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New multiple hyper-regulus planes

Norman L. Johnson

Abstract

New classes of multiple hyper-regulus translation planes of orders qn,
for n ≥ 3, are constructed that extend the classes of Culbert-Ebert planes of
orders q3.

MSC 2000: primary: 51E23; secondary: 51A40
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1. Introduction

This article considers the possibility of the construction of translation planes of
order qn and kernel containing GF(q) by the replacement of a set of mutually
disjoint hyper-reguli. A ‘hyper-regulus’ is a vector space partial spread H of
degree (qn − 1)/(q − 1) and order qn which has a replacement ‘hyper-regulus’
spread H∗, each of whose components intersects each of the components of
H, which is to say that the intersections between the two hyper-reguli are 1-
dimensional GF(q)-subspaces. Hence, when n = 2, a hyper-regulus is a regulus.

Consider a Desarguesian plane Σ with spread

x = 0, y = xm;m ∈ GF(qn) .

Define the partial spread

Aδ =
{
y = xm;m(qn−1)/(q−1) = δ;m ∈ GF(qn)∗

}
.

Then there are replacement partial spreads

Aiδ =
{
y = xq

i

m;m(qn−1)/(q−1) = δ;m ∈ GF(qn)∗
}

and since for (i, n) = 1, the intersections between the two partial spreads are
1-dimensional GF(q)-subspaces, we obtain a pair of hyper-reguli. Such hyper-
reguli are called ‘André hyper-reguli’.



I I G

JJ II

J I

page 2 / 22

go back

full screen

close

quit

ACADEMIA
PRESS

It was shown by Bruck [2] that every hyper-regulus in a Desarguesian plane
of order q3 is an André hyper-regulus. Furthermore, Pomareda [8] has shown
that there are exactly two hyper-regulus replacement partial spreads, namely
Aiδ, for i = 1, 2, when n = 3.

The set of André nets described above in the Desarguesian affine plane

Σ {Aδ; δ ∈ GF(q)} together with {x = 0, y = 0}

partition the spread for Σ and form what is called a ‘linear set’ with carrying
lines x = 0 and y = 0. On the other hand, it is possible to find sets of mutually
disjoint hyper-reguli of cardinality at least two that are not linear, in the above
sense. Of course, when n > 3, it might be the case that a hyper-regulus is not
André.

In a recent article, Culbert and Ebert [3] constructed several sets of mutually
disjoint hyper-reguli of order q3. In particular, there are sets of mutually disjoint
hyper-reguli of cardinalities (q − 1)/2 and (q− 3)/2 for q odd and (q − 2)/2, for
q even. Furthermore, no subset of cardinality at least two is linear, thus produc-
ing a great variety of new translation planes that are not André or generalized
André.

When n > 3, Jha and Johnson have found a new type of hyper-regulus that
is not André. Furthermore, for n ≥ 3, Jha and Johnson have developed the
theory of the corresponding translation planes and collineation groups in the
articles ([7], [6], [4], [5]). Indeed, there are classes of sets of mutually disjoint
hyper-reguli of order qn of cardinalities (q − 1)/2 and (q − 3)/2 for q odd and
(q − 2)/2, for q even and n ≥ 3.

Therefore, just considering the cardinalities of the mutually disjoint hyper-
reguli, it is an open question whether when n = 3, the classes of Culbert and
Ebert and the classes of Jha and Johnson are connected or perhaps equal. When
n = 3, every hyper-regulus is an André hyper-regulus so the replacement hyper-
reguli are then determined. It it then possible to give a description of any hyper-
regulus in a Desarguesian affine plane by the use of norm functions. But, this is
not the method employed by Culbert and Ebert, who employed pencils of ‘Sherk
surfaces’ to find their sets of mutually disjoint sets of hyper-reguli. The basic
idea is that a Sherk surface of cardinality 1 + q + q2 determines a hyper-regulus
by results of Bruck [2]. Culbert and Ebert note that algebraic pencils of certain
mutually disjoint Sherk surfaces given rise to certain subsets of cardinality 1 +

q + q2 surfaces, which are forced then to define mutually disjoint hyper-reguli.

On the other hand, the method used by Jha and Johnson is to consider a
Desarguesian affine plane Σ of order qn and a function y =

∑n−1
i=0 aix

qi , for ai ∈
GF(qn), which has the property that the image set under the kernel homology
group of elements (x, y) −→ (xd, yd), for d ∈ GF(qn)∗ forms a partial spread.
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When this occurs, the intersection components of Σ necessarily intersect the
components of the image set in 1-dimensional GF(q)-subspaces. Since we have
partial spreads of degrees (qn−1)/(q−1) and order qn, we then obtain a hyper-
regulus. Then certain arguments show that particular subsets of functions of
similar type are mutually disjoint. Note that the particular hyper-reguli in the
Desarguesian plane are implicitly but not explicitly defined.

So, we see that in order to determine if the Culbert and Ebert sets of mutually
disjoint hyper-reguli and related to the Jha-Johnson sets, we need to connect
the associated subsets of pencils of Sherk sets to the set of replacement sets of
the associated hyper-reguli. When we do this for n = 3, we realize that we
find sets of mutually disjoint sets of hyper-reguli for arbitrary n. That is, we
find classes of translation planes of orders qn, for n ≥ 3 that contain the classes
of Culbert and Ebert for n = 3. Furthermore, some of these classes have been
previously constructed by Jha and Johnson [5], but certainly not all.

2. Jha-Johnson method

In this section, we give some background required to understand the construc-
tions of Jha and Johnson.

Definition 2.1. Let Σ denote a Desarguesian affine plane of order qn, for n > 2,
coordinatized by a field Fqn isomorphic to GF(qn). Assume that k is an integer
less than n such that n/(n, k) > 2. Let ω be a primitive element of GF(qn)∗,
then for ωi, attach an element f(i) of the cyclic subgroup C(qn−1)/(q(n,k)−1) of
GF(qn)∗ of order

(qn − 1)/(q(n,k) − 1),

and for ω−iq
n−k

, attach an element f(i)−q
n−k

.

Hence, we have a coset representative set

Cω,f = {ωf(1), ω2f(2), . . . , ω(q(n,k)−1)f(q(n,k) − 1)}

for C(qn−1)/(q(n,k)−1).

Assume that λ is a subset of {1, 2, . . . , q(n,k) − 1}. Let b, c ∈ F ∗qn then (b, c) is
said to be an ‘(ω, λ)-admissible pair’ if and only if

(
b

c

)(qn−1)/(q(n,k)−1)

/∈ (ωij+iz )(qn−1)/(q(n,k)−1),

for all ij , iz ∈ λ.

The main construction theorem of Jha and Johnson is as follows:
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Theorem 2.2 (Jha and Johnson [5]). Assume that (b, c) is an ‘(ω, λ)-admissible
pair’ and let Cω,f be a coset representative set of C(qn−1)/(q(n,k)−1) as in Defini-
tion 2.1. Let

H∗ =

{
y = xq

k

ωijf(ij)cd
1−qk + xq

n−k
ω−ijq

n−k
f(ij)

−qn−kbd1−qn−k

for all d ∈ GF(qn)∗, for all ij ∈ λ

}
.

Then H∗ is a set of |λ| mutually disjoint hyper-reguli of order qn and of degree
(qn − 1)/(q(n,k) − 1).

Since the hyper-reguli for n > 3 are not André, it is an open question as to
how many hyper-regulus replacements there actually are — there is, of course,
at least one, from the construction. For n odd, we have:

Theorem 2.3 (Jha and Johnson [5]). If n/(n, k) is odd and

H∗(α,c,b) =

{
y = xq

k

αcd1−qk + xq
n−k

α−q
n−k

bd1−qn−k ;

d ∈ GF(qn)− {0}

}

is a hyper-regulus which replaces the hyper-regulus H in the associated Desargue-
sian affine plane Σ then

H∗
(α−1,bq

k
,cq

n−k
)

=

{
y = xq

k

α−1bq
k

d1−qk + xq
n−k

αq
n−k

cq
n−k

d1−qn−k ;

d ∈ GF(qn)− {0}

}

is also a replacement for the hyper-regulus H.

Furthermore, there are a variety of particular examples of such sets of mutu-
ally disjoint hyper-reguli.

Definition 2.4. Let Σ denote a Desarguesian affine plane of order qn, for n > 2,
coordinatized by a field Fqn isomorphic to GF(qn). Let e 6= 1 be a divisor of
q(n,k) − 1 and define define λ = {ei; i = 1, 2, . . . , (q(n,k) − 1)/e}.

Assume that k is an integer less than n such that n/(n, k) > 2. Let ω be a
primitive element of GF(qn)∗, then for ωi, attach an element f(i) of the cyclic
subgroup C(qn−1)/(q(n,k)−1) of GF(qn)∗ of order

(qn − 1)/(q(n,k) − 1),

and for ω−iq
n−k

, attach an element f(i)−q
n−k

.

As before, we have a coset representative set

Cω,f = {ωf(1), ω2f(2), . . . , ω(q(n,k)−1)f(q(n,k) − 1)}
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for C(qn−1)/(q(n,k)−1).

Let b, c ∈ F ∗qn then (b, c) is said to be an ‘(e, ω, λ)-group admissible pair’ if and
only if

(
b

c

)(qn−1)/(q(n,k)−1)

/∈ C(q(n,k)−1)/e .

Theorem 2.5 (Jha and Johnson [5]). Assume that (b, c) is an ‘(e, ω, λ)-group
admissible pair’ and let Cω,f be a coset representative set of C(qn−1)/(q(n,k)−1) as in
Definition 2.4. Let

H∗e,(n,k) =

{
y = xq

k

ωijf(ij)cd
1−qk + xq

n−k
ω−ijq

n−k
f(ij)

−qn−kbd1−qn−k;
d ∈ GF(qn)∗, for ij ∈ λ

}
.

Then H∗e,(n,k) is a set of (q(n,k) − 1)/e mutually disjoint hyper-reguli of order qn

and degree (qn − 1)/(q(n,k) − 1).

2.1. Non-group constructions

If q is odd, we may obtain sets of (q(n,k) − 1)/2 mutually disjoint hyper-reguli
using C(q(n,k)−1)/2. However, other non-group-like sets are possible.

Theorem 2.6 (Jha and Johnson [5]). If q is odd, let λodd = {1, 2, . . . , (q(n,k) −
3)/2} and if q is even let λeven = {1, 2, . . . , (q(n,k)/2 − 1}. For either case odd or
even, let (b, c) be a (ω, λ)-admissible pair for λ = λodd or λeven, respectively. Let
Cω,f be a coset representative set of C(qn−1)/(q(n,k)−1) as in Definition 2.1.

(1) If q is odd let

H∗(q(n,k)−3)/2 =

{
y = xq

k

ωijf(ij)cd
1−qk + xq

n−k
ω−ijq

n−k
f(ij)

−qn−kbd1−qn−k ;

d ∈ GF(qn)∗, ij ∈ λodd

}
.

Then H∗
(q(n,k)−1)/3

is a set of (q(n,k) − 3)/2 mutually disjoint hyper-reguli of

order qn and degree (qn − 1)/(q(n,k) − 1).
(2) If q is even let

H∗q(n,k)/2−1 =

{
y = xq

k

ωijf(ij)cd
1−qk + xq

n−k
ω−ijq

n−k
f(ij)

−qn−kbd1−qn−k ;

d ∈ GF(qn)∗,for ij ∈ λeven

}
.

Then H∗
q(n,k)/2−1

is a set of q(n,k)/2−1 mutually disjoint hyper-reguli of order

qn and degree (qn − 1)/(q(n,k) − 1).

Remark 2.7. If a choice of subset λ produces a set of mutually disjoint hyper-
reguli, so does λ+ i0, for any fixed integer i0, for i0 = 1, 2, . . . , (q(n,k) − 1).
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Corollary 2.8 (Jha and Johnson [5]). Assume the general conditions of the
previous Theorem 2.6.

(1) If q is odd let H∗
(q(n,k)−3)/2,i0

be the set





y = xq
k

ωijf(ij)cd
1−qk + xq

n−k
ω−ijq

n−k
f(ij)

−qn−kbd1−qn−k ;

d ∈ GF(qn)∗,
for ij ∈ λodd + i0



 .

Then H∗
(q(n,k)−3)/2,i0

is a set of (q(n,k)− 3)/2 mutually disjoint hyper-reguli of

order qn and degree (qn − 1)/(q(n,k) − 1).
(2) If q is even let H∗

q(n,k)/2−1,i0
be the set





y = xq
k

ωijf(ij)cd
1−qk + +xq

n−k
ω−ijq

n−k
f(ij)

−qn−kbd1−qn−k ;

d ∈ GF(qn)∗,
for ij ∈ λeven + i0



 .

Then H∗
q(n,k)/2−1,i0

is a set of q(n,k)/2 − 1 mutually disjoint hyper-reguli of

order qn and degree (qn − 1)/(q(n,k) − 1).

3. Culbert-Ebert ‘Sherk surfaces’

Part of the following section also appears in the ‘Handbook of Finite Transla-
tion Planes’ by N.L. Johnson, V. Jha and M. Biliotti, Taylor Books, 2007, and
ultimately depends on the work of Culbert-Ebert. It is repeated here for conve-
nience of exposition.

Culbert and Ebert [3] have constructed various sets of hyper-reguli of order
q3 and degree 1 + q + q2. Bruck [1] shows that any hyper-regulus in a De-
sarguesian affine plane of degree 1 + q + q2 and order q3 is actually an André
hyper-regulus and Pomareda [8] showed there are actually two possible re-
placements, namely the André replacements. Recall that in the standard setting
there are q − 1 mutually disjoint André hyper-regulus with two components
x = 0, y = 0 and a corresponding affine homology group H of order 1 + q + q2

leaving invariant each André hyper-regulus. A subset of hyper-regular is said to
be ‘linear’ if and only if the set is a subset of an André set of q − 1 hyper-reguli
which are orbits under a group isomorphic to H.

Culbert and Ebert [3] actually found sets of mutually disjoint hyper-reguli (so
each is necessarily André) with the property that no subset of at least two hyper-
reguli is linear. Any such subset then can be replaced in two ways producing a
translation plane which cannot be André or indeed generalized André.
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The construction of the sets of mutually disjoint hyper-reguli operates on
the line at infinity of a Desarguesian affine plane of order q3. In this context,
consider any hyper-regulus H then there is a collineation of order 3 isomorphic
to the Frobenius automorphism of GF(q3) over GF(q) which fixes H pointwise.
The group generated by such a collineation is called the ‘stability group’ of the
hyper-regulus. Choose two points on `∞, P and Q, and denote by φ(P,Q) the
group generated by the stability groups of all hyper-reguli containing P and Q.
An orbit under φ(P,Q) of a pointR not equal to P orQ is called a ‘cover’ (‘Bruck
cover’) and Bruck [2] shows that covers are hyper-reguli (the infinite points of
hyper-reguli in the associated affine Desarguesian plane).

Let N denote the norm function from GF(q3) to GF(q), so that N(x) =

x1+q+q2

. Then any hyper-regulus has the following form:

(i)
{
x ∈ GF(q3); N(x− a) = f

}
, for some a ∈ GF(q3), f ∈ GF(q)∗, or

(ii)
{
x ∈ GF(q3) ∪ {∞} ; N(x−ax−b ) = f

}
, for some a, b ∈ GF(q3), f ∈ GF(q)∗.

The main construction device depends on results on ‘Sherk surfaces’:

Definition 3.1. Let N and T denote the norm and trace, respectively, of GF(q3)

over GF(q). Let f, g ∈ GF(q), α, δ ∈ GF(q3). Then the ‘Sherk surface’ is defined
by:

S(f, α, δ, g) =
{
z ∈ GF(q3) ∪ {∞} ; fN(z) + T (αq

2

zq+1) + T (δz) + g = 0
}
.

The set of Sherk surfaces can be partitioned into four orbits under PΓL(2, q3).
Two surfaces of the same cardinality are in the same orbit. The cardinalities of
the surfaces are 1, q2− q+ 1, q2 + 1, q2 + q+ 1. The Sherk surfaces of cardinality
q2 + q + 1 are covers or rather hyper-reguli.

Now take a GF(q)-linear combination of two Sherk surfaces that have no
intersection. Then this linear combination will define a set of Sherk surfaces
which are mutually disjoint. The subset of covers of this linear combination
consists then of mutually disjoint hyper-reguli. Then by various choices of gen-
erating Sherk surfaces of the linear combination, certain subsets of covers arise.
For example,

Theorem 3.2 (Part of Lemma 1 and Theorems 2 and 3, Culbert and Ebert
[3]). Assume that q is an odd prime.

(1) For u ∈ GF(q), let S = S(0, 1, 0, u). Then S is a cover precisely when u is a
square in GF(q).

(2) Let B denote the bitrace, B(x) = T (xq+1). Let S = S(0, α, δ, g), for α, δ ∈
GF(q3), not both zero, g ∈ GF(q). Define

∆ = 4N(α)g −B((αδ)q + (αδ)q
2 − αδ).
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Then S is a cover precisely when ∆ is a non-square.
(3) Let S = S(1, α, δ, g), a Sherk surface which is not a simple point. Define

∆′ = 4N(δ′) + (g′)2, where δ′ = δ − αq2+q and g′ = g + 2N(α) − T (αδ).
Then S is a cover precisely when ∆′ is a square.

Similarly for q even, the main results identifying covers is the following the-
orem.

Theorem 3.3 (Part of Lemma 4 and Theorems 5 and 6, Culbert and Ebert
[3]). Let q be even. Let T0 denote the trace function from GF(q) to GF(2).

(1) Let u ∈ GF(q)∗, and let S = S(0, 1, 1, u). Then S is a cover precisely when
T0(u+ 1) = 0.

(2) Let α, δ ∈ GF(q3), not both zero and let g ∈ GF(q). Let S = S(0, α, δ, g). Then
S is a cover if T (αδ) 6= 0 and T0(c) = 0, where c = (gN(α)+B(ασ))/T (αδ)2.

(3) Let S = S(1, α, δ, g) be a Sherk surface that is not a single point. Define
δ′ = δ + αq

2+q

and g′ = g + T (αδ). Then S is a cover if g 6= T (αδ) and
T0(c′) = 0 where c′ = N(δ′)/(g′)2.

Equipped with these theorems, it is then possible to determine the set of mu-
tually disjoint covers within a linear combination of two appropriately selected
Sherk surfaces.

The construction results of Culbert and Ebert are found in the following the-
orem.

Theorem 3.4 (Part of Theorems 11,12,13,14, Culbert and Ebert [3]).

(i) Let q be an odd prime power ≥ 7. Consider the F -linear combination

fS(1, 0,−1, 0) + gS(0, 0, 0, 1); f, g ∈ GF(q).

Then the subset of (mutually disjoint) covers has cardinality (q−3)
2 . Further-

more, this set is
{

(S(1, 0,−1, g);−4 + g2 is a non-zero square in GF(q), g ∈ GF(q)
}
.

(ii) Let q be an odd prime power ≥ 5 and let u be a fixed non-square. Consider
the F -linear combination

fS(1, 0,−u, 0) + gS(0, 0, 0, 1); f, g ∈ GF(q).

Then the subset of (mutually disjoint) covers has cardinality (q−1)
2

. This
subset of covers is

{
S(1, 0,−u, g);−4u3 + g2 a non-zero square in GF(q)

}
.
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(iii) Let q = 2m, with m ≥ 3. Let v ∈ GF(q)− {0, 1}.

fS(0, 1, 1, v) + gS(1, 0, 0, 0); f, g ∈ GF(q).

Then the subset of (mutually disjoint) covers contains a subset of cardinality
(q−2)

2
. Furthermore,

(a) if T0(v + 1) = 0 then the subset of covers is
{
S(1, f−1, f−1, vf−1); vf−1 6= 1 ;f ∈ GF(q)− {0};T0(c′) = 0

}

∪{S(0, 1, 1, v);T0(v + 1) = 0} ,

(b) if T0(v + 1) = 1 then the subset of covers is
{
S(1, f−1, f−1, vf−1); vf−1 6= 1 ;f ∈ GF(q)− {0};T0(c′) = 0

}
,

where T0 is the trace function from GF(q) to GF(2) and

c′ =
N(f−1 + f−q

2−q)
vf−1 + T (f−2)

,

for vf−1 6= 1 in both cases.

Since these sets of mutually disjoint hyper-reguli arise from a linear combi-
nation of Sherk surfaces, any two hyper-reguli will then linearly generate the
same set. Since a linear set of q− 1 covers is not generated in any of these these
cases, it follows that no two hyper-reguli belong to a linear set. In other words,
any subset of at least two hyper-reguli from either of these three situations will
produce a ‘non-linear’ set. Furthermore, each hyper-regulus has two indepen-
dent replacements and the corresponding translation planes can never be André
or generalized André.

We have seen similar types of hyper-regulus replacements of Jha and Johnson
of order q3. However, since the methods of Culbert and Ebert first find the
hyper-reguli as images on the Desarguesian line, and Jha and Johnson find the
replacements for the hyper-reguli and not explicitly the hyper-reguli, it is not
clear how these two sets of translation planes intersect, if they do at all. We
make all of the connections clear in the following sections.

4. A new Sherk pencil

In this section, it is pointed out that there is another Sherk pencil for q even, not
previously determined by Culbert and Ebert. In particular, consider

fS(1, 0, u, 0) + gS(0, 0, 0, 1); f, g ∈ GF(q),
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for u a fixed non-zero element of GF(q), where q is even. Clearly, S(1, 0, u, 0)

and S(0, 0, 0, 1) are disjoint sets. Within this set is the subset
{
S(1, 0, u,

u2

d
+ ud); for u 6= d2 in GF(q)∗

}
.

According to the criteria established for hyper-reguli ‘covers’ for even order, we
recall part (3) of Theorem 3.3. Let S = S(1, α, δ, g) be a Sherk surface that is
not a single point. Define δ′ = δ+αq

2+q and g′ = g+T (αδ). Then S is a cover if
g 6= T (αδ) and T0(c′) = 0 where c′ = N(δ′)/(g′)2. Since α = 0 and δ = u = δ′m
we see that g′ = g = u2

d
+ ud and c′ = u3/(u

2

d
+ ud)2.

We claim that

T0(u3/(
u2

d
+ ud)2) = 0

for all such elements d in GF(q)∗, such that u 6= d2. We note that u3/(u
2

d
+ud)2 =

d2u/(u2 + d4). Let q = 2r, and recall that T0(t) = T0(t2). Hence,

T0(u3/(
u2

d
+ ud)2) = T0(du2r−1

/(u+ d2)).

Now let

du2r−1

/(u+ d2) = d(u+ d2 + d2)2r−1

/(u+ d2)

= d(u+ d2)2r−1−1 + dd22r−1

/(u+ d2)

= d(u+ d2)2r−1−1 + d2(u+ d2)−1 .

Furthermore, notice that

d2(u+ d2)−1 = d2(u+ d2)q−2 = ((d(u+ d2))2r−1−1)2.

Also,
T0(((d(u+ d2))2r−1−1)2) = T0((d(u+ d2))2r−1−1).

Thus,

T0(u3/(
u2

d
+ ud)2) = T0(du2r−1

/(u+ d2))

= T0(d(u+ d2)2r−1−1 + d2(u+ d2)−1)

= T0(d(u+ d2)2r−1−1) + T0((d(u+ d2)2r−1−1)2)

= T0(d(u+ d2)2r−1−1) + T0(d(u+ d2)2r−1−1) = 0 .

Hence, we have a set of mutually disjoint hyper-reguli. Note that

u2

d
+ ud =

u2

e
+ ue
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if and only if
de = u, and d 6= e.

So, remove the elements
√
u and 0 from GF(q). For the remaining q−2 elements,

partition the elements into (q − 2)/2 sets
{
d,
u

d

}

and select exactly one element from each set. We then obtain 2(q−2)/2 sets of
cardinality (q−2)/2 producing the same set of (q−2)/2 mutually disjoint hyper-
reguli. In the next section we consider the particular hyper-reguli that are Sherk
surfaces and it is then not difficult to see that each set

{
d, ud

}
determines the

same hyper-regulus H{d,ud} in a Desarguesian plane and the individual choices

d or u/d correspond to the two possible replacement hyper-reguli of H{d,ud}.

Theorem 4.1. The previous construction produces a set
{
S(1, 0, u,

u2

d
+ ud); for u 6= d2 in GF(q)∗, q even

}

of (q − 2)/2 mutually disjoint hyper-reguli in a Desarguesian plane. There are
3(q−2)/2 possible translation planes obtained from this set.

Proof. For each of the (q − 2)/2 hyper-reguli, there are three possible replace-
ments (one trivial).

5. The hyper-reguli that are Sherk surfaces

We first simply work out the Sherk surfaces

S(f∗, α, δ, g) =
{
z ∈ GF(q3) ∪ {∞} ; f∗N(z) + T (αq

2

zq+1) + T (δz) + g = 0
}
.

corresponding to hyper-reguli of the form:

{
x ∈ GF(q3) ∪ {(∞)} ; N(

x− a
x− b ) = f

}
,

that do not contain (∞), so that x− b 6= 0.

N(
x− a
x− b ) = f

if and only if
(x− a)1+q+q2

= f(x− b)1+q+q2

,
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which produces the following equation:

(f − 1)N(x) + T ((a− fb)q2

)x1+q)

+ T ((fbq+q
2 − aq+q2

)x) +N(a)− fN(b) = 0 ,

which determines the Sherk surface S(f − 1, a − fb, fbq+q
2 − aq+q

2

, N(a) −
fN(b)). Hence, we obtain:

Lemma 5.1. The hyper-regulus

N(
x− a
x− b ) = f

for x 6= b is given by the Sherk surface

S(f − 1, a− fb, fbq+q2 − aq+q2

, N(a)− fN(b)).

We now apply this lemma to the two Sherk pencils of Culbert and Ebert of
Theorem 3.4(i), as well as to the new Sherk pencil of the previous section.

Case (i). Let q be an odd prime power ≥ 7.

Consider the F -linear combination

fS(1, 0,−1, 0) + gS(0, 0, 0, 1); f, g ∈ GF(q).

Then the subset of (mutually disjoint) covers has cardinality (q−3)
2

. Further-
more, this set is

{
(S(1, 0,−1, g);−4 + g2 is a non-zero square in GF(q), g ∈ GF(q)

}
.

Case (ii). Let q be an odd prime power ≥ 5.

Let u be a fixed non-square. Consider the F -linear combination

fS(1, 0,−u, 0) + gS(0, 0, 0, 1); f, g ∈ GF(q).

Then the subset of (mutually disjoint) covers has cardinality (q−1)
2

. This subset
of covers is

{
S(1, 0,−u, g);−4u3 + g2 a non-zero square in GF(q)

}
.
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Case (iii). Let q be even.

In the previous sections, we have considered the set of (q− 2)/2 hyper-reguli

{
S(1, 0, u,

u2

d
+ ud); for u 6= d2 in GF(q)∗, q even

}
.

We now therefore see that all of these three of these sets in cases (i), (ii), (iii)
have the basic Sherk surface S(1, 0, u, g), for u a fixed element of GF(q)∗.

From Lemma 5.1, we match this with

S(f − 1, (a− fb)/(f − 1), (fbq+q
2 − aq+q2

)/(f − 1), (N(a)− fN(b))/(f − 1)).

Therefore, a = fb. Now assume that a and b are in GF(q). Hence, we must have

(fbq+q
2−aq+q2

)/(f−1) = (fb2−a2)/(f−1) = (fb2−f2b2)/(f−1) = −fb2 = u.

So,
f = −u/b2.

So, a = −u/b. So

(N(a)− fN(b))/(f − 1)) =
−u3/b3 + (u/b2)b3

−(u/b2 + 1)
.

Note that −u
3/b3+(u/b2)b3

−(u/b2+1) = −u3+ub4

−b(u+b2) = u(b4−u2)
−b(u+b2) = u(b2−u)

−b = u2

b − ub. Thus, we
have

Lemma 5.2. The hyper-regulus

N(
x− (−u/b)

x− b ) = −u/b2

for x 6= b is given by the Sherk surface

S(1, 0, u,
u2

b
− ub),

for b2 6= u.

Theorem 5.3. The set of Sherk surfaces
{
S(1, 0, u,

u2

d
− ud); for u 6= d2 in GF(q)∗

}

is a set of mutually disjoint hyper-reguli.

(i) When q is odd and u is a non-square, the set has (q − 1)/2 hyper-reguli.
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(ii) When q is odd and u is a square, the set has (q − 3)/2 hyper-reguli.
(iii) When q is even, the set has (q − 3)/2 hyper-reguli.

An alternative notation for the above set is given by in terms of the norm as
follows:

{{
y = xm;N(

x+ u/d

x− d ) = −u/d2

}
; d2 6= u

}

is the corresponding set of André nets.

Proof. The proof is clear from the previous sections but in terms of cardinality
of the sets, note when q is odd and u is a non-square then d2 cannot be u. Then
u2

d − ud = u2

e − ue if and only cd = u, for c 6= d. Hence, we may partition the
set GF(q)∗ into (q − 1)/2 sets {d, u/d}. If q is odd and u is a non-zero square
then we need to avoid ±√u, and 0, leaving q − 3 elements, which again are
partitioned into sets {d, u/d}, producing (q−3)/3 hyper-reguli. When q is even,
the arguments of the previous section are similar and we obtain a set of (q−2)/2

hyper-reguli.

In the next section, we shall generalize the sets of mutually disjoint hyper-
reguli of orders q3 and degree (q3 − 1)/(q− 1) to mutually disjoint hyper-reguli
of orders qn and degree (qn − 1)/(q − 1). When n > 3, the hyper-reguli turn
out not to be André hyper-reguli so our description cannot be in terms of norms
as given in the last part of the previous theorem. We then turn to considering
the description in terms of the replacement hyper-reguli. In order to do this, we
consider certain mappings.

First a general lemma.

Lemma 5.4. Consider an André hyper-regulus Aδ in standard form and consider

the mapping (x, y) −→ (x, y)

[
a b

c d

]
, where ∆ = ad−bc 6= 0. Assume that ac 6= 0.

The image of y = xm for m1+q+q2

= δ is y = x
(
b+dm
a+cm

)
, assuming that the image

does not contain x = 0, (i.e. the corresponding (∞)). Letting m∗ =
(
b+dm
a+cm

)
, we

see that (
m∗ − b

a

m∗ − d
c

)
=

(
(d− b

ac)m

b− d
ca

)
=

(
∆m

−∆

)
c

a
= − c

a
m.

Hence, the image hyper-regulus is of the form

N

(
m∗ − b

a

m∗ − d
c

)
= −N(

c

a
)δ.
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Since we are interested in hyper-reguli with form
{
y = xm;N(x+u/d

x−d ) = −u/d2
}

,

we take a = c = 1, b = −u/d and d in GF(q)∗. Hence, for δ = −u/d2, we see that
André net Aδ maps to

{
y = xm;N(x+u/d

x−d ) = −u/d2
}
. Consider a component

y = xqz, such that N(z) = δ = −u/d2 of one of the replacement hyper-reguli

of Aδ. We work out the image under (x, y) −→ (x, y)

[
1 −u/d
1 d

]
. The im-

age is the set of elements (x + xqz,−xu/d + xqd) which is clearly on the set
y = xq(zd) + xq

2

(−z1+qd)u. Note that −z1+qd = u/d2z−q
2

d = (zd)−q
2

u.

Now from Theorem 2.3, we see that
{
y = xq(zd) + xq

2

(zd)−q
2

u;N(zd) = −u/d2
}

and
{
y = xq(d−1u)z + xq

2

((d−1u)z)−q
2

u;N(z) = −u/(d−1u)2
}

=
{
y = xq(d−1u)z + xq

2

(d−1z);N(z) = −u/(d−1u)2
}

are replacements for each other. That is, d is the basic element in the first set
then u/d is the basic element in the second set. Hence, a choice of one element
of each set {d, u/d} determines what replacement set one is considering and we
may do this per element d (such that d2 6= u). Hence, we have the following
theorem.

Theorem 5.5. A set of replacement hyper-reguli for the hyper-reguli of the set
{{

y = xm;N(
x+ u/d

x− d ) = −u/d2

}
; d2 6= u

}

is {{
y = xq(zd) + xq

2

(zd)−q
2

u;N(z) = −u/d2
}

; d2 6= u
}
,

where one element is chosen from each set {d, u/d} for each element d in GF(q)∗

such that d2 6= u for u in GF(q)∗.

6. Generalization to qn, n odd

We now define a set of mutually disjoint hyper-reguli of order qn, for n odd and
degree (qn − 1)/(q − 1) as follows. Consider the set
{{

y = xq(zd) + xq
−1

(zd)−q
−1

u; z(qn−1)/(q−1) = −u(n−1)/2/dn−1
}

; d ∈ GF(q)∗
}
.
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Actually, underlying this set is an associated Desarguesian affine plane Σ with
spread as follows:

x = 0, y = xm;m ∈ GF(qn).

We first maintain that each set
{
y = xq(zd) + xq

−1

(zd)−q
−1

u; z(qn−1)/(q−1) = −u(n−1)/2/dn−1
}

defines a replacement hyper-regulus for some hyper-regulus in the Σ, which is
implicitly defined as follows: For a given set

y = xq(z0d) + xq
−1

(z0d)−q
−1

u,

that is for a specific z0 such that z(qn−1)/(q−1)
0 = −u(n−1)/2/dn−1, we ask if the

intersections with the associated components of the form y = xm are always
1-dimensional GF(q)-subspaces. If this is so then applying the kernel homology
mappings (x, y) 7−→ (xt, yt), for t ∈ GF(qn)∗, we obtain functions

y = xq(z0d)t1−q + xq
−1

(z0d)−q
−1

t1−q
−1

u.

Since z = z0t
1−q and z0 both have the property that

w(qn−1)/(q−1) = −u(n−1)/2/dn−1 ,

for w = z or z0 and since (z0dt
1−q)−q

−1

= (z0d)−q
−1

t1−q
−1

, we need only check
that the set of (qn−1)/(q−1) images under the kernel homology group of order
(qn− 1) forms a partial spread and then that the full set of hyper-reguli forms a
partial spread. Therefore, assume that we have an intersection between two of
components of putative set of hyper-reguli:

y = xq(zd) + xq
−1

(zd)−q
−1

u and y = xq(z∗e) + xq
−1

(z∗e)−q
−1

u

where

z(qn−1)/(q−1) = −u(n−1)/2/dn−1 and z∗(q
n−1)/(q−1) = −u(n−1)/2/en−1 .

Note that if d = e, we are considering the same putative hyper-regulus and
showing that there is no solution proves that we have a set of hyper-reguli. Then
if d is not e, subject to the conditions mentioned, then proving that there is no
solution shows that we have a set of mutually disjoint hyper-reguli. Therefore,
assume that for some non-zero x, we have

xq(zd) + xq
−1

(zd)−q
−1

u = xq(z∗e) + xq
−1

(z∗e)−q
−1

u.

Then we must have

(zd− z∗e)(qn−1)/(q−1) = ((z∗e)−q
−1 − (zd)−q

−1

)(qn−1)/(qn−1)un.
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Note that

((z∗e)−q
−1 − (zd)−q

−1

)(qn−1)/(q−1) = (zd− z∗e)(qn−1)/(q−1)/(zdz∗e)(qn−1)/(q−1)

= (zd− z∗e)(qn−1)/(q−1)/(u(n−1)/2du(n−1)/2e)

= (zd− z∗e)(qn−1)/(q−1)/(un−1de) .

Assume that
zd = z∗e.

Then it follows that u(n−1)/2d = u(n−1)/2e so that d = e and hence z = z∗,
implying that the two functions are identical. Therefore, we must have that

(zd− z∗e)(qn−1)/(q−1) = ((z∗e)−q
−1 − (zd)−q

−1

)(qn−1)/(qn−1)un

implies that
de = u.

Now again using Theorem 2.3, we see, considering the two elements of {d, u/d},
that each defines a replacement hyper-regulus of the other.

Now consider the situations:

(i) q odd and u non-square in GF(q),
(ii) q odd and u non-zero square in GF(q), and

(iii) q even and u non-zero in GF(q).

Applying the argument of Theorem 5.3, we see that we obtain (q − 1)/2

mutually disjoint hyper-reguli in case (i), (q − 3)/2 mutually disjoint hyper-
reguli in case (ii) and (q − 2)/2 mutually disjoint hyper-reguli in case (iii).

Hence, we obtain the following theorem:

Theorem 6.1. Let Σ be a Desarguesian affine plane of order qn with spread

x = 0, y = xm;m ∈ GF(qn).

Choose any element u of GF(q)∗. Let λ be any set of elements of GF(q)∗ with the
property that for d, e in λ then de 6= u. Then
{{

y = xq(zd) + xq
−1

(zd)−q
−1

u; z(qn−1)/(q−1) = −u(n−1)/2/dn−1
}

; d ∈ λ
}

forms a set of mutually disjoint hyper-reguli.

(i) If q is odd and u is a non-square then λ has cardinality (q − 1)/2.
(ii) If q is odd and u is a non-zero square that λ has cardinality (q − 3)/2.

(iii) If q is even and and u is a non-zero element of GF(q) then λ has cardinality
(q − 2)/2.
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(iv) The corresponding translation plane obtained by taking components the ele-
ments of the above set and the components of the Desarguesian affine plane
Σ that do not intersect this set will be called Σλ,u.

(v) For each set λ, form another set λ∗ such that for each d ∈ λ, d∗ is either d or
u/d. Then λ∗ also determines a translation plane.
Hence, there are 2|λ| possible translation planes so constructed for each ele-
ment u.

7. The isomorphisms of the translation planes Σλ,u

Here we assume that we have two translation planes of order qn, Σλ,u and
Σλ∗,u∗ and assume these planes are isomorphic. By results of Jha and Johnson
[5], we may assume that the
{{

y = xq(zd) + xq
−1

(zd)−q
−1

u; z(qn−1)/(q−1) = −u(n−1)/2/dn−1
}

; d ∈ λ
}

is mapped to
{{

y = xq(zd) + xq
−1

(zd)−q
−1

u; z(qn−1)/(q−1) = −(u∗)(n−1)/2/dn−1
}

; d ∈ λ∗
}

by a collineation of the associated Desarguesian affine plane, necessarily then
of the form

(x, y) 7−→ (xσ, yσ)

[
a b

c e

]
.

Assume that
y = xq(zd) + xq

−1

(zd)−q
−1

u

is mapped to
y = xq(z∗d∗) + xq

−1

(z∗d∗)−q
−1

u∗,

for d ∈ λ and for d∗ in λ∗. The image of

y = xq(zd) + xq
−1

(zd)−q
−1

u

has elements
(
xσa+ (xσq(zd)σ + xσq

−1

(zd)−σq
−1

uσ)c,

xσb+ (xσq(zd)σ + xσq
−1

(zd)−σq
−1

uσ)e
)
.

Assume that n > 3, then in order that these elements are on

y = xq(z∗d∗) + xq
−1

(z∗d∗)−q
−1

u∗,
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there cannot be an element xq
2

or xq
−2

with non-zero coefficients. If the terms
are worked out we must have

(xσa+ (xσq(zd)σ + xσq
−1

(zd)−σq
−1

uσ)c)q(z∗d∗)

+ (xσa+ (xσq(zd)σ + xσq
−1

(zd)−σq
−1

uσ)c)q
−1

(z∗d∗)−q
−1

u∗

= xσb+ (xσq(zd)σ + xσq
−1

(zd)−σq
−1

uσ)e ,

for all elements x ∈ GF(qn). Since this is a polynomial identity, we see that
the coefficients on the xq

2

and xq
−2

, are both zero, since n > 3 and hence
> 4. The coefficient on the xq

2

-term is (zd)σqcq(z∗d∗), forcing c = 0. But this
implies in turn that b = 0 since this is the only coefficient on the x-term. Since
all of the translation planes constructed admit the kernel homology group as a
collineation group leaving invariant each hyper-regulus in question, it follows
that we may assume that a = 1. Hence, we obtain

xσq(z∗d∗) + xσq
−1

(z∗d∗)−q
−1

u∗ = (xσq(zd)σ + xσq
−1

(zd)−σq
−1

uσ)e ,

for all elements x ∈ GF(qn). Therefore,

(zd)σe = z∗d∗, (zd)−σq
−1

uσe = (z∗d∗)−q
−1

u∗.

So, we must have

((z∗d∗)e−1)−q
−1

= (zd)σ−q
−1

= (z∗d∗)−q
−1

u∗(uσe)−1.

Hence, we see that
eq+1 = u∗(uσ)−1.

Note that since n is odd, then e(q2−1) = 1 and (q2−1, qn−1) = q(2,n)−1 = q−1.
So the order of e divides q − 1. Then eq+1 = eq−1+2 = e2 so that e2 is in GF(q),
implying that {eα+ β;α, β ∈ GF(q)} is a subfield of order q2 or q. Since n is
odd, then the subfield is of order q, so that e is in GF(q). Therefore, we have

u∗ = uσe2 and λ∗ = λσe.

So, for example, assume that q is an odd prime. Since there are 2|λ| possible
sets λ for the same element u, we see that e2 = ±1, implying that there are ex-
actly 2

|λ|−1

, mutually non-isomorphic translation planes constructed and more
generally for q = pr, there are at least 2

|λ|−1

/r. Thus, we have the following
theorem.

Theorem 7.1. The translation planes Σλ,u and Σλ∗,u∗ of order qn = p2r, p a
prime for n odd and n > 3 are isomorphic if and only if

u∗ = uσe2 and λ∗ = λσe,

where e is an element of GF(q)∗. Hence, there are at least 2
|λ|−1

/r mutually disjoint
translation planes.
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Remark 7.2. So for n > 3, when q is odd then λ has cardinality (q − 1)/2 or
(q−3)/2, respectively as u is a non-square or a non-zero square. Hence, there are
at least 2(q−3)/2/r or 2(q−5)/2/r mutually non-isomorphic planes of odd order.
When q is even, λ has cardinality (q − 2)/2 and there are at least 2(q−2)/2/r

mutually non-isomorphic planes of even order. Note that since n > 3, there is
no requirement on q other that it not be 3.

Now consider a translation plane obtained by replacement of any subset of λ.
By Jha and Johnson [6], assuming that n > 3, we know that the full collineation
group of any translation plane constructed by replacement of any non-empty
subset of λ is the stablizer of this set in the associated Desarguesian affine plane.
What this means is that the previous argument does not really depend on the
full set λ and applies more generally to any proper subset of λ. Hence, two
translation planes constructed using subsets of different cardinality are neces-
sarily non-isomorphic and two subsets of the same cardinality are isomorphic
under the same conditions as in the above theorem. Considered in this way, for
each set λ, we have 3|λ| − 1 non-Desarguesian translation planes obtained by
the choice of one of three possible replacement nets for a given hyper-regulus
(two proper replacements and the choice of not choosing this particular set to
replace).

Theorem 7.3. Let π be a translation plane of order qn, q = pr, for p a prime and
n > 3, constructed from Σλ,u, by choosing a subset λ′ and then choosing one of
two possible replacements.

(1) Then there are at least
(3|λ| − 1)/(q − 1, 2)r

mutually non-isomorphic planes.
(2) There are at least

2|λ|(3|λ| − 1)/((q − 1, 2)r)2

mutually non-isomorphic planes by varying the sets λ.
(3) If q is an odd prime then there are at least

2(q−3)/2(3(q−1)/2 − 1)/4

mutually non-isomorphic translation planes when u is a non-square and at
least

2(q−5)/2(3(q−3)/2 − 1)/4

mutually non-isomorphic translation planes, when u is a non-zero square.
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8. Connecting ideas

The new classes of translation planes that we have constructed may be con-
nected to the main construction theorem of Jha and Johnson 2.5. Just from the
general form of this result, it would appear that all of our translation planes
may be placed within the context of this theorem. Still, however, such classes
should be considered new examples of admissible pairs producing planes under
the general theory.

To illustrate, consider the planes Σλ,u in Theorem 6.1, when q is odd and u is
a non-square. We connect this class to the class of Jha and Johnson in Theorem
2.5, where the idea is to use the cyclic group of order (q − 1)/2, C(q−1)/2 of
GF(q)∗ and a choice of element b such that b(q

n−1)/(q−1) /∈ C(q−1)/2. To connect
these two classes of planes, recall that for Σλ,u, there is an implicit partition of
GF(q)∗ in (q − 1)/2 pairs {β, u/β} to one may construct sets λ by choosing one
element out of each pair of the partition. We have pointed out that this amounts
to making different choices of the at least two possible replacement hyper-reguli
when n is odd. Note also that if β is a square or non-square, respectively as u/β
is non-square or square. Since C(q−1)/2 contains the full set of (q − 1)/2 non-
zero squares on GF(q), we see that if we choose a set λ by selecting all of the
squares from the sets {β, u/β}, and choose b = u, the plane Σλ,u and the group-
constructed plane of Jha-Johnson are identical.

We note that since general theory of Jha-Johnson is valid for arbitrary n, odd
or even, the possible connection between admissible sets and how two such sets
might be related via different choices of replacements per hyper-regulus is not
considered.
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