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On minimum size blocking sets of external
lines to a quadric in PG(d, q)

Paola Biondi Pia Maria Lo Re∗ Leo Storme†

Abstract

We characterize the minimum size blocking sets with respect to the ex-
ternal lines to a non-singular quadric or a quadric with a point vertex in
PG(d, q), d ≥ 4 and q ≥ 9. Our results show that these minimum size
blocking sets are equal to the sets of points not on the quadric in a suitably
chosen hyperplane with respect to the quadric.
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1. Introduction

A blocking set in a projective space P = PG(d, q) is a subset of P which meets
every line. Blocking sets have been investigated by a great variety of authors,
from many points of view [5, 8, 9]. Now, let G be a set of lines of P. A point set
B of P is a blocking set with respect to G (or a G-blocking set) if every line in G
is incident with at least one point of B.

In [1, 6], all minimum size blocking sets with respect to the set E of the
external lines to a non-singular conic in PG(2, q) have been determined. We
point out that

the minimum size of an E-blocking set of PG(2, q) is q − 1. (1.1)
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Now, let d ≥ 3 and let W be a non-singular quadric or a cone with a point
as the vertex. If d is odd, the notations Q+, Q− and C are used for hyperbolic
quadrics, elliptic quadrics and cones, respectively; if d is even, we write Q, C+

and C− for non-singular quadrics and cones with base a hyperbolic or elliptic
quadric, respectively. Denote by F the set of all external lines to W. If Π is a
hyperplane, then Π\W is an F -blocking set.

The minimum size of such a blocking set is:

(a) q2n−1 − qn, if d = 2n andW is a C+ (Π is a tangent hyperplane);
(b) q2n−1, if d = 2n andW is a C− (Π is a non-tangent hyperplane through the

vertex);
(c) q2n − qn, if d = 2n+ 1 andW is a C (Π is a hyperplane through the vertex

intersecting C in a cone with base a hyperbolic quadric);
(d) q2n−1 − qn−1, if d = 2n andW is a Q (Π is a hyperplane intersecting Q in

a hyperbolic quadric);
(e) q2n − qn, if d = 2n+ 1 andW is a Q+ (Π is a tangent hyperplane);
(f) q2n, if d = 2n+ 1 andW is a Q− (Π is a non-tangent hyperplane).

In [2, 3, 4], we proved that, if d = 3, the correct sizes for the smallest
F -blocking sets are those in (c), (e) and (f), and that a minimum sizeF -blocking
set is always of type Π\W, for a suitable hyperplane Π if q ≥ 9.

In this paper, as a generalization of the previous results, we prove the follow-
ing result.

Theorem 1.1. LetW be a non-singular quadric or a cone, with vertex a point, in
PG(d, q), d ≥ 3 and q ≥ 9. If B is a minimum size blocking set with respect to the
set of the external lines toW, then B = Π\W for a suitable hyperplane Π (see the
list from (a) to (f)).

Theorem 1.1, which holds for d = 3, will be proved by induction on d; so,
from now on, we assume that the statement is true in PG(h, q), 3 ≤ h ≤ d− 1.

Observe that, if S is a subspace of dimension at least 2 of PG(d, q) and B is
an F -blocking set, then S ∩ B is a blocking set of S with respect to the lines
in S external to S ∩ W. Moreover, with B of minimum size, B ∩ W = ∅. Let
Π be a hyperplane. If p ∈ Π\W, a line exists through p external to W and not
in Π, unless W is a non-singular quadric in PG(2n, q), q even, Π is a tangent
hyperplane and p is the nucleus of W. So, a proper subset B′ of Π\W is an
F -blocking set if and only if W is a non-singular quadric in PG(2n, q), q even,
Π is a tangent hyperplane and B′ = Π\(W ∪{u}), where u is the nucleus ofW.
By (d), Π\(W ∪ {u}) is not of minimum size. Hence, if B is a minimum size
blocking set and B ⊆ Π, for some hyperplane Π, then B = Π\W.
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Throughout this paper, we assume the main properties of the quadrics to
be known [7]. Here we only introduce some definitions and notations. By
an external (tangent or secant) line, we mean a line external (unisecant or
bisecant) to W. Similarly, by a tangent hyperplane, we mean a hyperplane
tangent to W. Moreover, a hyperplane meeting W in a non-singular quadric is
sometimes referred to as a secant hyperplane. Finally, the notation Sk is often
used for a k-dimensional subspace of PG(d, q) and, if the hyperplane tangent to
W at a point p exists, it is denoted by Πp.

2. Cones in PG(d, q)

LetW be a cone, with vertex a point, of PG(d, q), d ≥ 4 and q ≥ 9. Throughout
this section, B denotes a minimum size blocking set with respect to the set F of
all external lines toW.

Proposition 2.1. Let d = 2n. IfW is a cone C+, then:

(i) |B| = q2n−1 − qn ;
(ii) for any secant hyperplane Π, |B ∩ Π| = q2n−2 − qn−1 ;

(iii) for any secant hyperplane Π, B ∩ Π = S2n−2\C+ for a suitable subspace
S2n−2 in Π .

Proof. Since B is of minimum size, from (a) in Section 1, it follows that

|B| ≤ q2n−1 − qn . (2.1)

By the induction hypothesis, Theorem 1.1 (e) implies that

|B ∩Π| ≥ q2n−2 − qn−1 , (2.2)

for any secant hyperplane Π; so, counting in two ways the point-hyperplane
pairs (p,Π), p ∈ B ∩ Π and Π a secant hyperplane, yields

|B|q2n−1 ≥ q2n(q2n−2 − qn−1) . (2.3)

From (2.1) and (2.3), it follows that equality holds in both (2.1) and (2.2);
so, (i) and (ii) are proved. Since, by the induction hypothesis (see again Theo-
rem 1.1 (e)), (ii) implies (iii), the statement is completely proved.

In a similar way, we can prove the following two propositions.
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Proposition 2.2. Let d = 2n. IfW is a cone C−, then:

(i) |B| = q2n−1 ;
(ii) for any secant hyperplane Π, |B ∩ Π| = q2n−2 ;

(iii) for any secant hyperplane Π, B ∩ Π = S2n−2\C−, for a suitable subspace
S2n−2 in Π .

Proposition 2.3. Let d = 2n+ 1. IfW is a cone C, then:

(i) |B| = q2n − qn ;
(ii) for any secant hyperplane Π, |B ∩ Π| = q2n−1 − qn−1 ;

(iii) for any secant hyperplane Π, B∩Π = S2n−1\C, for a suitable subspace S2n−1

in Π .

Theorem 2.4. LetW be a cone, with vertex a point, in PG(d, q), d ≥ 3 and q ≥ 9.
If B is a minimum size blocking set with respect to the set of the external lines to
W, then:

(i) |B| = q2n−1 − qn, if d = 2n andW is a C+ ;
(ii) |B| = q2n−1, if d = 2n andW is a C− ;

(iii) |B| = q2n − qn, if d = 2n+ 1 .

Moreover, B = Π\W for a suitable hyperplane Π (see (a) - (c) in Section 1).

Proof. By Propositions 2.1 – 2.3, (i) – (iii) hold.

Now, let d = 2n and let W be a cone C+. Consider a secant hyperplane S.
By Proposition 2.1, q2n−1 − qn = |B| > |B ∩ S| = q2n−2 − qn−1 and a subspace
S2n−2 exists in S such that B ∩ S = S2n−2\C+. Let p ∈ B\S and let S′ be the
hyperplane joining S2n−2 with p. Since |B ∩ S′| > |B ∩ S| = q2n−2 − qn−1, then
Proposition 2.1 (ii) implies that S′ is not secant; so S′ contains the vertex v of
C+. Therefore, S′ is the hyperplane Π joining S2n−2 with v. Hence, B ⊆ Π,
from which B = Π\C+.

Using Propositions 2.2 and 2.3, the same argument as above can be applied
to the cones C− and C, respectively. So the statement is completely proved.

3. Non-singular quadrics in PG(2n, q)

Let Q be a non-singular quadric of PG(2n, q), n ≥ 2 and q ≥ 9, and let B be a
minimum size blocking set with respect to the set F of all external lines to Q.
By (d) in Section 1,

|B| ≤ q2n−1 − qn−1 . (3.1)

Proposition 3.1. There exists a line tangent to Q and skew to B.
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Proof. Through a point ofQ, there pass q2n−1 secant lines; so, (3.1) implies that
there exists a secant line L skew to B. Set L ∩ Q = {p1, p2} and denote by T
and S the sets of planes through L meeting Q in a singular and a non-singular
conic, respectively. Since the number of elements of T equals the number of
lines of Q through p1, |T | = q2n−3 + q2n−4 + · · ·+ q + 1. So, |S| = q2n−2.

This implies, by (1.1), that the union of all planes in S shares with B at least
q2n−2(q − 1) points. Then, by (3.1), there are at most q2n−2 − qn−1 points of
B in elements of T . Since any plane in T contains q − 1 tangent lines and
(q − 1)|T | = q2n−2 − 1 > q2n−2 − qn−1, we conclude that there is a tangent line
skew to B. So the statement is proved.

Proposition 3.2. (i) |B| = q2n−1 − qn−1;
(ii) if there exists a tangent line through a point p ∈ Q skew toB, then |Πp ∩ B| =

q2n−2 − qn−1 and Πp ∩ B = Ω\Q, for a suitable hyperplane Ω of Πp inter-
secting Q in a cone with vertex p and base a hyperbolic quadric.

Proof. Let p be a point in Q such that a tangent line L through p exists skew
to B. The q2n−2 planes on L not in Πp all intersect Q in a non-singular conic;
so, by (1.1), each one of them shares at least q − 1 points with B. Therefore,

|B\Πp| ≥ q2n−1 − q2n−2 . (3.2)

From (3.1) and (3.2), it follows that

|B ∩Πp| ≤ q2n−2 − qn−1 . (3.3)

On the other hand, by the induction hypothesis (see Theorem 1.1 (c)), we have
|B ∩ Πp| ≥ q2n−2 − qn−1; so, by (3.3),

|B ∩Πp| = q2n−2 − qn−1 . (3.4)

This implies, by the induction hypothesis (see again Theorem 1.1 (c)), the sec-
ond part of (ii). Hence (ii) holds.

Finally, (3.1), (3.2) and (3.4) imply (i). The statement is completely proved.

Now, we can prove the following result.

Theorem 3.3. Let Q be a non-singular quadric in PG(2n, q), n ≥ 2 and q ≥ 9. If
B is a minimum size blocking set with respect to the set of the external lines to Q,
then |B| = q2n−1 − qn−1 and B = Π\Q for a hyperplane Π intersecting Q in a
hyperbolic quadric.
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Proof. By Propositions 3.1 and 3.2, |B| = q2n−1 − qn−1 and there exists a point
p ∈ Q such that |Πp ∩ B| = q2n−2 − qn−1 and Πp ∩ B = Ω\Q, for a suitable
hyperplane Ω of Πp intersecting Q in a cone with vertex p and base a hyperbolic
quadric. We divide the proof into two cases.

Case 1: n = 2.

The hyperplane Ω shares two distinct lines with Q. Let L be a line in Ω on p
such that L\{p} ⊆ B. Consider a plane π in Πp through L such that π∩Q = {p}.
The q non-tangent hyperplanes Πi, i = 1, . . . , q, through π all intersect Q in an
elliptic quadric; therefore, by Theorem 1.1 (f),

|B ∩Πi| ≥ q2, i = 1, . . . , q . (3.5)

Since |Πp ∩ B| = q2 − q and |B| = q3 − q, then, counting points of B on
hyperplanes through π, we obtain by (3.5) that

q3 − q = |B| ≥ q2 − q + q(q2 − q) .

This implies that equality holds in (3.5); so, by Theorem 1.1 (f), there exists
a secant plane Ωi ⊆ Πi such that B ∩ Πi = Ωi\Q, for any i = 1, . . . , q. Hence,
B = (Ω ∪ Ω1 ∪ · · · ∪ Ωq)\Q. Now, let L′ 6= L be a line in Ω on p such that
L′\{p} ⊆ B.

By the same arguments as above, we can find q planes Ω′1, . . . ,Ω
′
q through L′

such that
|Ω′i ∩B| = q2 and B = (Ω ∪ Ω′1 ∪ · · · ∪ Ω′q)\Q . (3.6)

Observe that, since the line L is tangent to Q at p and since all planes Ω′i and
Ωj , i, j = 1, . . . , q, are secant planes, then Ω′i ∩ Ωj , i, j = 1, . . . , q, is either the
point p or a secant line through p. Consequently,

|Ω′i ∩ Ωj ∩ B| = 0 or q − 1 . (3.7)

Now, consider one of the planes Ω′i, say Ω′1. Since Ω′1 ∩ B = (Ω′1 ∩ Ω ∩ B) ∪
(Ω′1 ∩ Ω1 ∩B) ∪ · · · ∪ (Ω′1 ∩ Ωq ∩B) and |Ω′1 ∩ Ω ∩B| = q, then (3.6) and (3.7)
imply that |Ω′1 ∩ Ωj ∩B| = q − 1 for any j = 1, . . . , q.

Hence, Ω′i ∩ Ωj is a line, for any i, j = 1, . . . , q. This implies that Ω′i, i =

1, . . . , q, is contained in the hyperplane Π joining Ω and Ω1. Then, by (3.6),
B ⊆ Π; so, B = Π \ Q and the statement is proved.

Case 2: n ≥ 3.

The tangent hyperplane Πp shares with Q a cone with vertex p and base a
non-singular quadric of a subspace S2n−2, and Ω ∩ Q is a cone with vertex p
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and base a hyperbolic quadric of a subspace S ′2n−3 ⊆ S2n−2. Let S′′2n−5 be a
subspace of S′2n−3 such that S′′2n−5 ∩Q is an elliptic quadric. Consider in S ′2n−3

two distinct subspaces T2n−4 and T ′2n−4 through S′′2n−5 (obviously, T2n−4 ∩ Q
and T ′2n−4 ∩ Q are non-singular quadrics). Choose in S2n−2 a subspace U2n−3

such that T2n−4 ⊆ U2n−3 and U2n−3∩Q is an elliptic quadric. Denote by W2n−2

the subspace joining U2n−3 and p. Here,

|W2n−2 ∩B| = q2n−3 . (3.8)

The q non-tangent hyperplanes Πi, i = 1, . . . , q, through W2n−2 all intersect
Q in an elliptic quadric. Therefore, by Theorem 1.1 (f),

|B ∩Πi| ≥ q2n−2, i = 1, . . . , q . (3.9)

Since |Πp ∩B| = q2n−2− qn−1 and |B| = q2n−1− qn−1, then, counting points
of B on hyperplanes through W2n−2, we obtain, by (3.8) and (3.9),

q2n−1 − qn−1 = |B| ≥ q2n−2 − qn−1 + q(q2n−2 − q2n−3) .

This implies that equality holds in (3.9); so, by Theorem 1.1 (f), there exists
a (2n− 2)-dimensional subspace Ω(i) ⊆ Πi sharing a non-singular quadric with
Q, and such that B ∩Πi = Ω(i)\Q, for any i = 1, . . . , q. Hence, B = (Ω ∪Ω(1) ∪
· · · ∪ Ω(q))\Q.

Now, we apply the previous arguments to T ′2n−4; so we find q subspaces
Ω′(1), . . . ,Ω

′
(q) of dimension 2n− 2 such that

|Ω′(i) ∩B| = q2n−2 and B = (Ω ∪ Ω′(1) ∪ · · · ∪ Ω′(q))\Q . (3.10)

Let Z2n−4 be the subspace joining S′′2n−5 and p. For any Ω(i) and Ω′(j), Ω(i) ∩
Ω′(j) is Z2n−4 or a (2n−3)-dimensional subspace Zij on Z2n−4 such that Zij ∩Q
is an elliptic quadric with Z2n−4 as the tangent hyperplane in p; so,

|Ω(i) ∩ Ω′(j) ∩ B| = q2n−4 + qn−2 or q2n−3 + qn−2 , (3.11)

respectively.

Now, consider one of the spaces Ω′(i), say Ω′(1). Since

Ω′(1) ∩B = (Ω′(1) ∩ Ω ∩ B) ∪ (Ω′(1) ∩ Ω(1) ∩ B) ∪ · · · ∪ (Ω′(1) ∩ Ω(q) ∩ B)

and |Ω′(1) ∩ Ω ∩ B| = |〈p, T ′2n−4〉 ∩ B| = q2n−3, (3.10) and (3.11) imply that
|Ω′(1) ∩ Ω(j) ∩B| = q2n−3 + qn−2 for any j = 1, . . . , q.

Hence, Ω′(i) ∩ Ω(j) is a (2n− 3)-dimensional subspace, for any i, j = 1, . . . , q.
This implies that Ω′(i), i = 1, . . . , q, is contained in the hyperplane Π joining Ω

and Ω(1). Then, by (3.10), B ⊆ Π; so B = Π\Q.

The statement is completely proved.
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4. Non-singular quadrics in PG(2n+ 1, q)

Let Q be a non-singular quadric of PG(2n+ 1, q), n ≥ 2 and q ≥ 9. Throughout
this section, B denotes a minimum size blocking set with respect to the set F of
all external lines to Q.

Proposition 4.1. There exists a line tangent to Q and skew to B.

Proof. Firstly, let Q be a hyperbolic quadric. By (e) in Section 1,

|B| ≤ q2n − qn . (4.1)

Assume that no tangent line is skew to B. Then, counting in two ways the
point-line pairs (p, L), p ∈ B ∩ L and L a tangent line, gives

|B|(q2n−1 + · · ·+ 1) ≥ (q2n−1 − qn−1)(q2n + · · ·+ qn+1 + 2qn + qn−1 + · · ·+ 1),

a contradiction to (4.1).

The same argument applies to an elliptic quadric. So, the statement is proved.

Applying the arguments of the proof of Proposition 3.2 to Q gives the follow-
ing result.

Proposition 4.2. If Q is a hyperbolic quadric, then

(i) |B| = q2n − qn;
(ii) if a tangent line through a point p ∈ Q skew to B exists, then |Πp ∩ B| =

q2n−1 − qn and Πp ∩ B = Ω\Q, for a suitable tangent hyperplane Ω of Πp.

If Q is an elliptic quadric, then

(i) |B| = q2n;
(ii) if a tangent line through a point p ∈ Q skew to B exists, then |Πp ∩ B| =

q2n−1 and Πp ∩ B = Ω\Q, for a suitable non-tangent hyperplane Ω of Πp

through p.

Theorem 4.3. Let Q be a hyperbolic (elliptic) quadric in PG(2n+1, q), n ≥ 2 and
q ≥ 9. If B is a minimum size blocking set with respect to the set of the external
lines to Q, then |B| = q2n − qn (|B| = q2n) and B = Π\Q, for a suitable tangent
(non-tangent) hyperplane Π to Q.

Proof. Firstly, assume thatQ is a hyperbolic quadric. By Propositions 4.1 and 4.2,
|B| = q2n − qn and there exists a point p ∈ Q such that |Πp ∩ B| = q2n−1 − qn
and such that Πp ∩ B = Ω\Q, for a suitable tangent hyperplane Ω of Πp. The
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tangent hyperplane Πp shares with Q a cone with vertex p and base a hyper-
bolic quadric of a subspace S2n−1. Set Ω ∩ S2n−1 = S′2n−2 and observe that
Ω ∩ Q is a cone with vertex a line L through p and base a hyperbolic quadric
of a (2n − 3)-dimensional subspace of S ′2n−2. Consider in S′2n−2 two distinct
subspaces T2n−3 and T ′2n−3 such that T2n−3∩Q and T ′2n−3 ∩Q are non-singular
hyperbolic quadrics and such that T2n−3 ∩ T ′2n−3 ∩ Q is either a non-singular
quadric or the empty set according as n ≥ 3 or n = 2. Choose a point p′ in
Q∩ (S2n−1\S′2n−2) such that the subspace U2n−2 joining p′ and T2n−3 intersects
Q in a non-singular quadric, and denote by W2n−1 the subspace joining U2n−2

and p. Since T2n−3 ∩ Q is a hyperbolic quadric,

|W2n−1 ∩B| = q2n−2 − qn−1 . (4.2)

Let Πi, i = 1, . . . , q, be the non-tangent hyperplanes through W2n−1. By
Theorem 1.1 (d),

|B ∩Πi| ≥ q2n−1 − qn−1, i = 1, . . . , q . (4.3)

Since |Πp ∩ B| = q2n−1 − qn and |B| = q2n − qn, then, counting points of B
on hyperplanes through W2n−1, we obtain, by (4.2) and (4.3), that

q2n − qn = |B| ≥ q2n−1 − qn + q(q2n−1 − q2n−2).

This implies that equality holds in (4.3); so, by Theorem 1.1 (d), there exists
a (2n− 1)-dimensional subspace Ω(i) ⊆ Πi sharing with Q a hyperbolic quadric
and such that B ∩ Πi = Ω(i)\Q, for any i = 1, . . . , q. Hence, B = (Ω ∪ Ω(1) ∪
· · · ∪ Ω(q))\Q.

Now, we apply the previous arguments to the subspace T ′2n−3; so we find q

subspaces Ω′(1), . . . ,Ω
′
(q) of dimension 2n− 1 such that

|Ω′(i) ∩ B| = q2n−1 − qn−1 and B = (Ω ∪ Ω′(1) ∪ · · · ∪ Ω′(q))\Q . (4.4)

As in the proof of Theorem 3.3, we can prove that Ω′(i) ∩ Ω(j) is a (2n − 2)-
dimensional subspace, for any i, j = 1, . . . , q. This implies that Ω′(i), i = 1, . . . , q,
is contained in the hyperplane Π joining Ω and Ω(1). Then, by (4.4), B ⊆ Π; so
B = Π\Q.

Now, let Q be an elliptic quadric. The proof proceeds in the same way as
above. Consider Proposition 4.2. For the hyperbolic quadric, |B| = q2n−qn and
for the elliptic quadric, |B| = q2n. But we use in the arguments of this proof, a
point p of Q for which |Πp ∩B| = q2n−1 − qn for the hyperbolic quadric and for
which |Πp∩B| = q2n−1 for the elliptic quadric. We see that when looking at the
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numbers |B| and |Πp∩B| for the hyperbolic quadric and for the elliptic quadric,
in both cases, the difference is qn. This makes that all the arguments can be
copied; everywhere the same equalities are obtained, leading to the analogous
conclusions.
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