

# Intersections of Buekenhout-Metz unitals

Angela Aguglia\*

On the occasion of the 60th birthday of Gàbor Korchmàros

#### Abstract

Configurations arising as intersections of two Buekenhout-Metz unitals of a given family are studied and, in the case in which at most one of the unitals is classical, a new intersection size is found.

Keywords: projective plane, unital MSC 2000: 05B25

### 1. Introduction

In [8] it has been shown that there are just seven configurations in which two classical unitals may intersect. There-within it has also been proved that the cardinality of the intersection of any two classical unitals in the desarguesian projective plane  $PG(2, q^2)$  is congruent to 1 modulo q.

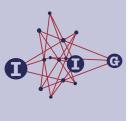
A family of non-classical Buekenhout-Metz unitals in  $PG(2, q^2)$ , with  $q = p^h$ an odd prime power, has been constructed in [1]; the intersection of every unital of this family with a classical one contains a number of points congruent to 1 modulo p. In the same paper, it is also conjectured that the size of the intersection of any classical unital with a non-classical one should be one of the following:

$$q^2 \pm 2q + 1, q^2 \pm q + 1, q^2 + 1.$$

Afterwards, in [3] it has been proved that an arbitrary unital in  $PG(2, q^2)$ , with  $q = p^h$  any prime power, meets a classical unital in a number of points congruent



<sup>&</sup>lt;sup>\*</sup>Research supported by the Italian Ministry MIUR, Strutture geometriche, combinatoria e loro applicazioni.





to 1 modulo p. To classify intersections of two non-classical unitals seems to be a difficult question. Here we make some advances in this direction by looking at a suitable family  $\mathfrak{F}$  of Buekenhout-Metz unitals in  $PG(2, q^2)$ , q any prime power, containing both classical unitals as well as non-classical ones. We prove that any two classical unitals in  $\mathfrak{F}$  intersect on q + 1 collinear points, whereas in all other cases the intersection number is one of the following:

$$q+1, q^2+1, 2q^2-q+1.$$

This last size does not appear among those conjectured in [1].

## 2. Preliminaries

A set S of k points (or a k-set) in a projective plane of order q is of type  $(k_1, k_2, \ldots, k_s)$ , with  $k_1 < k_2 < \cdots < k_s$ , if a line  $\ell$  may intersect S in only sets of  $k_1, k_2, \ldots$  or  $k_s$  points. A line  $\ell$  for which  $|\ell \cap S| = k_i$  is called a  $k_i$ -secant of S whereas the integers  $k_i$  are called *characters* of S.

A unital in  $PG(2, q^2)$  is a  $(q^3 + 1)$ -set of type (1, q + 1). A class of unitals in  $PG(2, q^2)$  is given by the (non-degenerate) Hermitian curves, that is sets of absolute points with respect to (non-degenerate) unitary polarities; these are also called *classical unitals*.

Unitals which are not Hermitian curves are *non-classical*. A unital U in  $PG(2,q^2)$  is *parabolic* or *hyperbolic* according as the line at infinity contains 1 or q + 1 points of U.

Every unital in  $PG(2, 2^2)$  is classical. The first non-classical unitals in  $PG(2, q^2)$  with  $q = 2^{2r+1}$ ,  $r \ge 1$  were found by Buekenhout in [4]. Using Buekenhout's method, Metz extended this class of non-classical unitals in  $PG(2, q^2)$  to all values of  $q \ge 2$ ; see [9]. A *Buekenhout-Metz unital* (BM unital for short) is a parabolic unital obtained with the construction given in [9] in which the ovoidal cone is an elliptic cone. This class also includes classical unitals. We refer the reader to [6] for a survey of results on these unitals.

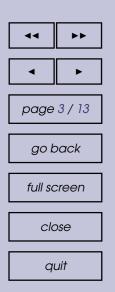
Let  $(X_0, X_1, X_2)$  denote homogeneous coordinates for points of  $\mathsf{PG}(2, q^2)$ . The line  $\ell_{\infty} : X_0 = 0$  will be taken as the line at infinity, whereas  $P_{\infty}$  will denote the point (0, 0, 1). For  $q = 2^h$ , let  $C_0$  be the additive subgroup of  $\mathsf{GF}(q)$  defined by  $C_0 = \{x \in \mathsf{GF}(q) \mid \mathrm{Tr}(x) = 0\}$  where

$$\operatorname{Tr}: \mathsf{GF}(q) \to \mathsf{GF}(2) \colon x \mapsto x + x^2 + \ldots + x^{2^{h-1}}$$

is the trace map of GF(q) over GF(2). The following results come from [2] for q odd and from [5] for q even.







**Lemma 2.1.** Let  $a, b \in GF(q^2)$ . The point set

$$U_{a,b} = \left\{ (1, t, at^2 + bt^{q+1} + r) \mid t \in \mathsf{GF}(q^2), r \in \mathsf{GF}(q) \right\} \cup \{P_{\infty}\}$$

is a BM unital in  $PG(2, q^2)$  if and only if either q is odd and  $4a^{q+1} + (b^q - b)^2$  is a non-square in GF(q), or q is even,  $b \notin GF(q)$  and  $a^{q+1}/(b^q + b)^2 \in C_0$ .

The expression  $4a^{q+1} + (b^q - b)^2$  for q odd, and  $a^{q+1}/(b^q + b)^2$  with  $b \notin GF(q)$ , for q even, is the *discriminant* of the unital  $U_{a,b}$ .

**Lemma 2.2.** Every BM unital can be expressed as  $U_{a,b}$ , for some  $a, b \in GF(q^2)$  which satisfy the discriminant condition of Lemma 2.1. Furthermore, a BM unital  $U_{a,b}$  is classical if and only if a = 0.

# 3. Sets with few characters

In this section we are going to construct a family of  $(q^2 + 1)$ -sets with four characters in  $PG(2, q^2)$ , where  $q = p^h$  and p is any prime power. Some of them, as pointed out in Remark 4.2, may be obtained by intersecting two BM unitals, at least one of which is non-classical.

Let  $\sigma$  denote the automorphism of  $GF(q^2)$  defined by

$$x^{\sigma} = x^{p^{i}}$$
, with  $i < h$  and  $(i, h) = 1$ .

Write  $T_0 = \{t \in GF(q^2) \mid T(t) = 0\}$ , where

$$T: x \in \mathsf{GF}(q^2) \mapsto x^q + x \in \mathsf{GF}(q)$$

is the trace function of  $GF(q^2)$  over GF(q).

**Theorem 3.1.** For each  $a \in GF(q^2)^*$ , the subset

$$\mathcal{S} = \{(1, t, at^{\sigma} + r) \mid t \in \mathsf{GF}(q), r \in T_0\} \cup \{P_{\infty}\}$$

of  $PG(2, q^2)$  is either of type (0, 1, q, q + 1) or of type (0, 1, p, q + 1) according as  $a \in T_0$  or not.

*Proof.* By construction, S consists of  $q^2+1$  points not all on a same line. Observe that S is not a blocking set with respect to the lines of  $PG(2, q^2)$  since, otherwise, it would contain at least  $q^2 + 3$  points; see [7, Lemma 13.4]. Therefore, there exist some 0-secants of S. We are going to show that for each k-secant of S which is neither external nor tangent to it,  $k \in \{q, q + 1\}$  or  $k \in \{p, q + 1\}$  according as  $a \in T_0$  or not.







We begin by considering the line  $P_{\infty}P_{t,r}$  joining the point  $P_{\infty}$  with another point  $P_{t,r} = (1, t, at^{\sigma} + r) \in S$ . Such a line corresponds to the set

 $\left\{ (1, t, at^{\sigma} + r + \alpha) \mid \alpha \in \mathsf{GF}(q^2) \right\} \cup \{P_{\infty}\};$ 

hence, the intersection of  $P_{\infty}P_{t,r}$  and S is

$$\{(1, t, at^{\sigma} + r + \alpha) \mid \alpha \in T_0)\} \cup \{P_{\infty}\};\$$

that is the line  $P_{\infty}P_{t,r}$  is a (q+1)-secant of S.

Now take the line  $P_{t_1,r_1}P_{t_2,r_2}$  through two distinct points

$$P_{t_1,r_1} = (1, t_1, at_1^{\sigma} + r_1)$$
 and  $P_{t_2,r_2} = (1, t_2, at_2^{\sigma} + r_2)$ 

of S. Such a line consists of all the points

$$Q_{\alpha} = (\alpha + 1, \alpha t_1 + t_2, a(\alpha t_1^{\sigma} + t_2^{\sigma}) + \alpha r_1 + r_2)$$

with  $\alpha$  ranging over  $GF(q^2)$ , plus the point  $P_{t_1,r_1}$ .

If  $t_1 = t_2$ , then the line  $P_{t_1,r_1}P_{t_2,r_2}$  passes through the point  $P_{\infty}$  and hence is a (q+1)-secant of S.

When  $t_1 \neq t_2$ , observe that the point at infinity  $Q_{-1} = (0, t_2 - t_1, a(t_2^{\sigma} - t_1^{\sigma}) + r_2 - r_1)$  of the line  $P_{t_1,r_1}P_{t_2,r_2}$  is not on S. Thus, we restrict our attention to the affine points  $Q_{\alpha}$  where  $\alpha \neq -1$ . The normalized homogeneous coordinates for these points are

$$\left(1, \frac{\alpha t_1 + t_2}{\alpha + 1}, a \frac{(\alpha t_1^{\sigma} + t_2^{\sigma})}{\alpha + 1} + \frac{\alpha r_1 + r_2}{\alpha + 1}\right).$$

A point  $Q_{\alpha}$  is on S if and only if the following conditions hold:

(i)  $\frac{\alpha t_1 + t_2}{\alpha + 1} \in \mathsf{GF}(q);$ (ii)  $\frac{a(\alpha t_1^{\sigma} + t_2^{\sigma}) + \alpha r_1 + r_2}{\alpha + 1} - \frac{a(\alpha t_1 + t_2)^{\sigma}}{\alpha^{\sigma} + 1} \in T_0.$ 

Condition (i) implies  $(\alpha^q - \alpha)(t_1 - t_2) = 0$ , therefore, as  $t_1 \neq t_2$ , we have  $\alpha \in GF(q)$ . Hence condition (ii) can be written as

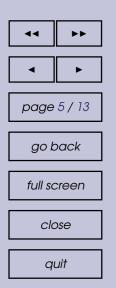
$$(a^{q} + a) \left[ \frac{\alpha t_{1}^{\sigma} + t_{2}^{\sigma}}{\alpha + 1} - \frac{(\alpha^{\sigma} t_{1}^{\sigma} + t_{2}^{\sigma})}{(\alpha^{\sigma} + 1)} \right] = 0.$$
 (1)

If  $a^q + a = 0$ , then the intersection of  $P_{t_1,r_1}P_{t_2,r_2}$  and S is the set

$$\left\{ \left(1, \frac{\alpha t_1 + t_2}{\alpha + 1}, a \frac{\alpha t_1^{\sigma} + t_2^{\sigma}}{\alpha + 1} + \frac{\alpha r_1 + r_2}{\alpha + 1}\right) \mid \alpha \in \mathsf{GF}(q) \setminus \{-1\} \right\} \cup \{P_{t_1, r_1}\},$$







ACADEMIA PRESS that is the line  $P_{t_1,r_1}P_{t_2,r_2}$  is a *q*-secant to S.

In the case where  $a^q + a \neq 0$ , (1) gives  $(\alpha^{\sigma} - \alpha)(t_1^{\sigma} - t_2^{\sigma}) = 0$ ; thus,  $\alpha^{\sigma} - \alpha = 0$  as  $t_1 \neq t_2$ . Whence  $\alpha = 0$  or  $\alpha^{(\sigma-1)} = 1$ .

As  $(p^h - 1, p^i - 1) = p^{(h,i)} - 1$  and (i, h) = 1 the equation  $\alpha^{(\sigma-1)} = 1$  has p - 1 solutions in GF(q), one of them is  $\alpha = -1$ . Thus, there are p - 2 + 2 affine points  $Q_{\alpha}$  on  $P_{t_1,r_1}P_{t_2,r_2} \cap S$ , that is the line  $P_{t_1,r_1}P_{t_2,r_2}$  is a *p*-secant of S.  $\Box$ 

Let *s* be an element of  $GF(q^2) \setminus \{1\}$  such that  $s^{q+1} = 1$ . Set

$$\mathcal{A} = \{ (1, 0, r) \mid r \in \mathsf{GF}(q) \}.$$

For each  $a \in \mathsf{GF}(q^2)^*$ , write

$$\mathcal{B} = \{ (1, t, at^2 + r) \mid t \in \mathsf{GF}(q^2), t^{q-1} = s, r \in \mathsf{GF}(q) \}.$$

Theorem 3.2. The subset

$$\mathcal{S} = \mathcal{A} \cup \mathcal{B} \cup \{P_{\infty}\}$$

of  $PG(2,q^2)$  is either of type (0,1,q,q+1) or of type (0,1,2,q+1) according as  $a^{q-1}s^2 = 1$  or not.

*Proof.* By definition, S consists of  $q^2 + 1$  points. As seen in the proof of Theorem **3.1** there exist some 0-secants of S. We are going to show that for each k-secant of S which is neither external nor tangent to S,  $k \in \{q, q + 1\}$  or  $k \in \{2, q + 1\}$  according as  $a^{q-1}s^2 = 1$  or not.

Arguing as in the proof of Theorem 3.1, it can be verified that a line trough the point  $P_{\infty}$  which is not tangent to the set S, meets S in q + 1 points.

Next, we consider the line  $P_r P_{t,m}$  joining the point  $P_r = (1, 0, r) \in A$ , with the point  $P_{t,m} = (1, t, at^2 + m) \in B$ . Such a line corresponds to the set

$$\left\{ (\alpha + 1, t, at^2 + m + \alpha r) \mid \alpha \in \mathsf{GF}(q^2) \right\} \cup \{P_r\}.$$

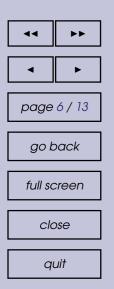
Since  $t \neq 0$ , the point at infinity  $(0, t, at^2 + m - r)$  of the line  $P_r P_{t,m}$  is not on S. Thus, we restrict our attention to the affine points  $Q_{\alpha} = (\alpha + 1, t, at^2 + m + \alpha r)$ , with  $\alpha \neq -1$ , on the line  $P_r P_{t,m}$ . The normalized homogeneous coordinates for these points are

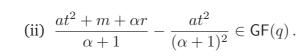
$$\left(1, \frac{t}{\alpha+1}, \frac{at^2 + m + \alpha r}{\alpha+1}\right).$$

A point  $Q_{\alpha}$  is on S if and only if the following conditions hold:

(i) 
$$\left(\frac{t}{\alpha+1}\right)^{q-1} = s;$$







Condition (i) implies  $(\alpha + 1) \in \mathsf{GF}(q)^*$ , therefore,  $\alpha \in \mathsf{GF}(q) \setminus \{-1\}$ . Hence (ii) becomes  $at^2 \in \mathsf{GF}(q)$ , that is  $a^{q-1}s^2 = 1$ . Thus, if  $a^{q-1}s^2 = 1$ , then the intersection of  $P_r P_{t,m}$  and S is

$$\left\{ \left(1, \frac{t}{\alpha+1}, \frac{at^2 + m + \alpha r}{\alpha+1}\right) \mid \alpha \in \mathsf{GF}(q) \setminus \{-1\} \right\} \cup \{P_r\},\$$

that is the line  $P_r P_{t,m}$  is a *q*-secant to S. In the case  $a^{q-1}s^2 \neq 1$  the line  $P_r P_{t,m}$  is a 2-secant.

Now take the line  $P_{t_1,r_1}P_{t_2,r_2}$  joining two distinct points

$$P_{t_1,r_1} = (1, t_1, at_1^2 + r_1)$$
 and  $P_{t_2,r_2} = (1, t_2, at_2^2 + r_2)$ 

of  $\mathcal{B}$ . Such a line consists of  $P_{t_1,r_1}$  plus the points

$$Q_{\alpha} = \left(\alpha + 1, \alpha t_1 + t_2, a(\alpha t_1^2 + t_2^2) + \alpha r_1 + r_2\right)$$

as  $\alpha$  ranges over  $GF(q^2)$ .

If  $t_1 = t_2$ , the line  $P_{t_1,r_1}P_{t_2,r_2}$  passes through the point  $P_{\infty}$ ; hence it is a (q+1)-secant of S.

When  $t_1 \neq t_2$ , observe that the point at infinity  $(0, t_2 - t_1, a(t_2 - t_1^2) + r_2 - r_1)$ of  $P_{t_1,r_1}P_{t_2,r_2}$  is not on S. Thus, we restrict our attention to the affine points  $Q_{\alpha}$  with  $\alpha \neq -1$ . Their normalized homogeneous coordinates are

$$\left(1, \frac{\alpha t_1 + t_2}{\alpha + 1}, a \frac{(\alpha t_1^2 + t_2^2)}{\alpha + 1} + \frac{\alpha r_1 + r_2}{\alpha + 1}\right).$$

A point  $Q_{\alpha}$  is on S if and only if the following conditions hold:

(i) 
$$\alpha t_1 + t_2 = 0 \text{ or } \left(\frac{\alpha t_1 + t_2}{\alpha + 1}\right)^{q-1} = s;$$
  
(ii)  $\frac{a(\alpha t_1^2 + t_2^2) + \alpha r_1 + r_2}{\alpha + 1} - \frac{a(\alpha t_1 + t_2)^2}{(\alpha + 1)^2} \in \mathsf{GF}(q)$ 

When  $\alpha = -\frac{t_2}{t_1} \in \mathsf{GF}(q)$ , condition (ii) becomes  $-at_1t_2 \in \mathsf{GF}(q)$ ; hence we have  $a^{(q-1)}s^2 = 1$ . Therefore the point  $(1, 0, \frac{at_1t_2(t_2-t_1)+r_2t_1-r_1t_2}{t_1-t_2})$  belongs to S if and only if  $a^{(q-1)}s^2 = 1$ .

In the case  $\left(\frac{\alpha t_1+t_2}{\alpha+1}\right)^{q-1} = s$  we get  $\alpha \in \mathsf{GF}(q) \setminus \{-1, -\frac{t_1}{t_2}\}$ . Hence condition (ii) can be written as  $a(t_1^2 - t_2^2)^{q-1} \in \mathsf{GF}(q)$ , that is  $a^{q-1}s^2 = 1$ . Therefore, if  $a^{q-1}s^2 = 1$  the line  $P_{t_1,r_1}P_{t_2,r_2}$  is a *q*-secant to  $\mathcal{S}$ , otherwise it meets  $\mathcal{S}$  only in  $P_{t_1,r_1}$  and  $P_{t_2,r_2}$ , thus it is a 2-secant to  $\mathcal{S}$ .







# 4. Main result

In this section we study the cardinality of the intersection of two distinct BM unitals in the family

$$\mathfrak{F} = \{U_{a,b}\}_{(a,b)\in\mathsf{GF}(q^2)\times\mathsf{GF}(q^2)}$$

where

$$U_{a,b} = \left\{ (1, t, at^2 + bt^{q+1} + r) \mid t \in \mathsf{GF}(q^2), r \in \mathsf{GF}(q) \right\} \cup \{P_{\infty}\}$$

and the coefficients *a* and *b* satisfy the discriminant condition of Lemma 2.1.

**Theorem 4.1.** In  $PG(2, q^2)$ , with q a prime power, the intersection size of two unitals of  $\mathfrak{F}$  is one of the following:

$$q+1, q^2+1, 2q^2-q+1$$
.

Furthermore, any two classical unitals of  $\mathfrak{F}$  can only intersect in q + 1 collinear points.

*Proof.* Let  $U_{a_1,b_1}$  and  $U_{a_2,b_2}$  be two distinct unitals in  $\mathfrak{F}$ . Denote by  $\mathcal{I}$  their intersection and set  $\alpha = a_1 - a_2$ ,  $\beta = b_1 - b_2$ . We distinguish the following cases:

(A)  $\alpha + \beta = 0$  and  $\alpha \in GF(q)^*$ ; (B)  $\alpha + \beta = 0$  and  $\alpha \notin GF(q)$ ; (C)  $\alpha + \beta \in GF(q)^*$ ; (D)  $\alpha + \beta \notin GF(q)$ .

#### Case (A)

Since  $a_1 + b_1 = a_2 + b_2$ , the points in

$$S_1 = \{ (1, t, (a_1 + b_1)t^2 + r) \mid t, r \in \mathsf{GF}(q) \} \cup \{ P_{\infty} \}$$

are on both unitals. Therefore, the cardinality of  $\mathcal{I}$  is at least  $q^2 + 1$ .

Let  $Q' = (1, t, a_1t^2 + b_1t^{q+1} + r) \in U_{a_1,b_1}$ , for a suitable  $t \in \mathsf{GF}(q^2) \setminus \mathsf{GF}(q)$ . The point Q' lies also on  $U_{a_2,b_2}$  if and only if

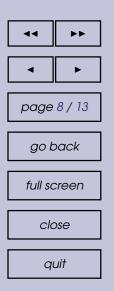
$$\alpha t^2 + \beta t^{q+1} \in \mathsf{GF}(q) \,, \tag{2}$$

or equivalently

$$\alpha(t^2 - t^{q+1}) \in \mathsf{GF}(q) \,. \tag{3}$$







By the hypothesis  $\alpha \in GF(q)^*$ , (3) may be rewritten as

$$t^{q-1} = \pm 1$$
. (4)

There are now two possibilities.

(A<sub>1</sub>) q is even.

Then (4) implies  $t \in GF(q)$ ; hence, by the assumption made on t, there are no points Q' on  $\mathcal{I}$ ; thus

$$|\mathcal{I}| = q^2 + 1 \,.$$

(A<sub>2</sub>) q is odd.

Since  $t \notin GF(q)$ , (4) necessarily gives  $t^{q-1} = -1$ . This condition is satisfied by q - 1 values of t and to any such a value there correspond q points  $Q' \in \mathcal{I}$  as r ranges over GF(q). Therefore

$$|\mathcal{I}| = q^2 + 1 + q(q-1) = 2q^2 - q + 1.$$

#### Case (B)

Arguing as in Case (A) we have that  $S_1$  is a subset of  $\mathcal{I}$  and so  $|\mathcal{I}| \ge q^2 + 1$ . Again a point  $Q' = (1, t, a_1t^2 + b_1t^{q+1} + r) \in U_{a_1,b_1}$ , with  $t \in \mathsf{GF}(q^2) \setminus \mathsf{GF}(q)$ , lies on  $U_{a_2,b_2}$  if and only if (3) holds. Setting

$$y = t^{q-1},\tag{5}$$

condition (3) can be rewritten as

$$\alpha^q y^2 - (\alpha^q - \alpha)y - \alpha = 0.$$
(6)

As  $\alpha \neq 0$ , equation (6) has solutions y = 1 or  $y = -\alpha^{1-q}$ . We distinguish the following subcases.

(B<sub>1</sub>) q is even.

Since  $\alpha \notin \mathsf{GF}(q)$ ,  $-\alpha^{1-q}$  is different from 1. Because of (5), we necessarily have

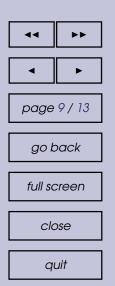
$$t^{q-1} = -\alpha^{1-q}$$
 (7)

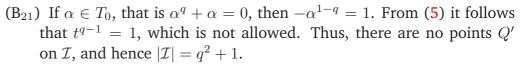
as  $t \in GF(q^2) \setminus GF(q)$ . Equation (7) gives q - 1 possible values for t; for any such a value, we get q points  $Q' \in \mathcal{I}$  as r varies in GF(q). Therefore we get again  $|\mathcal{I}| = 2q^2 - q + 1$ .

(B<sub>2</sub>) q is odd.









(B<sub>22</sub>) Assume  $\alpha \notin T_0$ . In this case 1 and  $-\alpha^{1-q}$  are two distinct solutions of (6). Arguing as in case (B<sub>1</sub>) it follows that  $\mathcal{I}$  consists of  $2q^2 - q + 1$  points.

#### Case (C)

Let

$$S_i = \left\{ (1, t, (a_i + b_i)t^2 + r) \mid t, r \in \mathsf{GF}(q) \right\} \cup \{ (0, 0, 1) \} \subset U_{a_i, b_i}$$

for  $i \in \{1,2\}$ . We are going to show that  $S_1 = S_2$ . To this end, observe that a point  $Q = (1, t, (a_i + b_i)t^2 + r) \in S_i$  lies also on  $S_j$  for any distinct  $i, j \in \{1,2\}$ , since

$$(a_j + b_j)t^2 + (\alpha + \beta)t^2 = (a_i + b_i)t^2$$

and  $\alpha + \beta \in \mathsf{GF}(q)^*$ . Hence,  $\mathcal{S}_1 \subseteq \mathcal{I}$  and thus  $|\mathcal{I}| \ge q^2 + 1$ .

Now, consider a point  $Q' = (1, t, a_1t^2 + b_1t^{q+1} + r) \in U_{a_1,b_1}$  for a suitable  $t \in \mathsf{GF}(q^2) \setminus \mathsf{GF}(q)$ . The point Q' is also a point on  $U_{a_2,b_2}$  if and only if (2) holds, namely, in this case,

$$\alpha^{q} t^{2(q-1)} + (\beta^{q} - \beta) t^{q-1} - \alpha = 0.$$
(8)

Setting y as in (5), condition (8) becomes

$$\alpha^{q}y^{2} + (\beta^{q} - \beta)y - \alpha = 0.$$
(9)

Observe that  $\alpha \neq 0$ , since, otherwise,  $\beta^q - \beta = 0$  and (9) would be always true; therefore, the two unitals would be the same, contradicting our assumption.

As  $\alpha \neq 0$ , equation (9) has solutions y = 1 or  $y = -\alpha^{1-q}$ . There are now several subcases to consider.

- (C<sub>1</sub>)  $\alpha \in \mathsf{GF}(q^2) \setminus \mathsf{GF}(q)$ .
  - (C<sub>12</sub>) q is even.

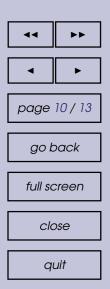
In this case the solutions y = 1 and  $y = -\alpha^{1-q}$  of (9) are distinct. Because of (5), we can only have  $t^{q-1} = -\alpha^{1-q}$  as  $t \notin GF(q)$ ; again we find q-1 values for t satisfying (8), and for any such a value, we obtain q points  $Q' \in \mathcal{I}$ , as r ranges over GF(q). Therefore,

$$|\mathcal{I}| = 2q^2 - q + 1.$$



ACADEMIA





(C<sub>13</sub>) q is odd and  $\alpha \in T_0$ .

As  $\alpha \in T_0$  then  $-\alpha^{1-q} = 1$ . From (5) we have  $t^{q-1} = 1$ , which is impossible. Thus,  $|\mathcal{I}| = q^2 + 1$ .

(C<sub>14</sub>) q is odd and  $\alpha \notin T_0$ .

In this case  $-\alpha^{1-q} \neq 1$ , therefore, arguing as in case (C<sub>12</sub>), we get that  $\mathcal{I}$  consists of  $2q^2 - q + 1$  points.

(C<sub>2</sub>)  $\alpha \in \mathsf{GF}(q)^*$ . Equation (8) gives

$$e^{q-1} = \pm 1$$
. (10)

(C<sub>21</sub>) If q is even, condition (10) implies  $t \in GF(q)$ , which is not allowed; thus,

$$|\mathcal{I}| = q^2 + 1$$

(C<sub>22</sub>) Suppose q to be odd. As  $t \notin GF(q)$ , we necessarily have from (10) that  $t^{q-1} = -1$ , a condition satisfied by q - 1 possible values for t; to any such a value of t there correspond q points  $Q' \in \mathcal{I}$  as r ranges over GF(q). Therefore, again

$$|\mathcal{I}| = 2q^2 - q + 1.$$

Case (D)

Let us again consider the point-sets

$$S_{i} = \{(1, t, (a_{i} + b_{i})t^{2} + r) \mid t, r \in \mathsf{GF}(q)\} \cup \{P_{\infty}\}$$

where i = 1, 2. A point  $Q = (1, t, (a_i + b_i)t^2 + r) \in S_i$  lies also on  $S_j$  for  $i \neq j$ , if and only if the element  $(\alpha + \beta)t^2 \in \mathsf{GF}(q)$ ; the hypothesis  $\alpha + \beta \notin \mathsf{GF}(q)$  forces t to be zero. Thus,  $S_1 \cap S_2 = \{(1, 0, r) \mid r \in \mathsf{GF}(q)\}$  and  $|\mathcal{I}| \geq q + 1$ .

Next, take a point  $Q' = (1, t, a_1t^2 + b_1t^{q+1} + r) \in U_{a_1,b_1}$  with  $t \in \mathsf{GF}(q^2) \setminus \mathsf{GF}(q)$ . The point Q' is on  $U_{a_2,b_2}$  if and only if (8) holds. We distinguish three possibilities.

(D<sub>1</sub>)  $\alpha = 0$ .

In this case  $\beta^q - \beta \neq 0$  and (8) gives t = 0 which is not allowed. Thus

 $|\mathcal{I}| = q + 1.$ 

(D<sub>2</sub>) q is even and  $\alpha \neq 0$ .

(D<sub>21</sub>)  $\beta \in \mathsf{GF}(q)$ .







Condition (8) gives  $t^{q-1} = \sqrt{1/\alpha^{q-1}}$  with  $\alpha^{q-1} \neq 1$ . Once again, we get q-1 possible values for t; so for any such a value, we get q points  $Q' \in \mathcal{I}$  as r ranges over  $\mathsf{GF}(q)$ . Hence,

$$|\mathcal{I}| = q^2 + 1$$

(D<sub>22</sub>)  $\beta \notin \mathsf{GF}(q)$ .

Let y be as in (5); we get again (9). This equation has 2 solutions as  $\delta = \alpha^{q+1}/(\beta^q - \beta)^2$  belongs to  $\mathsf{GF}(q)$  and hence the absolute trace of  $\delta$  is zero. Furthermore, both solutions are different from 1 as  $\alpha + \beta \notin \mathsf{GF}(q)$ .

Therefore, by (5), we find 2(q-1) possible values for t and thus, 2q(q-1) points Q' on  $\mathcal{I}$ . Hence  $\mathcal{I}$  consists of  $2q(q-1) + q + 1 = 2q^2 - q + 1$  points.

(D<sub>3</sub>) q is odd and  $\alpha \neq 0$ .

We need to consider the discriminant of (9), that is

$$\Delta = (\beta^q - \beta)^2 + 4\alpha^{q+1} \in \mathsf{GF}(q) \,.$$

(D<sub>31</sub>)  $\Delta = 0$ .

Condition (9) has the unique solution  $y = \frac{\beta - \beta^q}{2\alpha^q} \neq 1$  which gives q - 1 possible values for t because of (5); hence

$$|\mathcal{I}| = q^2 + 1$$

(D<sub>32</sub>)  $\Delta \neq 0$ .

As  $\Delta \in \mathsf{GF}(q)^*$  we get  $\Delta^{(q^2-1)/2} = 1$ , that is  $\Delta$  is a non-zero square in  $\mathsf{GF}(q^2)$ .

Therefore, (9) has two non-zero solutions different from 1. Each of them provides q - 1 possible values for t; thus

$$|\mathcal{I}| = 2q^2 - q + 1$$

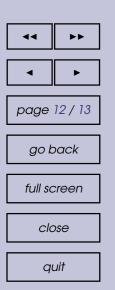
Finally, assume both  $U_{a_1b_1}$  and  $U_{a_2b_2}$  to be classical. From Lemma 2.2 it follows that  $\alpha = 0$ ; this only happens in case (D<sub>1</sub>) giving  $|\mathcal{I}| = q + 1$ .

**Remark 4.2.** The configurations for the intersection  $\mathcal{I}$  of two BM unitals  $U_{a_1,b_1}$ ,  $U_{a_2,b_2}$  in  $\mathfrak{F}$  are the following:

- (1)  $\mathcal{I}$  consists of q + 1 collinear points;
- (2)  $\mathcal{I}$  consists of q sets of q + 1 collinear points. The q lines all meet at  $P_{\infty}$ ;







(3)  $\mathcal{I}$  consists of 2q - 1 sets of q + 1 collinear points. The 2q - 1 lines all pass through the point  $P_{\infty}$ .

Furthermore, it follows from the proof of Theorem 4.1 that

(a) in cases (A<sub>1</sub>) and (C<sub>21</sub>) the intersection  $\mathcal{I}$  is the set

$$\mathcal{I} = \{ (1, t, (a_1 + b_1)t^2 + r) \mid t, r \in \mathsf{GF}(q) \} \cup \{ P_{\infty} \}.$$

Hence  $\mathcal{I}$  is one of the  $(q^2+1)$ -sets defined in Theorem 3.1 with  $a = a_1 + b_1$ and  $\sigma$  the automorphism of  $\mathsf{GF}(q^2)$  such that  $x^{\sigma} = x^2$ .

(b) In cases (D<sub>21</sub>) and (D<sub>31</sub>) the intersection  $\mathcal{I}$  turns out to be one of the  $(q^2 + 1)$ -sets defined in Theorem 3.2 with respectively  $s = \sqrt{1/\alpha^{q-1}}$  or  $s = \frac{\beta - \beta^q}{2\alpha^q}$ , and  $a = a_1 + sb_1$ .

# 5. Examples

In this section we show that all the cases discussed in Theorem 4.1 effectively occur for q = 4 and 5. If q = 4, denote by  $\omega$  a primitive element of GF(16), such that  $\omega^2 + \omega + \delta = 0$ , with  $\delta$  any element of GF(4) \ GF(2). Furthermore, put  $a_1 = \omega^3$  and  $b_1 = \omega$ .

When q = 5, take  $\xi$  as a primitive element of GF(25) such that  $\xi^2 - \xi + 2 = 0$ and set  $a_1 = \xi^7$ ,  $b_1 = \xi^{12}$ .

Under these assumptions,  $U_{a_1,b_1}$  turns out to be a non-classical BM unital respectively in PG(2, 16) or in PG(2, 25). Let  $a_2$  and  $b_2$  be two coefficients ranging over GF(16) or GF(25) in such a way that the discriminant condition of Lemma 2.1 is satisfied.

By different choices of  $a_2$  and  $b_2$  we get all the cases for  $U_{a_1,b_1} \cap U_{a_2,b_2}$  occurring in the proof of Theorem 4.1 but case (D<sub>1</sub>); see Table 1.

## References

- [1] R. D. Baker and G. L. Ebert, Intersection of unitals in the Desarguesian plane, Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1989). *Congr. Numer.* 70 (1990), 87–94.
- [2] \_\_\_\_\_, On Buekenhout-Metz unitals of odd order, *J. Combin. Theory Ser. A* **60** (1992), no. 1, 67–84.





| ••           |  |  |  |  |  |
|--------------|--|--|--|--|--|
| •            |  |  |  |  |  |
| page 13 / 13 |  |  |  |  |  |
| go back      |  |  |  |  |  |
| full screen  |  |  |  |  |  |
| close        |  |  |  |  |  |
| quit         |  |  |  |  |  |

|                    |               |               | <br>               |            |            |
|--------------------|---------------|---------------|--------------------|------------|------------|
| q = 4              |               | q = 5         |                    |            |            |
| Case               | $a_2$         | $b_2$         | Case               | $a_2$      | $b_2$      |
| (A <sub>1</sub> )  | $\omega^{12}$ | $\omega^8$    | (A <sub>2</sub> )  | $\xi^{23}$ | 1          |
| (B <sub>1</sub> )  | $\omega^4$    | $\omega^{14}$ | $(B_{21})$         | $\xi^{10}$ | $\xi^{19}$ |
| (C <sub>12</sub> ) | ω             | $\omega^{11}$ | (B <sub>22</sub> ) | $\xi^{16}$ | $\xi^5$    |
| (C <sub>21</sub> ) | $\omega^{12}$ | $\omega^4$    | (C <sub>13</sub> ) | $\xi^{10}$ | $\xi^{16}$ |
| (D <sub>21</sub> ) | $\omega^9$    | $\omega^2$    | (C <sub>14</sub> ) | $\xi^{20}$ | $\xi^3$    |
| (D <sub>22</sub> ) | $\omega^{11}$ | $\omega^6$    | (C <sub>22</sub> ) | $\xi^{23}$ | $\xi^{18}$ |
|                    |               |               | (D <sub>31</sub> ) | $\xi^{22}$ | $\xi^7$    |
|                    |               |               | (D <sub>32</sub> ) | $\xi^{16}$ | $\xi^{15}$ |

Table 1: Intersection cases for q small

- [3] A. Blokhuis, A. Brouwer and H. Wilbrink, Hermitian unitals are code words, *Discrete Math.* 97 (1991), no. 1–3, 63–68.
- [4] **F. Buekenhout**, Existence of unitals in finite translation planes of order  $q^2$  with a kernel of order q, *Geom. Dedicata* **5** (1976), 189–194.
- [5] G. L. Ebert, On Buekenhout-Metz unitals of even order, *European J. Combin.* 13 (1992), no. 2, 109–117.
- [6] \_\_\_\_\_, Buekenhout unitals, Combinatorics (Assisi, 1996). Discrete Math. 208/209 (1999), 247–260.
- [7] J. W. P. Hirschfeld, *Projective Geometries over Finite Fields*, Second edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998.
- [8] **B. C. Kestenband**, Unital intersections in finite projective planes, *Geom. Dedicata* **11** (1981), no. 1, 107–117.
- [9] R. Metz, On a class of unitals, Geom. Dedicata 8 (1979), 125–126.

Angela Aguglia

Dipartimento di Matematica, Politecnico di Bari, Via G. Amendola 126/B, 70126 Bari, Italy

e-mail: a.aguglia@poliba.it

website: http://www.dm.uniba.it/~aguglia



