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Abstract

A decomposition of the complete graph Kv into copies of a subgraph Γ

is called a sharply transitive Γ-decomposition if it is left invariant by an au-

tomorphism group acting sharply transitively on the vertex-set of Kv. For

suitable values of v we construct examples of sharply transitive Γ-decompo-

sitions when Γ is either a Petersen graph, a generalized Petersen graph or

a prism.

Keywords: decomposition, (generalized) Petersen graph, prism, sharply transitive per-

mutation group
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1. Introduction

In this paper we shall only deal with undirected simple graphs. For each graph T

we shall denote by V (T ) and E(T ) its vertex-set and edge-set, respectively. A

decomposition of a graph T into copies of a given graph Γ is a set C of subgraphs

isomorphic to Γ, whose edges partition, altogether, the edge-set of T . Such a

decomposition is generally called a Γ-decomposition of T . A Γ-decomposition

of Kv, the complete graph on v vertices, is often called a Γ-design; see [2, 4].

This terminology is suggested by the circumstance that a standard 2-(v, k, 1)

design is a Γ-design for Γ = Kk, once the blocks are regarded as complete

graphs on k vertices.

∗Research performed within the activity of INdAM–GNSAGA with the financial support of the

Italian Ministry MIUR, project “Strutture Geometriche, Combinatoria e loro Applicazioni”.
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A group G is an automorphism group of the Γ-decomposition C if it is a per-

mutation group on the vertices of T leaving C invariant. The action of G is said

to be sharply transitive on the vertex-set V (T ) if for any given pair of (not neces-

sarily distinct) vertices x, y ∈ V (T ) there exists a unique automorphism g in G

mapping x to y. In the theory of finite permutation groups a sharply transitive

action is often called a regular action.

We shall speak of a sharply transitive Γ-decomposition of T if C admits an

automorphism group G acting sharply transitively on the vertex-set of T . In

particular, we shall speak of a cyclic or of an elementary abelian Γ-decomposition

if the action of G is sharply transitive and G is cyclic or elementary abelian,

respectively. In this paper, when speaking of a group G we will use the additive

notation, unless differently specified.

If the group G acts sharply transitively on the vertex-set of Kv, then G

has order v and we can identify the vertex set of Kv with G. In this case

we shall usually denote the complete graph by KG rather than by Kv. In

this manner each group-element g ∈ G is identified with the permutation

V (KG) → V (KG) : x 7→ x+g. This action of G induces actions on the subsets of

V (KG) and on sets of such subsets. Hence if [x, y] is an edge, then it is mapped

to the edge [x+g, y+g] by g and we write [x, y]+g = [x+g, y+g]. In particular,

if U is a collection of edges of KG then U + g = {[x + g, y + g] | [x, y] ∈ U}. In

the present paper we shall usually denote by 0 the zero element of an additive

group G and by 1 the identity element in multiplicative notation.

Let n, k be positive integers, with n ≥ 3 and 1 ≤ k ≤ n−2. Denote by P (n, k)

the graph with vertex-set

V
(

P (n, k)
)

= {x0, x1, . . . , xn−1, y0, y1, . . . , yn−1}

and edge-set

E
(

P (n, k)
)

=
n−1
⋃

i=0

{

[xi, xi+1], [yi, yi+k], [xi, yi]
}

,

where subscripts are meant modulo n. In particular, P (5, 2) is the standard

Petersen graph, P (n, 1) is a prism and if n > 5, 1 < k < n − 1 the graph P (n, k)

is a generalized Petersen graph.

For each fixed choice of the graph Γ, the values of v for which a Γ-decom-

position exists form the so-called spectrum. Clearly the values of v for which a

sharply transitive Γ-decomposition exists must be in the spectrum. The same

is true if we fix the isomorphism type of the automorphism group G which is

assumed to act sharply transitively on the vertices of Kv (say, for instance, cyclic

or elementary abelian).
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It may well happen that there exists no such sharply transitive Γ-decompo-

sition of Kv with the group G of the required isomorphism type even though

v is in the spectrum. That is trivially the case if no finite group of order v of the

required isomorphism type exists. For example if Γ is the Petersen graph P (5, 2)

then Adams and Bryant have shown in [2] that v is in the spectrum of Γ-de-

compositions of Kv if and only if v ≡ 1 or 10 (mod 15), v > 10. Consequently,

although v = 40 is in this spectrum, it does not even make sense to look for an

elementary abelian Γ-decomposition of K40 because 40 is not a prime power. It

may also happen that v does lie in the spectrum and a finite group of order v of

the desired isomorphism type does exist while a sharply transitive Γ-decompo-

sition with group of the required type does not exist. Probably the most famous

example for this situation is when v is a power of 2, v ≥ 8, the group G is cyclic

and Γ is a 1-factor of Kv. Hartman and Rosa have namely proved in [13] that a

cyclic 1-factorization of Kv does not exist for such values of v.

The problem we approach in the present paper is thus a special instance

of the determination of what we might call a “restricted” spectrum: given the

graph Γ and the isomorphism type of the group G, determine the values of v for

which there exists a Γ-decomposition of Kv admitting an automorphism group

that is isomorphic to G and acts sharply transitively on the vertices of Kv.

In this paper we construct sharply transitive decompositions of complete

graphs into Petersen graphs, generalized Petersen graphs and prisms. Our main

results are the following:

• If p is an odd prime and q ≡ 1 (mod 6) is a power of p with q > p,

then for each k with 2 ≤ k ≤ p − 2 we construct an elementary abelian

P (p, k)-decomposition of Kq.

• Let n > 3 be an odd integer and let v > 13 be an odd integer all of whose

prime factors are congruent to 1 (mod 6n). For each k with 1 ≤ k ≤ n−1
2

we construct a cyclic P (n, k)-decomposition of Kv.

In the final section we construct examples of sharply transitive decompositions

of a complete graph into different types of generalized Petersen graphs and

prisms. That can somehow be viewed in analogy with the situation in which a

block design contains blocks of different sizes, a situation which is often consid-

ered in design theory. In our situation the “blocks” are subgraphs with different

“shapes”.

In [18] Rosa introduced the concept of graceful labelings and α-labelings of

graphs. These are assignments of integers to the vertices of the graph subject

to certain conditions. A necessary condition for a graph to have an α-labeling is

the property of being bipartite. We refer to [11] for an extensive survey on this

topic.
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Rosa showed how graphs with graceful labelings or α-labelings are useful

in the development of the theory of graph decompositions. For instance he

proved in [18] that if Γ is a graph possessing a graceful labeling, then there

exists a cyclic Γ-decomposition of Kv, where v = 2|E(Γ)| + 1. In the same

paper he proved that if Γ is a graph possessing an α-labeling, then there exists

a cyclic Γ-decomposition of Kv, for each v ≡ 1 (mod 2|E(Γ)|). Redl [17] has

shown that P (n, k) has a graceful labeling for n = 5, 6, 7, 8, 9 and 10. Vietri

[20, 21] proved that P (4t, 3) has a graceful labeling for all t’s. The problem

of determining whether generalized Petersen graphs admit graceful labelings is

still open, while it is proved in [10] that P (n, 1) has an α-labeling if and only

if n is even. Our constructions work on graphs which are not bipartite, hence

they cannot be obtained from α-labelings. Our existence results can thus be

regarded as an extension of the following proposition which can be obtained

from [18] and [10]: if n > 3 is an even integer and v is an odd integer with

v ≡ 1 (mod 6n), then a cyclic P (n, 1)-decomposition of Kv does exist.

As to our notation, for a given prime p we denote by Zp the finite field of

order p, that is the field of residue classes modulo p. More generally, for any

positive integer v we denote by Zv the ring of residue classes modulo v as well

as its additive cyclic group; for any positive integer n we denote by GF(pn) the

finite field of order pn, that is the n-dimensional field-extension of Zp (so in

particular, Zp = GF(p)). The notation GF(pn)∗ stands for GF(pn) − {0}, in the

same manner Z∗
p = Zp − {0}. When dealing with vector spaces, vectors will

generally be denoted by bold letters.

2. Preliminary results

Our constructions are essentially based on the method of partial differences, a

useful tool in many circumstances. See for example [5], [6] and [8], where

the method is used for constructing cycle systems, and [1] for constructions

in classical design theory. We begin with a brief review of this method in our

special situation. In particular, we work in KG where G is a group of odd order.

In this situation each edge orbit under the action of G has length equal to the

order of G.

Given a simple graph Γ with vertices in KG, the list ∆Γ of differences of Γ is

defined as follows:

∆Γ = {x − y, y − x | [x, y] ∈ E(Γ)} .

In general, ∆Γ contains repeated elements, so it is a multiset. Moreover, if the

stabilizer of Γ in G has order h, then each element of ∆Γ is repeated at least
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h times. Let us denote by H the stabilizer of Γ in G and let Γ∗ be a chosen

subgraph of Γ whose edges form a complete system of representatives for the

H-orbits of the edges of Γ. In what follows we will set ∂Γ = ∆Γ∗. In general

∂Γ can itself be a multiset.

Theorem 2.1. Let C = {Γ1, . . . ,Γt} be a set of subgraphs of KG which are isomor-

phic to a given graph Γ. The set C is a complete system of representatives for the

G-orbits of a sharply transitive Γ-decomposition of KG if and only if ∂Γ1∪· · ·∪∂Γt

is a repetition-free cover of G − {0}.

Proof. Let v be the order of G and let n be the number of edges in Γ. Let hi

denote the order of the G-stabilizer of the subgraph Γi, i = 1, . . . , t. Suppose C
to be a complete system of representatives for the G-orbits of a sharply transitive

Γ-decomposition of KG. The total number of edges of orbG(Γ1)∪ · · ·∪orbG(Γt)

is nv
h1

+ · · · + nv
ht

= v(v−1)
2 . This equality implies 2n

h1

+ · · · + 2n
ht

= v − 1. Observe

that v − 1 = |G − {0}| and 2n
hi

= |∂Γi|. Therefore, for the proof of the first part

of the theorem, it is sufficient to show that each element of G appears at least

once in the list ∂Γ1 ∪ · · · ∪ ∂Γt. Given x ∈ G − {0}, the edge [0, x] is in Γi + g

for a suitable i ∈ {1, . . . , t} and g ∈ G. That implies [0, x] = [y, z] + g with

[y, z] ∈ E(Γi) and x = z − y or x = y − z, which proves the assertion.

Let conversely the multiset equality ∂Γ1 ∪ · · · ∪ ∂Γt = G − {0} hold with-

out repetitions. Since |∂Γi| = 2n
hi

, the graph orbG(Γi) contains nv
hi

edges and

orbG(Γ1) ∪ · · · ∪ orbG(Γt) has the same number of edges as KG. We will thus

obtain a decomposition of KG if we can prove that each edge of KG is an edge

of a suitable Γi + g, g ∈ G. If [x, y] is an edge of KG, then y − x ∈ ∂Γi, for

some i. Therefore, there exists [a, b] ∈ E(Γi) with b − a = y − x, which implies

[a, b] − a + x = [x, y] and [x, y] ∈ Γi − a + x. �

In the particular case in which all the graphs of C have trivial stabilizer in G,

one says that C is a (G,Γ, 1)-difference family [7]. In the proof of Theorem 4.2

below, we shall need the result of the next Proposition, which was obtained

in [7].

Proposition 2.2. If there exists a (Zvi
,Γ, 1)-difference family for i = 1, . . . , n

and if the chromatic number χ(Γ) does not exceed the smallest prime factor of the

product v1v2 . . . vn, then there exists a cyclic Γ-decomposition of Kv1v2...vn
.
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3. Elementary abelian decompositions of the com-

plete graph into (generalized) Petersen graphs

Lemma 3.1. Let p > 3 be a prime and let V be the n-dimensional vector space over

the field Zp with |V | ≡ 1 (mod 6). Then, for every fixed k ∈ Zp − {0, 1,−1}, it is

possible to partition V −{0} into (pn − 1)/6 sixtuples of the form {±u,±ku,±v}
where u and v are linearly independent vectors of V .

Proof. Set (pn − 1)/(p − 1) = t and let {v1, v2, . . . , vt} be a complete system

of representatives for the 1-dimensional vector subspaces of V so that we have

V −{0} = {avj | 1 ≤ a ≤ p−1; 1 ≤ j ≤ t}. Let H be the multiplicative subgroup

of Z∗
p consisting of all elements of the form ±ki. Let 2d be the order of H, and

let S be a complete system of representatives for the cosets of H in Z∗
p . We

distinguish two cases according to whether p ≡ 1 or −1 (mod 6).

1st case: p ≡ 1 (mod 6).

It is straightforward to check that the set

Q =
{

{

±k2is,±k2i+1s
}

| 0 ≤ i < ⌊d/2⌋; s ∈ S
}

consists of pairwise disjoint quadruples of elements of Zp − {0}. Since we have

|Q| = ⌊d/2⌋ · |S| ≥ |H| · |S|/6 = (p − 1)/6, we can choose a (p − 1)/6-subset A
of Q. In view of the form of the quadruples of Q we can write

A =
{

{±ai,±kai} | 1 ≤ i ≤ (p − 1)/6
}

.

The set B = Z∗
p − ⋃(p−1)/6

i=1 {±ai,±kai} has size 2(p − 1)/6 and, obviously,

if b ∈ B, then −b ∈ B. Thus we can write B = {±bi | 1 ≤ i ≤ (p − 1)/6}, and

the sixtuples

{±ai,±kai,±bi} , 1 ≤ i ≤ (p − 1)/6

form a partition of Z∗
p .

It is now clear that V − {0} can be partitioned into the following (pn − 1)/6

sixtuples of the required form:

{±aivj ,±kaivj ,±bivj+1} , 1 ≤ i ≤ (p − 1)/6; 1 ≤ j ≤ t

where we agree that vt+1 = v1.
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2nd case: p ≡ 5 (mod 6).

In this case t is divisible by 3. Distinguish two subcases according to whether d

is even or odd.

Subcase (a): d is even, say d = 2e.

We claim that V −{0} can be partitioned into the following (pn − 1)/6 sixtu-

ples of the required form:

{

±k2isv3j+1,±k2i+1sv3j+1,±k2isv3j+3

}

,
{

±k2isv3j+2,±k2i+1sv3j+2,±k2i+1sv3j+3

}

,

0 ≤ i ≤ e − 1; s ∈ S; 0 ≤ j ≤ t/3 − 1 .

In fact, it is easy to check that for each fixed value of j the above sixtuples form

a partition of {av3j+ℓ | 1 ≤ a ≤ p − 1; ℓ = 1, 2, 3}.

Subcase (b): d is odd, say d = 2e + 1.

We claim that V −{0} can be partitioned into the following (pn − 1)/6 sixtu-

ples of the required form:

{

±k2isv3j+1,±k2i+1sv3j+1,±k2isv3j+3

}

,
{

±k2isv3j+2,±k2i+1sv3j+2,±k2i+1sv3j+3

}

,

0 ≤ i ≤ e − 2; s ∈ S; 0 ≤ j ≤ t/3 − 1 ;

{

±k2e−2sv3j+1,±k2e−1sv3j+1,±k2esv3j+2

}

,
{

±k2e−1sv3j+3,±k2esv3j+3,±k2esv3j+1

}

,
{

±k2e−2sv3j+2,±k2e−1sv3j+2,±k2e−2sv3j+3

}

,

s ∈ S; 0 ≤ j ≤ t/3 − 1 .

Again it is enough to check that for each fixed value of j the above sixtuples form

a partition of {av3j+ℓ | 1 ≤ a ≤ p − 1; ℓ = 1, 2, 3}. The assertion follows. �

Theorem 3.2. Let q ≡ 1 (mod 6) be a power of an odd prime p and let 2 ≤ k ≤
p − 2. Then there exists an elementary abelian P (p, k)-decomposition of Kq.

Proof. Set q = pn and let V be the n-dimensional vector space over Zp. By

Lemma 3.1 there exists a partition of V − {0} of the form

V − {0} =

(pn
−1)/6
⋃

i=1

{±ui,±kui,±vi} (1)
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where ui and vi are linearly independent for each i.

For i = 1, . . . , (pn − 1)/6, let Γi be the graph defined as follows.

V (Γi) = {0,ui, 2ui, . . . , (p − 1)ui,vi,vi + ui,vi + 2ui, . . . ,vi + (p − 1)ui} ;

E(Γi) =

p−1
⋃

j=0

{

[jui, (j + 1)ui], [vi + jui,vi + (j + k)ui], [jui,vi + jui]
}

.

Observe that V (Γi) has size 2p since ui and vi are linearly independent and

hence Γi is isomorphic to P (p, k).

The differences arising from the edges [jui, (j+1)ui], [vi +jui,vi +(j+k)ui]

and [jui,vi + jui] are ±ui, ±kui and ±vi, respectively, and that is independent

of j. It follows that ∆Γi is p times the set {±ui,±kui,±vi}. Consequently,

noting that the stabilizer of Γi under the natural action of V has order p (it is

namely the 1-dimensional subspace generated by ui) we have:

∂Γi = {±ui,±kui,±vi}.

By (1), we have thus
⋃(pn

−1)/6
i=1 ∂Γi = V − {0}. Using Theorem 2.1 we finally

conclude that Γ1, Γ2, . . . , Γ(pn−1)/6 yield an elementary abelian P (p, k)-decom-

position of Kq. �

We present an alternative construction which is somewhat simpler than the

one of the previous theorem, even though it only works under additional con-

straints on the parameters.

Theorem 3.3. Let p ≡ 1 (mod 6) be a prime and let k be an integer, with 1 <

k < p − 1, such that k is not a cube when interpreted as a field element in Zp. Let

n be an integer greater than 1 which is not divisible by 3 and set q = pn. There

exists an elementary abelian P (p, k)-decomposition of Kq.

Proof. We construct a copy Γ of P (p, k) as follows. Let x be a chosen cube in

GF(q) − GF(p). We define

V (Γ) =
{

0, 1, . . . , p − 1
}

∪
{

k2 x, k2 x + 1, . . . , k2 x + (p − 1)
}

and

E(Γ) =
{

[i, i + 1], [i, k2 x + i], [k2 x + i, k2 x + i + k] | i = 0, 1, . . . , p − 1
}

.

The list ∂Γ consists precisely of the six elements ±1, ±k, ±k2 x. Since n is not

divisible by 3, the subgroup Z∗
p is not contained in the subgroup C of cubes

in GF(q)∗ and then k is not a cube in GF(q). This fact, together with our choice

of x, assures that the triple {1, k, k2 x} forms a complete system of representa-

tives for the subgroup C in GF(q)∗.
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Let now S be a a complete system of representatives for the subgroup {1,−1}
in the multiplicative group of cubes in GF(q)∗. For each s ∈ S consider the

subgraph sΓ which is obtained from Γ by replacing each vertex u of Γ by su.

The list of partial differences of sΓ is then clearly s ∂Γ and, consequently, the

list of partial differences which are covered by the family {sΓ | s ∈ S} is given

by S {±1} {1, k, k2 x} = C {1, k, k2 x} = GF(q)− {0}. We can conclude that this

family is a complete system of representatives for the orbits of an elementary

abelian Γ-decomposition of Kq. �

Remark 3.4. If the prime p of the previous Theorem 3.3 is also congruent

to 7 (mod 12), then we can choose a complete system S of representatives for

{1,−1} in C as the subgroup of the 6-th powers in GF(q)∗. In this manner the

group of affine linear transformations over GF(q) of the form x 7→ sx + t, s ∈ S,

t ∈ GF(q) is a group of automorphisms of the P (p, k)-decomposition of Kq. The

action of this group is transitive on the subgraphs of the decomposition.

4. Cyclic decompositions of the complete graph into

(generalized) Petersen graphs and prisms

Let q = pα be a prime power with α ≥ 1 and q = ef + 1. Let γ denote a

generator of the multiplicative group of GF(q), i.e. GF(q)∗ = 〈γ〉. Let C0 be

the subgroup of the e-th powers in GF(q)∗ and let Ci be the coset of C0 which

contains γi, 0 ≤ i ≤ e − 1. The cyclotomic number Aij of order e counts the

field elements x in Ci such that x − 1 is in Cj . The determination of cyclotomic

numbers is quite difficult. For the particular case e = 3, the problem was first

considered by Gauss [12], and later on by Dickson [9], under the restriction

α = 1. For the case α > 1 we recall results by Hall [14], Storer [19] and Katre

and Raiwade [16].

It is proved in [15] that all cyclotomic numbers Aij satisfy the following

relation:

e2Aij ≥ q − (e − 1)(e − 2)
√

q − (3e − 1) .

For e = 3 we get

9Aij ≥ (
√

q − 1)2 − 9

and hence all cyclotomic numbers of order 3 are positive if q > 16 (i.e. q > 13

if q is odd).

Lemma 4.1. Let q = 6nt + 1, with q = pα, α ≥ 1, q > 13 and n odd. Let ζ be a

primitive n-th root of unity in GF(q). For each k, with 1 ≤ k ≤ n−1
2 , there exists

an element x ∈ GF(q), with x /∈ 〈ζ〉, such that ζ − 1, x(ζk − 1), x − 1 form a

complete system of representatives for the subgroup of cubes in GF(q)∗.
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Proof. Let C0 be the subgroup of cubes in GF(q)∗ and let C1 and C2 be its cosets

in GF(q)∗. Since ζ has order n and q − 1 = 6nt, we have 〈ζ〉 ⊆ C0. If ζ − 1 ∈ Ci

and ζk − 1 ∈ Cj , let x ∈ Ch−j and x − 1 ∈ Cl, where h is different from i and j

(mod 3), and l is the unique element of {0, 1, 2} which is distinct from i and h.

The existence of x is assured by the fact that all cyclotomic numbers of order 3

are positive. Moreover, Ch−j 6= C0 and then x /∈ 〈ζ〉. In this manner we get

ζ − 1 ∈ Ci, x − 1 ∈ Cl, x(ζk − 1) ∈ Ch and the assertion follows. �

We are now able to prove the following:

Theorem 4.2. Let n ≥ 3 be an odd integer and let v be an odd integer whose

prime factors are congruent to 1 (mod 6n). For each k, with 1 ≤ k ≤ n−1
2 , there

exists a cyclic P (n, k)-decomposition of Kv.

Proof. Let p = 6nt + 1 be a prime, with p > 13. Follow the previous Lemma 4.1

in the particular case α = 1 and take x ∈ Zp, with x /∈ 〈ζ〉, and such that

ζ − 1, x(ζk − 1), x− 1 are a complete system of representatives of the subgroup

of cubes in Z∗
p . The subgroup 〈−ζ〉 is contained in C0 and it has order 2n. Let

{s1, . . . , st} be a complete system of representatives for the cosets of 〈−ζ〉 in C0.

For each si, let Γi be the graph defined as follows:

V (Γi) =
{

si, siζ, siζ
2, . . . , siζ

n−1, xsi, xsiζ, xsiζ
2, . . . , xsiζ

n−1
}

,

E(Γi) =
{

[siζ
j , siζ

j+1], [xsiζ
j , xsiζ

j+k], [siζ
j , xsiζ

j ] | j = 0, . . . , n − 1
}

.

The graph Γi is isomorphic to P (n, k), it has trivial stabilizer in the additive

group of Zp and ∂Γi = si{ζ − 1, x(ζk − 1), x− 1}〈−ζ〉. We conclude that the set

{Γ1, . . . ,Γt} is a complete system of representatives for a cyclic P (n, k)-decom-

position of Kp.

Since each Γi has trivial stabilizer, the set {Γ1, . . . ,Γt} is a (Zp,Γ, 1)-differ-

ence family with Γ = P (n, k). For each odd integer v whose prime factors

are all congruent to 1 (mod 6n), n ≥ 3, since the graph P (n, k) has chro-

matic number 3, an application of Proposition 2.2 yields the existence of a cyclic

P (n, k)-decomposition of Kv. �

Remark 4.3. Consider the P (n, k)-decomposition of Kp constructed in the pre-

vious Theorem 4.2. The group of affine linear transformations over the field Zp

of the form x 7→ rx + b, r ∈ 〈ζ〉, b ∈ Zp is an automorphism group of the de-

composition. Moreover, if t and 2n are coprime, the subgroup C0 is the direct

product of 〈−ζ〉 together with a subgroup H of order t. It is thus clear that

the elements of H can be seen as the complete system {s1, . . . , st} chosen in

the construction of the theorem. In this case, the group of affine linear trans-

formations x 7→ ax + b, a ∈ 〈ζ〉H, b ∈ Zp is again an automorphism group of
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the decomposition. In particular, the subgroup of affine linear transformations

x 7→ hx + b, h ∈ H, b ∈ Zp has a sharply transitive action on the graphs of the

decomposition.

Remark 4.4. In the first part of the proof of Theorem 4.2 a cyclic P (n, k)-de-

composition of Kp is constructed via Lemma 4.1. This construction can be re-

peated in GF(q), with q = pα = 6nt + 1, n odd and α > 1. In this manner we

obtain an elementary abelian P (n, k)-decomposition of Kq, q > 13.

5. Sharply transitive mixed decompositions

We now turn our attention to the problem of finding decompositions of complete

graphs into subgraphs of different types, a problem which has also received

considerable attention in the literature. An instance of this situation comes from

the decompositions of complete graphs into cycles of varying specified lengths,

see [3] for a recent survey.

In this section we construct examples of sharply transitive decompositions of

complete graphs into copies of different generalized Petersen graphs and prisms.

As before, G denotes a finite additive group of odd order. By EA(q) we denote

the elementary abelian group of order q. Theorem 2.1 can be generalized as

follows.

Theorem 5.1. Let C = {Γ1, . . . ,Γt} be a set of subgraphs of KG, each of which is

isomorphic to one of the given graphs R1, . . . , Rs. The set C is a complete system

of representatives for the G-orbits of a sharply transitive decomposition of KG into

copies of R1, . . . , Rs if and only if ∂Γ1 ∪ · · · ∪ ∂Γt = G − {0}.

Proof. The steps of the proof follow closely those of Theorem 2.1. We omit the

details. �

We call such a decomposition a sharply transitive (R1, . . . , Rs)-decomposition

of Kv.

Theorem 5.2. Let q ≡ 1 (mod 6) be a power of an odd prime p and let 2 ≤ k ≤
p − 2. Let n ≥ 3 be an odd integer, let v be an odd integer whose prime factors

are congruent to 1 (mod 6n) and let h be an integer with 1 ≤ h ≤ n−1
2 . Let

P1 = P (p, k) and let either P2 = P (2p, k) or P2 = P (2p, p + k) according to

whether k is odd or even, respectively. Similarly, let P3 = P (n, h) and let either

P4 = P (2n, h) or P4 = P (2n, n + h) according to whether h is odd or even,

respectively.

• There exists an elementary abelian (P1, P2)-decomposition of Kq2 .
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• There exists a sharply transitive (P3, P4)-decomposition of KZv⊕Zv
.

• There exists a sharply transitive (P1, P2, P3)-decomposition of KEA(q)⊕Zv
.

• There exists a sharply transitive (P1, P3, P4)-decomposition of KZv⊕EA(q).

Proof. Let G be a group of odd order and let Γ = P (s, r), s ≥ 3 odd and

1 ≤ r ≤ s−1, be a subgraph of KG. Denote by {a0, a1, . . . , as−1, b0, b1, . . . , bs−1}
its vertex-set and let {[ai, ai+1], [bi, bi+r], [ai, bi], i = 0, . . . , s − 1} be its edge-

set, where indices are modulo s. Denote by S the stabilizer of Γ in G. Suppose

S to be either the trivial group or the group generated by a rotation of the form

ai 7→ ai+t, bi 7→ bi+t, for some fixed t.

Let H be an additive group of odd order and partition its elements into three

sets: {0}, HY , −HY , in such a way that y ∈ HY if and only if −y ∈ −HY .

For each y ∈ HY let Γy be the graph defined as follows. The vertices are

obtained by pairing the elements of the sequence (y,−y, y,−y, . . . , y,−y) with

the elements of the sequence (a0, a1, . . . , as−1, a0, a1, . . . , as−1) and by pairing

the elements of the sequence (−y, y,−y, y, . . . ,−y, y) with the elements of the

sequence (b0, b1, . . . , bs−1, b0, b1, . . . , bs−1), respectively. We have namely:

V (Γy) = {(a0, y), (a1,−y), . . . , (as−1, y), (a0,−y), (a1, y), . . . , (as−1,−y)}
∪ {(b0,−y), (b1, y), . . . , (bs−1,−y), (b0, y), (b1,−y), . . . (bs−1, y)} .

The edge-set is defined as follows:

E(Γy) =

s−1
⋃

i=0

{

[(ai, y), (ai+1,−y)], [(ai,−y), (ai+1, y)], [(ai, y), (bi,−y)],

[(ai,−y), (bi, y)], [(bi,−y), (bi+r, y)], [(bi, y), (bi+r,−y)]
}

.

Clearly, the graph Γy is isomorphic to either P (2s, r) or P (2s, s + r) according

to whether r is odd or even, respectively.

The graph Γy has vertices in KG⊕H , where G ⊕ H denotes the direct sum of

G and H. Moreover its stabilizer in G⊕H is S⊕{0} and ∂Γy = ∂Γ×{2y,−2y}.

Observe also that it is always possible to construct two copies of Γ, namely

Γ10 and Γ01 in such a way that the stabilizer of Γ10 is S ⊕ {0} and ∂Γ10 =

∂Γ×{0}, the stabilizer of Γ01 is {0}⊕S and ∂Γ01 = {0}× ∂Γ. In particular the

graph Γ10 is obtained by relabeling each vertex x of Γ with (x, 0), while Γ01 is

obtained by relabeling each vertex x of Γ with (0, x).

In what follows we repeat these constructions in four particular situations. In

these situations, we choose the groups G and H to be either cyclic or elementary

abelian groups.
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Set q = pm, q ≡ 1 (mod 6). Follow the construction of Theorem 3.2 and let

{Γ1, . . . ,Γ(pm−1)/6} be a complete system of representatives for the elementary

abelian P1-decomposition of Kq. Follow the construction of Theorem 4.2 and

let {Γ1, . . . Γt} be a complete system of representatives for the cyclic P3-decom-

position of Kv.

The set {Γ10
i ,Γ01

i ,Γy
i | i = 1, . . . , (pm − 1)/6, y ∈ EA(q)Y } is a complete sys-

tem of representatives for an elementary abelian (P1, P2)-decomposition of Kq2 .

The set {Γ10

j ,Γ
01

j ,Γ
y

j | j = 1, . . . , t, y ∈ ZvY } is a complete system of repre-

sentatives for a sharply transitive (P3, P4)-decomposition of KZv⊕Zv
.

The set {Γ10
i ,Γy

i ,Γ
01

j | i = 1, . . . , (pm − 1)/6, y ∈ ZvY , j = 1, . . . , t} is a

complete system of representatives for a sharply transitive (P1, P2, P3)-decom-

position of KEA(q)⊕Zv
.

The set {Γ10

j ,Γ
y

j ,Γ01
i | j = 1, . . . , t, y ∈ EA(q)Y , i = 1, . . . , (pm − 1)/6} is a

complete system of representatives for a sharply transitive (P1, P3, P4)-decom-

position of KZv⊕EA(q). �
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