homology. If the center of γ is not (0) then β = z0z

γ
0 is a central

collineation with axis L(0) which is inverted by z0 and zγ0 . Hence β is an
elation with center (∞). But this case is ruled out already.
So (0) is the center of γ and CA(N) = CMN with a group C of homologies
with respect to the anti flag ((0), L(0)). The group CA(N)/N is represented
faithfully as a permutation group on L∞−{(∞)} and CN/N∩(CN/N)xN =

1 for xN ∈ CA(N)/N −CN/N . Hence CA(N)/N is a Frobenius group with
Frobenius kernel MN/N . This implies that C normalizes M = [MN, z0] as
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〈z0〉 ≤ Z(C). If 〈z0〉 < C this group has on L(0, 0) an orbit containing (at
least) three points of the form (a1, b), (a2, b), (a3, b), a contradiction to [5,
Prop. 2.4].

Proof of Theorem 1.2. Use the bar convention for homomorphic images mod-
ulo N . The group A0 has a 2-transitive, faithful action on L∞ − {(∞)}. By
Lemma 2.2 the group M is normal. Hence A/M is isomorphic to a subgroup
of GL(MGF(p)) which contains A0/M ' ΓL(1, pn). By [9] we have A '
AΓL(a, pb) with ab = n (one can also use the classification of the 2-transitive
groups, but [9] is more elementary). If a = 1 we are done.

So assume a > 1. If a > 2 then A contains an involution xN such that
|CL∞(xN)| 6= 1, 2, pn/2 + 1, pn + 1. As the coset xN contains an involution
this involution is neither a homology nor planar, a contradiction.

Thus a = 2. By Lemma 2.2 A/CA(N) ' ΓL(2, pn/2)/〈−1〉. Choose B < A

such that B/CA(N) ' PSL(2, pn/2). Then z0MN ∈ B/MN ' SL(2, pn/2). Set
B0 = CB(z0). As M = [M, z0] a Frattini argument shows B = B0M, B0 ∩M =

1. Moreover B0 induces the group PSL(2, pn/2) on N by conjugation . Choose
u ∈ B0 of order 4 such that u2 = z0. Then |CN (u)| > 1 as the involutions in
PSL(2, pn/2) are conjugate. As u normalizes M we see that 〈u〉 has on L(0, 0)

an orbit of length 4 of the form {(a1, b), . . . , (a4, b)}, a contradiction.

Proof of Theorem 1.1. If P(Xm) is a translation plane or a dual translation plane
it follows from [5, Cor. 5.12] that P is a semifield-plane. Using [8] we see that
P is a twisted field plane which is even commutative by [7]. This shows part
(b) of Theorem 1.1.

For the nontrivial implication of (a) we assume that ϕ : P = P(Xm)→ P′ =

P(Xm′) is an isomorphism. Using the transitivity properties of A′ = Aut(P′)
we can assume that (using the notation of the definition) L∞ϕ = L′∞ and the
points (∞), (0), (0, 0) of P are mapped on the corresponding points in P′.

The isomorphism ϕ induces an isomorphism τ : A→ A′ by ατ = ϕ−1αϕ, α ∈
A. Set M ′ = Mτ,N ′ = Nτ etc. The group Z acts on the module M×N and via
τ on the moduleM ′×N ′. We denote byDM , DN , DM ′ , DN ′ the representations
on the respective submodules. As τ is an isomorphism of ZMN onto Z ′M ′N ′

we have DM ∼ DM ′ and DN ∼ DN ′ .

Case 1. P′ is not a translation plane. M × N is characteristic in A by The-
orem 2 and therefore (M × N)τ = M ′ × N ′. Moreover Z is characterized as
the centralizer in DZ of the commutator subgroup of DZ. Hence Z ′ ≤ D′Z ′ is
precisely the cyclic subgroup of order pn−1 which induces collineations of type
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εa on M ′ ×N ′. Thus DN ∼ Dm
M and DN ′ ∼ Dm′

M ′ . This implies Dm
M ∼ Dm′

M . By
Lemma 2.1 we have m′ ≡ mpk (mod pn) with a suitable k.

Case 2. P′ is a translation plane. Then both planes are isomorphic semi-
field planes (desarguesian or commutative twisted semifield planes). Use the
notation of the introduction with M = N = GF(q) and assume that P(f) is a
semifield plane.

Then by [10, 3.4] the multiplication onM defined by x◦y = f(x+y)−f(x)−
f(y) is distributive. By the proof of Theorem 3.5 in [10] one has f = D+L+ c

where D is a Dembowski-Ostrom polynomial, L is a linearized polynomial, and
c is a constant.

This shows that m = pa + pb, a ≥ b, and m′ = pa
′
+ pb

′
, a′ ≥ b′. So P(Xm) '

P(Xp`+1) with ` = a− b, and P(Xm′) ' P(Xp`
′
+1) for `′ = a′ − b′. The pigeon

hole principle shows (p` + 1) ≡ (p`
′

+ 1)pc (mod pn) or m′ ≡ mpd (mod pn)

respectively (c, d suitable). All assertions of Theorem 1.1 are proved.

Remarks

1. It is easy to see that a commutative semifield plane P(F, pa, p−a,−1) is iso-
morphic to P(Xpa+1), i.e. the automorphism group contains a subgroup
M ×N which induces the planar function Xpa+1.

2. The only planes of type P(Xm) known to the authors are the desarguesian
planes, twisted semifield planes and the planes of Coulter and Matthews.
See also the discussion in [4].

3. Parts of the proof of Lemma 2.2 apply to any plane P = P(f) (f a planar
function): If P is not a translation plane or a dual translation plane then
N E A = Aut(P), MN E A, and CA(N) = HMN with a group H of
central collineations.
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