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Abstract

We classify spreads of the Tits quadrangles T2(O), for O an oval in

PG(2, q), for q = 2, 4, 8, 16 and 32, using a computer for the last three

cases. Along the way, we classify α-flocks of PG(3, 32), and so flocks of the

quadratic cone in PG(3, 32). Perhaps our most striking results are that, for

many ovals O in PG(2, 32), including all 12 O’Keefe-Penttila ovals, T2(O)

has no spreads, and that T2(O) is a proper subGQ of a GQ of order (s, 32)

for precisely 6 of the 35 ovals O of PG(2, 32), all of which were previously

known to be subquadrangles of a (flock or dual Tits) GQ of order (1024, 32).

Also T2(O) is not a proper subGQ of a GQ of order (s, q) or of a GQ of order

(q, t) for O a pointed conic in PG(2, q), for q = 16, 32.
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1 Introduction

This paper is a sequel to [6] (and to [28]), and will use the definitions and

notation therein without comment. (See also the newly published book [8] for

information about flocks in characteristic 2.) It is also a sequel to [15, 17, 19]

in that it generalizes the results of those papers (which are equivalent to classi-

fying the spreads of T2(O), for O a conic of PG(2, q), q = 16 or 32) to classifying

the spreads of T2(O), for O an oval of PG(2, q), q = 16 (Theorem 4.11) or 32

(Theorem 5.6). Other worthwhile results we obtain in the process include the

classification of all flocks of the quadratic cone over the field of order 32 (The-

orem 5.3) and the proof that only those Tits quadrangles T2(O) already known
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to be proper subquadrangles of a GQ of order (s, q) are proper subquadrangles

of a GQ of order (s, q) for q ≤ 32 (Corollary 5.9). We also disprove a conjec-

ture of Cherowitzo [9] about the O’Keefe-Penttila hyperoval (see the remark

after Corollary 5.7), by classifying α-flocks over the field of order 32 (Theo-

rems 5.3, 5.5). For completeness, we also include the corresponding results

for fields of even order at most 8 in Section 3. As to odd order, we note that,

by the celebrated theorem of Segre, all ovals O of PG(2, q), q odd, are conics,

so the Tits quadrangle T2(O) is isomorphic to the classical quadrangle Q(4, q)

[20, Theorem 3.2.2]. This GQ has no spreads [20, Theorem 3.4.1(i)]. For q

prime, the only ovoids of Q(4, q) are elliptic quadrics [1]. For q = 9, the only

ovoids of Q(4, q) are the elliptic quadrics and the Kantor ovoids [13] (see also

[30, p. 51]). A survey on ovoids of Q(4, q) is given in [23]. All our computer

calculations took place in the computer algebra package Magma [3].

2 Equivalence of α-flocks and isomorphism of spreads

In [6], it is shown that every α-flock gives rise to a spread of T2(O), where O

is the oval constructed from the α-flock by Cherowitzo [9]. In order to classify

spreads of T2(O), it is therefore necessary to classify α-flocks of PG(3, q), and

to deal with isomorphism. A subtle point occurs here. As originally shown

in [12], each α-flock gives a flock of the cone subtended by the hyperoval, and

so a 1
α -flock. If α 6= 2, 1

2 , then two α-flocks are equivalent if and only if the

corresponding 1
α -flocks are equivalent. But the excluded cases are exceptional:

Theorem 2.1. Each 2-flock gives rise to a 1
2 -flock for every orbit of its stabiliser

on generators of the quadratic cone. 1
2 -flocks arising from different orbits are

inequivalent.

Proof. This follows from a simple calculation similar to the one below. �

Let q = 2e, Fq = GF(q), and α = 2i, (i, e) = 1. In PG(3, q) let Kα be the cone

Kα : xα
1 = x0x

α−1
2 with vertex V (0, 0, 0, 1),

and nuclear generator 〈V (0, 0, 0, 1), (0, 1, 0, 0)〉 .

It also follows that 〈V (0, 0, 0, 1), (1, 0, 0, 0)〉 is an axial generator, the unique one

if α 6= 2.

Theorem 2.2. The subgroup of PΓL(4, q) leaving invariant the cone Kα consists

of the following collineations:
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θ : (x0, x1, x2, x3) 7→ (x0, x1, x2, x3)
σM, M =









aασ 0 0 x

0 aσ 0 y

(as)ασ (as)σ 1 z

0 0 0 w









.

(1)

Here a, s, x, y, z, w are elements of Fq with a and w not zero, and σ is any auto-

morphism of Fq.

For convenience in computing the images of planes we give the inverse of M .

M−1 =









a−ασ 0 0 xa−ασw−1

0 a−σ 0 ya−σw−1

sασ sσ 1 xsασw−1 + ysσw−1 + zw−1

0 0 0 w−1









. (2)

Suppose that a and s have been fixed with a 6= 0, and that [r, v, t, 1] is any

plane not on the vertex V (0, 0, 0, 1). Let w be any non-zero element of Fq

and put x = wrσ, y = wvσ, z = wtσ. Then θ maps the plane [r, v, t, 1] to

[0, 0, 0, 1]. Hence we may move any plane not on the vertex V (0, 0, 0, 1) to the

plane [0, 0, 0, 1] without moving the cone or its axial generator or its nuclear

generator. And the collineations fixing the cone and the plane [0, 0, 0, 1] are

given by σ ∈ Aut(Fq), a,w, s ∈ Fq, a 6= 0 6= w, with

M =









aασ 0 0 0

0 aσ 0 0

(as)ασ (as)σ 1 0

0 0 0 w









, and M−1 =









a−ασ 0 0 0

0 a−σ 0 0

sασ sσ 1 0

0 0 0 w−1









. (3)

If α is different from 2, then the unique axial generator of Kα is the line

〈V (0, 0, 0, 1), Y (1, 0, 0, 0)〉. The general plane through the axial generator is

[0, x, y, 0]. We name the plane [0, 0, 1, 0] as PG(2, q) = [0, 0, 1, 0]. It is fixed

by the collineations indicated in equation (3). The plane [0, 1, y, 0], y ∈ Fq, is

mapped to [0, a−σ, (s + y)σ, 0]. If we pick s = y, then the plane [0, 1, y, 0] is

mapped to [0, 1, 0, 0] without moving the cone, its axial generator, or the plane

PG(2, q).

At this point we are still free to pick nonzero a and w and an automorphism σ

and leave invariant the cone and its vertex and both its axial and nuclear gen-

erators, the planes ζ = [0, 1, 0, 0],PG(2, q) = [0, 0, 1, 0] and π = [0, 0, 0, 1].

Suppose a is fixed and 0 6= λ ∈ Fq. If (1, 0, 0, λα), λ 6= 0, is an arbitrary

point of the axial generator different from V (0, 0, 0, 1) and Y (1, 0, 0, 0), put



114M. R. Brown • C. M. O’Keefe • S. Payne • T. Penttila • G. F. Royle

w = (aλ−1)σα. Then (1, 0, 0, λα) is mapped to (1, 0, 0, 1) without moving any

of the structures so carefully arranged above. At this point we can still choose

nonzero a. The cone meets the plane π : x3 = 0 in the oval xα
1 + x0x

α−1
2 =

x3 = 0 with nucleus (0, 1, 0, 0), containing the point Y (1, 0, 0, 0) and with the

line 〈Y (1, 0, 0, 0), (0, 1, 0, 0)〉 as an axis (unique if α 6= 2). For arbitrary nonzero

a ∈ Fq, the collineation

(x0, x1, x2, x3) 7→ (x0, x1, x2, x3)
σ









aσα 0 0 0

0 aσ 0 0

0 0 1 0

0 0 0 aσα









fixes the structure set up above, and it maps (1, 1, 0, 0) to (aσα, aσ, 0, 0) ≡

(1, (aσ)1−α, 0, 0). Since a 7→ a1−α is a permutation of the nonzero elements

of Fq, we may map (1, 1, 0, 0) to any point of the axis 〈Y (1, 0, 0, 0), (0, 1, 0, 0)〉

other than Y (1, 0, 0, 0) or (0, 1, 0, 0). So far we have not used the field automor-

phism σ. Hence we have proved the following theorem.

Theorem 2.3. Let Kα be an α-cone in PG(3, q) with vertex V , with axial gen-

erator L1 and nuclear line L2. (This means that for any plane π not containing

the vertex, the oval O = π ∩ Kα has nucleus N = L2 ∩ π, contains the point

Q = L1 ∩ π, and the line 〈Q,N〉 is an axis of O.) Let π3 be an arbitrary but fixed

plane not containing the vertex V . Let π2 be the plane containing the axial gen-

erator and the nuclear generator of Kα. Let π1 be any other plane containing the

axial generator. Let Y be the point of π3 on the axial generator, and let U be any

point of the axial generator different from V and from Y (i.e., not in π3). Finally,

let P be any point of π2∩π3 not on the axial generator or nuclear generator of Kα.

Then the coordinates for PG(3, q) may be chosen so that the following hold:

V = (0, 0, 0, 1), π3 = [0, 0, 0, 1], π2 = [0, 0, 1, 0], π1 = [0, 1, 0, 0],

Y = (1, 0, 0, 0), U = (1, 0, 0, 1), P = (1, 1, 0, 0), L2 ∩ π3 = (0, 1, 0, 0).

Now we suppose that the automorphism α generates the Galois group of Fq

but α 6= 2. Hence each oval equivalent to Oα : xα
1 = x0x

α−1
2 has a unique

axis, so the cone Kα has a unique axial generator. Let O be an oval of PG(2, q)

identified as the hyperplane π2 : x2 = 0 of PG(3, q). It is uniquely extended to

a hyperoval O+ and we may assume that the hyperoval has any four points of

PG(2, q) in general position that we please. So suppose it has among its points

those of the fundamental quadrangle. Then there is an o-polynomial f such

that

O+ = {(t, 1, 0, f(t)) : t ∈ Fq} ∪ {(1, 0, 0, 0), (0, 0, 0, 1)} .

If we apply the collineation (elation with axis π1 : x1 = 0) (x, y, 0, z) 7→

(x, y, 0, z + y), then the image O+
f has points {(t, 1, 0, 1 + f(t)) : t ∈ Fq} ∪
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{((1, 0, 0, 0)(0, 0, 0, 1)}. And if we use the automorphism α just mentioned, we

find

(O+
f )

1

α = {(t
1

α , 1, (1 + f(t))
1

α )} ∪ {(0, 0, 1), (1, 0, 0)} .

Given the o-polynomial f we are free to choose either V (0, 0, 0, 1) or Y (1, 0, 0, 0)

to be the nucleus of the remaining q + 1-arc. Let OV be the oval containing V

and OY be the oval containing Y . Then in the construction of the GQ T2(OV ),

we know that given any spread consisting of q2 lines of PG(3, q) plus the “line” V

we can use the same q2 lines of PG(3, q) plus the “line” Y as a spread for T2(OY ).

Now suppose we have a spread (containing Y as a “line”) of T2(OY ) associated

with a generalized f -fan and α-flock. This means there is a permutation poly-

nomial g with g(0) = 0 and g(1) = 1, and a constant a with tr(a) = 1, such that

the q2 lines of the associated spread (different from the “line” Y (1, 0, 0, 0)) are

of the form
〈

(t
1

α , 1, 0, (1 + f(t))
1

α ), ((1 + f(t))sα + t
1

α + ag(t), s, 1, 0)
〉

: t, s ∈ Fq .

For a fixed t ∈ Fq the cone with vertex Xt = (t
1

α , 1, 0, (1 + f(t))
1

α ) and base

q-arc the oval O′

g(t) = {(rα + ag(t), 0, 1, r) : r ∈ Fq} ∪ {Y (1, 0, 0, 0)} minus

the point Y (1, 0, 0, 0) has q lines of the associated spread. For t 6= 1, (and put

r = s(1 + f(t))
1

α ) these lines meet the plane π3 : x3 = 0 in the q-arc

{s(t
1

α , 1, 0, (1 + f(t))
1

α ) + ((1 + f(t))sα + ag(t), 0, 1, s(1 + f(t))
1

α ) : s ∈ Fq}

= {((1 + f(t))sα + t
1

α s + ag(t), s, 1, 0) : s ∈ Fq} .

The points (rα + ag(t), 0, 1, r), r ∈ Fq, together with the point Y (1, 0, 0, 0)

give a linear axial pencil of ovals with nucleus V (0, 0, 0, 1) that constitute a

generalized f -fan). The points where the spread lines intersect the plane π3

(along with the line w : x3 = x0 + x1 + ax2 = 0) give a planar representation

of an α-flock, i.e., a flock of the given alpha cone which consists of the planes

Fα = {πt = [f(t), t
1

α , ag(t), 1] : t ∈ Fq}. Projecting the planes of this flock from

the point U(1, 0, 0, 1) onto the plane π3 gives the ovals

Ot = {((1 + f(t))sα + t
1

α + ag(t), s, 1, 0) : s ∈ Fq} ∪ {Y (1, 0, 0, 0)}

(with nucleus (t
1

α , 1, 0, 0)), as long as t 6= 1, plus the line w : x3 = x0 +

x1 + ax2 = 0 corresponding to the case t = 1. Suppose we have this setup

for two o-polynomials f1 and f2, along with a1, a2, g1, g2, such that {πi
t =

[fi(t), t
1

α , aigi(t), 1] : t ∈ Fq} is an α-flock. Note that with this πt notation

πi
0 = π3 for both i = 1 and i = 2. We want to suppose that there is a collineation

of PG(3, q) mapping T2(Of1
) to T2(Of2

) and mapping the spread in the first case

to the spread in the second case.
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In both cases (i = 1, i = 2) we can set up the coordinates so that π2 is the

plane of the oval (embed PG(2, q) in PG(3, q) by (x, y, z) 7→ (x, y, 0, z)). The

plane of the generalized f -fan , i.e., the linear axial pencil of ovals is π1, and π3

is the plane in which is given the planar representation of the flock of the cone.

The α-cone is just as in the previous section: U(1, 0, 0, 1) is the point from which

we project the ovals of the α-flocks, and the point of both ovals Of1
and Of2

on

the nuclear generator is (0, 1, 0, 1), so they both project to P = (1, 1, 0, 0).

Now we start by assuming that there is a collineation θ of PG(3, q)

mapping T2(Of1
) to T2(Of2

) in such a way that the spread lines in the

first GQ map to the spread lines of the second GQ.

We also assume that Ofi
is not a conic, so the point (∞)1 is mapped to (∞)2, so

the unique spread “line” Y (1, 0, 0, 0) incident with (∞)i is mapped to itself.

So we have a field automorphism σ and a matrix M such that

θ : (x0, x1, x2, x3) 7→ (x0, x1, x2, x3)
σM

has the following effect. First, the oval Of1
is mapped to the oval Of2

, so the

plane π2 is mapped to itself, the vertex V (0, 0, 0, 1) (i.e., the nucleus of Ofi
,

i = 1, 2) is mapped to itself. The unique oval point Y (1, 0, 0, 0) serving as a

“line” of the spread in each case is mapped to itself.

If the plane π1 = [0, 1, 0, 0] is mapped to some other plane [0, 1, y, 0] through

the axial generator, follow the original θ with the elation having matrix








1 0 0 0

0 1 0 0

yα y 1 0

0 0 0 1









.

This elation with axis π2 maps one axial linear pencil of ovals in the plane

[0, 1, y, 0] to another in the plane π1, but it leaves the oval Of2
fixed pointwise

and it leaves the cone Kα invariant. It does move the spread lines to a projec-

tively equivalent spread of T2(Of2
), but now we may assume that π1 is mapped

to itself.

These assumptions quickly force the matrix M to have the following form.

M =









1 0 0 0

x y 0 z

u 0 v w

0 0 0 λ









, and M−1 =









1 0 0 0

x/y 1/y 0 z/λy

u/v 0 1/v w/λv

0 0 0 λ−1









.

There must be a permutation t 7→ t̄ of the elements of Fq for which the point

(t
1

α , 1, 0, 1 + f1(t)
1

α ) is mapped to (t̄
1

α , 1, 0, 1 + f2(t̄)
1

α ). Hence



The classification of spreads of T2(O) and α-flocks over small fields 117

(tσ/α + x, y, 0, z + λ(1 + f1(t)
σ/α) = y(t̄

1

α , 1, 0, 1 + f2(t̄)
1

α ) . (4)

From this it follows that

t̄ = y−α(tσ + xα), which is equivalent to t = yα/σ t̄
1

σ + xα/σ . (5)

Put this value of t̄ into equation (4) to get

f2(y
−α(tσ + xα)) = (λ/y)αf1(t)

σ + 1 + y−α(zα + λα) . (6)

For a fixed t, the cone with vertex Xt = (t
1

α , 1, 0, (1 + f1(t))
1

α ) and base oval

{(rα + a1g1(t), 0, 1, r) : r ∈ Fq} ∪ {Y (1, 0, 0, 0)} gets mapped to the cone with

vertex X̄
(y−α(tσ+xα))

1

α

= ((y−α(tσ + xα))
1

α , 1, 0, (1 + f2((y
−α(tσ + xα))

1

α ) and

base oval {(r̄α + a2g2(t
σ), 0, 1, r̄) : r̄ ∈ Fq} ∪ {Y (1, 0, 0, 0)}, where r 7→ r̄ is

a permutation of the elements of Fq that might depend on t. Since the plane

π1 : x1 = 0 isIt now follows that mapped to itself, for a fixed t there must be a

permutation r 7→ r̄ and a nonzero scalar µ such that

(rσα + aσ
1gσ

1 (t) + u, 0, v, w + λrσ) = µ(r̄α + a2g2(t̄)), 0, 1, r̄) .

Hence µ = v and r̄ = v−1(w+λrσ). Note that this does not depend on t after

all! Put in these values of µ and r̄ to get v = λ
α

α−1 and

r̄ =
w

λ
α

α−1

+
1

λ
1

α−1

rσ . (7)

It now follows that θ can be written as

(rα + a1g1(t), 0, 1, r) 7→

(

rσα + aσ
1gσ

1 (t) + u

λ
α

α−1

, 0, 1,
w + λrσ

λ
α

α−1

)

=

((

w + λrσ

λ
α

α−1

)α

+ a2g2(t̄), 0, 1,
w + λrσ

λ
α

α−1

)

.

This is just a reindexing of the original f2-fan. Hence in the special situation we

are considering, spread-equivalent fans are projectively equivalent.

Thus we have proved:

Theorem 2.4. Suppose α 6= 2, 1
2 and the α-flocks Fi give rise to the spreads Si

of T2(Oi), for i = 1, 2. Then F1 and F2 are equivalent if and only if there is an

isomorphism from T2(O1) onto T2(O2) mapping S1 to S2.
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3 Spreads of T2(O) for fields of orders 2, 4 and 8

Since the only ovals in PG(2, 2) and PG(2, 4) are conics [25], the classification

of spreads of T2(O) for fields of orders 2,4 is equivalent to the classification of

ovoids of PG(3, 2) and of PG(3, 4) — they are elliptic quadrics [2, 26]. This also

implies the classification of flocks of the quadratic cone in PG(3, 2) and PG(3, 4)

[27] — they are linear. Indeed, in these cases the GQs are uniquely determined

by their orders [20]. In summary,

Theorem 3.1 ([20, 6.1.2]). There is a unique spread of the unique GQ of order 2.

Theorem 3.2. There is a unique spread of the unique GQ of order 4.

The only ovals in PG(2, 8) are conics and pointed conics [25]. The classifi-

cation of spreads of T2(O) for O a conic of PG(2, 8) is equivalent to the classi-

fication of ovoids of PG(3, 8) — they are Tits ovoids [29] and elliptic quadrics

[11, 21]. Since for O a pointed conic of PG(2, 8), T2(O) is self-dual, it follows

that the classification of spreads of T2(O) is equivalent to the classification of

ovoids of T2(O), a result already obtained [7], see [24, III.17.8]. However,

using the theoretical machinery of [6, Sections 4 and 5], it is possible to re-

duce the amount of computation required. Indeed, the only generalized fans

satisying the hypothesis of [6, Theorem 5.8] arise from Tits ovoids, by a small

computation, so every other generalized fan arises from an α-flock. Since the

flocks of the quadratic cone in PG(3, 8) were classified in [27], the classification

of spreads of T2(O), for O a pointed conic of PG(2, 8) now follows. The flocks

of the quadratic cone in PG(3, 8) are the linear and Fisher-Thas-Walker flocks.

However, there are three 4-flocks in PG(3, 8) as the Fisher-Thas-Walker flocks

give rise to two inequivalent 4-flocks. These three 4-flocks in PG(3, 8) give rise

to three spreads of T2(O), for O a pointed conic of PG(2, 8), with the nucleus

of the conic as an element of the spread, and so three ovoids of T2(O), for O a

pointed conic of PG(2, 8), on (∞). These are the ovoids labelled III, IV and V

in result III.17.8 of [24], with IV arising from the linear flock. (The orders of

the groups agree with those in [24], each being 8 times the group order of the

corresponding 4-flock stabiliser, since the ovoids are translation ovoids.) The

Tits ovoid generalized fan arising from a line not in the Luneburg spread also

gives rise by nucleus switching (applied to the fan) to two spreads of T2(O),

for O a pointed conic of PG(2, 8), this time with the spread not containing the

nucleus of the conic, and so to two ovoids, not on (∞). These are the ovoids

labelled I and II in result III.1.7.8 of [24]. In summary,

Theorem 3.3. There are two spreads of T2(O) for O a conic of PG(2, 8), the

regular spread and the Lüneburg spread.
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Theorem 3.4. There are five spreads of T2(O) for O a pointed conic of PG(2, 8),

with groups of orders 168, 168, 168, 1344 and 2688.

Corollary 3.5. There are five ovoids of T2(O) for O a pointed conic of PG(2, 8),

with groups of orders 168, 168, 168, 1344 and 2688.

4 Spreads of T2(O) for the field of order 16

This section follows [15, 17] closely and is best read in that context. These two

papers determine all fans in PG(2, 16) (in order to classify ovoids in PG(3, 16) —

equivalently, spreads of T2(O), where O is a conic of PG(2, 16)). In this section,

we determine all generalized fans in PG(2, 16) in order to classify spreads of

T2(O), where O is an oval of PG(2, 16).

By [14] (see also [16] for a computer-free proof), the only hyperovals of

PG(2, 16) are the regular and Lunelli-Sce hyperovals. Hence the only ovals of

PG(2, 16) are the conic, the pointed conic and the Lunelli-Sce oval.

Let L be a Lunelli-Sce oval in PG(2, 16). There are three orbits of the stabiliser

of L on tangent lines to L. Let l be the line x = 0 and (L1, l), (L2, l), (L3, l)

be particular representatives of the three orbits on (Lunelli-Sce oval,tangent

line) pairs, with each of L1, L2 and L3 having nucleus (0, 0, 1) and meeting l in

(0, 1, 0). (Here we choose L1 so that the stabiliser of L1 fixes l.) Let Ps be the

point (0, 1, s). Let PC be the pointed conic {(1, t, t14) : t ∈ GF(16)} ∪ {(0, 1, 0)}.

Lemma 4.1. [ ]

• (Ps,PC) matches only with one point (Pt, L3) ;

• 10 of the points (Ps, L2) match only with (X,L2) for some X ;

• 5 of the points (Ps, L2) match only with (X,L3) for some X ;

• 10 of the points (Ps, L3) match only with (X,L3) for some X ;

• 1 of the points (Ps, L3) match only with (X,L2) for some X ;

• 4 of the points (Ps, L3) match both with (X,L2) for some X and with

(X,L2) for some X .

Proof. By a computer calculation. �

Lemma 4.2. There is no generalized fan in PG(2, 16) containing a pointed conic

with the common tangent line of the fan not an axis of the pointed conic.
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Proof. Since the only match for (a point not on the axis, pointed conic) is of

type L3, the remaining 15 ovals of such a generalized fan would have to be of

type L3. But one of the points when paired with an L3 type oval matches only

with L2, a contradiction. �

Lemma 4.3. There is no generalized fan in PG(2, 16) containing a Lunelli-Sce oval

for which the common tangent line is not fixed by the stabiliser of the oval.

Proof. Putting in L2 forces there to be 11 ovals of type L2 and 5 of type L3 in

the generalized fan. Putting in L3 forces there to be between 11 and 15 ovals of

type L3 and between 1 and 5 ovals of type L2. These two conditions contradict

one another. �

Lemma 4.4. If there is a standard generalized f -fan in PG(2, 16) with O0 being

the canonical Lunelli-Sce oval L = L1 then for all s not equal to 0 or 1, Os = gsL

for some homography gs with axis [1, 0, 0].

Proof. (Compare with [17, Lemma 3.4].) By the matching data, Os is an image

of L under a collineation gs fixing l, for all s not equal to 0 or 1. Moreover,

since the index of PGL(3, 16)L,l in PΓL(3, 16)L,l is 4 = h, we may assume that

gs is a homography. Hence since O0 = L and Os = gsL are compatible at

Pf(s)/s, it follows that (Pf(s)/s, L) and (g−1
s Pf(s)/s, L) match and so, by (a slight

correction to) [17, Lemma 3.3], g−1
s Pf(s)/s = Pf(s)/s or Ps/f(s). If gs does not

have axis l, then the latter alternative occurs, and so g−1
s Px = P(s/f(s))2x for

all x. Now the proof of [17, Lemma 3.4] can be followed mutatis mutandis and

a contradiction occurs. �

Lemma 4.5. Let bs denote what it denotes in [17]. Then, under the hypotheses of

Lemma 4.4,

(f(t)/t + f(u)/u)bs + (f(u)/u + f(s)/s)bt + (f(s)/s + f(t)/t)bu

= f(s)/sd(f(t)+f(u))/(t+u)+f(t)/td(f(s)+f(u))/(s+u)+f(u)/ud(f(s)+f(t))/(s+t) ,

where dr = br or br + r + 1, for all distinct s, t, u in GF(16) \ {0, 1}.

Lemma 4.6. There is no generalised fan in PG(2, 16) containing a Lunelli-Sce

oval.

Proof. By computer, there are no solutions to the equation of Lemma 4.5 for

any o-polynomial f . �

Lemma 4.7. Every generalised fan in PG(2, 16) arises from an α-flock.
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Proof. We have ruled out all ovals other than conics and pointed conics for

which the common tangent is an axis. So now [6, Theorem 4.6] applies. �

Theorem 4.8 ([10]). The only quadratic flocks in PG(3, 16) are the linear flocks

and the De Clerck-Herssens (= Subiaco) flocks.

Proof. We classify the herds using the magic action of [18]. It is enough to find

the herds containing x8, x2 or the Lunelli-Sce o-polynomial

ls = x8 + (d2(x4 + x) + (d2(d2 + d + 1)(x3 + x2))/(x2 + dx + 1)2 .

where d is fixed with trace(1/d) = 1. (Here trace is the absolute trace with

image GF(2).) By inspection of the o-polynomials, if f is one of these 3 and g is

an o-polynomial with f +x8 + g an o-polynomial, then f = g = x8 and we have

the classical herd or f = ls and g is in the Subiaco herd. Hence the only herds

are the classical and Subiaco herds for q = 16. �

Corollary 4.9. The only 1
2 -flocks in PG(3, 16) are the linear flocks and the three

De Clerck-Herssens flocks.

Proof. The group of the De Clerck-Herssens flock is cyclic of order 8 and has

three orbits on generators of the quadratic cone, of lengths 1, 8 and 8. �

Theorem 4.10. The only generalized fans in PG(2, 16) are

(i) the fan of conics;

(i)’ a generalized x
1

2 -fan of pointed conics;

(ii) the generalized L-fan of conics;

(ii)’ 3 generalized L-fans of pointed conics.

Proof. By Theorems 4.7 and 4.8 and Corollary 4.9, noting that (i) corresponds

to the linear quadratic flock (and so to the elliptic quadric), (i)’ arises by nucleus

switching applied to (i) (and so is an axial fan corresponding to the linear (1/2)-

flock), (ii) corresponds to the De Clerck-Herssens quadratic flock, and (ii)’ arise

by nucleus switching applied to (ii) (and so are axial fans corresponding to the

3 De Clerck-Herssens (1/2)-flocks). �

Thus we have shown:

Theorem 4.11. (a) There is a unique spread of T2(O), for O a conic in PG(2, 16).

(a)’ There is a unique ovoid of T2(O), for O a conic in PG(2, 16).
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(b) There is a unique spread of T2(O), for O a pointed conic in PG(2, 16). It

contains the nucleus of the conic.

(b)’ There is a unique ovoid of T2(O), for O a pointed conic in PG(2, 16). It is on

(∞) (indeed it is planar).

(c) There are many spreads of T2(O), for O a Lunelli-Sce oval in PG(2, 16). For

each point P of O, there is a spread containing P . All of these spreads are

either subtended (by the De Clerck-Herssens flock GQ) or are obtained via

nucleus switching from subtended spreads.

Corollary 4.12. T2(O), for O a pointed conic of PG(2, 16), is not a subquadrangle

of a generalized quadrangle of order (16, 256), nor of one of order (256, 16).

Proof. It has no spreads that do not contain the nucleus of the conic, and no

ovoids not on (∞). �

5 Spreads of T2(O) for the field of order 32

By [22], there are six hyperovals of PG(2, 32), namely, the regular, translation,

Segre-Bartocci, Payne, Cherowitzo and O’Keefe-Penttila hyperovals. These lead

to 35 ovals of PG(2, 32).

Lemma 5.1. The ovals contained in a generalized fan are contained in translation

hyperovals and the common tangent is an axis to all or principal spoke to all of the

ovals in the fan.

Proof. Computer data, following the method of [19]. A first pass shows that

ovals which have a tangent line with matches at all points are contained in

translation hyperovals. A second pass, eliminating matches with ovals not con-

tained in translation hyperovals, shows that the tangent line is an axis or prin-

cipal spoke. �

Lemma 5.2. There are no solutions to equation (6) of [6] that do not arise from

a Tits ovoid [29] for q = 32.

Proof. Computer search over the 742 ovals with a distinguished point. �

Theorem 5.3. There are exactly 5 flocks of the quadratic cone in PG(3, 32),

namely the linear, Fisher-Thas-Walker, Subiaco and the two Payne flocks.

Proof. Computer run over 35 ovals, each giving an o-polynomial f , determining

herds. Except for the linear case, the only choices for g were elements of the

herd. �
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Corollary 5.4. There are exactly 17 1
2 -flocks in PG(3, 32).

Proof. The group of the Subiaco flock has 5 orbits on generators of the quadratic

cone, of lengths 1, 2, 10, 10 and 10. The group of the Fisher-Thas-Walker flock

has 2 orbits on generators of the quadratic cone, of lengths 1 and 32. The group

of the first Payne flock P1 has 3 orbits on generators of the quadratic cone, of

lengths 1,1 and 31. The group of the second Payne flock P2 has 6 orbits on

generators of the quadratic cone, of lengths 1,2,10,10 and 10. �

Theorem 5.5. There are exactly 6 4-flocks in PG(3, 32), namely the linear, Fisher-

Thas, and the four Cherowitzo flocks of Propositions 6, 7, and 8 and proof of

Corollary 10 of [9].

Proof. Computer search over the 742 ovals with a distinguished point, each

giving an o-polynomial f . Except for the linear case, only choices for g were

elements of the herd (in the sense of [9]). �

Theorem 5.6. The spreads of T2(O), for O an oval of PG(2, 32), are known.

Proof. Apply Theorems 5.1, 5.2, 5.3, 5.5, Corollary 5.4 and [6, Theorem 4.6].

�

Corollary 5.7. T2(O) has no spreads for all 12 O’Keefe-Penttila ovals and 8 of the

10 Cherowitzo ovals.

Remark 5.8. This shows that the O’Keefe-Penttila hyperoval does not arise from

an α-flock, disproving a conjecture of Cherowitzo [9].

Corollary 5.9. T2(O) is not a proper subGQ of a GQ of order (s, 32) for all 12

O’Keefe-Penttila ovals, all 10 Cherowitzo ovals, 4 of the 6 Payne ovals, 1 of the 2

Segre-Bartocci ovals, the non-translation oval contained in the irregular transla-

tion hyperoval and the pointed conic in PG(2, 32).

Proof. In every case, the GQ has a line on no spread. �

Remark 5.10. The 6 ovals O for which T2(O) is not ruled out as a proper subGQ

do arise as proper subGQs of GQ of order (1024,32), 5 of them from flock GQs

and the remaining one from the dual of the Tits quadrangle T3(Ω) arising from

the Tits ovoid Ω in PG(3, 32).

Corollary 5.11. The ovoids of T2(O), for O a translation oval of PG(2, 32) are

known.

Proof. These GQs are self-dual. �
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Corollary 5.12. T2(O), for O a pointed conic of PG(2, 32), is not a proper subGQ

of a GQ of order (32, t), nor of a GQ of order (s, 32).

Proof. It has no ovoids that are not on (∞), and no spreads that do not contain

the nucleus of the conic. �

The evidence above for the fields of orders 16 and 32, coupled with the

results of [4] that a pointed conic cannot be the section of an ovoid for fields of

order bigger than 8 and of [5] that a pseudo-pointed conic cannot occur as part

of a pseudo-ovoid leads us to give the following conjecture.

Conjecture 5.13. T2(O), for O a pointed conic of PG(2, q), is not a proper subGQ

of a GQ of order (q, t), nor of a GQ of order (s, q), for even q > 8.
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