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Abstract

Configurations arising as intersections of two Buekenhout-Metz unitals

of a given family are studied and, in the case in which at most one of the

unitals is classical, a new intersection size is found.
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1. Introduction

In [8] it has been shown that there are just seven configurations in which two

classical unitals may intersect. There-within it has also been proved that the

cardinality of the intersection of any two classical unitals in the desarguesian

projective plane PG(2, q2) is congruent to 1 modulo q.

A family of non-classical Buekenhout-Metz unitals in PG(2, q2), with q = ph

an odd prime power, has been constructed in [1]; the intersection of every

unital of this family with a classical one contains a number of points congruent

to 1 modulo p. In the same paper, it is also conjectured that the size of the

intersection of any classical unital with a non-classical one should be one of the

following:

q2 ± 2q + 1, q2 ± q + 1, q2 + 1 .

Afterwards, in [3] it has been proved that an arbitrary unital in PG(2, q2), with

q = ph any prime power, meets a classical unital in a number of points congruent

∗Research supported by the Italian Ministry MIUR, Strutture geometriche, combinatoria e loro

applicazioni.
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to 1 modulo p. To classify intersections of two non-classical unitals seems to be

a difficult question. Here we make some advances in this direction by looking at

a suitable family F of Buekenhout-Metz unitals in PG(2, q2), q any prime power,

containing both classical unitals as well as non-classical ones. We prove that

any two classical unitals in F intersect on q + 1 collinear points, whereas in all

other cases the intersection number is one of the following:

q + 1, q2 + 1, 2q2 − q + 1 .

This last size does not appear among those conjectured in [1].

2. Preliminaries

A set S of k points (or a k-set) in a projective plane of order q is of type

(k1, k2, . . . , ks), with k1 < k2 < · · · < ks, if a line ℓ may intersect S in only

sets of k1, k2, . . . or ks points. A line ℓ for which |ℓ∩S| = ki is called a ki-secant

of S whereas the integers ki are called characters of S.

A unital in PG(2, q2) is a (q3 + 1)-set of type (1, q + 1). A class of unitals

in PG(2, q2) is given by the (non-degenerate) Hermitian curves, that is sets of

absolute points with respect to (non-degenerate) unitary polarities; these are

also called classical unitals.

Unitals which are not Hermitian curves are non-classical. A unital U in

PG(2, q2) is parabolic or hyperbolic according as the line at infinity contains 1

or q + 1 points of U .

Every unital in PG(2, 22) is classical. The first non-classical unitals in PG(2, q2)

with q = 22r+1, r ≥ 1 were found by Buekenhout in [4]. Using Buekenhout’s

method, Metz extended this class of non-classical unitals in PG(2, q2) to all val-

ues of q ≥ 2; see [9]. A Buekenhout-Metz unital (BM unital for short) is a

parabolic unital obtained with the construction given in [9] in which the ovoidal

cone is an elliptic cone. This class also includes classical unitals. We refer the

reader to [6] for a survey of results on these unitals.

Let (X0, X1, X2) denote homogeneous coordinates for points of PG(2, q2).

The line ℓ∞ : X0 = 0 will be taken as the line at infinity, whereas P∞ will

denote the point (0, 0, 1). For q = 2h, let C0 be the additive subgroup of GF(q)

defined by C0 = {x ∈ GF(q) | Tr(x) = 0} where

Tr: GF(q) → GF(2) : x 7→ x + x2 + . . . + x2h−1

is the trace map of GF(q) over GF(2). The following results come from [2] for

q odd and from [5] for q even.
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Lemma 2.1. Let a, b ∈ GF(q2). The point set

Ua,b =
{

(1, t, at2 + btq+1 + r) | t ∈ GF(q2), r ∈ GF(q)
}

∪ {P∞}

is a BM unital in PG(2, q2) if and only if either q is odd and 4aq+1 + (bq − b)2 is a

non-square in GF(q), or q is even, b /∈ GF(q) and aq+1/(bq + b)2 ∈ C0.

The expression 4aq+1 +(bq −b)2 for q odd, and aq+1/(bq +b)2 with b /∈ GF(q),

for q even, is the discriminant of the unital Ua,b.

Lemma 2.2. Every BM unital can be expressed as Ua,b , for some a, b ∈ GF(q2)

which satisfy the discriminant condition of Lemma 2.1. Furthermore, a BM unital

Ua,b is classical if and only if a = 0.

3. Sets with few characters

In this section we are going to construct a family of (q2 + 1)-sets with four

characters in PG(2, q2) , where q = ph and p is any prime power. Some of them,

as pointed out in Remark 4.2, may be obtained by intersecting two BM unitals,

at least one of which is non-classical.

Let σ denote the automorphism of GF(q2) defined by

xσ = xpi

, with i < h and (i, h) = 1 .

Write T0 = {t ∈ GF(q2) | T(t) = 0}, where

T : x ∈ GF(q2) 7→ xq + x ∈ GF(q)

is the trace function of GF(q2) over GF(q).

Theorem 3.1. For each a ∈ GF(q2)∗, the subset

S = {(1, t, atσ + r) | t ∈ GF(q), r ∈ T0} ∪ {P∞}

of PG(2, q2) is either of type (0, 1, q, q + 1) or of type (0, 1, p, q + 1) according as

a ∈ T0 or not.

Proof. By construction, S consists of q2+1 points not all on a same line. Observe

that S is not a blocking set with respect to the lines of PG(2, q2) since, otherwise,

it would contain at least q2 + 3 points; see [7, Lemma 13.4]. Therefore, there

exist some 0-secants of S. We are going to show that for each k-secant of S

which is neither external nor tangent to it, k ∈ {q, q + 1} or k ∈ {p, q + 1}

according as a ∈ T0 or not.
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We begin by considering the line P∞Pt,r joining the point P∞ with another

point Pt,r = (1, t, atσ + r) ∈ S. Such a line corresponds to the set

{

(1, t, atσ + r + α) | α ∈ GF(q2)
}

∪ {P∞} ;

hence, the intersection of P∞Pt,r and S is

{(1, t, atσ + r + α) | α ∈ T0)} ∪ {P∞} ;

that is the line P∞Pt,r is a (q + 1)-secant of S.

Now take the line Pt1,r1
Pt2,r2

through two distinct points

Pt1,r1
= (1, t1, atσ1 + r1) and Pt2,r2

= (1, t2, atσ2 + r2)

of S. Such a line consists of all the points

Qα =
(

α + 1, αt1 + t2, a(αtσ1 + tσ2 ) + αr1 + r2

)

with α ranging over GF(q2), plus the point Pt1,r1
.

If t1 = t2, then the line Pt1,r1
Pt2,r2

passes through the point P∞ and hence is

a (q + 1)-secant of S.

When t1 6= t2, observe that the point at infinity Q−1 = (0, t2 − t1, a(tσ2 − tσ1 )+

r2 − r1) of the line Pt1,r1
Pt2,r2

is not on S. Thus, we restrict our attention to the

affine points Qα where α 6= −1. The normalized homogeneous coordinates for

these points are

(

1,
αt1 + t2
α + 1

, a
(αtσ1 + tσ2 )

α + 1
+

αr1 + r2

α + 1

)

.

A point Qα is on S if and only if the following conditions hold:

(i)
αt1 + t2
α + 1

∈ GF(q) ;

(ii)
a(αtσ1 + tσ2 ) + αr1 + r2

α + 1
−

a(αt1 + t2)
σ

ασ + 1
∈ T0 .

Condition (i) implies (αq − α)(t1 − t2) = 0, therefore, as t1 6= t2, we have

α ∈ GF(q). Hence condition (ii) can be written as

(aq + a)

[

αtσ1 + tσ2
α + 1

−
(ασtσ1 + tσ2 )

(ασ + 1)

]

= 0 . (1)

If aq + a = 0, then the intersection of Pt1,r1
Pt2,r2

and S is the set

{(

1,
αt1 + t2
α + 1

, a
αtσ1 + tσ2
α + 1

+
αr1 + r2

α + 1

)

∣

∣

∣
α ∈ GF(q) \ {−1}

}

∪ {Pt1,r1
} ,
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that is the line Pt1,r1
Pt2,r2

is a q-secant to S.

In the case where aq +a 6= 0, (1) gives (ασ−α)(tσ1 −tσ2 ) = 0; thus, ασ−α = 0

as t1 6= t2. Whence α = 0 or α(σ−1) = 1.

As (ph − 1, pi − 1) = p(h,i) − 1 and (i, h) = 1 the equation α(σ−1) = 1 has

p− 1 solutions in GF(q), one of them is α = −1. Thus, there are p− 2 + 2 affine

points Qα on Pt1,r1
Pt2,r2

∩ S, that is the line Pt1,r1
Pt2,r2

is a p-secant of S. �

Let s be an element of GF(q2) \ {1} such that sq+1 = 1. Set

A = {(1, 0, r) | r ∈ GF(q)}.

For each a ∈ GF(q2)∗, write

B = {(1, t, at2 + r) | t ∈ GF(q2), tq−1 = s, r ∈ GF(q)}.

Theorem 3.2. The subset

S = A ∪ B ∪ {P∞}

of PG(2, q2) is either of type (0, 1, q, q + 1) or of type (0, 1, 2, q + 1) according as

aq−1s2 = 1 or not.

Proof. By definition, S consists of q2 + 1 points. As seen in the proof of The-

orem 3.1 there exist some 0-secants of S. We are going to show that for each

k-secant of S which is neither external nor tangent to S, k ∈ {q, q + 1} or

k ∈ {2, q + 1} according as aq−1s2 = 1 or not.

Arguing as in the proof of Theorem 3.1, it can be verified that a line trough

the point P∞ which is not tangent to the set S, meets S in q + 1 points.

Next, we consider the line PrPt,m joining the point Pr = (1, 0, r) ∈ A , with

the point Pt,m = (1, t, at2 + m) ∈ B. Such a line corresponds to the set

{

(α + 1, t, at2 + m + αr) | α ∈ GF(q2)
}

∪ {Pr} .

Since t 6= 0, the point at infinity (0, t, at2 +m− r) of the line PrPt,m is not on S.

Thus, we restrict our attention to the affine points Qα = (α+1, t, at2 +m+αr),

with α 6= −1, on the line PrPt,m. The normalized homogeneous coordinates for

these points are
(

1,
t

α + 1
,
at2 + m + αr

α + 1

)

.

A point Qα is on S if and only if the following conditions hold:

(i)

(

t

α + 1

)q−1

= s ;
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(ii)
at2 + m + αr

α + 1
−

at2

(α + 1)2
∈ GF(q) .

Condition (i) implies (α + 1) ∈ GF(q)∗, therefore, α ∈ GF(q) \ {−1}. Hence

(ii) becomes at2 ∈ GF(q), that is aq−1s2 = 1. Thus, if aq−1s2 = 1, then the

intersection of PrPt,m and S is
{(

1,
t

α + 1
,
at2 + m + αr

α + 1

)

∣

∣

∣
α ∈ GF(q) \ {−1}

}

∪ {Pr} ,

that is the line PrPt,m is a q-secant to S. In the case aq−1s2 6= 1 the line PrPt,m

is a 2-secant.

Now take the line Pt1,r1
Pt2,r2

joining two distinct points

Pt1,r1
= (1, t1, at21 + r1) and Pt2,r2

= (1, t2, at22 + r2)

of B. Such a line consists of Pt1,r1
plus the points

Qα =
(

α + 1, αt1 + t2, a(αt21 + t22) + αr1 + r2

)

as α ranges over GF(q2).

If t1 = t2, the line Pt1,r1
Pt2,r2

passes through the point P∞; hence it is a

(q + 1)-secant of S.

When t1 6= t2, observe that the point at infinity (0, t2 − t1, a(t2 − t21)+ r2 − r1)

of Pt1,r1
Pt2,r2

is not on S. Thus, we restrict our attention to the affine points

Qα with α 6= −1. Their normalized homogeneous coordinates are
(

1,
αt1 + t2
α + 1

, a
(αt21 + t22)

α + 1
+

αr1 + r2

α + 1

)

.

A point Qα is on S if and only if the following conditions hold:

(i) αt1 + t2 = 0 or

(

αt1 + t2
α + 1

)q−1

= s ;

(ii)
a(αt21 + t22) + αr1 + r2

α + 1
−

a(αt1 + t2)
2

(α + 1)2
∈ GF(q) .

When α = − t2
t1

∈ GF(q), condition (ii) becomes −at1t2 ∈ GF(q); hence we have

a(q−1)s2 = 1. Therefore the point (1, 0, at1t2(t2−t1)+r2t1−r1t2
t1−t2

) belongs to S if and

only if a(q−1)s2 = 1.

In the case
(

αt1+t2
α+1

)q−1

= s we get α ∈ GF(q) \ {−1,− t1
t2
}. Hence condi-

tion (ii) can be written as a(t21 − t22)
q−1 ∈ GF(q), that is aq−1s2 = 1. Therefore,

if aq−1s2 = 1 the line Pt1,r1
Pt2,r2

is a q-secant to S, otherwise it meets S only in

Pt1,r1
and Pt2,r2

, thus it is a 2-secant to S. �
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4. Main result

In this section we study the cardinality of the intersection of two distinct BM

unitals in the family

F = {Ua,b}(a,b)∈GF(q2)×GF(q2) ,

where

Ua,b =
{

(1, t, at2 + btq+1 + r) | t ∈ GF(q2), r ∈ GF(q)
}

∪ {P∞}

and the coefficients a and b satisfy the discriminant condition of Lemma 2.1.

Theorem 4.1. In PG(2, q2), with q a prime power, the intersection size of two

unitals of F is one of the following:

q + 1, q2 + 1, 2q2 − q + 1 .

Furthermore, any two classical unitals of F can only intersect in q + 1 collinear

points.

Proof. Let Ua1,b1 and Ua2,b2 be two distinct unitals in F. Denote by I their

intersection and set α = a1 − a2, β = b1 − b2. We distinguish the following

cases:

(A) α + β = 0 and α ∈ GF(q)∗ ;

(B) α + β = 0 and α /∈ GF(q) ;

(C) α + β ∈ GF(q)∗ ;

(D) α + β /∈ GF(q) .

Case (A)

Since a1 + b1 = a2 + b2, the points in

S1 =
{

(1, t, (a1 + b1)t
2 + r) | t, r ∈ GF(q)

}

∪ {P∞}

are on both unitals. Therefore, the cardinality of I is at least q2 + 1.

Let Q′ = (1, t, a1t
2 + b1t

q+1 + r) ∈ Ua1,b1 , for a suitable t ∈ GF(q2) \ GF(q).

The point Q′ lies also on Ua2,b2 if and only if

αt2 + βtq+1 ∈ GF(q) , (2)

or equivalently

α(t2 − tq+1) ∈ GF(q) . (3)
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By the hypothesis α ∈ GF(q)∗, (3) may be rewritten as

tq−1 = ±1 . (4)

There are now two possibilities.

(A1) q is even.

Then (4) implies t ∈ GF(q); hence, by the assumption made on t, there

are no points Q′ on I; thus

|I| = q2 + 1 .

(A2) q is odd.

Since t /∈ GF(q), (4) necessarily gives tq−1 = −1. This condition is satisfied

by q − 1 values of t and to any such a value there correspond q points

Q′ ∈ I as r ranges over GF(q). Therefore

|I| = q2 + 1 + q(q − 1) = 2q2 − q + 1 .

Case (B)

Arguing as in Case (A) we have that S1 is a subset of I and so |I| ≥ q2 + 1.

Again a point Q′ = (1, t, a1t
2 + b1t

q+1 + r) ∈ Ua1,b1 , with t ∈ GF(q2) \GF(q), lies

on Ua2,b2 if and only if (3) holds. Setting

y = tq−1, (5)

condition (3) can be rewritten as

αqy2 − (αq − α)y − α = 0 . (6)

As α 6= 0, equation (6) has solutions y = 1 or y = −α1−q. We distinguish the

following subcases.

(B1) q is even.

Since α /∈ GF(q), −α1−q is different from 1. Because of (5), we necessarily

have

tq−1 = −α1−q (7)

as t ∈ GF(q2) \ GF(q). Equation (7) gives q − 1 possible values for t; for

any such a value, we get q points Q′ ∈ I as r varies in GF(q). Therefore

we get again |I| = 2q2 − q + 1.

(B2) q is odd.
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(B21) If α ∈ T0, that is αq + α = 0, then −α1−q = 1. From (5) it follows

that tq−1 = 1, which is not allowed. Thus, there are no points Q′

on I, and hence |I| = q2 + 1.

(B22) Assume α /∈ T0. In this case 1 and −α1−q are two distinct solutions

of (6). Arguing as in case (B1) it follows that I consists of 2q2 − q +1

points.

Case (C)

Let

Si =
{

(1, t, (ai + bi)t
2 + r) | t, r ∈ GF(q)

}

∪ {(0, 0, 1)} ⊂ Uai,bi

for i ∈ {1, 2}. We are going to show that S1 = S2. To this end, observe that a

point Q = (1, t, (ai + bi)t
2 + r) ∈ Si lies also on Sj for any distinct i, j ∈ {1, 2},

since

(aj + bj)t
2 + (α + β)t2 = (ai + bi)t

2

and α + β ∈ GF(q)∗. Hence, S1 ⊆ I and thus |I| ≥ q2 + 1.

Now, consider a point Q′ = (1, t, a1t
2 + b1t

q+1 + r) ∈ Ua1,b1 for a suitable

t ∈ GF(q2)\GF(q). The point Q′ is also a point on Ua2,b2 if and only if (2) holds,

namely, in this case,

αqt2(q−1) + (βq − β)tq−1 − α = 0 . (8)

Setting y as in (5), condition (8) becomes

αqy2 + (βq − β)y − α = 0 . (9)

Observe that α 6= 0, since, otherwise, βq − β = 0 and (9) would be always true;

therefore, the two unitals would be the same, contradicting our assumption.

As α 6= 0, equation (9) has solutions y = 1 or y = −α1−q. There are now

several subcases to consider.

(C1) α ∈ GF(q2) \ GF(q) .

(C12) q is even.

In this case the solutions y = 1 and y = −α1−q of (9) are distinct.

Because of (5), we can only have tq−1 = −α1−q as t /∈ GF(q); again

we find q − 1 values for t satisfying (8), and for any such a value, we

obtain q points Q′ ∈ I, as r ranges over GF(q). Therefore,

|I| = 2q2 − q + 1 .
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(C13) q is odd and α ∈ T0.

As α ∈ T0 then −α1−q = 1. From (5) we have tq−1 = 1, which is

impossible. Thus, |I| = q2 + 1.

(C14) q is odd and α /∈ T0.

In this case −α1−q 6= 1, therefore, arguing as in case (C12), we get

that I consists of 2q2 − q + 1 points.

(C2) α ∈ GF(q)∗.

Equation (8) gives

tq−1 = ±1 . (10)

(C21) If q is even, condition (10) implies t ∈ GF(q), which is not allowed;

thus,

|I| = q2 + 1 .

(C22) Suppose q to be odd. As t /∈ GF(q), we necessarily have from (10)

that tq−1 = −1, a condition satisfied by q − 1 possible values for t;

to any such a value of t there correspond q points Q′ ∈ I as r ranges

over GF(q). Therefore, again

|I| = 2q2 − q + 1 .

Case (D)

Let us again consider the point-sets

Si =
{

(1, t, (ai + bi)t
2 + r) | t, r ∈ GF(q)

}

∪ {P∞}

where i = 1, 2. A point Q = (1, t, (ai + bi)t
2 + r) ∈ Si lies also on Sj for i 6= j, if

and only if the element (α + β)t2 ∈ GF(q); the hypothesis α + β /∈ GF(q) forces

t to be zero. Thus, S1 ∩ S2 = {(1, 0, r) | r ∈ GF(q)} and |I| ≥ q + 1.

Next, take a point Q′ = (1, t, a1t
2 + b1t

q+1 + r) ∈ Ua1,b1 with t ∈ GF(q2) \

GF(q). The point Q′ is on Ua2,b2 if and only if (8) holds. We distinguish three

possibilities.

(D1) α = 0 .

In this case βq − β 6= 0 and (8) gives t = 0 which is not allowed. Thus

|I| = q + 1 .

(D2) q is even and α 6= 0 .

(D21) β ∈ GF(q) .
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Condition (8) gives tq−1 =
√

1/αq−1 with αq−1 6= 1. Once again, we

get q−1 possible values for t; so for any such a value, we get q points

Q′ ∈ I as r ranges over GF(q). Hence,

|I| = q2 + 1 .

(D22) β /∈ GF(q) .

Let y be as in (5); we get again (9). This equation has 2 solutions as

δ = αq+1/(βq − β)2 belongs to GF(q) and hence the absolute trace

of δ is zero. Furthermore, both solutions are different from 1 as

α + β /∈ GF(q).

Therefore, by (5), we find 2(q − 1) possible values for t and thus,

2q(q − 1) points Q′ on I. Hence I consists of 2q(q − 1) + q + 1 =

2q2 − q + 1 points.

(D3) q is odd and α 6= 0 .

We need to consider the discriminant of (9), that is

∆ = (βq − β)2 + 4αq+1 ∈ GF(q) .

(D31) ∆ = 0 .

Condition (9) has the unique solution y = β−βq

2αq 6= 1 which gives q−1

possible values for t because of (5); hence

|I| = q2 + 1 .

(D32) ∆ 6= 0 .

As ∆ ∈ GF(q)∗ we get ∆(q2
−1)/2 = 1, that is ∆ is a non-zero square

in GF(q2).

Therefore, (9) has two non-zero solutions different from 1. Each of

them provides q − 1 possible values for t; thus

|I| = 2q2 − q + 1 .

Finally, assume both Ua1b1 and Ua2b2 to be classical. From Lemma 2.2 it follows

that α = 0; this only happens in case (D1) giving |I| = q + 1. �

Remark 4.2. The configurations for the intersection I of two BM unitals Ua1,b1 ,

Ua2,b2 in F are the following:

(1) I consists of q + 1 collinear points;

(2) I consists of q sets of q + 1 collinear points. The q lines all meet at P∞ ;
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(3) I consists of 2q − 1 sets of q + 1 collinear points. The 2q − 1 lines all pass

through the point P∞ .

Furthermore, it follows from the proof of Theorem 4.1 that

(a) in cases (A1) and (C21) the intersection I is the set

I =
{

(1, t, (a1 + b1)t
2 + r) | t, r ∈ GF(q)

}

∪ {P∞} .

Hence I is one of the (q2 +1)-sets defined in Theorem 3.1 with a = a1 +b1

and σ the automorphism of GF(q2) such that xσ = x2.

(b) In cases (D21) and (D31) the intersection I turns out to be one of the

(q2 + 1)-sets defined in Theorem 3.2 with respectively s =
√

1/αq−1 or

s = β−βq

2αq , and a = a1 + sb1.

5. Examples

In this section we show that all the cases discussed in Theorem 4.1 effectively

occur for q = 4 and 5. If q = 4, denote by ω a primitive element of GF(16), such

that ω2 + ω + δ = 0, with δ any element of GF(4) \ GF(2). Furthermore, put

a1 = ω3 and b1 = ω.

When q = 5, take ξ as a primitive element of GF(25) such that ξ2 − ξ + 2 = 0

and set a1 = ξ7, b1 = ξ12.

Under these assumptions, Ua1,b1 turns out to be a non-classical BM unital

respectively in PG(2, 16) or in PG(2, 25). Let a2 and b2 be two coefficients rang-

ing over GF(16) or GF(25) in such a way that the discriminant condition of

Lemma 2.1 is satisfied.

By different choices of a2 and b2 we get all the cases for Ua1,b1 ∩Ua2,b2 occur-

ring in the proof of Theorem 4.1 but case (D1); see Table 1.
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q = 4

Case a2 b2

(A1) ω12 ω8

(B1) ω4 ω14

(C12) ω ω11

(C21) ω12 ω4

(D21) ω9 ω2

(D22) ω11 ω6

q = 5

Case a2 b2
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(C13) ξ10 ξ16
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(D31) ξ22 ξ7

(D32) ξ16 ξ15

Table 1: Intersection cases for q small
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