Intersections of Buekenhout-Metz unitals

Angela Aguglia

On the occasion of the 60th birthday of Gábor Korchmáros

Abstract

Configurations arising as intersections of two Buekenhout-Metz unitals of a given family are studied and, in the case in which at most one of the unitals is classical, a new intersection size is found.

Keywords: projective plane, unital

MSC 2000: 05B25

1 Introduction

In [8] it has been shown that there are just seven configurations in which two classical unitals may intersect. There-within it has also been proved that the cardinality of the intersection of any two classical unitals in the desarguesian projective plane \(PG(2, q^2) \) is congruent to 1 modulo \(q \).

A family of non-classical Buekenhout-Metz unitals in \(PG(2, q^2) \), with \(q = p^h \) an odd prime power, has been constructed in [1]; the intersection of every unital of this family with a classical one contains a number of points congruent to 1 modulo \(p \). In the same paper, it is also conjectured that the size of the intersection of any classical unital with a non-classical one should be one of the following:

\[
q^2 \pm 2q + 1, \quad q^2 \pm q + 1, \quad q^2 + 1.
\]

Afterwards, in [3] it has been proved that an arbitrary unital in \(PG(2, q^2) \), with \(q = p^h \) any prime power, meets a classical unital in a number of points congruent

*Research supported by the Italian Ministry MIUR, Strutture geometriche, combinatoria e loro applicazioni.
to 1 modulo p. To classify intersections of two non-classical unitals seems to be a difficult question. Here we make some advances in this direction by looking at a suitable family \mathcal{F} of Buekenhout-Metz unitals in $\text{PG}(2, q^2)$, q any prime power, containing both classical unitals as well as non-classical ones. We prove that any two classical unitals in \mathcal{F} intersect on $q + 1$ collinear points, whereas in all other cases the intersection number is one of the following:

$$q + 1, q^2 + 1, 2q^2 - q + 1.$$

This last size does not appear among those conjectured in [1].

2 Preliminaries

A set S of k points (or a k-set) in a projective plane of order q is of type (k_1, k_2, \ldots, k_s), with $k_1 < k_2 < \cdots < k_s$, if a line ℓ may intersect S in only sets of k_1, k_2, \ldots or k_s points. A line ℓ for which $|\ell \cap S| = k_i$ is called a k_i-secant of S whereas the integers k_i are called characters of S.

A unital in $\text{PG}(2, q^2)$ is a $(q^3 + 1)$-set of type $(1, q + 1)$. A class of unitals in $\text{PG}(2, q^2)$ is given by the (non-degenerate) Hermitian curves, that is sets of absolute points with respect to (non-degenerate) unitary polarities; these are also called classical unitals.

Unitals which are not Hermitian curves are non-classical. A unital U in $\text{PG}(2, q^2)$ is parabolic or hyperbolic according as the line at infinity contains 1 or $q + 1$ points of U.

Every unital in $\text{PG}(2, 2^2)$ is classical. The first non-classical unitals in $\text{PG}(2, q^2)$ with $q = 2^{2r+1}$, $r \geq 1$ were found by Buekenhout in [4]. Using Buekenhout’s method, Metz extended this class of non-classical unitals in $\text{PG}(2, q^2)$ to all values of $q \geq 2$; see [9]. A Buekenhout-Metz unital (BM unital for short) is a parabolic unital obtained with the construction given in [9] in which the ovoidal cone is an elliptic cone. This class also includes classical unitals. We refer the reader to [6] for a survey of results on these unitals.

Let (X_0, X_1, X_2) denote homogeneous coordinates for points of $\text{PG}(2, q^2)$. The line $\ell_\infty : X_0 = 0$ will be taken as the line at infinity, whereas P_∞ will denote the point $(0, 0, 1)$. For $q = 2^h$, let C_0 be the additive subgroup of $\text{GF}(q)$ defined by $C_0 = \{x \in \text{GF}(q) \mid \text{Tr}(x) = 0\}$ where

$$\text{Tr} : \text{GF}(q) \to \text{GF}(2) : x \mapsto x + x^2 + \cdots + x^{2^{h-1}}$$

is the trace map of $\text{GF}(q)$ over $\text{GF}(2)$. The following results come from [2] for q odd and from [5] for q even.
Lemma 2.1. Let \(a, b \in \text{GF}(q^2) \). The point set
\[
U_{a,b} = \{(1, t, at^2 + bt^{q+1} + r) \mid t \in \text{GF}(q^2), r \in \text{GF}(q)\} \cup \{P_\infty\}
\]
is a BM unital in \(\text{PG}(2, q^2) \) if and only if either \(q \) is odd and \(4a^{q+1} + (b^q - b)^2 \) is a non-square in \(\text{GF}(q) \), or \(q \) is even, \(b \notin \text{GF}(q) \) and \(a^{q+1}/(b^q + b)^2 \in C_0 \).

The expression \(4a^{q+1} + (b^q - b)^2 \) for \(q \) odd, and \(a^{q+1}/(b^q + b)^2 \) with \(b \notin \text{GF}(q) \), for \(q \) even, is the discriminant of the unital \(U_{a,b} \).

Lemma 2.2. Every BM unital can be expressed as \(U_{a,b} \), for some \(a, b \in \text{GF}(q^2) \) which satisfy the discriminant condition of Lemma 2.1. Furthermore, a BM unital \(U_{a,b} \) is classical if and only if \(a = 0 \).

3 Sets with few characters

In this section we are going to construct a family of \((q^2 + 1)\)-sets with four characters in \(\text{PG}(2, q^2) \), where \(q = p^h \) and \(p \) is any prime power. Some of them, as pointed out in Remark 4.2, may be obtained by intersecting two BM unitals, at least one of which is non-classical.

Let \(\sigma \) denote the automorphism of \(\text{GF}(q^2) \) defined by
\[
x^\sigma = x^{p^i}, \text{ with } i < h \text{ and } (i, h) = 1.
\]
Write \(T_0 = \{t \in \text{GF}(q^2) \mid T(t) = 0\} \), where
\[
T : x \in \text{GF}(q^2) \mapsto x^q + x \in \text{GF}(q)
\]
is the trace function of \(\text{GF}(q^2) \) over \(\text{GF}(q) \).

Theorem 3.1. For each \(a \in \text{GF}(q^2)^* \), the subset
\[
S = \{(1, t, at^\sigma + r) \mid t \in \text{GF}(q), r \in T_0\} \cup \{P_\infty\}
\]
of \(\text{PG}(2, q^2) \) is either of type \((0, 1, q, q + 1)\) or of type \((0, 1, p, q + 1)\) according as \(a \in T_0 \) or not.

Proof. By construction, \(S \) consists of \(q^2 + 1 \) points not all on a same line. Observe that \(S \) is not a blocking set with respect to the lines of \(\text{PG}(2, q^2) \) since, otherwise, it would contain at least \(q^2 + 3 \) points; see [7, Lemma 13.4]. Therefore, there exist some \(0\)-secants of \(S \). We are going to show that for each \(k\)-secant of \(S \) which is neither external nor tangent to it, \(k \in \{q, q + 1\} \) or \(k \in \{p, q + 1\} \) according as \(a \in T_0 \) or not.
We begin by considering the line $P_{\infty}P_{t,r}$ joining the point P_{∞} with another point $P_{t,r} = (1, t, at^\sigma + r) \in S$. Such a line corresponds to the set

$$\{(1, t, at^\sigma + r + \alpha) \mid \alpha \in GF(q^2)\} \cup \{P_{\infty}\};$$

hence, the intersection of $P_{\infty}P_{t,r}$ and S is

$$\{(1, t, at^\sigma + r + \alpha) \mid \alpha \in T_0\} \cup \{P_{\infty}\};$$

that is the line $P_{\infty}P_{t,r}$ is a $(q + 1)$-secant of S.

Now take the line $P_{t_1, r_1}P_{t_2, r_2}$ through two distinct points

$P_{t_1, r_1} = (1, t_1, at_1^\sigma + r_1)$ and $P_{t_2, r_2} = (1, t_2, at_2^\sigma + r_2)$

of S. Such a line consists of all the points

$$Q_\alpha = (\alpha + 1, \alpha t_1 + t_2, a(\alpha t_1^\sigma + t_2^\sigma) + \alpha r_1 + r_2)$$

with α ranging over $GF(q^2)$, plus the point P_{t_1, r_1}.

If $t_1 = t_2$, then the line $P_{t_1, r_1}P_{t_2, r_2}$ passes through the point P_{∞} and hence is a $(q + 1)$-secant of S.

When $t_1 \neq t_2$, observe that the point at infinity $Q_{-1} = (0, t_2 - t_1, a(t_2^\sigma - t_1^\sigma) + r_2 - r_1)$ of the line $P_{t_1, r_1}P_{t_2, r_2}$ is not on S. Thus, we restrict our attention to the affine points Q_α where $\alpha \neq -1$. The normalized homogeneous coordinates for these points are

$$\left(1, \frac{\alpha t_1 + t_2}{\alpha + 1}, a \left(\frac{\alpha t_1^\sigma + t_2^\sigma}{\alpha + 1}\right) + \frac{\alpha r_1 + r_2}{\alpha + 1}\right).$$

A point Q_α is on S if and only if the following conditions hold:

(i) $\frac{\alpha t_1 + t_2}{\alpha + 1} \in GF(q);$

(ii) $\frac{a(\alpha t_1^\sigma + t_2^\sigma) + \alpha r_1 + r_2}{\alpha + 1} - \frac{a(\alpha t_1 + t_2)^\sigma}{\alpha^\sigma + 1} \in T_0.$

Condition (i) implies $(\alpha^q - \alpha)(t_1 - t_2) = 0$, therefore, as $t_1 \neq t_2$, we have $\alpha \in GF(q)$. Hence condition (ii) can be written as

$$\left(a^q + a \right) \left[\frac{\alpha t_1^\sigma + t_2^\sigma}{\alpha + 1} - \frac{(\alpha^q t_1^\sigma + t_2^\sigma)}{(\alpha^\sigma + 1)}\right] = 0. \quad (1)$$

If $a^q + a = 0$, then the intersection of $P_{t_1, r_1}P_{t_2, r_2}$ and S is the set

$$\left\{\left(1, \frac{\alpha t_1 + t_2}{\alpha + 1}, a \frac{\alpha t_1^\sigma + t_2^\sigma}{\alpha + 1} + \frac{\alpha r_1 + r_2}{\alpha + 1}\right) \mid \alpha \in GF(q) \setminus \{-1\}\right\} \cup \{P_{t_1, r_1}\},$$
that is the line \(P_{t_1, r_1}P_{t_2, r_2} \) is a \(q \)-secant to \(S \).

In the case where \(a^q + a \neq 0 \), (1) gives \((\alpha^q - \alpha)(t_1^q - t_2^q) = 0\); thus, \(\alpha^q - \alpha = 0 \) as \(t_1 \neq t_2 \). Whence \(\alpha = 0 \) or \(\alpha^{(q-1)} = 1 \).

As \((p^h - 1, p^i - 1) = p^{(h,i)} - 1 \) and \((i, h) = 1 \) the equation \(\alpha^{(q-1)} = 1 \) has \(p - 1 \) solutions in \(\text{GF}(q) \), one of them is \(\alpha = -1 \). Thus, there are \(p - 2 + 2 \) affine points \(Q_\alpha \) on \(P_{t_1, r_1}P_{t_2, r_2} \cap S \), that is the line \(P_{t_1, r_1}P_{t_2, r_2} \) is a \(p \)-secant of \(S \). \(\square \)

Let \(s \) be an element of \(\text{GF}(q^2) \setminus \{1\} \) such that \(s^{q+1} = 1 \). Set

\[A = \{ (1, 0, r) \mid r \in \text{GF}(q) \}. \]

For each \(a \in \text{GF}(q^2)^* \), write

\[B = \{ (1, t, at^2 + r) \mid t \in \text{GF}(q^2), t^{q-1} = s, r \in \text{GF}(q) \}. \]

Theorem 3.2. The subset

\[S = A \cup B \cup \{ P_\infty \} \]

of \(\text{PG}(2, q^2) \) is either of type \((0, 1, q, q + 1)\) or of type \((0, 1, 2, q + 1)\) according as \(a^{q-1}s^2 = 1 \) or not.

Proof. By definition, \(S \) consists of \(q^2 + 1 \) points. As seen in the proof of Theorem 3.1 there exist some 0-secants of \(S \). We are going to show that for each \(k \)-secant of \(S \) which is neither external nor tangent to \(S \), \(k \in \{q, q + 1\} \) or \(k \in \{2, q + 1\} \) according as \(a^{q-1}s^2 = 1 \) or not.

Arguing as in the proof of Theorem 3.1, it can be verified that a line through the point \(P_\infty \) which is not tangent to the set \(S \), meets \(S \) in \(q + 1 \) points.

Next, we consider the line \(P_rP_{t, m} \) joining the point \(P_r = (1, 0, r) \in A \), with the point \(P_{t, m} = (1, t, at^2 + m) \in B \). Such a line corresponds to the set

\[\{ (\alpha + 1, t, at^2 + m + \alpha r) \mid \alpha \in \text{GF}(q^2) \} \cup \{ P_r \}. \]

Since \(t \neq 0 \), the point at infinity \((0, t, at^2 + m - r)\) of the line \(P_rP_{t, m} \) is not on \(S \). Thus, we restrict our attention to the affine points \(Q_\alpha = (\alpha + 1, t, at^2 + m + \alpha r) \), with \(\alpha \neq -1 \), on the line \(P_rP_{t, m} \). The normalized homogeneous coordinates for these points are

\[\left(1, \frac{t}{\alpha + 1}, \frac{at^2 + m + \alpha r}{\alpha + 1} \right). \]

A point \(Q_\alpha \) is on \(S \) if and only if the following conditions hold:

(i) \(\left(\frac{t}{\alpha + 1} \right)^{q-1} = s; \)
(ii) \(\frac{at^2 + m + \alpha r}{\alpha + 1} - \frac{at^2}{(\alpha + 1)^2} \in GF(q). \)

Condition (i) implies \((\alpha + 1) \in GF(q)^*, \) therefore, \(\alpha \in GF(q) \setminus \{-1\}.\) Hence (ii) becomes \(at^2 \in GF(q),\) that is \(a^{q-1}t^2 = 1.\) Thus, if \(a^{q-1}t^2 = 1,\) then the intersection of \(P_t P_{t,m}\) with \(S\) is

\[
\left\{ \left(1, \frac{t}{\alpha + 1}, \frac{at^2 + m + \alpha r}{\alpha + 1} \right) \mid \alpha \in GF(q) \setminus \{-1\} \right\} \cup \{P_t\},
\]

that is the line \(P_r P_{t,m}\) is a \(q\)-secant to \(S.\) In the case \(a^{q-1}t^2 \neq 1\) the line \(P_r P_{t,m}\) is a 2-secant.

Now take the line \(P_{t_1, r_1} P_{t_2, r_2}\) joining two distinct points

\[
P_{t_1, r_1} = (1, t_1, at_1^2 + r_1) \quad \text{and} \quad P_{t_2, r_2} = (1, t_2, at_2^2 + r_2)
\]

of \(B.\) Such a line consists of \(P_{t_1, r_1}\) plus the points

\[
Q_\alpha = (\alpha + 1, \alpha t_1 + t_2, a(\alpha t_1^2 + t_2^2) + \alpha r_1 + r_2)
\]

as \(\alpha\) ranges over \(GF(q^2).\)

If \(t_1 = t_2,\) the line \(P_{t_1, r_1} P_{t_2, r_2}\) passes through the point \(P_\infty,\) hence it is a \((q+1)\)-secant of \(S.\)

When \(t_1 \neq t_2,\) observe that the point at infinity \((0, t_2 - t_1, a(t_2 - t_1^2) + r_2 - r_1)\) of \(P_{t_1, r_1} P_{t_2, r_2}\) is not on \(S.\) Thus, we restrict our attention to the affine points \(Q_\alpha\) with \(\alpha \neq -1.\) Their normalized homogeneous coordinates are

\[
\left(1, \frac{\alpha t_1 + t_2}{\alpha + 1}, a \frac{(\alpha t_1^2 + t_2^2)}{\alpha + 1} + \frac{\alpha r_1 + r_2}{\alpha + 1}\right).
\]

A point \(Q_\alpha\) is on \(S\) if and only if the following conditions hold:

(i) \(\alpha t_1 + t_2 = 0\) or \(\left(\frac{\alpha t_1 + t_2}{\alpha + 1}\right)^{q-1} = s;\)

(ii) \(\frac{a(\alpha t_1^2 + t_2^2) + \alpha r_1 + r_2}{\alpha + 1} = \frac{a(\alpha t_1 + t_2)^2}{(\alpha + 1)^2} \in GF(q).\)

When \(\alpha = -\frac{t_2}{t_1} \in GF(q),\) condition (ii) becomes \(-\alpha t_1 t_2 \in GF(q);\) hence we have \(a^{(q-1)}t^2 = 1.\) Therefore the point \((1, 0, \frac{a(t(t_2-t_1)^2)}{t_1-t_2})\) belongs to \(S\) if and only if \(a^{(q-1)}t^2 = 1.\)

In the case \(\left(\frac{\alpha t_1 + t_2}{\alpha + 1}\right)^{q-1} = s\) we get \(\alpha \in GF(q) \setminus \{-1, -\frac{t_1}{t_2}\}.\) Hence condition (ii) can be written as \(a(t_1^2 - t_2^2)^{q-1} \in GF(q),\) that is \(a^{q-1}s^2 = 1.\) Therefore, if \(a^{(q-1)}s^2 = 1\) the line \(P_{t_1, r_1} P_{t_2, r_2}\) is a \(q\)-secant to \(S,\) otherwise it meets \(S\) only in \(P_{t_1, r_1}\) and \(P_{t_2, r_2},\) thus it is a 2-secant to \(S.\) \(\square\)
4 Main result

In this section we study the cardinality of the intersection of two distinct BM unitals in the family
\[\mathcal{F} = \{ U_{a,b} \}_{(a,b) \in \text{GF}(q^2) \times \text{GF}(q^2)}, \]
where
\[U_{a,b} = \{ (1, t, at^2 + btq^{q+1} + r) \mid t \in \text{GF}(q^2), r \in \text{GF}(q) \} \cup \{ P_{\infty} \} \]
and the coefficients \(a \) and \(b \) satisfy the discriminant condition of Lemma 2.1.

Theorem 4.1. In PG(2, \(q^2 \)), with \(q \) a prime power, the intersection size of two unitals of \(\mathcal{F} \) is one of the following:
\[q + 1, q^2 + 1, 2q^2 - q + 1. \]
Furthermore, any two classical unitals of \(\mathcal{F} \) can only intersect in \(q + 1 \) collinear points.

Proof. Let \(U_{a_1,b_1} \) and \(U_{a_2,b_2} \) be two distinct unitals in \(\mathcal{F} \). Denote by \(I \) their intersection and set \(\alpha = a_1 - a_2, \beta = b_1 - b_2 \). We distinguish the following cases:

(A) \(\alpha + \beta = 0 \) and \(\alpha \in \text{GF}(q)^* \);
(B) \(\alpha + \beta = 0 \) and \(\alpha \notin \text{GF}(q) \);
(C) \(\alpha + \beta \in \text{GF}(q)^* \);
(D) \(\alpha + \beta \notin \text{GF}(q) \).

Case (A)

Since \(a_1 + b_1 = a_2 + b_2 \), the points in
\[S_1 = \{ (1, t, (a_1 + b_1)t^2 + r) \mid t, r \in \text{GF}(q) \} \cup \{ P_{\infty} \} \]
are on both unitals. Therefore, the cardinality of \(I \) is at least \(q^2 + 1 \).

Let \(Q' = (1, t, a_1t^2 + b_1t^{q+1} + r) \in U_{a_1,b_1}, \) for a suitable \(t \in \text{GF}(q^2) \setminus \text{GF}(q) \). The point \(Q' \) lies also on \(U_{a_2,b_2} \) if and only if
\[\alpha t^2 + \beta t^{q+1} \in \text{GF}(q), \] (2)
or equivalently
\[\alpha (t^2 - t^{q+1}) \in \text{GF}(q). \] (3)
By the hypothesis $\alpha \in \text{GF}(q)^*$, (3) may be rewritten as

$$t^{q-1} = \pm 1.$$ \hfill (4)

There are now two possibilities.

(A$_1$) q is even.

Then (4) implies $t \in \text{GF}(q)$; hence, by the assumption made on t, there are no points Q' on I; thus

$$|I| = q^2 + 1.$$ \hfill (A$_1$)

(A$_2$) q is odd.

Since $t \notin \text{GF}(q)$, (4) necessarily gives $t^{q-1} = -1$. This condition is satisfied by $q - 1$ values of t and to any such a value there correspond q points $Q' \in I$ as r ranges over $\text{GF}(q)$. Therefore

$$|I| = q^2 + 1 + q(q - 1) = 2q^2 - q + 1.$$ \hfill (A$_2$)

Case (B)

Arguing as in Case (A) we have that S_1 is a subset of I and so $|I| \geq q^2 + 1$.

Again a point $Q' = (1, t, a_1t^2 + b_1t^{q+1} + r) \in U_{a_1,b_1}$, with $t \in \text{GF}(q^2) \setminus \text{GF}(q)$, lies on U_{a_2,b_2} if and only if (3) holds. Setting

$$y = t^{q-1},$$ \hfill (5)

condition (3) can be rewritten as

$$\alpha^q y^2 - (\alpha^q - \alpha)y - \alpha = 0.$$ \hfill (6)

As $\alpha \neq 0$, equation (6) has solutions $y = 1$ or $y = -\alpha^{-1-q}$. We distinguish the following subcases.

(B$_1$) q is even.

Since $\alpha \notin \text{GF}(q)$, $-\alpha^{-1-q}$ is different from 1. Because of (5), we necessarily have

$$t^{q-1} = -\alpha^{-1-q}$$ \hfill (7)

as $t \in \text{GF}(q^2) \setminus \text{GF}(q)$. Equation (7) gives $q - 1$ possible values for t; for any such a value, we get q points $Q' \in I$ as r varies in $\text{GF}(q)$. Therefore we get again $|I| = 2q^2 - q + 1$.

(B$_2$) q is odd.

(B21) If \(\alpha \in T_0 \), that is \(\alpha^q + \alpha = 0 \), then \(-\alpha^{1-q} = 1 \). From (5) it follows that \(t^{q-1} = 1 \), which is not allowed. Thus, there are no points \(Q' \) on \(\mathcal{I} \), and hence \(|\mathcal{I}| = q^2 + 1 \).

(B22) Assume \(\alpha \notin T_0 \). In this case 1 and \(-\alpha^{1-q} \) are two distinct solutions of (6). Arguing as in case (B1) it follows that \(\mathcal{I} \) consists of \(2q^2 - q + 1 \) points.

Case (C)

Let

\[
S_i = \{(1, t, (a_i + b_i)t^2 + r) \mid t, r \in \text{GF}(q)\} \cup \{(0, 0, 1)\} \subset U_{a_i, b_i}
\]

for \(i \in \{1, 2\} \). We are going to show that \(S_1 = S_2 \). To this end, observe that a point \(Q = (1, t, (a_i + b_i)t^2 + r) \in S_i \) lies also on \(S_j \) for any distinct \(i, j \in \{1, 2\} \), since

\[
(a_j + b_j)t^2 + (\alpha + \beta)t^2 = (a_i + b_i)t^2
\]

and \(\alpha + \beta \in \text{GF}(q)^* \). Hence, \(S_1 \subseteq \mathcal{I} \) and thus \(|\mathcal{I}| \geq q^2 + 1 \).

Now, consider a point \(Q' = (1, t, a_1t^2 + b_1t^{q+1} + r) \in U_{a_1, b_1} \) for a suitable \(t \in \text{GF}(q^2) \setminus \text{GF}(q) \). The point \(Q' \) is also a point on \(U_{a_2, b_2} \) if and only if (2) holds, namely, in this case,

\[
\alpha^q t^{2(q-1)} + (\beta^q - \beta)t^{q-1} - \alpha = 0 . \tag{8}
\]

Setting \(y \) as in (5), condition (8) becomes

\[
\alpha^q y^2 + (\beta^q - \beta)y - \alpha = 0 . \tag{9}
\]

Observe that \(\alpha \neq 0 \), since, otherwise, \(\beta^q - \beta = 0 \) and (9) would be always true; therefore, the two unitals would be the same, contradicting our assumption.

As \(\alpha \neq 0 \), equation (9) has solutions \(y = 1 \) or \(y = -\alpha^{-1-q} \). There are now several subcases to consider.

(C1) \(\alpha \in \text{GF}(q^2) \setminus \text{GF}(q) \).

(C1.1) \(q \) is even.

In this case the solutions \(y = 1 \) and \(y = -\alpha^{-1-q} \) of (9) are distinct. Because of (5), we can only have \(t^{q-1} = -\alpha^{1-q} \) as \(t \notin \text{GF}(q) \); again we find \(q-1 \) values for \(t \) satisfying (8), and for any such a value, we obtain \(q \) points \(Q' \in \mathcal{I} \), as \(r \) ranges over \(\text{GF}(q) \). Therefore,

\[
|\mathcal{I}| = 2q^2 - q + 1 .
\]
(C_{13}) \(q \) is odd and \(\alpha \in T_0 \).
As \(\alpha \in T_0 \) then \(-\alpha^{1-q} = 1 \). From (5) we have \(t^{q-1} = 1 \), which is impossible. Thus, \(|I| = q^2 + 1\).

(C_{14}) \(q \) is odd and \(\alpha \not\in T_0 \).
In this case \(-\alpha^{1-q} \neq 1 \), therefore, arguing as in case (C_{12}), we get that \(I \) consists of \(2q^2 - q + 1 \) points.

(C_2) \(\alpha \in \text{GF}(q)^* \).
Equation (8) gives \(t^{q-1} = \pm 1 \). (10)

(C_{21}) If \(q \) is even, condition (10) implies \(t \in \text{GF}(q) \), which is not allowed; thus,
\[|I| = q^2 + 1 \]

(C_{22}) Suppose \(q \) to be odd. As \(t \not\in \text{GF}(q) \), we necessarily have from (10) that \(t^{q-1} = -1 \), a condition satisfied by \(q - 1 \) possible values for \(t \); to any such a value of \(t \) there correspond \(q \) points \(Q' \in I \) as \(r \) ranges over \(\text{GF}(q) \). Therefore, again
\[|I| = 2q^2 - q + 1. \]

Case (D)

Let us again consider the point-sets
\[S_i = \{(1, t, (a_i + b_i)t^2 + r) \mid t, r \in \text{GF}(q)\} \cup \{P_\infty\} \]
where \(i = 1, 2 \). A point \(Q = (1, t, (a_i + b_i)t^2 + r) \in S_i \) lies also on \(S_j \) for \(i \neq j \), if and only if the element \((\alpha + \beta)t^2 \in \text{GF}(q)\); the hypothesis \(\alpha + \beta \not\in \text{GF}(q) \) forces \(t \) to be zero. Thus, \(S_1 \cap S_2 = \{(1, 0, r) \mid r \in \text{GF}(q)\} \) and \(|I| \geq q + 1 \).

Next, take a point \(Q' = (1, t, a_1 t^2 + b_1 t^{q+1} + r) \in U_{a_1,b_1} \) with \(t \in \text{GF}(q^2) \setminus \text{GF}(q) \). The point \(Q' \) is on \(U_{a_2,b_2} \) if and only if (8) holds. We distinguish three possibilities.

(D_1) \(\alpha = 0 \).
In this case \(\beta^{q} - \beta \neq 0 \) and (8) gives \(t = 0 \) which is not allowed. Thus
\[|I| = q + 1 \]

(D_2) \(q \) is even and \(\alpha \neq 0 \).

(D_{21}) \(\beta \in \text{GF}(q) \).
Condition (8) gives \(t^{q-1} = \sqrt{1/\alpha^{q-1}} \) with \(\alpha^{q-1} \neq 1 \). Once again, we get \(q-1 \) possible values for \(t \); so for any such a value, we get \(q \) points \(Q' \in I \) as \(r \) ranges over \(GF(q) \). Hence,

\[
|I| = q^2 + 1.
\]

\((D_22)\) \(\beta \notin GF(q) \).

Let \(y \) be as in (5); we get again (9). This equation has 2 solutions as \(\delta = \alpha^{q+1}/(\beta^q - \beta)^2 \) belongs to \(GF(q) \) and hence the absolute trace of \(\delta \) is zero. Furthermore, both solutions are different from 1 as \(\alpha + \beta \notin GF(q) \).

Therefore, by (5), we find \(2(q-1) \) possible values for \(t \) and thus, \(2q(q-1) \) points \(Q' \) on \(I \). Hence \(I \) consists of \(2q(q-1) + q + 1 = 2q^2 - q + 1 \) points.

\((D_3)\) \(q \) is odd and \(\alpha \neq 0 \).

We need to consider the discriminant of (9), that is

\[
\Delta = (\beta^q - \beta)^2 + 4\alpha^{q+1} \in GF(q)
\]

\((D_31)\) \(\Delta = 0 \).

Condition (9) has the unique solution \(y = \frac{\beta - \beta^q}{2\alpha^{q+1}} \neq 1 \) which gives \(q-1 \) possible values for \(t \) because of (5); hence

\[
|I| = q^2 + 1.
\]

\((D_32)\) \(\Delta \neq 0 \).

As \(\Delta \in GF(q)^* \) we get \(\Delta^{(q^2-1)/2} = 1 \), that is \(\Delta \) is a non-zero square in \(GF(q^2) \).

Therefore, (9) has two non-zero solutions different from 1. Each of them provides \(q-1 \) possible values for \(t \); thus

\[
|I| = 2q^2 - q + 1.
\]

Finally, assume both \(U_{a_1b_1} \) and \(U_{a_2b_2} \) to be classical. From Lemma 2.2 it follows that \(\alpha = 0 \); this only happens in case \((D_1)\) giving \(|I| = q + 1 \). \qed

Remark 4.2. The configurations for the intersection \(I \) of two BM unitals \(U_{a_1b_1}, U_{a_2b_2} \) in \(\mathcal{F} \) are the following:

1. \(I \) consists of \(q + 1 \) collinear points;
2. \(I \) consists of \(q \) sets of \(q + 1 \) collinear points. The \(q \) lines all meet at \(P_\infty \);
(3) \mathcal{I} consists of $2q - 1$ sets of $q + 1$ collinear points. The $2q - 1$ lines all pass through the point P_∞.

Furthermore, it follows from the proof of Theorem 4.1 that

(a) in cases (A$_1$) and (C$_{21}$) the intersection \mathcal{I} is the set

$$\mathcal{I} = \{(1, t, (a_1 + b_1) t^2 + r) \mid t, r \in \text{GF}(q)\} \cup \{P_\infty\}.$$

Hence \mathcal{I} is one of the $(q^2 + 1)$-sets defined in Theorem 3.1 with $a = a_1 + b_1$ and σ the automorphism of $\text{GF}(q^2)$ such that $x^\sigma = x^2$.

(b) In cases (D$_{21}$) and (D$_{31}$) the intersection \mathcal{I} turns out to be one of the $(q^2 + 1)$-sets defined in Theorem 3.2 with respectively $s = \sqrt{1/\alpha q - 1}$ or $s = \sqrt{1/\beta q - 1}$, and $a = a_1 + sb_1$.

5 Examples

In this section we show that all the cases discussed in Theorem 4.1 effectively occur for $q = 4$ and 5. If $q = 4$, denote by ω a primitive element of $\text{GF}(16)$, such that $\omega^2 + \omega + \delta = 0$, with δ any element of $\text{GF}(4) \setminus \text{GF}(2)$. Furthermore, put $a_1 = \omega^3$ and $b_1 = \omega$.

When $q = 5$, take ξ as a primitive element of $\text{GF}(25)$ such that $\xi^2 - \xi + 2 = 0$ and set $a_1 = \xi$, $b_1 = \xi^{12}$.

Under these assumptions, U_{a_1, b_1} turns out to be a non-classical BM unital respectively in $\text{PG}(2, 16)$ or in $\text{PG}(2, 25)$. Let a_2 and b_2 be two coefficients ranging over $\text{GF}(16)$ or $\text{GF}(25)$ in such a way that the discriminant condition of Lemma 2.1 is satisfied.

By different choices of a_2 and b_2 we get all the cases for $U_{a_1, b_1} \cap U_{a_2, b_2}$ occurring in the proof of Theorem 4.1 but case (D$_1$); see Table 1.

References

Intersections of Buekenhout-Metz unitals

<table>
<thead>
<tr>
<th>Case</th>
<th>a_2</th>
<th>b_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q = 4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A_1)</td>
<td>ω^{12}</td>
<td>ω^8</td>
</tr>
<tr>
<td>(B_1)</td>
<td>ω^4</td>
<td>ω^{14}</td>
</tr>
<tr>
<td>(C_{12})</td>
<td>ω</td>
<td>ω^{11}</td>
</tr>
<tr>
<td>(C_{21})</td>
<td>ω^{12}</td>
<td>ω^4</td>
</tr>
<tr>
<td>(D_{21})</td>
<td>ω^9</td>
<td>ω^2</td>
</tr>
<tr>
<td>(D_{22})</td>
<td>ω^{11}</td>
<td>ω^6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case</th>
<th>a_2</th>
<th>b_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q = 5$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A_2)</td>
<td>ξ^{23}</td>
<td>1</td>
</tr>
<tr>
<td>(B_{21})</td>
<td>ξ^{10}</td>
<td>ξ^{19}</td>
</tr>
<tr>
<td>(B_{22})</td>
<td>ξ^{16}</td>
<td>ξ^{5}</td>
</tr>
<tr>
<td>(C_{13})</td>
<td>ξ^{10}</td>
<td>ξ^{16}</td>
</tr>
<tr>
<td>(C_{14})</td>
<td>ξ^{20}</td>
<td>ξ^{3}</td>
</tr>
<tr>
<td>(C_{22})</td>
<td>ξ^{23}</td>
<td>ξ^{18}</td>
</tr>
<tr>
<td>(D_{31})</td>
<td>ξ^{22}</td>
<td>ξ^{7}</td>
</tr>
<tr>
<td>(D_{32})</td>
<td>ξ^{16}</td>
<td>ξ^{15}</td>
</tr>
</tbody>
</table>

Table 1: Intersection cases for q small

Angela Aguglia

DIPARTIMENTO DI MATEMATICA, POLITECNICO DI BARI, VIA G. AMENDOLA 126/B, 70126 BARI, ITALY

e-mail: a.aguglia@poliba.it

website: http://www.dm.uniba.it/~aguglia