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Abstract

We give a geometric interpretation of additive quantum stabilizer codes

in terms of sets of lines in binary symplectic space. It is used to obtain

synthetic geometric constructions and non-existence results. In particular

several open problems are removed from Grassl’s database [13].
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1. Introduction

The most popular construction of quantum error-correcting codes was devel-

oped in [6]. It uses a special class of additive quaternary codes. Those codes

are known as quantum stabilizer codes. We start in Section 2 by recalling basic

facts concerning quaternary additive codes and their geometric representation

as developed in [5, 3, 4]. Quantum stabilizer codes live in symplectic geometry.

Starting point for our investigation is a geometric interpretation of quantum

stabilizer codes in terms of systems of lines in symplectic geometry. It is one of

the aims to obtain more transparent constructions and bounds using geometric

terminology. The paper is mostly concerned with codes of distance d ≤ 4. Our

simplified approach allows us to derive more general constructions. In partic-

ular we resolve a number of existence questions (see Grassl’s database [13]).

Among the results are constructions of new pure codes

[[36, 29, 3]], [[37, 30, 3]], [[38, 31, 3]], [[81, 73, 3]], [[756, 740, 4]], [[5040, 5020, 4]]

and proofs of nonexistence for parameters [[39, 32, 3]], [[82, 74, 3]], [[83, 75, 3]].

For the geometric approach to linear codes see [1]. The general geometric de-

scription of quantum stabilizer codes is given in Section 2. Section 3 discusses
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impure codes in the case of small distance. A construction in case d = 3 based

on secunda is described in Section 4. This leads to a pure [[37, 30, 3]]-code. Sec-

tion 5 contains a detailed study of the geometry of pure codes when d = 3. We

construct a [[81, 73, 3]]-code and derive non-existence results. A link to almost

perfectly nonlinear codes is described in Section 6. Most of our new pure d = 3

codes are constructed in Section 7. The final Section 8 is dedicated to case

d = 4 and quantum caps. We wish to thank Gohar M. Kyureghyan for helpful

discussions which led to Section 6.

2. Geometric description of quantum stabilizer codes

We use the notion of an additive code as the relaxation of the notion of a linear

code, where the alphabet is not considered as a finite field but only as a vector

space over some ground field. Here we consider only the quaternary case, where

the ground field is F2.

Definition 2.1. Let k be such that 2k is a positive integer. An additive quater-

nary [n, k]4-code C (length n, dimension k) is a 2k-dimensional subspace of F
2n
2 ,

where the coordinates come in pairs of two. We view the codewords as n-tuples

where the coordinate entries are elements of F
2
2.

A generator matrix of C is a binary (2k, 2n)-matrix whose rows form a basis

of the binary vector space C.

In the case of quantum stabilizer codes we view the ambient space F
2n
2 as a

binary symplectic space, where each of the n parameter sections corresponds to

a hyperbolic plane, equivalently a 2-dimensional symplectic space. Each code-

word is therefore a vector in the 2n-dimensional symplectic geometry over F2.

Definition 2.2. A quaternary quantum stabilizer code is an additive quaternary

code C which is contained in its dual, where duality is with respect to the sym-

plectic form.

Describe C by a generator matrix M . Each of the n coordinate sections con-

tains 2 columns which we view as points in binary projective space. The geo-

metric description of the quantum code is in terms of the system of n lines (the

codelines) generated by those n pairs of points. This terminology is not always

fully justified. It is possible that 0-columns occur and that the two points in a

coordinate section are identical. These degenerate cases are best described by

the strength:

Definition 2.3. Let C be a quaternary additive code of length n, with generator

matrix M . The strength of C is the largest number t such that any t codelines

are in general position.
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For example t ≥ 1 means that each coordinate section does indeed generate

a codeline, and t ≥ 2 means that those n codelines are pairwise skew. The

general definition of the parameters of a quantum stabilizer code is as follows.

Definition 2.4. An [[n,m, d]]-code C where m > 0 is a quaternary quantum

stabilizer code of binary dimension n−m satisfying the following: any codeword

of C⊥ having weight at most d − 1 is in C.

The code is pure if C⊥ does not contain codewords of weight ≤ d− 1, equiv-

alently if C has strength t ≥ d − 1.

An [[n, 0, d]]-code C is a self-dual quaternary quantum stabilizer code of

strength t = d − 1.

In particular, whenever some ≤ d − 1 codelines are not in general position

there is a hyperplane containing all the other codelines. We prefer working with

pure quantum codes. The reason why in Definition 2.4 we did not distinguish

between codelines and codepoints is that codepoints are easily disposed of:

Lemma 2.5. Assume there is an [[n,m, d]]-code, d ≥ 2, one of whose codeobjects is

not a line but a point (equivalently, the code does not have strength ≥ 1). Then the

remaining objects define an [[n−1,m, d]]-code. Conversely, if an [[n−1,m, d]]-code

exists, then there is an [[n,m, d]]-code one of whose codeobjects is a point.

Proof. Let a point P = Ln be a codeobject of an [[n,m, d]]-code C. By the

definition of the symplectic product there is a nonzero codeword in C⊥ with

entries 00 in all but the last coordinate section. By Definition 2.4 this codeword

is in C. Write it as last row of a generator matrix. Consider the matrix obtained

by removing the last row and Ln = P . This is again a self-dual code and it

generates an [[n − 1,m, d]]-quantum code.

If a generator matrix of an [[n − 1,m, d]]-code is given we can add an extra

coordinate consisting of a 0-column and a 1-column, and an extra row with

all entries 00 except for the additional column. This defines an [[n,m, d]]-code

whose n-th codeobject is a point. �

As [[n − 1,m, d]]-code implies an [[n,m, d]]-code we can think of the basic

problem as minimizing n when m, d are given. Lemma 2.5 shows that we can

assume all codeobjects to be lines. The role of codepoints is restricted to the

construction of an [[n,m, d]]-code from an [[n − 1,m, d]]-code.

Consider a pure [[n,m, d]]-code. In our quaternary notation it is the dual

of an additive [n, (n + m)/2, d]4-code. Most important is the self-orthogonality

condition. Imagine a generator matrix of C. The codewords are linear com-

binations of rows. Those factors describe a hyperplane in PG(n − m − 1, 2).

Consider two codewords of C and the hyperplanes H1 and H2 corresponding
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to them. Consider the secundum S = H1 ∩ H2. In the symplectic product of

the codewords the codelines L that intersect S nontrivially give no contribution,

the others do. It follows that the self-orthogonality condition is: the number of

codelines skew to S must be even. In this perspective it is most natural to work

with the redundancy r = n − m. This leads to the following description.

Theorem 2.6. The following are equivalent:

• a pure [[n, n − r, t + 1]] quantum stabilizer code;

• a set of n lines, the codelines, in PG(r − 1, 2) any t of which are in general

position and such that for every secundum S the number of codelines skew

to S is even.

Theorem 2.6 is the geometric description of pure quantum stabilizer codes.

The secundum condition says that for any two codewords u, v we have that

wt(u + v) and wt(u) + wt(v) have the same parity. This implies that the pure

quantum codes come in two varieties: either all weights are even or the words

of even weight form a subcode of codimension 1.

Consider the easiest case t = 1. Use all lines of PG(r − 1, 2). The number of

lines is n = gr = (2r − 1)(2r−1 − 1)/3. Let S be a secundum. It contains gr−2

lines. There are tr = ((2r−2−1)(2r−2r−2)/2 = 3×2r−3(2r−2−1) lines meeting S

in one point. The number of lines skew to S is therefore gr − gr−2 − tr = 22r−4,

which is even for r > 2. It follows that, for r > 2, the family of all lines in

PG(r − 1, 2) defines a quantum code

[[gr, gr − r, 2]]4 = [[(2r − 1)(2r−1 − 1)/3, (2r − 1)(2r−1 − 1)/3 − r, 2]]4 .

This solves the existence problem of projective distance 2 pure quaternary quan-

tum codes. However, there is no need to limit ourselves to projective codes.

In case r = 2, use the ambient space, itself a line, n times. When n is even

this is an [[n, n − 2, 2]]-code. For odd n we have to use r = 3 and construct

[[n, n − 3, 2]]-codes.

Corollary 2.7. There exist pure [[m + 2,m, 2]]-codes when m is even and pure

[[m + 3,m, 2]]-codes when m is odd. These values of n are minimal among general

quantum stabilizer codes.

The linear quaternary case

We can use linear quaternary codes (over the alphabet F4) in order to construct

(automatically pure) [[n, n − 2m, d]] quantum codes. Here is the translation

theorem:
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Theorem 2.8. The following are equivalent:

• a pure quantum code [[n, n − 2m, t + 1]] which is linear over F4;

• a set of n points in PG(m − 1, 4) all t of which are in general position and

such that the intersection size with any hyperplane has the same parity as n;

• an [n,m]4 code of strength t all of whose weights are even;

• an [n,m]4 code of strength t which is self-orthogonal with respect to the

Hermitian form.

Proof. Consider the equivalence of the first two items, using Theorem 2.6. Ob-

serve that a hyperplane of PG(m − 1, 4) is a secundum of PG(2m − 1, 2). This

shows that the first item implies the second. Assume now the condition of the

second item is satisfied and consider a secundum S which is not an F4-hyper-

plane. Let K = S ∩ ωS be the largest F4-subspace contained in S. Then K

has binary codimension 4 in V = F
2m
2 . The quaternary hyperplanes containing

K form a spread {S1, . . . S5} in the factor space V/K and S/K is a line in this

factor space PG(3, 2). Let m be the number of codepoints (lines if considered

binary) contained in K and ai the number of codepoints in Si but not in K.

Then n = m =
∑

ai is the number of codepoints, and the quaternary condition

applied to Si shows
∑

j 6=i aj even. It follows that all ai have the same parity.

The number of codepoints disjoint from S is the sum of two of those numbers

and therefore even.

The equivalence with the third item is obvious. Finally, the Hermitian form

is identically zero if and only if each vector is orthogonal to itself. In the qua-

ternary case this is equivalent with the weights being even. �

3. The role of impurity

Proposition 3.1. An [[n,m, d]] of strength 0 is equivalent with an [[n − 1,m, d]].

An [[n,m, d]] with a double codeline is equivalent with an [[n − 2,m, d]].

Proof. The first statement is a special case of Lemma 2.5. The same observation

yields the second statement. �

Theorem 3.2. Let C be an [[n, n − r, d]]-code of strength ≥ 1 without double

codelines, where d ≥ 3. Let P1, . . . , Pk be the points on more than one codeline,

denote by ui the valency of Pi. Then

n ≤
(

∑

ui

)

+
(

2r−
P

(ui−1) − 1 − k
)

/3 .
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Proof. Let L1 = P1Q1 and L2 = P1Q2 be codelines. There is a hyperplane

H1,2 containing all remaining codelines and intersecting each of L1, L2 in P1.

In particular there is no triangle of codelines. Let Li = P1Qi be the codelines

through P1 and H1,i the hyperplane determined by L1, Li. Then U1 =
⋂

H1,i

where i = 2, . . . u1, has codimension u1 − 1. It contains all remaining codelines

and meets each Li precisely in P1. The bundles of codelines through Pi do not

intersect. The intersection U of the subspaces Ui, i = 1, 2 . . . , k has codimension

κ =
∑

(ui − 1). The lines contained in U (if any) are pairwise different. As U

also contains the Pi, i = 1, . . . k, the statement is obtained. �

4. A construction in case d = 3

In the pure case the n lines describing an [[n, n − r, 3]] form a partial spread.

The following construction is essentially from Blokhuis-Brouwer [5].

Theorem 4.1. Let S be a secundum of PG(r, 2). There is a partial spread parti-

tioning the points outside S.

The space PG(r, 2) possesses a spread if r is odd. If r is even and E ⊂ PG(r, 2)

is a plane, then the points outside E can be partitioned into a partial spread.

Proof. Use the argument from [5]. Consider Vk+2 = F
k+2
2 whose elements we

write as (a, b, c) where a ∈ F = GF(2k), b, c ∈ F2. Let ǫ ∈ F \ F2. For each

x ∈ F consider the line Lx = 〈(x, 1, 0), (ǫx, 0, 1)〉. These are pairwise disjoint

and partition the points outside the secundum b = c = 0. This proves the first

statement. The rest follows by induction. �

Corollary 4.2. Let gl,i =
(

2l − 2l−2i
)

/3. If l − 2i = 0 or l − 2i ≥ 3 there is a pure

[[gl,i, gl,i − l, 3]] quantum code.

Proof. The number gl,i is the number of lines partitioning the points of Vl out-

side Vl−2i. The corresponding partial spread defines the quantum code. The

self-orthogonality condition of Theorem 2.6 is satisfied as a secundum has an

odd number of points and intersects a Vl−2i with l − 2i ≥ 3 in an odd number

of points. �

This family contains the so-called Hamming codes and Gottesman codes; see

[6, Theorems 10 and 11], and the quaternary special case of [2, Theorem 12].

Some small examples are

[[5, 1, 3]], [[8, 3, 3]], [[21, 15, 3]], [[40, 33, 3]] .

In fact we can use this method recursively:
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Corollary 4.3. Let gl,i as in Corollary 4.2 where l − 2i ≥ 4. If there is a pure

[[n, n − (l − 2i), 3]] then there is a pure [[gl,i + n, gl,i + n − l, 3]].

Proof. Use the partial spread to partition the points outside the Vl−2i and the

codelines of the [[n, n − (l − 2i), 3]] inside the Vl−2i. �

Application to [[32, 25, 3]] and [[5, 0, 3]] yield a [[37, 30, 3]]. This solves an ex-

istence problem left open in [13]. Observe the clarity of the construction: we

work in V7. The 32 lines of the first code partition the points outside a secun-

dum V5, the lines of the second code can be chosen to partition the points of a

hyperplane of the V5, or alternatively as a partition of the points of a parabolic

quadric in V5.

5. The geometric description in case d = 3

Theorem 2.8 describes linear quantum codes with d = 3 as sets of n different

points meeting each hyperplane in the same parity as n. Equivalently this is a

projective linear [n,m]4-code all of whose weights are even. The complementary

point set will then have the same property. We arrive at the following result.

Theorem 5.1. The following are equivalent:

• a pure linear [[n, n − 2m, 3]]-code;

• a set of n different points in PG(m − 1, 4) meeting each hyperplane in the

same parity as n;

• a projective linear [n,m]4-code all of whose weights are even;

• a pure linear [[(4m − 1)/3 − n, (4m − 1)/3 − n − 2m, 3]]-code.

Observe that point sets of PG(m − 1, 4) of even cardinality with the property

from Theorem 5.1 form a binary linear code (they are closed under symmetric

sums) and the symmetric sum of two lines (a double line) in PG(2, 4) belongs to

the code. Its complement is a [[13, 7, 3]]-code. Also, the hyperoval in PG(2, 4)

has this property. It yields a [[6, 0, 3]] code. An appropriate symmetric sum with

a double line produces a set of 10 points and therefore a [[10, 4, 3]]-code. Its

complement in PG(2, 4) is a [[11, 5, 3]]-code. The union of two disjoint hyper-

ovals yields a [[12, 6, 3]]-code. Its complement yields a second construction of

a [[9, 3, 3]]-code. The complement of a Fano plane in PG(2, 4) is a [[14, 8, 3]]-

code. A line yields a [[5, 0, 3]]-code and its complement is a [[16, 10, 3]]-code.

This yields satisfactory descriptions for many of the d = 3 codes.
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A quadratic construction

Not all examples are of this form. For example, a pure [[9, 3, 3]] can also be

constructed via the elliptic quadric in PG(5, 2). It has 27 points and there is a

spread partitioning those 27 isotropic points. Each secundum meets it in odd

cardinality.

More generally consider the hyperbolic and elliptic quadrics Q+(2m−1) and

Q−(2m − 1) in PG(2m − 1, 2). Their number of points is (2m − 1)(2m−1 + 1) in

the hyperbolic, (2m + 1)(2m−1 − 1) in the elliptic case. Let m = 2l be even in

the hyperbolic case, m = 2l + 1 odd in the elliptic case. The quadrics can be

partitioned into generators. Those generators, of projective dimension 2l − 1,

can themselves be partitioned into lines. It follows that the quadrics can be

partitioned into lines. As each quadric in binary projective space is either empty

or has an odd number of isotropic points, it follows that the secundum condition

is satisfied in those cases. We have proved the following result.

Theorem 5.2. Let n = (22l−1 + 1)(4l − 1)/3 for l ≥ 2. Then there is a pure

[[n, n − 4l, 3]]-code.

Let n = (22l+1 + 1)(4l − 1)/3 for l ≥ 1. Then there is a pure

[[n, n − 4l − 2, 3]]-code.

Examples are parameters [[9, 3, 3]], [[45, 37, 3]], [[155, 145, 3]].

Using the complement

When n is large it is natural to consider the set of points that are not contained

in the union of the codelines.

Theorem 5.3. Let n, r be given and y = 2r−1−3n. A pure [[n, n−r, 3]] quantum

code is equivalently described by the following:

• a self-orthogonal projective code C of length y and dimension ≤ r;

• a partial spread of n lines in PG(r − 1, 2) covering the points which are not

columns of a generator matrix of C.

Proof. Start from a pure quantum code, let Y be the set of y points in PG(r−1, 2)

not contained in a line of the corresponding partial spread and X its comple-

ment. Then y and n have different parities. Let S be a secundum. Then S ∩ X

has the same parity as n, so S ∩ Y has the parity of y.
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Let G be the (r, y)-matrix whose columns are the points of Y , and C the

projective code generated by G. We saw that each secundum S meets Y in

the parity of y. Let H be a hyperplane, m = |H ∩ Y |. Then all weights of

the corresponding code have the same parity. This is therefore even. It follows

that m has the same parity as y and all words of C have even weight. Let

u, v ∈ C and denote by a, b, c, d the number of coordinates where the entries of

u and v are (0, 0), (0, 1), (1, 0), (1, 1), respectively. We saw that a has the parity

of y whereas b, c are even. As a + b + c + d = y this implies that d is even and

u · v = 0. We have that C is a self-orthogonal projective code. Clearly we have

reached an equivalent description. �

In Theorem 5.3 it is impossible that y is 2 mod 3 (otherwise 2r would have

to be a multiple of 3), and y is a multiple of 3 if m is even, y is 1 mod 3 if m is

odd. This description in terms of the complement Y is particularly useful when

y = 2r − 1 − 3n is small.

Definition 5.4. Let Y be the family of point sets Y ⊆ PG(l, 2) with the property

that the matrix with the elements of Y as columns generates a self-orthogonal

code. Let y = |Y | be the length and k the dimension of this code.

Observe that subspaces PG(k, 2) for k ≥ 2 belong to Y and that Y is closed

under symmetric sums.

Proposition 5.5. Let Y ∈ Y. If y ≤ 13, then one of the following occurs.

(1) y = 7, k = 3 and Y a plane;

(2) y = 8, k = 4 and Y is the complement of a plane. The corresponding code is

the [8, 4, 4]2 extended Hamming code;

(3) y = 11, k = 5 and Y = E1⊕E2⊕S is the symmetric sum of two planes E1, E2

meeting in a point and a solid containing E2;

(4) y = 12, k = 5 and Y is the exclusive or E1 ⊕ E2 of two planes meeting in a

point;

(5) y = 12, k = 6 and Y is equivalent to the set of 6-tuples of weights 1 or 5;

(6) y = 13, k = 6 and Y = E1 ⊕E2 ⊕ S is the symmetric sum of two skew planes

E1, E2 and a solid containing E2.

Proof. Obviously y ≤ 6 is impossible, and Y is a plane if y = 7. If y = 8 then

k = 4. We must have the complement of a plane. Considering complements

cases y = 9 and y = 10, k = 4 are excluded.

Let now y = 10, k = 5 and write a generator matrix (I|P ). Then P is a

quadratic matrix with rows of odd weight and even pairwise intersections. No
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row of P can have weight 5. If there is a row of weight 1, then Y intersects a

hyperplane H in 8 points and Y ⊕H has 9 points, contradiction. It follows that

all rows of P have weight 3. This is impossible.

Let y = 11. Necessarily k = 5. Assume P has a row of weight 1. The column

containing this entry 1 contradicts projectivity. Let a be the number of rows of P

that have weight 5. The remaining rows have weight 3. Case a = 5 leads to a

solution, likewise a = 2 and a = 1. They are all equivalent.

Let y = 12. Considering complements we have k = 5 or k = 6. Let at first

k = 5. Rows of weights 1 or 7 of P lead to the usual contradictions. Assume P

has a row of weight 3. Then Y intersects a hyperplane S in 8 points and Y ⊕ S

has cardinality 11. This leads to Y = E1 ⊕E2. It is impossible that all rows of P

have weight 5.

Let now y = 12, k = 6. Then P is a (6, 6)-matrix. None of its rows has

weight 1. It is impossible that more than four rows have weight 3. Assume

there are two rows of weight 3. Then there are exactly two rows of weight 5

and the completion is uniquely determined. It cannot be that there is only one

row of weight 3. The remaining case is when all rows of P have weight 5.

Let y = 13. Assume k = 5. Consider the (5, 8)-matrix P . By the usual

argument no row can have weight 1. Assume there is a row of weight 3. This

leads to a hyperplane intersection of 9 and a solution for y = 10, contradiction.

The same argument applies when two rows of weight 7 are present. The cases

of one or zero rows of weight 7 are easily excluded as well.

The final case is y = 13, k = 6. Assume at first there is an intersection of 4:

(1111|10|0), (1111|01|0) .

There are two rows ending in 1. Those 4 rows can be chosen. There is a row

number 5 ending in 0. This can be completed in two ways:

















1111 10 0

1111 01 0

1100 00 1

1010 00 1

1110 11 0

0001 11 0

















or

















1111 10 0

1111 01 0

1100 00 1

1010 00 1

0001 11 0

0110 00 1

















.

Those sets are equivalent. The last case is

(11|10|000), (11|01|000) ,

with all other types (odd, 11, even) or (even, 00, odd). The third row can be cho-

sen (10|11|000). If there is another row with 11 in the middle the last section
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shows that this is impossible. The remaining rows have 00 in the middle. When-

ever the last sections intersect the first section yields a contradiction. Now the

last section yields a contradiction. �

The non-existence in cases y ≤ 10, y 6= 7, 8 leads to the following corollary.

Corollary 5.6. Let 0 < y ≤ 10, y 6= 7, 8. Then there is no pure [[n, n − r, 3]]-code

with n = (2r − 1 − y)/3.

In particular pure quantum codes with parameters

[[7, 2, 3]], [[39, 32, 3]], [[83, 75, 3]], [[82, 74, 3]]

do not exist. By Section 3 the assumption of purity can be dropped: no additive

quantum codes with those parameters can exist. In fact, by Proposition 3.1 it

can be assumed that the code has strength 1 and there are no multiple code-

lines. The non-existence of the corresponding impure codes follows from The-

orem 3.2. This solves two of the values left open in Grassl’s database [13].

Nonexistence in case y = 13, k = 5 shows that there is no pure [[6, 1, 3]].

Geometrically the most natural approach is to fix the redundancy r = n − m

and determine the values of n for which pure [[n, n − r, 3]]-codes exist. Equiva-

lently these are partial spreads of n lines in Vr = PG(r− 1, 2) such that for each

secundum S there is an even number of codelines skew to S.

The smallest value of r is r = 4 and the only possible length is then n = 5.

We saw the [[5, 1, 3]], the spread in PG(3, 2), or equivalently, the projective line

PG(1, 4).

Let r = 5. The obvious bound is n ≤ 10. Length n = 10 and n = 9 are

impossible by Corollary 5.6. We know an [[8, 3, 3]] from Corollary 4.2. An im-

pure [[6, 1, 3]] does exist because of the pure [[5, 1, 3]]. Finally a pure [[5, 0, 3]]

exists: it may be derived either from a spread of PG(3, 2) or from a spread of

the parabolic quadric in PG(4, 2). This completes the spectrum of the values of

n for which [[n, n − 5, 3]]-codes exist: n ∈ {5, 6, 8}. For n = 5, 8 these are pure,

for n = 6 it is necessarily impure.

Consider redundancy r = 6. First of all there are the linear codes, derived

from subsets of PG(2, 4). We saw how this yields examples for n = 8, n = 13

(double lines and their complements), n = 6, n = 15 (hyperovals and their

complements), n = 10, n = 11 (a suitable sum of a hyperoval and a double line

as well as the complement), n = 9, n = 12 (union of two disjoint hyperovals

and the complement), n = 7, n = 14 (a Fano plane and its complement), n = 5,

n = 16 (a line and its complement). We also saw a second construction of a pure

[[9, 3, 3]] based on a quadric. This completes the spectrum for 5 ≤ n ≤ 16. Corol-

lary 4.2 produces [[21, 15, 3]]. A (necessarily pure) [[17, 11, 3]] will be constructed

later on. Theorem 5.3 and Proposition 5.5 imply nonexistence for 18 ≤ n ≤ 20.
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Let r = 7. Pure codes [[37, 30, 3]] and [[40, 33, 3]] follow from Corollary 4.2.

Grassl has existence for all lengths except possibly for those between 36 and 39.

We showed non-existence for n = 39, existence for n = 37. Later we will con-

struct pure codes corresponding to lengths 36 and 38 as well. In redundancy 8

an application of Corollary 4.3 in case l = 8, i = 1 to the pure [[17, 11, 3]] yields

[[81, 73, 3]]. This decides one of the cases left open in Grassl’s list.

The next cases for d = 3 left open by Grassl are

[[83, 74, 3]], [[87, 78, 3]], [[89, 80, 3]], [[91, 82, 3]], [[93, 84, 3]],

[[95, 86, 3]], [[97, 88, 3]], [[99, 90, 3]], [[101, 92, 3]],

[[103, 94, 3]], [[105, 96, 3]], [[107, 98, 3]], [[109, 100, 3]],

all with r = 9. They are expected to exist.

6. A link to APN-functions

Consider the following situation: a pure quantum code [[n, n−r, 3]] as described

by a partial spread of n lines in PG(r−1, 2), and Y the set of y = 2r−1−3n points

not in the codelines. Assume Y is contained in a hyperplane H of PG(r − 1, 2).

Then the partial spread must contain 2r−2 lines which partition the affine points

(those outside H). This leads to the following definition.

Definition 6.1. Let H be a hyperplane of PG(r − 1, 2). A factor of exterior lines

is a set E of 2r−2 pairwise skew lines none of which is in H (equivalently, the

lines partition the points off H). Let S(E) ⊂ H be the set of intersections of the

lines of E with H.

The situation can be equivalently described inside H: let the points of H be

those with last coordinate = 0. The points of g ∈ E are (a : 1), (b : 1) and

(a + b, 0) ∈ H. Let Vr−1 = F
r−1
2 be the space underlying H. With g ∈ E the

pairs {a, b} describe a partition of Vr−1 and the sums a+b are pairwise different.

This leads to the following equivalent description.

Definition 6.2. A sum-disjoint partition π of Vr−1 is a partition into pairs such

that the sums of those pairs are pairwise different. Let S(π) be the set of those

sums. Clearly 0 /∈ S(π) and |S(π)| = 2r−2.

We can view S(π) as a subset of PG(r − 2, 2). A third equivalent description

of the same concept is in terms of a generalization of the notion of an APN-

function.
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Definition 6.3. A local APN bijection of Vr−1 with respect to 0 6= a is a bijective

mapping f : Vr−1 → Vr−1 which satisfies that its derivative δf,a at a defined by

δf,a(x) = f(x + a) + f(x)

is 2 to 1.

Recall that a function is APN if it satisfies the 2 to 1 condition above for all

a 6= 0. The letters APN stand for almost perfectly nonlinear. This notion came up

originally in the study of cryptographic S-boxes, see [7].

Theorem 6.4. The following are equivalent:

(1) a factor of external lines of PG(r − 1, 2) with respect to a hyperplane;

(2) a sum-disjoint partition of Vr−1;

(3) a local APN bijection of Vr−1 with respect to some a 6= 0.

Proof. The equivalence of the first two concepts has been observed earlier. Let

f be a local APN bijection with respect to a. The pairs {f(x), f(x + a)} form a

sum-disjoint partition. Conversely let π be a sum-disjoint partition. Define the

bijection f such that f(x) and f(x + a) form a part of π for all x. Then f is

locally APN. �

Proposition 6.5. Let q = 2r−1. A bijective APN function of Vr−1 is equivalent

with a family of q − 1 factors of exterior lines of PG(r − 1, 2) with respect to a

hyperplane H partitioning the set of all exterior lines.

It is also equivalent to a family of q − 1 sum disjoint partitions of Vr−1 which

together partition the set of all pairs.

This follows directly from Theorem 6.4. Observe that the number of exterior

lines is indeed (2r−1 − 1)2r−2 = (q − 1)2m−2 =
(

q
2

)

. The expression in terms

of sum-disjoint partitions can be equivalently expressed as a 1-factorization of

the complete graph on Vr−1 with the additional property that each of its q − 1

factors is sum-disjoint.

Proposition 6.6. Let H ⊂ Vr−1 be a hyperplane and M a linear mapping from

H to H such that both M and I + M are invertible. Let r ∈ Vr−1 \ H. Then

π =
{

{x, r + Mx} | x ∈ H
}

is a sum-disjoint partition of Vr−1 whose set of sums

is S(π) = H.

Proposition 6.6 is a slightly generalized form of the Blokhuis-Brouwer con-

struction, Theorem 4.1. The proof is trivial. Equivalently, there is always a local

APN bijection such that the f(x + a) + f(x) run through the complement of a

subspace of codimension 1.
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This construction is not very useful in the situation when Y ⊂ H, where H

is a hyperplane of Vm. The reason is that the remaining spread lines together

with Y would fill a Vm−2. This would describe a quantum code obtained by the

recursive construction of Corollary 4.3. It is therefore desirable to have more

constructions of sum-disjoint partitions. We know that bijective APN-functions

are examples. Unfortunately no bijective APN-functions on GF(2n) are known

when n is even.

Elementary moves

Here is what seems to be the most elementary way of constructing a sum-

disjoint partition from another one. Let Σ = S(π) be given and {x, x′}, {y, y′} ∈

π (so that x + x′, y + y′ ∈ Σ). Assume x + y, x′ + y′ /∈ Σ. Then replacing

the two pairs above by {x, y}, {x′, y′} we obtain another sum-disjoint partition

whose set of sums Σ′ differs from Σ in that x + x′, y + y′ have been removed

and x + y, x′ + y′ added.

7. Constructions

In this section we will construct pure quantum codes [[17, 11, 3]], [36, 29, 3]] and

[[38, 31, 3]]. The latter two parameters are new. For the first two the construction

is direct and easy to verify. In length 38 we start from the BB-construction

(Proposition 6.6) which is modified by three elementary moves.

Pure [[17, 11, 3]]-codes

Let k = 6. We work in F
6
2, Y consists of the vectors of weights 1 and 5 and the

quantum code is defined by a family of 17 lines partitioning the points of weights

different from 1 and 5. One such partition is closely related to the S6-general-

ized quadrangle. Write points of F
6
2 in terms of subsets of {1, 2, 3, 4, 5, 6} such

that 111000 for example is represented by 123. Our partial spread consists of

• lines l1, . . . l5 partitioning the points of weight 4;

• l6 = {123, 456, 123456};

• l7 = {12, 13, 23}, l8 = {45, 46, 56};

• 9 lines containing one point of weight 2 and two of weight 3. Con-

sider the permutations λ, ρ defined by λ = (1, 2, 3), ρ = (4, 5, 6). Let
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a ∈ {1, 2, 3}, b ∈ {4, 5, 6}. The line indexed by {a, b} is

{ab, aλ(a)b, abρ(b)} .

Here the lines partitioning the weight 4 points are equivalent to a spread of

the S6-generalized quadrangle. There is also a construction using k = 5.

Construction of [[36, 29, 3]]

This time y = 19 and k ∈ {5, 6, 7}. There is a construction for k = 5. We

give here a construction in case k = 7 which is more symmetric. Let Y =

〈e1, e2, e3〉 ⊕ 〈e1, e4, e5〉 ⊕ 〈e1, e6, e7〉 be the union of three planes meeting in

a common point. The quantum code is described by 36 lines partitioning the

points outside Y . Let V = F
2
2. Write F

7
2 as F2 × V 3. The points to partition

are (ǫ, u, v, w) where ǫ ∈ F2 and at most one of u, v, w is = 0. For brevity write

those vectors as 1uvw or 0uvw. One way of choosing those lines is as follows:

The first 18 lines are

{1abb, 10ab, 0ac0}, {1b0a, 1bab, 00ac}, {1bba, 1ab0, 0c0a} .

Here a, b, c are arbitrary nonzero pairwise different elements of V . In order to

describe the remaining 18 lines fix a permutation ρ = (a, b, c) of the nonzero

elements of V . With this notation the remaining lines are

{1abc, 10aa, 0acb}, {1acb, 1c0c, 0bca}, {1aa0, 1bbb, 0ccb},

{00aa, 0abb, 0acc}, {0a0a, 0bab, 0cac}, {0aaa, 0bb0, 0cca} .

Construction of [[38, 31, 3]]

Let E = 〈e1, e2, e3〉, E
′ = 〈e4, e5, e6〉, Y = (E \ 〈e3〉) ∪ (e3 + (E′ \ 0)). The

corresponding code, with generator matrix

















101101 0000000

011011 0000000

000111 1111111

000000 1010101

000000 0110011

000000 0001111

















has weights 4, 6, 8, 10. Use the hyperplane H = (x3 = x4). The codeword

corresponding to H has weight 6. In fact,

Y ∩ H = {e1, e2, e1 + e2, e3 + e4, e3 + e4 + e5, e3 + e4 + e6, e3 + e4 + e5 + e6}
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is the union of a line and a quadrangle. The strategy is to replace H by Σ such

that

Y ∩ H = {e1 + e3, e2 + e3, e1 + e2 + e3, e3 + e5, e3 + e6, e3 + e5 + e6}

is removed (by 3 elementary moves) and replaced by a set S of 6 points from H.

Those six points should be the union of two lines. It should be possible to

partition the remaining 18 points of H (outside Y ∩H and S) into lines as well.

The reason to believe this is the BB-construction again: it implies that H = V5

can be partitioned into a quadrangle and 9 lines.

Here are the details. Let M : H → H and r = e1+e3 /∈ H. The corresponding

sum-disjoint partition consists of the pairs {x, e1 + e3 + Mx} where x ∈ H.

The sum is e1 + e3 + (1 + M)x ∈ H. We want to replace 6 of those sums

corresponding to x = a1, . . . , a6 ∈ H where a1 = 0 =
∑

ai. Only a2, . . . , a5

need to be determined. The conditions are

a2 + Ma2 = e2 , a3 + Ma3 = e1 + e2 ,

a4 + Ma4 = e1 + e5 , a5 + Ma5 = e1 + e6 .

This makes sure that the six sums above (those we will knock out) vary over

the set Y ∩ H that we wish to remove. The condition that both M and I + M

should be invertible is equivalent with:

• a2, a3, a4, a5 are linearly independent;

• a2 + e2, a3 + e1 + e2, a4 + e1 + e5, a5 + e1 + e6 linearly independent.

A possible choice is

a2 = e1 + e5, a3 = e1, a4 = e1 + e2 + e6, a5 = e3 + e4 + e6

(automatically a6 = e1 + e2 + e3 + e4 + e5), and

M =













0 1 0 1 1

1 0 0 0 0

0 1 0 0 1

0 1 0 1 0

0 0 1 0 1













in terms of the basis e1, e2, e3 + e4, e5, e6 of H. We can choose as new pairs on

those 12 points

{0, a2}, {a3, a4}, {a5, a6},

e1 + e3 + {0,Ma2}, e1 + e3 + {Ma3,Ma4}, e1 + e3 + {Ma5,Ma6},
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with new sums e1 + e5, e2 + e6, e1 + e2 + e5 + e6 and their images under M ,

e1 + e2 + e5, e5 + e6, e1 + e2 + e6.

It remains to check if the remaining 18 points are indeed on a partial spread.

Those 18 points are the following:

















Q1 = 000010 P1 = 101100 P7 = 011100 P13 = 111100

Q2 = 000001 P2 = 100001 P8 = 010010 P14 = 111110

P3 = 101110 P9 = 011110 P15 = 111101

P4 = 101101 P10 = 011101 P16 = 111111

P5 = 100011 P11 = 010011

P6 = 101111 P12 = 011111

















.

A partial spread is as follows:

(Q1, 4, 6), (Q2, 9, 12), (2, 10, 13), (1, 8, 14), (3, 11, 15), (5, 7, 16) .

Here we wrote i for point Pi. This produces a [[38, 31, 3]]. Its lines are the 26

surviving lines of the original BB-construction, the 6 lines completing them to

the new sum-disjoint partition Σ and the 6 lines just constructed which partition

the remaining 18 points.

8. Case d = 4 and quantum caps

The smallest redundancy of interest is r = 6. The linear cases can be described

in terms of quaternary caps. Let us call a cap in PG(m − 1, 4) a quantum cap if

it satisfies the condition of Theorem 2.8 for t = 3: the corresponding code has

only even weights. In case r = 6 we have the hyperoval in PG(2, 4). This is an

exceptional situation as it has strength 3 and therefore yields [[6, 0, 4]].

Let r = 7. For n ≥ 8 we know from [4] that not even the underlying additive

codes exist (in the pure case). In length n = 7 the underlying additive code

would have to be a [7, 3.5, 4]4-code and we know from [4] that no such code

satisfies the quantum condition.

Next let r = 8. Quantum caps in PG(3, 4) are known for n = 8, 12, 14, 17,

the most obvious case being the elliptic quadric. For n = 10 no such cap exists.

Other examples of quantum caps include one of the two 41-caps in PG(4, 4)

(see [9]), the 40-cap in AG(4, 4) (see [11]), the Glynn cap in PG(5, 4) (see [12,

10], its weight distribution is A0 = 1, A88 = 945, A96 = 3087, A120 = 63), a 756-

cap in PG(7, 4) and a 5040-cap in PG(9, 4) (see [8]). This yields pure linear

quantum codes

[[40, 30, 4]], [[41, 31, 4]], [[126, 114, 4]], [[756, 740, 4]], [[5040, 5020, 4]] .
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The union of two hyperovals on two planes of PG(3, 4) intersecting in an exterior

line clearly is a quantum cap [[12, 4, 4]].
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