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Certain generalized quadrangles inside polar
spaces of rank 4

Harm Pralle

Abstract

Let ∆ be the dual of a thick polar space Π of rank 4. The points, lines,
quads, and hexes of ∆ correspond with the singular 3-spaces, planes, lines,
respectively points of Π. Pralle and Shpectorov [14] have investigated
ovoidal hyperplanes of ∆ which intersect every hex in the extension of an
ovoid of a quad. With every ovoidal hyperplane there corresponds a unique
generalized quadrangle Γ. In the finite case, Γ has been classified combi-
natorially, and it has been shown that only the symplectic and elliptic dual
polar spaces DSp8(q) and DO−10(q) of Witt index 4 have ovoidal hyper-
planes. For DSp8(K) over an arbitrary field K, it holds Γ ∼= Sp4(H) for
some field H.

In this paper, we construct an embedding projective space for the gener-
alized quadrangle Γ arising from an ovoidal hyperplane of the orthogonal
dual polar space DO−10(K) for a field K. Assuming char(K) 6= 2 when K is
infinite, we prove that Γ is a hermitian generalized quadrangle over some
division ring H.
Moreover we show that an ovoidal hyperplane H arises from the universal
embedding of ∆, if the ovoids Q ∩ H of all ovoidal quads Q are classi-
cal. This condition is satisfied for the finite dual polar spaces DSp8(q) and
DO−10(q) by [14].

Keywords: dual polar space, generalized quadrangle, hyperplane, ovoid, polar space,
spread, symplectic spread, embedding

MSC 2000: 51A50, 51E23, 51E12

1. Introduction

Let ∆ be the dual of a classical thick polar space Π of rank n ≥ 3. The points
of ∆ are the (n− 1)-dimensional singular subspaces of Π and the lines of ∆ the
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(n−2)-dimensional singular subspaces of Π. More generally, for i = 1, ..., n, the
elements of type i of ∆ are the singular subspaces of Π of dimension n − i. If
α is an element of type 3 of ∆, then the lower residue Res−∆(α) of α, i.e. the
geometry of points and lines incident with α, is a generalized quadrangle. The
elements of type 3 of ∆ are called quads. The elements of type 4 of ∆ are called
hexes, sometimes in the literature also symps.

By ⊥ and ⊥Π, we denote the collinearity relations in ∆, respectively Π. For a
point p of ∆, its perp p⊥ is the set of points on the lines through p. If E1 and E2

are two elements of ∆, then 〈E1, E2〉 denotes the smallest convex subspace of ∆

containing E1 and E2; e.g. for two points p and r of ∆ at distance 2, 〈p, r〉 is the
unique quad containing p and r which corresponds in the polar space Π with
the intersection of the two maximal singular subspaces corresponding with p

and r. If the classical polar space Π is embedded in the projective space PG(V )

for a vector space V , then ⊥V denotes the orthogonality relation in V induced
by Π, and 〈X〉V the span in V of the subset X of V .

A hyperplane of a geometry is a proper subspace meeting every line. Let H
be a hyperplane of the dual polar space ∆. If E is an arbitrary element of ∆

of type ≥ 2 not contained in H, then H meets Res−∆(E) in a hyperplane of
Res−∆(E). For a quad α not contained in H, there are three possible intersec-
tion configurations with H (cf. Payne and Thas [12, 2.3.1]): α ∩ H is either
the perp p⊥ of a point p, or a subquadrangle, or an ovoid (i.e. a set of pairwise
noncollinear points meeting every line). Accordingly, we call α singular, sub-
quadrangular, respectively ovoidal. A hyperplane H is called locally uniform if
it intersects all quads not contained in H in the same kind of hyperplane, oth-
erwise locally non-uniform. We often omit the word ‘locally’. We call elements
of type > 1 deep (w.r.t. H) if they are contained in H, e.g. a line or a quad are
deep if all their points belong to H.

A point p ∈ H is deep (w.r.t. H) if p⊥ ⊂ H. Considering only the hyperplane
H ∩ Res−(Σ) induced by H on a hex Σ, a point p ∈ Σ ∩H is called deep w.r.t.
Σ if p⊥ ∩ Σ ⊂ H. Note that in general, a point deep w.r.t. to a hex is not deep
w.r.t. the hyperplane.

Since a dual polar space ∆ of rank n is a near 2n-gon (cf. Cameron [3]), every
hyperplane of the lower residue of an element of ∆ extends to a hyperplane of ∆

as follows. If E is an element of type 1 < t ≤ n − 1 and HE is a hyperplane
of Res−∆(E), then the set H :=

⋃
x∈HE ∆≤n−t(x) is a hyperplane of ∆, called

the extension of HE . For instance, if n = 3 and E is an ovoid of a quad, then H
is the extension of the ovoid E. It also follows from the near polygon property
of ∆ that for a point p the set Hp := ∆≤n−1(p) is a hyperplane, the singular
hyperplane with deepest point p consisting of all points at non-maximal distance
from p.
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The aim of this paper is the construction of a projective space E embedding a
generalized quadrangle which is associated with a certain kind of hyperplane of
a dual polar space ∆ of rank 4. These hyperplanes and the dual polar spaces ad-
mitting such hyperplanes will be specified in the following section. If Π denotes
the classical polar space dual of ∆, let V be the embedding space of Π. Since
the projective space E will be constructed by means of subspaces of V , we often
use vector space notations in this paper. In particular, we denote the symplectic
dual polar space of rank 4 by DSp8(K) instead of DW (7,K), the elliptic orthog-
onal dual polar space by DO−10(K) instead of DQ−(9,K) and the classical unital
by H3(q2) instead of U(2, q2) although these notations are usually reserved for
the corresponding groups.

Acknowledgment. The author thanks Antonio Pasini for many valuable hints
and improvements.

1.1. Ovoidal hyperplanes

The hexes of a dual polar space ∆ of rank 4 are dual polar spaces of rank 3.
A hyperplaneH of ∆ intersects hexes not contained in H in hyperplanes of dual
polar spaces of rank 3. By Shult [17] and Pralle [13], there are only two fam-
ilies of locally singular hyperplanes in a finite thick dual polar space of rank 3.
Pasini and Shpectorov [11] have classified the locally subquadrangular hyper-
planes of finite thick dual polar spaces of rank 3. They have also proved in the
finite case that no locally ovoidal hyperplane exists admitting a flag-transitive
complement. Moreover, the finite symplectic dual polar space DSp6(q) has no
ovoid by Cooperstein and Pasini [7]. The existence of ovoids in DO7(q) and
DH2n+1(q2) with q ≥ 3, and of locally subquadrangular hyperplanes in infinite
dual polar spaces of rank 3 are outstanding problems.

Let ∆ be a thick dual polar space of rank 4 such that no subquadrangular
quad exists. Then the intersection of a hyperplane H with a hex Σ is one of the
following (due to Pralle [13] and the above mentioned results):

• Σ ∩H = Σ.

• Σ ∩H is a singular hyperplane of Σ.

• Σ ∩H is the extension of an ovoid of a quad.

• There are a point p and a set O of mutually noncollinear points meeting
every line of Σ at distance 2 from p such that Σ ∩H = p⊥ ∪O.

• Σ ∩H is an ovoid.



I I G

JJ II

J I

page 4 / 22

go back

full screen

close

quit

ACADEMIA
PRESS

• The set P of deep points with respect to the singular quads of Σ is a locally
singular hyperplane of a dual polar space ∆0

∼= DO7(K). The polar space
Π0 dual of ∆0 is a subspace of the polar space Π′ dual of Σ where the lines
of Π0 are lines of Π′. The set P together with the lines of Σ contained in
H form a split Cayley hexagon H(K). The hyperplane Σ ∩H contains all
points of Σ on lines of H(K).

Pralle and Shpectorov [14] have investigated the hyperplanes H of a dual po-
lar space ∆ of rank 4 such that H intersects every hex in the extension of an
ovoid. Such a hyperplane is called an ovoidal hyperplane. Let H be an ovoidal
hyperplane of ∆ and denote the set of deep quads by L. Considering the polar
space Π dual of ∆, the line set of Π corresponding to L is a spread of Π with the
following spread property:

(SP) Let D be the set of linear 4-spaces of Π in which L induces spreads. For
every point Σ of Π, the linear 4-spaces of D containing Σ all contain the
spread line λ ∈ L covering Σ and form a spread of the generalized quad-
rangle Res+

Π(λ).

We denote the set of points of ∆ corresponding to the 4-spaces of D by D, too.
The following theorem collects the results of [14] about the hyperplane H of ∆.

Theorem 1.1 ([14]). With the above notations the following hold:

(a) The points of D in a hex Σ form an ovoid O(Σ) of the unique quad δ(Σ) ⊂ Σ

belonging to L.

(b) H =
⋃
x∈D x

⊥ =
⋃
δ∈L δ.

(c) The point-line geometry Γ = (L,D) with incidence induced from ∆ is a
generalized quadrangle.

(d) If ∆ is finite and its quads are of order (s, t), then Γ is of order (t2, st).

(e) If ∆ is finite, then either ∆ ∼= DSp8(q) and Γ ∼= DSp4(q2), or ∆ ∼= DO−10(q)

and Γ ∼= DH5(q2). Moreover, the ovoid Q ∩ H of an ovoidal quad Q is an
elliptic quadric Q−4 (q), respectively a unital H3(q2).

(f) If ∆ ∼= DSp8(K) for an arbitrary field K, then Γ ∼= DSp4(H) for some field
H.

We observe that the quads through a point p ∈ D are either singular or deep,
since all lines through p are contained in H. More precisely, the deep quads
containing p form a spread of the 3-dimensional projective space Res+

∆(p).
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In [14, Section 1.3], three examples are presented for hyperplanes of the
dual polar spaces DSp8(K), DO−10(K), and DH8(C) for which the generalized
quadrangle Γ is isomorphic to the symplectic generalized quadrangle Sp4(H),
a hermitian generalized quadrangle H5(H), respectively H4(Q) where H is a
separable quadratic extension of K admitting an involutory field automorphism
defining the hermitian generalized quadrangle H5(H), and where Q denotes
the quaternions. The hermitian example over the complex numbers and the
quaternions shows that the classification in (e) indeed requires the finiteness
assumption.

1.2. Main Theorem

In this paper ∆ ∼= DQ−10(K) for a field K and H is an ovoidal hyperplane of ∆,
i.e. it intersects every hex in the extension of an ovoid. We will construct an
embedding for the generalized quadrangle Γ arising from H. Our main result is
the following.

Theorem 1.2. Under the hypotheses of Theorem 1.1, if ∆ ∼= DO−10(K) for an
infinite field K, then Γ is embeddable in PG(4,H) where H is a division ring. If H
has characteristic 6= 2, then Γ is a hermitian generalized quadrangle.

In [14], the generalized quadrangle Γ arising from ∆ ∼= DO−10(K) has been
characterized combinatorially for finite fields K = Fq. If a generalized quadran-
gle is fully embedded in PG(4,H) for some division ring H and if char(H) 6= 2,
then it consists of the totally isotropic subspaces of a reflexive sesquilinear form
and is either a parabolic quadric or a hermitian generalized quadrangle (for
details, see section 2.1). In section 2.4 with ∆ ∼= DO−10(K) for a field K, we
construct a projective space PG(4,H) over a suitable division ring H and show
that Γ fully embeds in PG(4,H), thus proving the assertions of Theorem 1.2.

1.3. Finite ovoidal hyperplanes arise from embeddings

The main subject of this paper is the investigation of the generalized quadrangle
Γ associated with an ovoidal hyperplane of DO−10(K). However, a lot of recent
research is devoted to the embedding of geometries (see e.g. Kasikova and Shult
[10], Cardinali, De Bruyn and Pasini [4], and De Bruyn [8]). In this subsection,
we deduce from Theorem 1.1 that ovoidal hyperplanes of finite thick dual polar
spaces of rank 4 arise from embeddings.

A (projective) embedding of a point-line geometry Γ is an injective mapping
ε of the points of Γ onto a spanning set of a projective space PG(V ) for a
K-vector space V such that the points of a line of Γ are mapped onto the points
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of one line of PG(V ). If t : V → W is a K-homomorphism with kernel U that
intersects trivially each 2-space of V spanned by any pair of embedded points of
Γ, then ε′ := t ◦ ε is an embedding Γ→ PG(W ) which is called a homomorphic
image of ε. The embedding ε is called universal if every embedding of Γ is a
homomorphic image of ε.

If ε : Γ → PG(V ) is an embedding of a geometry Γ and h is a hyperplane of
PG(V ), then the set of points H = ε−1(h∩ ε(Γ)) of Γ is a hyperplane of Γ. If H
is a hyperplane of Γ such that 〈ε(H)〉PG(V ) is a hyperplane of PG(V ), then H

is said to arise from the embedding ε.

Lemma 1.3. If H is the extension of a classical ovoid of a quad of ∆ ∼= DSp6(K),
then H arises from the Grassmann embedding of ∆.

Proof. The Grassmann embedding egr : DSp2n(K)→ PG
((

2n
n

)
−
(

2n
n−2

)
− 1,K

)

is induced by the embedding Grn(K2n) → PG
(∧nK2n

)
of the Grassmannian

Grn(K2n) of n-spaces of K2n (cf. Cooperstein [6]). Since DSp6(K) is transitive
on the classical ovoids of quads, the assertion follows if the extension of any
classical ovoid of a quad arises from egr. Let the polar space Sp6(K) be defined
by the form

f(x, y) = x1y4 − x4y1 + x2y5 − x5y2 + x3y6 − x6y3

for all x = (x1, ..., x6), y = (y1, ..., y6) ∈ K6. Describing a totally isotropic plane
z ofK6 by a matrix Z := (zlm)1≤l≤3, 1≤m≤6 with rows the vectors of a basis of z,
the Grassmann coordinate zijk for 1 ≤ i < j < k ≤ 6 is det

(
(zlm)1≤l≤3, m∈{ijk}

)
.

The Grassmann coordinates of a totally isotropic plane satisfy the six equations

0 = z124 − z236 = z125 + z136 = z134 + z235

= z145 − z356 = z146 + z256 = z245 + z346 .

Let Q be the quad of the dual polar space ∆ ∼= DSp6(K) which is the point
(1, 0, 0, 0, 0, 0) of Sp6(K). The points of ∆ in Q are the totally isotropic planes

spanned by the rows of a matrix P =




1 0 0 0 0 0

0 a2 0 0 a5 a6

0 0 b3 0 b5 b6


 with Grass-

mann coordinates satisfying p123p156 + p135p126 + p2
125 = 0. Since we sup-

pose the existence of elliptic quadrics, there exists an irreducible polynomial
t2 + t+α ∈ K[t]. The points of Q with p135 = αp126 +p125 form a classical ovoid
Ω ∼= O−4 (K) of Q. They are the planes with matrices

P (a, b) :=




1 0 0 0 0 0

0 1 0 0 −a− αb a

0 0 1 0 a b


 and P (∞) :=




1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1
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for a, b ∈ K. The points of P (a, b)⊥ are



1 s 0 0 −s(a+ αb) as

0 1 t 0 a(t− 1)− αb a+ bt

r 0 0 st −t 1


 ,




1 s 0 0 −s(a+ αb) as

0 0 1 0 a b

r 0 0 s −1 0


 ,




0 1 0 0 −a− αb a

0 0 1 0 a b

r 0 0 1 0 0




for all r, s, t ∈ K. The points of P (∞)⊥ are



1 0 0 0 s 0

0 0 0 0 1 t

r −t 1 −st 0 0


 ,




1 0 0 0 s 0

0 0 0 0 0 1

r 1 0 s 0 0


 ,




0 0 0 0 1 0

0 0 0 0 0 1

r 0 0 1 0 0


 .

Hence the points of the extension H of the ovoid Ω of the quad Q belong to the
hyperplane y245 + y346 = 0, whence H arises from egr.

Theorem 1.4. Suppose ∆ ∼= DSp8(K) or DO−10(K) for a field K, and let H be an
ovoidal hyperplane of ∆. Then H arises from the universal embedding of ∆ if the
ovoid Q ∩H for every ovoidal quad Q arises from an embedding. In particular, if
∆ is finite, then the ovoidal hyperplanes arise from an embedding.

Proof. For DO−10(q), the assertion of the theorem is stated firstly in De Bruyn [8,
Theorem 1.4]. For the general case with ∆ ∼= DSp8(K) or DO−10(K) where the
intersection of H with every hex Σ is the extension of a classical ovoid of a quad
contained in Σ, the proof is an application of Corollary 4 of Section 1 of Ronan
[15] and of the simple connectedness of the hyperplane complement ∆−H due
to Cardinali, De Bruyn and Pasini [4] and Shpectorov [16].

We follow the notations of Corollary 1.5 of [4] and handle DSp8(K) and
DO−10(K) separately. For DO−10(K), let n0 = 2 and the class D consist of the
quads and hexes of ∆ and of ∆ itself. For a quad Q of ∆, the set H(Q) consists
of the classical ovoids and singular hyperplanes of Q, for a hex Σ ∈ D, H(Σ)

consists of the extensions of classical ovoids of any quad of Σ, and H(∆) con-
tains the ovoidal hyperplanes of ∆. Then (1) and (2) of Corollary 1.5 of [4] are
satisfied. By assumption, the ovoids of ovoidal quads arise from an embedding,
whence (4) of Corollary 1.5 of [4] is fulfilled. According to Theorem 1 of Sh-
pectorov [16], the complement of a hyperplane of a dual polar space of rank 3

with at least five points on each line is simply connected. Since DO−8 (K) has at
least five points on every line, condition (3) of Corollary 1.5 of [4] holds, too.
We conclude that the ovoidal hyperplanes of ∆ arise from an embedding.

The same argument applies for DSp8(K) if |K| ≥ 4. For K = F2, the theorem
holds by Corollary 2 of Section 1 of Ronan [15]. Since DSp8(3) has only four
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points on each line, condition (3) of Corollary 1.5 of [4], i.e. the simple con-
nectedness of the hyperplane complement of the extension of a classical ovoid
of a quad in a hex, is not guaranteed by [16]. So, we either have to show (3),
or we choose n0 = 3 and prove condition (4). The latter has been done in
Lemma 1.3, whence the ovoidal hyperplanes of DSp8(3) arise from an embed-
ding. We remark that this proof for DSp8(K) works for every field K and does
not use [16].

If ∆ is finite, then the ovoid Q ∩H of an ovoidal quad Q is classical by The-
orem 1.1(e). Hence the condition on the ovoidal quads stated in the theorem
is trivially satisfied in the finite case and the assertion follows as above if every
line has at least 4 points. If ∆ has only three points on every line, then every
hyperplane of ∆ arises from the universal embedding of ∆ by Corollary 2 of
Section 1 of Ronan [15].

2. Proof of Theorem 1.2

2.1. Embedding generalized quadrangles

Let ∆ be the orthogonal dual polar space DO−10(K) for some division ring K.
If K = Fq, then Γ has been identified in [14] as the hermitian generalized
quadrangle H5(q2) using a combinatorial characterization: A generalized quad-
rangle Q is a hermitian generalized quadrangle H5(q2) if and only if it has
order (q2, q3) and every hyperbolic line has at least q+1 points (Payne and Thas
[12, 5.5.1]) where the hyperbolic line {x, y}⊥Q⊥Q through two noncollinear
points x and y of Q consists of the points collinear with all points of the trace
{x, y}⊥Q = x⊥Q ∩ y⊥Q , whence {x, y}⊥Q⊥Q = {z ∈ Q | {x, y}⊥Q ⊆ z⊥Q}).

For the infinite case, we use the classification results by Tits [18], and Bueken-
hout and Lefèvre [2] and Dienst [9] of embeddable generalized quadrangles to
determine the structure of Γ. We follow [18] for notation. For a survey, see
Cohen [5]. Let ϕ : Γ → PG(W ) be an embedding of Γ into a projective space
PG(W ) over a division ringH, and let π be a non-degenerate polarity of PG(W )

such that ϕ(L) is a totally isotropic line for every line L of Γ. Then π is repre-
sented by a non-degenerate (σ, ε)-hermitian form f : W ×W → H. The form
f is called trace-valued if f(x, x) ∈ {t + σ(t)ε | t ∈ H} for all x ∈ W ([18,
8.1.4]). If char(H) 6= 2, or if σ|Z(H) 6= id where Z(H) is the center of H, then f
is trace-valued and we apply Theorem 8.6 of [18]:

(i) If every (σ, ε)-hermitian form where ε and σ belong to f , is trace-valued,
then the embedding is dominant, and ϕ(Γ) is the generalized quadrangle
of totally isotropic subspaces of π in PG(W ).
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(ii) If f is not trace-valued, then there exist an embedding ϕ′ : Γ → P ′ into
a projective space P ′ with a polarity π′, a pseudoquadratic form κ′ of P ′,
and a morphism µ : P ′ → PG(W ) such that π′ is the polarity associ-
ated with κ′ and such that ϕ′(Γ) is the generalized quadrangle of totally
singular subspaces of P ′ with respect to κ′.

In case (i), the generalized quadrangle ϕ(Γ) is isomorphic to the generalized
quadrangle of totally isotropic points and lines of a non-degenerate polarity
defined by a reflexive sesquilinear form, or of the singular points and lines of
a quadratic form. These forms are classified and well-known (cf. [5, 3.14]):
In H5, a non-degenerate reflexive sesquilinear form is (anti)-hermitian or sym-
metric. Hence a generalized quadrangle fully embedded in P := PG(4,H) is ei-
ther a hermitian generalized quadrangle or a parabolic quadric O5(H). In both
cases, two opposite lines determine full subquadrangles uniquely. In O5(H),
such a subquadrangle is a hyperbolic quadric O+

4 (H), i.e. a grid. In a hermitian
generalized quadrangle embedded in P, it is a non-degenerate hermitian gen-
eralized quadrangle embedded in a hyperplane of P. Hence the isomorphism
class of the subquadrangles spanned by two opposite lines of Γ determine the
isomorphism class of Γ. We study them in section 2.3.

In case (ii), the embedding ϕ′ is dominant and the embedding ϕ which we
will construct in section 2.4 may be only a quotient of ϕ′. So, we cannot use the
classification of sesquilinear and quadratic forms to characterize ϕ(Γ) uniquely.
The generalized quadrangle ϕ′(Γ) is defined by a pseudoquadratic form (the
theory of pseudoquadratic forms has been developed by Tits in [18]). However,
we keep in mind that this happens only for a division ring H of characteristic 2

with σ|Z(H) = id. In particular, if H is a commutative field and σ is not the
identity as for instance for hermitian forms over finite fields, then we are back
in case (i).

In section 2.4, we construct a projective space PG(4,H) for a division ring H
which fully embeds the generalized quadrangle Γ = (L,D). Its points are the
points of the generalized quadrangle and the subquadrangles defined by pairs
of opposite lines of Γ. In section 2.3, we investigate the subquadrangle defined
by two opposite lines of Γ and prove that it is not only a grid. Then by the
above, Γ is a hermitian generalized quadrangle provided that the characteristic
of H is distinct from 2 when H is infinite.

2.2. Spreads of subspaces of PG(V ) induced by L
Let ∆ be the dual of the classical thick dual polar space Π ∼= O−10(K) of rank 4

admitting a spread L with the spread property (SP). In this section, we inves-
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tigate the intersections of the spread L with totally singular subspaces of Π

which are important for the construction of an embedding space of the gener-
alized quadrangle Γ. Three of the resulting propositions stem from [14] where
we refere to for proofs.

Let PG(V ) be the embedding projective space of Π ∼= O−10(K) with V = K10.
By the spread property (SP) a totally singular projective 3-space of Π either
contains no line of L or contains exactly one line of L, or L induces a spread in
it. Moreover, a point p of ∆ belongs to D if and only if L induces a spread in the
projective 3-space p of Π.

Proposition 2.1. If p = 〈α, β〉V for α, β ∈ L with β ⊂ α⊥V , then p ∈ D.

Proof. Let q be a projective 3-space of D on β not containing α. In the general-
ized quadrangle Γ, α is a point and q a line not through α. Hence there exists a
unique point on q collinear with α. Since β ⊂ α⊥V , this point is β. Since the line
of Γ through α and β is a projective 3-space ofD, it follows p = 〈α, β〉V ∈ D.

Proposition 2.2 ([14, Proposition 22]). For α ∈ L, L induces a spread in the
subspace α⊥V ∩Π.

Proposition 2.3 ([14, Proposition 23]). For two non-orthogonal spread lines
α, β ∈ L, L induces a spread in 〈α, β〉V ∩ Π.

In particular, if W ∼= O+
4 (K) contains two members of L, then the lines of L

contained in W form one of the two reguli of the quadric W . Hence the spread L
of Π is regular.

Proposition 2.4 ([14, Corollary 8]). Every point p ∈ (
⋃
δ∈L δ) \ D is contained

in exactly one deep quad δ(p) ∈ L.

2.3. The subquadrangle for two opposite lines of Γ

Denote the embedding projective space of Π ∼= O−10(K) by P = PG(V ) with the
vector space V := K10. Let L,M be two opposite lines of Γ. They are disjoint
totally singular linear 4-spaces of Π spanning a non-degenerate polar subspace
〈L,M〉V ∩ Π ∼= O+

8 (K). We define a geometry Σ(L,M) as follows: The points
of Σ(L,M) are the lines of L contained in 〈L,M〉V , and the lines of Σ(L,M)

are the linear 4-spaces of D contained in 〈L,M〉V .

Proposition 2.5. For two opposite lines L,M of Γ, the geometry Σ(L,M) is a full
non-degenerate subquadrangle of Γ.

Proof. Let N be a line of Σ(L,M) and let α be a point of Σ(L,M) not on N .
Since Γ is a generalized quadrangle, there is a unique line J of Γ through α
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intersecting N (Theorem 1.1 (c)). In Π, the linear 4-space J is contained in
〈L,M〉V since it contains the disjoint lines α and J ∩N both being contained in
〈L,M〉V . Thus J belongs to Σ(L,M) and Σ(L,M) is a generalized quadrangle.

The points of Γ on a lineN of Σ(L,M) are the lines of the spread L contained
in N . Since N is contained in 〈L,M〉V , the lines of L in N are contained in
〈L,M〉V , too. Hence they are points of Σ(L,M) proving that the subquadrangle
Σ(L,M) of Γ is full.

In the following proposition, we investigate the lines through a point of
Σ(L,M). From now on, by d-spaces we mean d-dimensional linear subspaces
of V .

Proposition 2.6. If α is a point of Σ(L,M), i.e. a line of L contained in 〈L,M〉V ∩
Π ∼= O+

8 (K), then the lines of Σ(L,M) through α are the 4-spaces 〈α, β〉V of
〈L,M〉V where β runs through the lines of a regulus of a hyperbolic quadric W ∼=
O+

4 (K) which is complementary to α in the 6-space α⊥V ∩ 〈L,M〉V such that the
regulus is contained in L.

Proof. Let α be a point of the subquadrangle Σ(L,M) of Γ, i.e. α is a line of the
spread L of Π ∼= O−10(K) contained in 〈L,M〉V ∩ Π ∼= O+

8 (K). Since Σ(L,M) is
a generalized quadrangle by Proposition 2.5, there are distinct totally singular
4-spaces B,B′ ∈ D through α, which are contained in α⊥V ∩〈L,M〉V . Take any
two lines β, β′ ∈ L\{α} contained in B, respectively B′. Then β′∩β⊥V = 0 and
by Proposition 2.3, L induces a spread in the quadric W = 〈β, β′〉V ∼= O+

4 (K)

which consists of the regulus through β and β′.

Since 〈β, β′〉V = W ⊂ α⊥V ∩ 〈L,M〉V ∼= α ⊕ O+
4 (K) and α ∩ W = 0, it

follows α ⊕W = α⊥V ∩ 〈L,M〉V . Hence the lines of Σ(L,M) through α are
the 4-spaces spanned by α and the lines of the regulus of W through β and β ′

which all belong to L.

Suppose Γ is a generalized quadrangle fully embedded in PG(4,H) for a
division ring H of characteristic 6= 2 if H is infinite. Then, as mentioned in
section 2.1, the generalized quadrangle Γ is a hermitian generalized quadrangle
if and only if for any two opposite lines L and M , the subquadrangle Σ(L,M)

is not only a grid. The latter condition is established by Proposition 2.6. In the
following section, we construct an embedding space PG(4,H) for Γ = (L,D).

2.4. The embedding of Γ

Let P = PG(9,K) be the embedding projective space of the polar space Π

dual of ∆, and let V be the vector space K10 such that P = PG(V ). We define a
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point-line geometryE by means of subspaces of V and show that it is a PG(4,H)

embedding Γ. There are two types of POINTS and three types of LINES in E, and
INCIDENCE is symmetrized containment.

1. POINTS of type 1 are the 8-spaces α⊥V of V for α ∈ L.

2. POINTS of type 2 are the 8-spaces 〈L,M〉V of V for two disjoint 4-spaces
L,M of D. Note 〈L,M〉V ∩ Π ∼= O+

8 (K).

So, the POINTS of the first type correspond with the points of the generalized
quadrangle Γ. A POINT 〈L,M〉V of type 2 corresponds with the subquadrangle
of Γ spanned by the two opposite lines L and M of Γ. Next we define the LINES

of the embedding space E as 6-spaces of V :

1. The 6-spaces L⊥V for L ∈ D (note L⊥V ∼= L⊕X for some exterior line X
of P).

2. The 6-spaces α⊕W for α ∈ L with W ⊂ α⊥V and W ∩ Π ∼= O+
4 (K) such

that L induces a spread in W ∩ Π.

3. The 6-spaces W with W ∩Π ∼= O−6 (K) in which L induces a spread.

To prove that E is a projective space embedding the generalized quadrangle
Γ = (L,D), we use the following Theorem by Anne Parmentier (see Buekenhout
[1]). A linear space S is a projective space if it is endowed with a polarity π (i.e.
a symmetric relation on the points of S) with the following properties where we
set pπ := {x ∈ S | xπp} for a point p of S and Lπ :=

⋂
x∈L x

π for a point set L
of S:

(P1) For every line L and point p of S, either L ⊆ pπ or L ∩ pπ is a point.

(P2) L = Lππ for every line L.

(P3) pπ 6= S for every point p.

In the remainder of this section, we show that E is a linear space and con-
struct an appropriate polarity π in E. The following propositions and corollary
provide the main technical tools.

Proposition 2.7. If L = α ⊕W is a LINE of type 2, then L induces a spread on
L ∩ Π.

Proof. The totally singular points in the 6-space L are the points in the totally
singular 4-spaces Uβ := 〈α, β〉V where β is a totally singular line of the quadric
W ∩ Π ∼= O+

4 (K). Since W ∩ Π is a grid, the totally singular points of L are
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covered already by the subspaces Uβ for β running through the lines of one
regulus of W ∩ Π. Let R be the regulus of W ∩ Π which belongs to L. For
the lines β ∈ R it holds Uβ ∈ D by Proposition 2.1 and L induces a spread
in Uβ by Proposition 2.3. Now the singular points of L are the disjoint union⋃
β∈R(Uβ \ α) ∪ α. Since L induces spreads in Uβ \ α for all β ∈ R and since

α ∈ L, the assertion follows.

Proposition 2.8. Every POINT of type 2 lies on a LINE of type 2.

Proof. Let p = 〈L,M〉V with p∩Π ∼= O+
8 (K) be a POINT of type 2 with L,M ∈ D.

For a line α ∈ L in L, the space L := α⊥V ∩ p is a 6-dimensional space with
radical α and (L ∩ Π)/α ∼= O+

4 (K). For the line β := α⊥V ∩M ∈ L and a line
γ ∈ L \ {α} in L, L induces a spread in 〈β, γ〉V by Proposition 2.3. Hence the
4-spaces through α in L = α ⊕ 〈β, γ〉V which intersect 〈β, γ〉V in a line of the
regulus through β and γ, belong to D. So L is a LINE of type 2.

Proposition 2.9. The line set L induces a spread on p∩Π for every POINT p of E.

Proof. For a POINT p of type 1, this is Proposition 2.2.

Let p = 〈L,M〉V be a POINT of type 2 with L,M ∈ D. Let r be a point of
〈L,M〉V ∩Π. If r is a point of L or M , it lies on a line of L contained in p since
L induces spreads LL in L and LM in M . Suppose r is neither contained in L
nor in M , and let α be the line of L containing r. If α is not contained in p,
then α⊥V ∩ p is a 6-space of V with radical r and ((α⊥V ∩ p) ∩Π)/r ∼= O5(K).

According to Proposition 2.8, let L = ζ⊥V ∩ p be a LINE of type 2 for a line
ζ ∈ LL. Then r /∈ L since L induces a spread in L ⊂ p, but the spread line α
through r is not contained in p by assumption. It follows that r /∈ ζ⊥V and α

is complementary to ζ⊥V by Proposition 2.2. Putting Z := α⊥V ∩ ζ⊥V , it holds
Z ∩ Π ∼= O−6 (K). By Proposition 2.2, L induces a spread in Z ∩ Π. Since ζ is
disjoint from α⊥V , it follows (α⊥V ∩ L) ∩ Π ∼= O+

4 (K).

The line ξ := α⊥V ∩ L belongs to L since L induces spreads in both α⊥V

and L. As in the proof of Proposition 2.8, the 6-space X := ξ⊥V ∩ p is a LINE of
type 2, and L induces a spread in X ∩Π. On the one hand, since the spread line
α through r is not contained in p, it follows r /∈ X. On the other hand it holds
r = α ∩ p ∈ ξ⊥V ∩ p = X and we have reached a contradiction.

Corollary 2.10. The 8-spaces of two POINTS of E intersect in a 6-space W of V
such that L induces a spread in W ∩Π.

Proof. First, let p be a POINT of E of type 2 and L,M ∈ D maximal singu-
lar subspaces of Π such that p = 〈L,M〉V . Suppose r is a POINT of E with
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dim(p ∩ r) ≥ 7. Then dim(L ∩ r) ≥ 3. Since, by Proposition 2.9, L induces a
spread in L and in r ∩ Π, it follows L ⊂ r. Similarly, M ⊂ r, whence p = r.

Secondly, suppose p and r are POINTS of E of type 1 and let α, β ∈ L be lines
such that p = α⊥V and r = β⊥V . Then p ∩ r = {α, β}⊥V . Since 〈α, β〉V has
dimension 4, it follows dim(p ∩ r) = 6.

Since by Proposition 2.9, L induces a spread of the singular points in each
8-space of V being a POINT of E, L induces a spread of the singular points in
the intersection of two such subspaces.

Proposition 2.11. Any two POINTS of E lie on a unique LINE.

Proof. By Corollary 2.10, the intersection of any two POINTS of E is a 6-space
of V . Thus the uniqueness of a LINE through two POINTS of E is immediate.
It remains to show existence, i.e. the intersection of two 8-spaces being POINTS

of E is of one of the types defining a LINE of E.

First, if a,b are two POINTS of type 1, then there are lines α, β ∈ L such that
a = α⊥V and b = β⊥V . Either α and β are orthogonal in Π spanning a singular
4-space belonging to D, or 〈α, β〉V ∩ Π is a hyperbolic quadric O+

4 (K). In the
latter case, α⊥V ∩ β⊥V is a 6-space W := {α, β}⊥V with W ∩ Π ∼= O−6 (K) and
L induces a line spread of W ∩ Π since L induces line spreads in both α⊥V ∩Π

and β⊥V ∩ Π. Hence W is the single LINE of E of type 3 containing the POINTS

a and b.

In the former case, L := 〈α, β〉V is a singular 4-space of Π belonging to D,
and L⊥V is the unique LINE of E of type 1 through the POINTS a and b.

Secondly, let a be a POINT of type 1 and b be a POINT of type 2. There
is a line α ∈ L such that a is its perp α⊥V and there are disjoint 4-spaces
L,M of D such that b is the 8-space 〈L,M〉V with 〈L,M〉V ∩ Π ∼= O+

8 (K). By
Proposition 2.9, α is either contained in 〈L,M〉V or disjoint from 〈L,M〉V . In
the former case by Corollary 2.10, the space α⊥V intersects 〈L,M〉V in a unique
6-space W := α ⊕ U where U ∩ Π is a hyperbolic quadric O+

4 (K). Hence W is
the unique LINE of E through a and b and is of type 2.

In the latter case, 〈L,M〉V intersects α⊥V in a complement W of α with
W ∩ Π ∼= O−6 (K) in which L induces a spread by Proposition 2.9. Hence W is
the unique LINE of E of type 3 containing a and b.

Thirdly, let a and b be two POINTS of type 2. There are opposite 4-spaces
L,M ∈ D such that a = 〈L,M〉V with 〈L,M〉V ∩ Π ∼= O+

8 (K), and opposite
4-spaces K,N ∈ D such that b = 〈K,N〉V with 〈K,N〉V ∩Π ∼= O+

8 (K). Denote
the 6-space 〈L,M〉V ∩ 〈K,N〉V of V by U . We claim either U ∩ Π ∼= O−6 (K) or
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U ∼= α ⊕W where α is a line of L and W ∩ Π is a hyperbolic quadric O+
4 (K)

contained in α⊥V .

For, first suppose 〈L,M〉V and 〈K,N〉V share a singular 4-space of D, say
K = L. Since 〈L,M〉V intersects the 8-space 〈L,N〉V in a 6-space, N ∩〈L,M〉V
is a line λ of Π which belongs to L by Proposition 2.9. Similarly, µ = M ∩
〈L,N〉V is a line of L. We assume λ 6= µ since otherwise we may choose a
different N ∈ D defining b such that λ 6= µ. It follows 〈L, λ〉V = 〈L, µ〉V and
W = 〈λ, µ〉V with 〈λ, µ〉V ∩ Π ∼= O+

4 (K) or W is singular and belongs to D.
Firstly, if W ∩Π ∼= O+

4 (K), then let α be the unique line of L perpendicular to λ.
Then α⊥V ⊇ W , as W = 〈L, λ〉V . Then the intersection 〈L,M〉V ∩ 〈L,N〉V is
the 6-space U = 〈L, λ〉V = α ⊕W . Thus U is a LINE of type 2 of E. Secondly,
if W ∈ D, then α = W ∩ L belongs to L. For every ν ∈ L in L different
from α, it holds 〈µ, ν〉V ∼= 〈λ, ν〉V with 〈λ, ν〉V ∩ Π ∼= O+

4 (K). So, in this case
〈L,M〉V ∩ 〈L,N〉V is a LINE of type 2, too.

Next, suppose 〈L,M〉V and 〈K,N〉V do not share any singular 4-space of D.
In particular, K and N are not contained in 〈L,M〉V . Since L induces spreads
in 〈L,M〉V ∩Π by Proposition 2.9 and in K and N , and since K and N intersect
〈L,M〉V at least in lines for dimension reasons, it follows that K ∩〈L,M〉V and
N ∩ 〈L,M〉V are lines κ and ν, respectively, belonging to L. W.l.o.g. assume
κ = K ∩M , ν = N ∩L, and K ∩L = {0} = M ∩N . By assumption, κ and ν are
not orthogonal since otherwise 〈κ, ν〉V ∈ D, and it follows 〈κ, ν〉V ∩Π ∼= O+

4 (K).
Now there are two possibilities for the radical of U : If U is non-degenerate, then
U ∩Π ∼= O−6 (K) and U is a LINE of type 3 of E since L induces a spread in U ∩Π

by Corollary 2.10. If the radical of U contains a point p, then the spread line
τ covering p is contained in U since p ∈ κ⊥Π ∩ ν⊥Π and since L induces a
spread in κ⊥Π ∩ ν⊥Π by Corollary 2.10. On the other hand, it holds τ 6= κ, ν.
Consequently 〈τ, κ〉V and 〈τ, ν〉V belong to D. So a and b share an element of
D in contradiction to the assumption.

Before defining a polarity π on the linear space E, we describe the LINES

of E as sets of POINTS in the following proposition. We remark already here
that, when we will have proved that E is a projective space embedding Γ in
Proposition 2.14, then the following proposition will enlighten that LINES of
type 1 are the embedded lines of Γ, LINES of type 2 are the tangents of E at Γ

and LINES of type 3 are the secants of E at Γ.

Proposition 2.12. All POINTS on LINES of type 1 are of type 1, every LINE of type 2

has exactly one POINT of type 1, and the POINTS of type 1 on a LINE L of type 3 with
L ∩ Π ∼= O−6 (K) are the 8-spaces α⊥V for all α ⊂ L⊥V ∩ Π ∼= O+

4 (K) belonging
to L. Considering the POINTS and LINES of E as subspaces of V , the set of POINTS
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on a LINE L of E of type 1 induces a spread of the dual (V/L)∗ of the quotient
V/L, and the POINTS on a LINE L of type 2 or 3 induce spreads of V/L.

Proof. If L is a LINE of type 1, i.e. L⊥V ∈ D, then the POINTS on L contain
the 6-space L. All POINTS α⊥V for lines α ∈ L contained in L⊥V contain L.
Since no POINT which is a hyperbolic quadric O+

8 (K), contains L, the LINES of
type 1 are the embedded lines of Γ. If X is a 9-space of V containing L, then
X is degenerate and its radical is contained in L⊥V . Hence the unique α ∈ L
through the radical ofX is contained in L⊥V and gives the POINT α⊥V contained
in X. For any line β ∈ L with β⊥V ⊆ X, let p ∈ X \ β⊥V . Then p⊥V ∩ β is
the radical of X, whence β = α. This proves the second assertion for LINES of
type 1.

If L is a LINE of type 2 with radical α ∈ L considering L as 6-space of V , then
the only POINT of type 1 on L is α⊥V . For each line β ∈ L not in α⊥V , it follows
β ∩ α⊥V = ∅ since if β ∩ α⊥V 6= ∅, then β ⊆ α⊥V by Proposition 2.2. Hence
β⊥V intersects the 6-space L in a hyperbolic quadric O+

4 (K) complementary to
α in L. Then the 8-space 〈L, β〉V is a hyperbolic quadricO+

8 (K), whence a POINT

of type 2.

We now prove that if R is a 7-space containing L, then R \ L contains a
singular point r. For, if R \ L does not contain any singular point, then all
lines through singular points of L and points of R \ L are tangents implying
R \ L ⊆ L⊥V . This is impossible, since R \ L is an affine 7-space and L⊥V is a
4-space.

Let now r be a singular point of R \ L. As we have seen above, the spread
line ρ ∈ L covering r is disjoint from L and defines a POINT 〈L, ρ〉V of type 2

of E. Considering these POINTS of type 2 in the quotient V/L as subspaces
〈L, ρ〉V /L, they are disjoint by means of Proposition 2.9 and cover the whole of
V/L by the previous paragraph. Hence we have proved the second assertion of
the proposition for LINES of type 2.

Let L be a LINE of type 3, i.e. L ∩ Π ∼= O−6 (K). For each line α ∈ L lying in
L⊥V ∩Π ∼= O+

4 (K), the POINT α⊥V lies on L. Since L induces a spread in L∩Π,
it also induces a spread in L⊥V ∩ Π by Proposition 2.2. Hence one of the two
reguli of L⊥V ∩ Π belongs to L and defines POINTS of type 1 on L.

Let β ∈ L such that β 6⊆ 〈L, α〉V for any α ∈ L with α ⊂ L⊥V ∩ Π. Then
β ∩ L = ∅. Let X := 〈L, β〉V , p ∈ β⊥Π ∩ L and γ be the unique element of
L through p. Then γ ⊂ L by the definition of LINES of type 3 and γ ⊥Π β

by Proposition 2.2. So, the 4-space B := 〈β, γ〉V belongs to D. We next show
that X contains an M ∈ D disjoint from B. For, let α ∈ L be contained in L

and disjoint from Y := β⊥V ∩ L. Such an α exists since 〈Y 〉V is 4-dimensional
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and L induces a spread on β⊥V ∩ Π by Proposition 2.2 which is one of the
two reguli of Y ∩ Π ∼= O+

4 (K). Let γ′ ∈ L contained in Y disjoint from γ and
consider B′ := 〈β, γ′〉V . Then B′ ∈ D and δ := α⊥V ∩ B′ belongs to L by
Proposition 2.2. Hence M := 〈α, δ〉V is a member of D as required. It follows
that the 8-space 〈L, β〉V ∩ Π is a hyperbolic quadric O+

8 (K), whence a POINT of
type 2 on the LINE L. Hence all POINTS on L are defined by lines of L such that
in the quotient V/L, any two of them are disjoint by Proposition 2.9.

It remains to show that there is no point of V/L which is not covered by the
quotient X/L for any POINT X on L. For suppose R is a 7-space containing L

such that R \ L does not contain any singular point. Similarly to the consid-
eration of LINES of type 2, it follows that every line through a singular point
of L and any point of R \ L is a tangent, whence R \ L ⊆ L⊥V . Again this is
impossible for dimension reasons.

Hence every 7-space of V containing L contains a singular point not in L

which is covered by a unique 8-space being a POINT on L. Thus the POINTS on
L form a spread of the quotient V/L.

Now we define a polarity π on the linear space E by means of the polarity
⊥V of V = K10 which is defined through the polar space Π ∼= O−10(K).

• For a POINT p of E, pπ is the set of POINTS of E that contain p⊥V .

• For a LINE L of E, we set Lπ :=
⋂

p∈L pπ.

We understand the set Lππ to be Lππ =
⋂

p∈Lπ pπ.

Proposition 2.13. For a LINE L, the set Lπ consists of the POINTS of E containing
L⊥V .

Proof. If q is a POINT of Lπ =
⋂

p∈L pπ, then p⊥V ⊆ q for all p ∈ L. It follows
q⊥V ⊆ p for all p ∈ L, whence q⊥V ⊆ ⋂p∈L p = L. So L⊥V ⊆ q.

Vice versa, let q be a POINT with L⊥V ⊆ q. So q⊥V ⊆ L, whence q⊥V ⊆ p

for all POINTS p on L. It follows p⊥V ⊆ q for all p ∈ L, thus q ∈ ⋂p∈L pπ.

Proposition 2.14. The mapping π is a polarity of E.

Proof. We show that π has the properties (P1)–(P3) stated at the beginning of
this section. (P3) follows straightforward from the corresponding property of
the polarity ⊥V of V .

For (P2), by Proposition 2.13 the set Lπ consists of all POINTS containing the
4-space L⊥V . The set Lππ =

⋂
p∈Lπ pπ is the set of POINTS that contain p⊥V for
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all POINTS p containing L⊥V . Clearly, Lππ contains the POINTS containing the
6-space L, whence L ⊆ Lππ. It remains to show Lππ ⊆ L, or equivalently that
the intersection of the family of POINTS containing L⊥V is not larger than L⊥V .

We consider the three types of LINES separately. First suppose L is a line
of type 1 with L⊥V ∈ D. Then the POINTS of type 1 containing L⊥V are the
8-spaces α⊥V for the lines α ∈ L contained in L⊥V . Hence the intersection
of these points is L. The POINTS of type 2 containing L⊥V are the 8-spaces
isomorphic to O+

8 (K) containing L⊥V as a generator. They intersect L in L⊥V

only. Hence the intersection of the POINTS containing L⊥V is exactly L⊥V .

If L is a LINE of type 2, then L ∼= α ⊕W for a line α ∈ L and a 4-space W
of V with W ∩ Π ∼= O+

4 (K) contained in α⊥V and L inducing on W one of its
two reguli. The 4-space L⊥V is contained in α⊥V going through α, its singular
points are those on α. The POINTS of type 1 containing L⊥V are the POINTS β⊥V

for β ∈ L with β ⊂ L; their intersection is contained in W⊥V ∩ α⊥V = L⊥V .

If L is a LINE of type 3, then L ∩ Π ∼= O−6 (K) and L⊥V ∩ Π is a hyperbolic
quadric O+

4 (K). The POINTS of type 1 containing L⊥V are the POINTS α⊥V for
α ∈ L with L⊥V ⊂ α⊥V , whence α ⊂ L. Since L induces a spread in L ∩ Π, the
intersection of the POINTS α⊥V with α ⊂ L and α ∈ L is precisely L⊥V .

It remains to show (P1). For, let p be a POINT and L be a LINE of E. If p is a
POINT of type 1, then p⊥V is a totally singular line belonging to L. Otherwise,
p⊥V is a line of PG(V ) exterior to Π. Clearly, if p⊥V ⊆ L, then all POINTS on
L belong to pπ. So, suppose p⊥V 6⊆ L. Then p⊥V and L either are disjoint or
p⊥V ∩L is a non-singular point. For, if p⊥V ∩L would be a singular point, then
p would be a POINT of type 1, whence p⊥V ∈ L and p⊥V ⊂ L by the definition
of LINES and since L induces a spread in each member of D and in each POINT

by Proposition 2.9.

We investigate separately the cases L is either of type 1, or of type 2 or 3.
Suppose firstly that L is a LINE of type 1, namely L⊥V ∈ D. If p is of type 1,
then p⊥V ∈ L, L and p⊥V are disjoint and q := 〈L,p⊥V 〉V is 8-dimensional. If
α := p ∩ L⊥V , then α ∈ L by Propositions 2.4 and 2.2 and q = α⊥V . Thus q is
a POINT of type 1 and the unique POINT on L belonging to pπ.

If p is of type 2, then the line p⊥V contains no singular points. Suppose
firstly p⊥V and L are disjoint. Then Q := 〈L,p⊥V 〉V is 8-dimensional. The line
α := Q⊥V = p ∩ L⊥V is a line of Π belonging to L since L induces spreads in
both L⊥V and p ∩ Π by Propositions 2.4 and 2.9. Hence q is a POINT of type 1
and the unique POINT of pπ on L.

Suppose now that p⊥V ∩ L is a point. Then p ∩ L⊥V contains a 3-space
X. Since L induces spreads in L⊥V and p ∩ Π, it follows L⊥V ⊂ p. But then
p⊥V ⊂ L in contradiction to our assumptions on L and p⊥V .
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It remains to consider the cases where L has type 2 or 3. If p is of type 1,
then the conclusions follow from the fact that the set of POINTS on L define a
spread of V/L by Proposition 2.12 and L induces a spread in q ∩ p for every
POINT q by Proposition 2.9. So, only the case in which p is of type 2 remains
to consider. Henceforth p is assumed to be of type 2, L is of type 2 or 3 and
p⊥V 6⊆ L. We first prove the following.

Claim. For every POINT q 6= p, if q ∩ p⊥V contains a point, then p⊥V ⊆ q.

Suppose that q ∩ p⊥V is a point. Then X := 〈q,p⊥V 〉V is 9-dimensional and
(q⊥V ∩ p)⊥V contains X. As Π is non-degenerate, it follows (q⊥V ∩ p)⊥V = X

and q⊥V ∩ p is a point. If q would be a POINT of type 1, then q⊥V ∈ L. Since L
induces a spread in p∩Π by Proposition 2.9, the spread line covering the point
q⊥V ∩ p is contained in p and equals the line q⊥V – a contradiction. So the
point q⊥V ∩ p is non-singular, and q is of type 2.

By Proposition 2.12 the LINE pq = p ∩ q is of type 2 or 3. Suppose it is of
type 2. Then it contains a 4-space M ∈ D. The point p := q ∩ p⊥V is non-
singular since p⊥V is an exterior line by the assumption that p is of type 2. On
the other hand, p is orthogonal toM sinceM ⊂ p. This is impossible since every
maximal singular subspace of q ∩ Π ∼= O+

8 (K) is its own perp in q. Therefore
the LINE pq is of type 3. Then (p∩ q)⊥V ∩Π ∼= O+

4 (K) and (p∩ q)⊥V ∩ q∩Π is
a singular line of L. This is a contradiction to p⊥V being an exterior line. Hence
the claim is proved.

We now go back to the proof of property (P1) and the LINE L. Let p be a point
of PG(V ) in p⊥V \ L and q be the POINT on L containing p which is uniquely
determined since the POINTS on L form a spread of V/L by Proposition 2.12.
Then q contains p⊥V by the above lemma. Clearly, q is the unique POINT of L

containing p⊥V . Property (P1) and Proposition 2.14 are proved.

By a Theorem of Anne Parmentier (Buekenhout [1]), the linear space E is
a projective space by Propositions 2.11 and 2.14. The following proposition
determines its dimension.

Proposition 2.15. dim(E) = 4.

Proof. We first prove dim(E) ≥ 4. For a line α ∈ L and a 4-space L ∈ D through
α, let p be the POINT α⊥V of type 1, and L be the LINE L := L⊥V of type 1. Then
the set Lπ of POINTS containing L⊥V = L and the set pπ of POINTS containing
p⊥V = α are subspaces of E, and it holds E ⊃ pπ ⊃ Lπ ⊃ L ⊃ p. Hence
{p,L,Lπ,pπ} is a flag of E, whence dim(E) ≥ 4.
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It remains to show dim(E) ≤ 4. For elements e1 and e2 of E, 〈e1, e2〉E
denotes the subspace of E spanned by e1 and e2. Given p,L,Lπ and pπ as
above, it suffices to show

1. 〈L,q〉E = Lπ for some POINT q ∈ Lπ \ L,

2. 〈Lπ,q〉E = pπ for some POINT q ∈ pπ \ Lπ, and

3. 〈pπ,q〉E = E for some POINT q ∈ E \ pπ.

Proof of Claim 1. Choose a POINT q = 〈L,M〉V of type 2 with M ∈ D disjoint
from L. Clearly, q ∈ Lπ \ L. Let q′ be any other POINT in Lπ \ L. Then q′ is of
type 2, say q′ = 〈L,M ′〉V for M ′ ∈ D disjoint from L, since otherwise it would
contain L⊥V , whence be a POINT on the LINE L. The LINE L′ := q ∩ q′ is of
type 2. Hence by Lemma 2.12 the LINE L′ is tangent to Γ in p′ := λ⊥V for a line
λ ∈ L contained in L. So, p′ is a POINT of the LINE L. This proves q′ ∈ 〈L,q〉E .

Proof of Claim 2. Choose a POINT q = β⊥V for β ∈ L such that q ∩ L = α. So,
q ∈ pπ \ Lπ. Let q′ be any other POINT containing α but not L. So, q′ ∩ L = α.
It remains to show that the LINE M := q ∩ q′ contains a POINT of Lπ.

Case 1. q′ is of type 1, say q′ = γ⊥V for a γ ∈ L. Then M is a LINE of
type 1 or 3 by Proposition 2.12. If β ⊥Π γ, then M is of type 1, it holds
α ⊂M⊥V := 〈β, γ〉V ∈ D and p is a POINT of M. So, q′ ∈ 〈q,Lπ〉E . If β 6⊥Π γ,
then 〈β, γ〉V ∩ Π ∼= O+

4 (K), and M is of type 3. The space X := 〈M, L〉V
is 8-dimensional of Witt index 4. Hence it is either isomorphic to O+

8 (K) or
degenerate. In the latter case, let ρ be its radical, whence ρ = M⊥V ∩ L. As M

is spanned by lines of L, L induces a spread on M⊥V ∩Π. Hence ρ ∈ L and ρ⊥V

is a POINT of type 1 with ρ⊥V ∈ Lπ and we are done. In the former case, i.e.
X ∩ Π ∼= O+

8 (K), pick a point p of Π in L \ α. By Proposition 2.12, the POINTS

on M which is of type 3, form a spread of V/M. Hence there exists a POINT y

containing M and the line λ of L through p which is contained in L. So, L ⊂ y,
since y contains both α and λ and L = 〈α, λ〉V . Hence y = X.

Case 2. q′ is of type 2, say q′ = 〈L′,M〉V with disjoint 4-spaces L′,M ∈ D
and L′ ∩ L = α. The LINE M is of type 2 or 3.

Suppose firstly M = γ ⊕W is a LINE of type 2 for a subspace W of V with
W ∩ Π ∼= O+

4 (K), W ≤ γ⊥V and L inducing on W ∩ Π one of its two reguli. If
γ = α, then 〈L,M〉V = α⊥V and 〈L,M〉V is a POINT of type 1 lying on the LINE

M and contained in the set Lπ. If γ 6= α, then 〈L,M〉V is non-degenerate and
contains disjoint 4-spaces of D, namely L and any 4-space of D through γ in M

distinct from 〈α, γ〉V . So, 〈L,M〉V is a POINT of type 2 on the LINE M belonging
to Lπ.
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If M with M ∩ Π ∼= O−6 (K) is a LINE of type 3, then the 8-space 〈L,M〉V has
Witt index 4 and is either isomorphic to O+

8 (K) or degenerate. An argument as
in Case 1 yields the conclusion.

Proof of Claim 3. Let q = β⊥V be a POINT of E with β ∈ L such that α and q

are disjoint. Hence 〈α, β〉V ∩ Π ∼= O+
4 (K). Given another POINT q′ such that q′

and α are disjoint, let M := q ∩ q′. We must prove that the LINE M contains a
POINT of pπ.

Case 1. M is of type 2 or 3. By Proposition 2.12, there exists a unique POINT

on M containing α and we are done.

Case 2. M is of type 1. Then q′ = γ⊥V for a line γ ∈ L with β ⊥Π γ. Put
λ = q∩L and λ′ = q′ ∩L. Since L induces spreads on q∩Π, q′ ∩Π and L, both
λ and λ′ are lines of Π in L. Suppose first that λ = λ′. Then λ⊥V is a POINT of
M in pπ. Suppose next λ 6= λ′. Since M is of type 1, it holds M⊥V ∈ D. Put
µ := α⊥V ∩M⊥V (∈ L). Then µ⊥V is a POINT of M and belongs to pπ.

By Propositions 2.11–2.15, the generalized quadrangle Γ has an embedding
in a 4-dimensional projective space PG(4,H).

By Propositions 2.5 and 2.6, two opposite lines of Γ define a proper full
subquadrangle which is not only a grid. As explained in section 2.1, Γ is a
hermitian generalized quadrangle if char(H) 6= 2 or if H = F2h for an h ∈ N.
This proves Theorem 1.2.
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