|~

page 1/ 11

go back

full screen

close

quit

ACADEMIA
PRESS

) =

UNIVERSITEIT
GENT

On minimum size blocking sets of external
lines to a quadric in PG(d, q)

Paola Biondi Pia Maria Lo Re* Leo Storme

Abstract

We characterize the minimum size blocking sets with respect to the ex-
ternal lines to a non-singular quadric or a quadric with a point vertex in
PG(d,q), d > 4 and ¢ > 9. Our results show that these minimum size
blocking sets are equal to the sets of points not on the quadric in a suitably
chosen hyperplane with respect to the quadric.

Keywords: blocking sets, quadrics
MSC 2000: 05B25, 51E20, 51E21

1. Introduction

A blocking set in a projective space P = PG(d, q) is a subset of P which meets
every line. Blocking sets have been investigated by a great variety of authors,
from many points of view [5, 8, 9]. Now, let G be a set of lines of P. A point set
B of P is a blocking set with respect to G (or a G-blocking set) if every line in G
is incident with at least one point of B.

In [1, 6], all minimum size blocking sets with respect to the set £ of the
external lines to a non-singular conic in PG(2,¢) have been determined. We
point out that

the minimum size of an £-blocking set of PG(2, ¢) is ¢ — 1. (1.D

*The research of the first two authors was supported by the Italian National Project ”Strutture
geometriche, Combinatoria e loro applicazioni” (COFIN 2005) and by the Department of Mathe-
matics and Applications "R. Caccioppoli” of the University of Naples "Federico II”.

"The third author thanks the Research Foundation Flanders (Belgium) (EW.O.-Vlaanderen) for a
research grant.
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Now, let d > 3 and let VW be a non-singular quadric or a cone with a point
as the vertex. If d is odd, the notations O, @~ and C are used for hyperbolic
quadrics, elliptic quadrics and cones, respectively; if d is even, we write Q, C™
and C~ for non-singular quadrics and cones with base a hyperbolic or elliptic
quadric, respectively. Denote by F the set of all external lines to W. If [T is a
hyperplane, then IT\}W is an F-blocking set.

The minimum size of such a blocking set is:

(@) ¢® ! —q" ifd=2nand WisaC*t (Il is a tangent hyperplane);

(b) ¢®>"~1,if d = 2n and W is a C~ (Il is a non-tangent hyperplane through the
vertex);

(©) ¢* —q", ifd=2n+1and W is a C (Il is a hyperplane through the vertex
intersecting C in a cone with base a hyperbolic quadric);

(d ¢*> ! — gL if d = 2n and W is a Q (Il is a hyperplane intersecting Q in
a hyperbolic quadric);

(e) ¢®" —q", ifd=2n+1and Wisa QF (Il is a tangent hyperplane);

(£ ¢*",ifd =2n+1and Wisa Q~ (Il is a non-tangent hyperplane).

In [2, 3, 4], we proved that, if d = 3, the correct sizes for the smallest
JF-blocking sets are those in (c), (e) and (f), and that a minimum size F-blocking
set is always of type II\W, for a suitable hyperplane II if ¢ > 9.

In this paper, as a generalization of the previous results, we prove the follow-
ing result.

Theorem 1.1. Let WV be a non-singular quadric or a cone, with vertex a point, in
PG(d,q), d > 3 and q > 9. If B is a minimum size blocking set with respect to the
set of the external lines to WV, then B = II\W for a suitable hyperplane 11 (see the
list from (a) to (f)).

Theorem 1.1, which holds for d = 3, will be proved by induction on d; so,
from now on, we assume that the statement is true in PG(h,q),3 < h < d — 1.

Observe that, if S is a subspace of dimension at least 2 of PG(d, ¢) and B is
an F-blocking set, then S N B is a blocking set of S with respect to the lines
in S external to S N W. Moreover, with B of minimum size, BN W = (. Let
IT be a hyperplane. If p € II\W, a line exists through p external to V¥ and not
in II, unless W is a non-singular quadric in PG(2n, ¢), ¢q even, II is a tangent
hyperplane and p is the nucleus of WW. So, a proper subset B’ of II\W is an
F-blocking set if and only if W is a non-singular quadric in PG(2n, q), g even,
IT is a tangent hyperplane and B’ = IT\(W U {u}), where u is the nucleus of W.
By (d), IT\(W U {u}) is not of minimum size. Hence, if B is a minimum size
blocking set and B C II, for some hyperplane II, then B = IT\W.
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Throughout this paper, we assume the main properties of the quadrics to
be known [7]. Here we only introduce some definitions and notations. By
an external (tangent or secant) line, we mean a line external (unisecant or
bisecant) to V. Similarly, by a tangent hyperplane, we mean a hyperplane
tangent to V. Moreover, a hyperplane meeting }V in a non-singular quadric is
sometimes referred to as a secant hyperplane. Finally, the notation Sy, is often
used for a k-dimensional subspace of PG(d, ¢) and, if the hyperplane tangent to
W at a point p exists, it is denoted by II,,.

2. Cones in PG(d, q)

Let WV be a cone, with vertex a point, of PG(d, q), d > 4 and ¢ > 9. Throughout
this section, B denotes a minimum size blocking set with respect to the set F of
all external lines to W.

Proposition 2.1. Let d = 2n. If W is a cone C™, then:
(i) |B| — q2n—1 _ qn;
(ii) for any secant hyperplane 11, |B N 11| = ¢*"=2 — ¢"~1;
(iii) for any secant hyperplane I, B N II = Sy, 2\C* for a suitable subspace
Sgn_g inII.

Proof. Since B is of minimum size, from (a) in Section 1, it follows that
Bl < ¢*" ' —q". (2.1)
By the induction hypothesis, Theorem 1.1 (e) implies that
|BNT| > ¢* 2 —¢" ', (2.2)

for any secant hyperplane II; so, counting in two ways the point-hyperplane
pairs (p,II), p € BN 1II and II a secant hyperplane, yields

|B|q2n—1 Z q2n(q2n—2 _ qn—1> ) (23)

From (2.1) and (2.3), it follows that equality holds in both (2.1) and (2.2);
so, (i) and (ii) are proved. Since, by the induction hypothesis (see again Theo-
rem 1.1 (e)), (ii) implies (iii), the statement is completely proved. O

In a similar way, we can prove the following two propositions.
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Proposition 2.2. Let d = 2n. If W is a cone C~, then:
(i) |B| — q2n—1;
(ii) for any secant hyperplane 11, |BN1I| = ¢*"~2;
(iii) for any secant hyperplane 1I, B N1l = Sy, _2\C~, for a suitable subspace
Sgn_g inII.
Proposition 2.3. Let d = 2n + 1. If W is a cone C, then:
@ |Bl=¢"—q";
(i) for any secant hyperplane 11, |BN1I| = ¢®*~! — ¢q"~1;
(iii) for any secant hyperplane I, BNII = Sy,,_1\C, for a suitable subspace So,,—1
in II.

Theorem 2.4. Let W be a cone, with vertex a point, in PG(d, q), d > 3 and ¢ > 9.
If B is a minimum size blocking set with respect to the set of the external lines to
W, then:

() |Bl=¢""t—q" ifd=2nand WisaC*;
(i) |B|=¢* L ifd=2nand WisaC~;
(iii) |B| =¢* —q", ifd=2n+1.
Moreover, B = II\W for a suitable hyperplane 11 (see (a) - (¢) in Section 1).

Proof. By Propositions 2.1 — 2.3, (i) — (iii) hold.

Now, let d = 2n and let W be a cone C*. Consider a secant hyperplane S.
By Proposition 2.1, ¢?"~! — ¢" = |B| > |[BN S| = ¢**~2 — ¢"~! and a subspace
Son_o exists in S such that BN S = Ss, 2\C". Let p € B\S and let S’ be the
hyperplane joining S, _» with p. Since |[BN S| > |[BNS| = ¢*>"2 — ¢ 1, then
Proposition 2.1 (ii) implies that S’ is not secant; so S’ contains the vertex v of
C*. Therefore, S’ is the hyperplane II joining Ss,,_» with v. Hence, B C TI,
from which B = TI\C™.

Using Propositions 2.2 and 2.3, the same argument as above can be applied
to the cones C~ and C, respectively. So the statement is completely proved. [

3. Non-singular quadrics in PG(2n, q)

Let Q be a non-singular quadric of PG(2n,¢), n > 2 and ¢ > 9, and let B be a
minimum size blocking set with respect to the set F of all external lines to Q.
By (d) in Section 1,

|B| < ¢* 1 — ¢t (3.1)

Proposition 3.1. There exists a line tangent to Q and skew to B.
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Proof. Through a point of Q, there pass ¢>"~! secant lines; so, (3.1) implies that

there exists a secant line L skew to B. Set L N Q = {p1,p2} and denote by 7
and S the sets of planes through L meeting Q in a singular and a non-singular
conic, respectively. Since the number of elements of 7 equals the number of
lines of Q through py, |7| =¢* 2 +¢*" 4+ .-+ q+ 1. So, |S| = ¢>" 2.

This implies, by (1.1), that the union of all planes in S shares with B at least
¢*"~2(q — 1) points. Then, by (3.1), there are at most ¢?"~2 — ¢"~! points of
B in elements of 7. Since any plane in 7 contains ¢ — 1 tangent lines and
(q—D|T|=¢*"2?—1>¢* 2 —¢" !, we conclude that there is a tangent line
skew to B. So the statement is proved. O

Proposition 3.2. (i) |B| =¢*" 1 —¢"%;
(ii) if there exists a tangent line through a point p € Q skew to B, then |II, N B| =
¢*"? — ¢" ! and T, N B = Q\Q, for a suitable hyperplane ) of 11,, inter-
secting Q in a cone with vertex p and base a hyperbolic quadric.

Proof. Let p be a point in Q such that a tangent line L through p exists skew
to B. The ¢*"~2 planes on L not in II, all intersect Q in a non-singular conic;
so, by (1.1), each one of them shares at least ¢ — 1 points with B. Therefore,

|B\IL,| > ¢*"* — ¢*" 2. (3.2)
From (3.1) and (3.2), it follows that
|IBNI,| < ¢* % —¢" ', (3.3)

On the other hand, by the induction hypothesis (see Theorem 1.1 (c)), we have
|BNII,| > ¢*" 2 — ¢"!; so, by (3.3),

‘B N Hp‘ — q2n—2 o qn—l ) (34)

This implies, by the induction hypothesis (see again Theorem 1.1 (c)), the sec-
ond part of (ii). Hence (ii) holds.

Finally, (3.1), (3.2) and (3.4) imply (i). The statement is completely proved.
O

Now, we can prove the following result.

Theorem 3.3. Let Q be a non-singular quadric in PG(2n,q), n > 2 and q > 9. If
B is a minimum size blocking set with respect to the set of the external lines to Q,
then |B| = ¢**~! — ¢"! and B = 11\ Q for a hyperplane 1I intersecting Q in a
hyperbolic quadric.
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Proof By Propositions 3.1 and 3.2, |B| = ¢*"~! — ¢"~! and there exists a point
p € Q such that [II, N B| = ¢*"2 — ¢"~! and II, N B = Q\Q, for a suitable
hyperplane (2 of II,, intersecting Q in a cone with vertex p and base a hyperbolic
quadric. We divide the proof into two cases.

Case1l: n=2.

The hyperplane (2 shares two distinct lines with Q. Let L be a line in Q2 on p
such that L\{p} C B. Consider a plane 7 in II,, through L such that TN Q = {p}.
The ¢ non-tangent hyperplanes I1;, i = 1, ..., ¢, through 7 all intersect Q in an
elliptic quadric; therefore, by Theorem 1.1 (f),

|IBNIL;| > ¢ i=1,...,q. (3.5)

Since |II, N B| = ¢* — q and |B| = ¢* — ¢, then, counting points of B on
hyperplanes through =, we obtain by (3.5) that

¢ —q=1|B|>¢ —q+q(¢®*—q).

This implies that equality holds in (3.5); so, by Theorem 1.1 (f), there exists
a secant plane §2; C II; such that BNII; = Q;\Q, forany ¢ = 1,...,q. Hence,
B=(QUQU---UQ)\Q. Now, let L’ # L be a line in Q on p such that
L'\{p} € B.
By the same arguments as above, we can find ¢ planes 1, ..., Q; through L'
such that
U NBl=¢*and B=(QUQU---UQ)\Q. (3.6)

Observe that, since the line L is tangent to Q at p and since all planes 2 and
Qj,14,j =1,...,q, are secant planes, then Q; N Q,, i,j = 1,...,¢, is either the
point p or a secant line through p. Consequently,

Q,NQ;NB=00rq—1. (3.7)

Now, consider one of the planes 2/, say 2}. Since Q) N B = (2, NQNB)U
QN NB)U---U Q] NQ,NB)and Q) NQN B| =g, then (3.6) and (3.7)
imply that [ NQ;NB|=¢q—1foranyj=1,...,q.

Hence, Q) N €2, is a line, for any ¢, = 1,...,¢. This implies that Q}, i =
1,...,q, is contained in the hyperplane II joining 2 and ;. Then, by (3.6),
B C1I;so, B=1I\ Q and the statement is proved.

Case 2: n > 3.

The tangent hyperplane II, shares with Q a cone with vertex p and base a
non-singular quadric of a subspace S5,,_», and 2 N Q is a cone with vertex p
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and base a hyperbolic quadric of a subspace S5, 3 C So,_2. Let S5, . be a
subspace of S),, 5 such that SY, . N Q is an elliptic quadric. Consider in S},
two distinct subspaces 75,4 and T3, _, through S, . (obviously, T5,—4 N Q
and 73, _, N Q are non-singular quadrics). Choose in Sy,,_5 a subspace Us,,_3
such that T5,,_4 C Us,,_3 and Us,,_3N Q is an elliptic quadric. Denote by W5,, o
the subspace joining Us,,_3 and p. Here,

(Wop_oNB| =¢*"3. (3.8)

The ¢ non-tangent hyperplanes I1;, i = 1,..., g, through W5, all intersect
Q in an elliptic quadric. Therefore, by Theorem 1.1 (f),

|IBNIL| > ¢*"2%i=1,...,q. (3.9

Since |II, N B| = ¢*" 2 —¢" ! and |B| = ¢*"~! — ¢" !, then, counting points
of B on hyperplanes through W5,,_5, we obtain, by (3.8) and (3.9),

q2n—1 o qn—l — |B‘ > q2n—2 _ qn—l 4 q<q2n—2 _ q2n—3) )

This implies that equality holds in (3.9); so, by Theorem 1.1 (f), there exists
a (2n — 2)-dimensional subspace ;) C II; sharing a non-singular quadric with
Q, and such that BNTI; = Q;)\Q, foranyi = 1,...,q. Hence, B = (QU Q) U
U Q)\Q.

Now, we apply the previous arguments to 74, ,; so we find ¢ subspaces
Q’(l), . Q’(q) of dimension 2n — 2 such that

9, N Bl =¢""?and B = (QUQ; U---UQ)\Q. (3.10)

Let Z3,_4 be the subspace joining S5, 5 and p. For any ;) and Q’(j), Qi N
Q’(j) is Zy,,—4 or @ (2n — 3)-dimensional subspace Z;; on Z5,,_4 such that Z;; N Q
is an elliptic quadric with Z5,,_, as the tangent hyperplane in p; so,

Q) Ny N Bl =g +¢" 2 or ¢®* 4+ ¢" 2, (3.11)

respectively.

Now, consider one of the spaces Q’(i), say Q/(1)- Since
1)yNB=(QyN2NB)U Q) NQyyNB)U---U(Q) NQy N B)

and [Qf,, N QN B| = [(p,T3,_4) N B| = ¢*"~%, (3.10) and (3.11) imply that

Q) NQ;HNBl=¢*"" +¢" *foranyj =1,...,4q.

Hence, %) N €, is a (2n — 3)-dimensional subspace, for anyi,j =1,...,q.
This implies that Q’(i), i =1,...,q, is contained in the hyperplane II joining {2
and Q). Then, by (3.10), B C II; so B = II\ Q.

The statement is completely proved. O
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4. Non-singular quadrics in PG(2n + 1, q)

Let Q be a non-singular quadric of PG(2n + 1,¢), n > 2 and ¢ > 9. Throughout
this section, B denotes a minimum size blocking set with respect to the set F of
all external lines to Q.

Proposition 4.1. There exists a line tangent to Q and skew to B.

Proof. Firstly, let Q be a hyperbolic quadric. By (e) in Section 1,
|B| < ¢*" — ™. 4.1)

Assume that no tangent line is skew to B. Then, counting in two ways the
point-line pairs (p, L), p € BN L and L a tangent line, gives

BI(@*" ™+ D) = (¢ =" )@ g 20" " e D,

a contradiction to (4.1).

The same argument applies to an elliptic quadric. So, the statement is proved.
O

Applying the arguments of the proof of Proposition 3.2 to Q gives the follow-
ing result.

Proposition 4.2. If Q is a hyperbolic quadric, then
O [Bl=¢" —q%
(ii) if a tangent line through a point p € Q skew to B exists, then |II, N B| =
"1 — ¢" and 11, N B = Q\Q, for a suitable tangent hyperplane ) of I1,,.

If Q is an elliptic quadric, then
@ |B] = ¢
(ii) if a tangent line through a point p € Q skew to B exists, then |II, N B| =

"~V and 11, N B = Q\Q, for a suitable non-tangent hyperplane  of 11,
through p.

Theorem 4.3. Let Q be a hyperbolic (elliptic) quadric in PG(2n+1,q), n > 2 and
q > 9. If B is a minimum size blocking set with respect to the set of the external
lines to Q, then |B| = ¢*" — ¢" (|B| = ¢*™) and B = 1\ Q, for a suitable tangent
(non-tangent) hyperplane 11 to Q.

Proof. Firstly, assume that Q is a hyperbolic quadric. By Propositions 4.1 and 4.2,
|B| = ¢*" — ¢"™ and there exists a point p € Q such that |II, N B| = ¢*"~! — ¢
and such that I, N B = Q\Q, for a suitable tangent hyperplane (2 of II,. The
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tangent hyperplane II, shares with Q a cone with vertex p and base a hyper-
bolic quadric of a subspace Ss,_1. Set 2N Sy,_1 = S5, 5 and observe that
QN Q is a cone with vertex a line L through p and base a hyperbolic quadric
of a (2n — 3)-dimensional subspace of S}, ,. Consider in S, , two distinct
subspaces T5,,_3 and T5,, 5 such that 7,,_3 N Q and 73,5 N Q are non-singular
hyperbolic quadrics and such that 75,3 N T3, _5 N Q is either a non-singular
quadric or the empty set according as n > 3 or n = 2. Choose a point p’ in
QN (S2,-1\5%,,_5) such that the subspace Us,,_5 joining p’ and T5,,_3 intersects
Q in a non-singular quadric, and denote by W5,,_; the subspace joining Us,,_»
and p. Since T»,,_3 N Q is a hyperbolic quadric,

[Wan 1 N Bl =¢*"2 —¢"". (4.2)

Let IT;, ¢ = 1,...,q, be the non-tangent hyperplanes through W5, ;. By
Theorem 1.1 (d),

IBNIL| > ¢*" !t —¢" i=1,...,q. (4.3)

Since I, N B| = ¢*"~! — ¢" and | B| = ¢*™ — ¢", then, counting points of B
on hyperplanes through W5,, |, we obtain, by (4.2) and (4.3), that

q2n o qn — ‘B| > q2n—1 o qn + q(q2n—1 o q2n—2).

This implies that equality holds in (4.3); so, by Theorem 1.1 (d), there exists
a (2n — 1)-dimensional subspace ;) C II; sharing with Q a hyperbolic quadric
and such that BN1II; = Q;)\Q, foranyi = 1,...,q. Hence, B = (QU Q(;) U
UL

Now, we apply the previous arguments to the subspace 73, _5; so we find ¢
subspaces Q’(l), e Q’(q) of dimension 2n — 1 such that

Q) NBl=¢"""—¢" tand B=(QUQ;U---UQ,)\Q. (4.9)

As in the proof of Theorem 3.3, we can prove that %) N Q) isa (2n — 2)-
dimensional subspace, for any i, = 1,...,q. This implies that %), i=1,...,q,
is contained in the hyperplane II joining €2 and ;). Then, by (4.4), B C II; so

B=11\Q.

Now, let Q be an elliptic quadric. The proof proceeds in the same way as
above. Consider Proposition 4.2. For the hyperbolic quadric, | B| = ¢** — ¢" and
for the elliptic quadric, | B| = ¢*". But we use in the arguments of this proof, a
point p of Q for which |IT, N B| = ¢*"~! — ¢" for the hyperbolic quadric and for
which |1, N B| = ¢*"~! for the elliptic quadric. We see that when looking at the
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numbers | B| and |II, N B| for the hyperbolic quadric and for the elliptic quadric,
in both cases, the difference is ¢”. This makes that all the arguments can be
copied; everywhere the same equalities are obtained, leading to the analogous
conclusions. O
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