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Intersections of Buekenhout-Metz unitals
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On the occasion of the 60th birthday of Gabor Korchmaros

Abstract

Configurations arising as intersections of two Buekenhout-Metz unitals
of a given family are studied and, in the case in which at most one of the
unitals is classical, a new intersection size is found.
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1. Introduction

In [8] it has been shown that there are just seven configurations in which two
classical unitals may intersect. There-within it has also been proved that the
cardinality of the intersection of any two classical unitals in the desarguesian
projective plane PG(2, ¢?) is congruent to 1 modulo gq.

A family of non-classical Buekenhout-Metz unitals in PG(2, ¢?), with ¢ = p”
an odd prime power, has been constructed in [1]; the intersection of every
unital of this family with a classical one contains a number of points congruent
to 1 modulo p. In the same paper, it is also conjectured that the size of the
intersection of any classical unital with a non-classical one should be one of the
following:

PE+2+1, Prqg+1, ¢>+1.

Afterwards, in [3] it has been proved that an arbitrary unital in PG(2, ¢?), with
q = p" any prime power, meets a classical unital in a number of points congruent
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to 1 modulo p. To classify intersections of two non-classical unitals seems to be
a difficult question. Here we make some advances in this direction by looking at
a suitable family § of Buekenhout-Metz unitals in PG(2, ¢?), ¢ any prime power,
containing both classical unitals as well as non-classical ones. We prove that
any two classical unitals in § intersect on ¢ + 1 collinear points, whereas in all
other cases the intersection number is one of the following:

q+1, ¢ +1,2¢° —q+1.

This last size does not appear among those conjectured in [1].

2. Preliminaries

A set S of k points (or a k-set) in a projective plane of order ¢ is of type
(k1,koy... ks), with k1 < ky < --- < ks, if a line ¢ may intersect S in only
sets of k1, ko, ... or ks points. A line ¢ for which [/NS| = k; is called a k;-secant
of S whereas the integers k; are called characters of S.

A unital in PG(2,¢?) is a (¢> + 1)-set of type (1,q + 1). A class of unitals
in PG(2, ¢?) is given by the (non-degenerate) Hermitian curves, that is sets of
absolute points with respect to (non-degenerate) unitary polarities; these are
also called classical unitals.

Unitals which are not Hermitian curves are non-classical. A unital U in
PG(2,¢?) is parabolic or hyperbolic according as the line at infinity contains 1
or ¢ + 1 points of U.

Every unital in PG(2, 22) is classical. The first non-classical unitals in PG(2, ¢?)
with ¢ = 22"t > 1 were found by Buekenhout in [4]. Using Buekenhout’s
method, Metz extended this class of non-classical unitals in PG(2, ¢?) to all val-
ues of ¢ > 2; see [9]. A Buekenhout-Metz unital (BM unital for short) is a
parabolic unital obtained with the construction given in [9] in which the ovoidal
cone is an elliptic cone. This class also includes classical unitals. We refer the
reader to [6] for a survey of results on these unitals.

Let (Xo, X1, X2) denote homogeneous coordinates for points of PG(2, ¢?).
The line /., : Xo = 0 will be taken as the line at infinity, whereas P,, will
denote the point (0,0,1). For ¢ = 2", let C, be the additive subgroup of GF(q)
defined by Cy = {z € GF(q) | Tr(x) = 0} where

Tr: GF(q) — GF(2): z +— x + 22 to4+22

is the trace map of GF(¢q) over GF(2). The following results come from [2] for
g odd and from [5] for g even.
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Lemma 2.1. Let a,b € GF(¢?). The point set
Udp = {(1,t7at2 + bt L) | t € GF(¢?),r € GF(q)} U{Px}

is a BM unital in PG(2, ¢?) if and only if either q is odd and 4a?** + (b7 — b)? is a
non-square in GF(q), or q is even, b ¢ GF(q) and a?*! /(b + b)? € C,.

The expression 4a?"! + (b2 — b)? for g odd, and a?™! /(b9 +b)? with b ¢ GF(q),
for ¢ even, is the discriminant of the unital U, ;.

Lemma 2.2. Every BM unital can be expressed as U, , for some a,b € GF(¢?)
which satisfy the discriminant condition of Lemma 2.1. Furthermore, a BM unital
Ua,p 1s classical if and only if a = 0.

3. Sets with few characters

In this section we are going to construct a family of (¢®> + 1)-sets with four
characters in PG(2, ¢%) , where ¢ = p” and p is any prime power. Some of them,
as pointed out in Remark 4.2, may be obtained by intersecting two BM unitals,
at least one of which is non-classical.

Let o denote the automorphism of GF(¢?) defined by
2% = 2P withi < hand (i,h) = 1.
Write Ty = {t € GF(¢?) | T(t) = 0}, where
T:x € GF(¢?) — z? + 2 € GF(q)
is the trace function of GF(¢?) over GF(q).
Theorem 3.1. For each a € GF(q?)*, the subset
S={(1,t,at” +r) |t € GF(q),r € To} U{Px}

of PG(2,¢?) is either of type (0,1,q,q + 1) or of type (0,1,p,q + 1) according as
a € T or not.

Proof. By construction, S consists of ¢>+1 points not all on a same line. Observe
that S is not a blocking set with respect to the lines of PG(2, ¢?) since, otherwise,
it would contain at least ¢* + 3 points; see [7, Lemma 13.4]. Therefore, there
exist some 0-secants of S. We are going to show that for each k-secant of S
which is neither external nor tangent to it, k € {q,q + 1} or k € {p,q + 1}
according as a € Ty or not.



page 4/ 13

go back

full screen

close

quit

ACADEMIA
PRESS

) &

UNIVERSITEIT
GENT

We begin by considering the line P, P, , joining the point P,, with another
point P, = (1,¢,at” +r) € S. Such a line corresponds to the set

{(1,t,at” +r+a) | a € GF(¢*)} U{Px};
hence, the intersection of P, P, and S is
{(1,t,at” +r+a) | a € Th)} U{Px};

that is the line P P, , is a (¢ + 1)-secant of S.

Now take the line P, ,, P, ,, through two distinct points
Py =(1,t1,at{ +r1) and P, ,, = (1,t2,atg + r2)
of S. Such a line consists of all the points
Qo = (a+1,aty +ta,a(ot] + 1) + ary + 1)

with « ranging over GF(¢?), plus the point P, .

If t; = to, then the line P, ,, P, ,, passes through the point P, and hence is
a (q + 1)-secant of S.

When ¢, # t5, observe that the point at infinity Q_ = (0,t2 —t1,a(t§ —tJ) +
ro — 1) of the line P, ,, P, », isnot on S. Thus, we restrict our attention to the
affine points ), where o # —1. The normalized homogeneous coordinates for
these points are

. aty +ty (at] +1t5)  ar;+re
Ta+41" a+1 a+1 )

A point @), is on S if and only if the following conditions hold:

. oty + 12
i) ——— € GF(qg);
® = (9)
i a(at] +t5) +ari+r2  alats +1t2)° €Ty
a+1 o’ +1

Condition (i) implies (a? — «)(t; — t2) = 0, therefore, as ¢; # t2, we have
a € GF(q). Hence condition (ii) can be written as

(1)

(a? + ) {at‘f—i—t% (oz”t‘f—i—tg)} 0

a+1l (a7 +1)

If a9 4+ a = 0, then the intersection of P, ,, P, ., and S is the set

oty +ta ot +t3  arp+r
Ta4+17 a+1 a+1

) ‘ a € GF(g) \ {—1}} U{Pym},
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that is the line P;, ,, P, , is @ g-secant to S.
In the case where a?+a # 0, (1) gives (a” —«)(ty —t3) = 0; thus, a” —a =0
as t1 # to. Whence o = 0 or a1 = 1.

As (p" —1,p* — 1) = p™» — 1 and (i,h) = 1 the equation o(°~Y = 1 has
p — 1 solutions in GF(g), one of them is a = —1. Thus, there are p — 2 + 2 affine
points ), on Py, ,, P, », NS, that is the line P, ,, P, ,, isa p-secantof S. [

Let s be an element of GF(¢?) \ {1} such that s*! = 1. Set
A={(1,0,7)|r € GF(q)}.
For each a € GF(¢?)*, write
B={(1,t,at> +r) |t € GF(¢*),t"' = 5,7 € GF(¢)}.

Theorem 3.2. The subset
S=AUBU{P}

of PG(2, ¢?) is either of type (0,1,q,q + 1) or of type (0,1,2,q + 1) according as
a?"1s? =1 or not.

Proof. By definition, S consists of ¢ + 1 points. As seen in the proof of The-
orem 3.1 there exist some 0-secants of S. We are going to show that for each
k-secant of S which is neither external nor tangent to S, k € {¢,q¢ + 1} or
k € {2,q+ 1} according as a?~'s? = 1 or not.

Arguing as in the proof of Theorem 3.1, it can be verified that a line trough
the point P, which is not tangent to the set S, meets S in ¢ + 1 points.

Next, we consider the line P, P, ,, joining the point P, = (1,0,r) € A, with
the point P, ,,, = (1,¢,at* + m) € B. Such a line corresponds to the set

{(a+1,t,at> + m+ar) | a € GF(¢*)} U{P}.

Since t # 0, the point at infinity (0, ¢, at> + m —r) of the line P, P, ,,, is not on S.
Thus, we restrict our attention to the affine points Q,, = (a+1,t,at?> + m+ ar),
with a # —1, on the line P, P, ,,,. The normalized homogeneous coordinates for
these points are

t at? +m + ar
Ta+ 1’7 a+1 '

A point @),, is on S if and only if the following conditions hold:

. t \7!
@ (a+1) -
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at® +m + ar at?
a+1 (4 1)2

(ii) € GF(q) .

Condition (i) implies (o + 1) € GF(q)*, therefore, o € GF(q) \ {—1}. Hence
(ii) becomes at? € GF(q), that is a?"1s? = 1. Thus, if a?"1s? = 1, then the
intersection of PP, ,, and S is

{(Lajﬁﬁaﬁi:fiam>‘QEGF@)\{J}}U{R}7

that is the line P, P, ,, is a g-secant to S. In the case a9~ 's? # 1 the line P, P, ,,
is a 2-secant.

Now take the line P, ,, P, ,, joining two distinct points
Py = (l,tl,at% +r1) and P, v, = (1,t2,at§ +r3)

of B. Such a line consists of P, ,, plus the points

Qo = (a+1,aty + ta, a(at] +13) + ary + 1)
as o ranges over GF(q?).

If t; = to, the line P, ,, P, ,, passes through the point P, ; hence it is a
(q + 1)-secant of S.

When t; # to, observe that the point at infinity (0, —t1, a(ty —t3) + 72 —171)
of P, , P, r, is not on S. Thus, we restrict our attention to the affine points
Q. with o # —1. Their normalized homogeneous coordinates are

| ot (at? +13)  ary+ro
Ta+1 a—+1 a+1 /)

A point @),, is on S if and only if the following conditions hold:

q—1
(i) Oétl—i—tQ:OOl’(M) =S,

a—+1

. alaty +t3) +ary +r2 alat) +t2)?
— F(q).
(ii) 1 TESEN GF(q)

When a = —i—f € GF(q), condition (ii) becomes —at;ty € GF(q); hence we have
al9=1) 52 = 1. Therefore the point (1,0, “tltz(tz_flﬂgm_mz) belongs to S if and
only if a(?~Vs? = 1.

q—1
In the case <a2—jf?> = s we get a € GF(q) \ {~1,—¢}. Hence condi-
tion (ii) can be written as a(t? — t2)7~! € GF(q), that is a?~1s? = 1. Therefore,

if a?71s* = 1 the line P, ,, P, ., is @ g-secant to S, otherwise it meets S only in
P, ,, and P, ,,, thusitis a 2-secant to S. O
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4. Main result

In this section we study the cardinality of the intersection of two distinct BM
unitals in the family

T = {Uab} (a,b)€GF(g2) x GF(g2) 5

where
Uap = {(L,t,at® + bt7T" + 1) | t € GF(¢®),r € GF(q)} U {Px}
and the coefficients a and b satisfy the discriminant condition of Lemma 2.1.

Theorem 4.1. In PG(2,¢?), with q a prime power, the intersection size of two
unitals of § is one of the following:

g+1,¢* +1,2¢> —q+1.

Furthermore, any two classical unitals of § can only intersect in q + 1 collinear
points.

Proof. Let U,, », and U,,, be two distinct unitals in §. Denote by Z their
intersection and set « = a; — as, § = by — by. We distinguish the following
cases:

(A) o+ =0and o € GF(q)*;
(B) a+pB=0and a ¢ GF(q);
(C) a+ € GF(g)";
(D) a+ B¢ GF(q).

Case (A)
Since a; + by = as + bs, the points in
St ={(1,t, (a1 +b1)t* +7) | t,r € GF(q) } U { P}

are on both unitals. Therefore, the cardinality of 7 is at least ¢ + 1.

Let Q' = (1,t,a1t% + bytiTt + 1) € Uy, »,, for a suitable ¢ € GF(¢?) \ GF(q).
The point @)’ lies also on U,, s, if and only if

at? + sttt € GF(q), (2)

or equivalently
a(t* — 1) € GF(q) . (3)



page 8/ 13

go back

full screen

close

quit

ACADEMIA
PRESS

) &

UNIVERSITEIT
GENT

By the hypothesis « € GF(q)*, (3) may be rewritten as
7t =41, (4)

There are now two possibilities.

(A1) qis even.

Then (4) implies ¢t € GF(q); hence, by the assumption made on ¢, there
are no points )’ on Z; thus

Z] =q¢* +1.

(As) ¢isodd.

Since t ¢ GF(q), (4) necessarily gives t¢~! = —1. This condition is satisfied
by ¢ — 1 values of ¢t and to any such a value there correspond ¢ points
Q' € T as r ranges over GF(q). Therefore

Il =¢>+14q¢g—1)=2¢*—q+1.

Case (B)

Arguing as in Case (A) we have that S; is a subset of Z and so |Z| > ¢* + 1.
Again a point Q' = (1,t,a1t* + b1t +r) € U,, 4, with t € GF(¢?) \ GF(q), lies
on U,, », if and only if (3) holds. Setting

y =11 (5)

condition (3) can be rewritten as
aqu—(aq—a)y—a:U (6)
As o # 0, equation (6) has solutions y = 1 or y = —a!~9. We distinguish the

following subcases.

(B1) giseven.

Since o ¢ GF(q), —a'™9 is different from 1. Because of (5), we necessarily
have
tit = —at (7)

as t € GF(q¢?) \ GF(q). Equation (7) gives ¢ — 1 possible values for ¢; for
any such a value, we get ¢ points ()’ € 7 as r varies in GF(q). Therefore
we get again |Z| = 2¢®> — ¢ + 1.

(B2) ¢ is odd.
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(Bsy) If a € Ty, thatis a9 + o = 0, then —a' ¢ = 1. From (5) it follows
that t9~! = 1, which is not allowed. Thus, there are no points Q’
on Z, and hence |Z| = ¢ + 1.

(B22) Assume « ¢ Ty. In this case 1 and —«a'~7 are two distinct solutions

of (6). Arguing as in case (B;) it follows that Z consists of 2¢°> — g+ 1
points.

Case (C)

Let
Si = {(Lt, (ai + bi)t2 +T) ’ t,?’ € GF(Q)} U {(0707 1)} - Uai7bi

for i € {1,2}. We are going to show that S; = S». To this end, observe that a
point @ = (1,¢, (a; + b;)t* + r) € S; lies also on S; for any distinct 7, j € {1,2},
since

(CLj + bj)tQ + (Oé -+ ﬁ)tQ = (CLZ' + bl)tQ
and o + 3 € GF(q)*. Hence, §; C 7 and thus |Z| > ¢* + 1.

Now, consider a point Q" = (1,¢,a1t*> + b1t + 1) € U,, s, for a suitable
t € GF(¢?)\ GF(gq). The point Q' is also a point on Uy, 4, if and only if (2) holds,
namely, in this case,

a?2@=1) (B - Bl — =0, (8)

Setting y as in (5), condition (8) becomes

aly? + (81— By —a=0. 9)

Observe that o # 0, since, otherwise, 54 — § = 0 and (9) would be always true;
therefore, the two unitals would be the same, contradicting our assumption.

As o # 0, equation (9) has solutions y = 1 or y = —a!~%. There are now
several subcases to consider.
(C1) a € GF(¢*) \ GF(q).
(C12) qis even.

In this case the solutions y = 1 and y = —a!'~9 of (9) are distinct.
Because of (5), we can only have t9~1 = —a!'~% as t ¢ GF(q); again
we find g — 1 values for ¢ satisfying (8), and for any such a value, we
obtain ¢ points )’ € Z, as r ranges over GF(q). Therefore,

Z| =2¢° —q+1.
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(C13) gisodd and « € Ty.
As a € Ty then —a'~% = 1. From (5) we have t?~! = 1, which is
impossible. Thus, |Z| = ¢* + 1.

(C14) ¢isodd and « ¢ Ty.
In this case —a'~9 # 1, therefore, arguing as in case (C;2), we get
that Z consists of 2¢®> — ¢ + 1 points.

(C2) a € GF(g)*.
Equation (8) gives
th =41, (10)

(C21) If ¢ is even, condition (10) implies ¢ € GF(q), which is not allowed;
thus,
Z]=q¢*+1.

(Cy2) Suppose g to be odd. As t ¢ GF(q), we necessarily have from (10)
that ¢! = —1, a condition satisfied by ¢ — 1 possible values for ¢;
to any such a value of ¢ there correspond ¢ points @)’ € Z as r ranges
over GF(q). Therefore, again

Z| =2¢° —q+1.

Case (D)
Let us again consider the point-sets

where i = 1,2. A point Q = (1,¢, (a; + b;)t> +r) € S, lies also on S; for i # j, if
and only if the element (o + 3)t? € GF(q); the hypothesis « + 3 ¢ GF(q) forces
t to be zero. Thus, S; NSy = {(1,0,7) | » € GF(q)} and |Z| > ¢ + 1.

Next, take a point Q' = (1,t,a1t* + bit?*! + 1) € Uy, p, with t € GF(¢?) \
GF(q). The point @’ is on U,, ;, if and only if (8) holds. We distinguish three
possibilities.

(Dl) a=20.
In this case 5?7 — 3 # 0 and (8) gives t = 0 which is not allowed. Thus

2,b2

Z| =q+1.

(D3) gisevenand o # 0.
(D21) B € GF(q).
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Condition (8) gives t?~! = /1/a%~1 with a4~ # 1. Once again, we
get ¢ — 1 possible values for ¢; so for any such a value, we get ¢ points
()’ € T as r ranges over GF(q). Hence,

Z] =¢* +1.

(D22) B ¢ GF(q).
Let y be as in (5); we get again (9). This equation has 2 solutions as
§ = a?t1/(39 — 3)? belongs to GF(q) and hence the absolute trace
of ¢ is zero. Furthermore, both solutions are different from 1 as

a+ G ¢ GF(q).

Therefore, by (5), we find 2(¢ — 1) possible values for ¢ and thus,
2¢(q¢ — 1) points Q" on Z. Hence Z consists of 2¢(¢ — 1) + g+ 1 =
2¢> — ¢ + 1 points.

(D3) gisodd and o #£ 0.

We need to consider the discriminant of (9), that is

A= (87— B)* +4a?t" € GF(q).

(D31) A=0.
Condition (9) has the unique solution y = ﬁ;ogq # 1 which gives ¢—1
possible values for ¢ because of (5); hence
Z| = ¢* +1.
(D32) A #0.
As A € GF(q)* we get A(¢°~1D/2 = 1 that is A is a non-zero square
in GF(¢?).

Therefore, (9) has two non-zero solutions different from 1. Each of
them provides ¢ — 1 possible values for ¢; thus

| =2¢°> —q+1.

Finally, assume both U,,;, and U,,;, to be classical. From Lemma 2.2 it follows
that o = 0; this only happens in case (D;) giving |Z| = ¢ + 1. O

Remark 4.2. The configurations for the intersection Z of two BM unitals U,, s, ,
Ua, b, in § are the following:

(1) 7 consists of g + 1 collinear points;

(2) 7 consists of ¢ sets of ¢ + 1 collinear points. The ¢ lines all meet at P, ;
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(3) Z consists of 2¢ — 1 sets of ¢ + 1 collinear points. The 2¢ — 1 lines all pass
through the point P, .

Furthermore, it follows from the proof of Theorem 4.1 that

(a) in cases (A;) and (Cs;) the intersection Z is the set
7= {(1,t, (a1 + bl)t2 +7r)|t,re GF(q)} U{Px}.

Hence 7 is one of the (¢ +1)-sets defined in Theorem 3.1 with a = a1 +b;

and o the automorphism of GF(¢?) such that 27 = 22.

(b) In cases (Dy;) and (Ds;) the intersection Z turns out to be one of the
(¢*> + 1)-sets defined in Theorem 3.2 with respectively s = \/1/a%1 or
s=080" anda= ay + sb;.

2009 °

5. Examples

In this section we show that all the cases discussed in Theorem 4.1 effectively
occur for ¢ = 4 and 5. If ¢ = 4, denote by w a primitive element of GF(16), such
that w? + w + § = 0, with ¢ any element of GF(4) \ GF(2). Furthermore, put
a1 = w3 and by = w.

When ¢ = 5, take ¢ as a primitive element of GF(25) such that £2 —¢+2 =0
and set a; = £7, by = 12,

Under these assumptions, U,, ;, turns out to be a non-classical BM unital
respectively in PG(2, 16) or in PG(2, 25). Let a2 and b2 be two coefficients rang-
ing over GF(16) or GF(25) in such a way that the discriminant condition of
Lemma 2.1 is satisfied.

By different choices of as and b, we get all the cases for U,, 1, N U,, 5, occur-
ring in the proof of Theorem 4.1 but case (D;); see Table 1.
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