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Affine sets arising from spreads

Antonio Cossidente∗ Giuseppe Marino Olga Polverino

Abstract

Certain affine sets arising from spreads of the projective space PG(3, q)

are investigated. The affine set arising from a Lüneburg spread is studied in

detail.
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1. Introduction

A spread S of a 3-dimensional projective space over GF(q) is a set of q2 + 1

mutually skew lines partitioning the point-set of the space.

Any spread S of PG(3, q) defines a translation plane π(S) of order q2 via the

construction of André/Bruck and Bose [1].

A spread S is said to be Desarguesian if π(S) is a Desarguesian plane. A

regulus of PG(3, q) is one ruling of a non-singular hyperbolic quadric Q+(3, q)

of PG(3, q). If ℓ, m and n are three pairwise disjoint lines of PG(3, q), there is

a unique regulus R(ℓ,m, n) of PG(3, q) containing ℓ, m and n. A spread S is

said to be regular if R(ℓ,m, n) is contained in S, for any triple ℓ, m and n of

distinct lines of S. If q > 2, a spread S of PG(3, q) is regular if and only if S is

Desarguesian.

The spread S is said to be symplectic if its lines turn out to be totally isotropic

with respect to a symplectic polarity of PG(3, q). A spread S is said to be a

semifield spread with respect to a line r of S if there exists a collineation group

∗This work was supported by the Research Project of MIUR (Italian Office for University and Re-
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di Alta Matematica “Francesco Severi”.
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of PG(3, q) fixing the line r pointwise and acting sharply transitively on S \ {r}.

If S is a Desarguesian spread, then S is both a symplectic spread and a semifield

spread with respect to all of its lines.

Under the Plücker correspondence, to any spread S of PG(3, q) there corre-

sponds an ovoid O(S) of Q+(5, q). If S is a symplectic spread then the ovoid

O(S) lies in a parabolic quadric Q(4, q). If S is Desarguesian, then O(S) is an

elliptic quadric Q−(3, q) embedded in Q+(5, q).

In [8, Sec. 3] it has been proven1 that if O is an ovoid of Q+(5, q), then to

any point x of O there corresponds a set Ax(O) of q2 points of a 4-dimensional

projective space Ω′ = PG(4, q) such that

(i) Ax(O) ⊂ Ω′ \ Ω, where Ω is an hyperplane of Ω′ ;

(ii) the line joining two points of Ax(O) is disjoint from the hyperbolic quadric

Q+(3, q) = Ω ∩ Q+(5, q) .

More precisely, the set Ax(O) is obtained by projecting O from the point x to

any hyperplane Ω′ of PG(5, q) not containing x and Ω = Ω′ ∩ x⊥, where ⊥
denotes the orthogonal polarity arising from Q+(5, q). Conversely, if A is a set

of q2 points of Ω′ \ Ω satisfying (ii), then the set

O = {xy ∩ Q+(5, q) | y ∈ A}

is an ovoid of Q+(5, q) and the set Ax(O) obtained by projecting O from the

point x to the hyperplane Ω′ coincides with A.

Let κ denote the Plücker map from the set of lines of PG(3, q) to the set of

points of Q+(5, q). If S is a spread of PG(3, q) and ℓ is any line of S, then κ(S)

is an ovoid of Q+(5, q) containing the point κ(ℓ). We denote by Aℓ(S) the set

Aκ(ℓ)(κ(S)) described above and we will refer to it as the affine set arising from

S with respect to ℓ, or affine set for short.

In this note we study the affine sets Aℓ(S) arising from the Lüneburg spreads,

proving that the sets Aℓ(S) are unions of q q-arcs and each such an arc can be

completed to a translation hyperoval.

2. Preliminaries

Let Σ = PG(3, q), q = ph, p prime, h ≥ 1, be the three-dimensional projective

space over GF(q) and let X0, X1, X2, X3 be homogeneous projective coordinates

of Σ. Let S be a spread of Σ and ℓ be a fixed line of S. We can always assume

1Note that in [8] the construction involves any orthogonal polar space.
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that the line ℓ = ℓ∞ has equations X0 = X1 = 0. In this case, for any line m of

S different from ℓ∞, there is a unique 2 × 2 matrix Jm over GF(q) such that

m = {(a, b, c, d) | (c, d) = (a, b)Jm, a, b ∈ GF(q)} .

The set CS = CS(ℓ∞) = {Jm | m ∈ S} has the following properties:

(1) CS has q2 elements;

(2) X − Y is a non-singular matrix for all X,Y ∈ CS , X 6= Y .

Such a set CS is a spread set associated with S with respect to ℓ∞ (see [4]). On

the other hand, starting from a set C of 2 × 2 matrices over GF(q) satisfying (1)

and (2), the set of lines S = {ℓM | M ∈ C} ∪ {ℓ∞} where

ℓM = {(a, b, c, d) | (c, d) = (a, b)M, a, b ∈ GF(q)}

is a spread of PG(3, q) and CS = C. Note that if ℓ0 : X2 = X3 = 0 is a line of S,

then any line of S \ {ℓ0} is of type

ℓN = {(a, b, c, d) | (a, b) = (c, d)N, c, d ∈ GF(q)} ,

where N is a 2 × 2 matrix over GF(q). Since the map (a, b, c, d) 7→ (c, d, a, b)

sends ℓ∞ to ℓ0, the set CS(ℓ0) = {N | ℓN ∈ S \ {ℓ0}} is a spread set associated

with S with respect to ℓ0.

Let S be a spread of Σ containing the line ℓ∞ and let CS be a spread set

associated with S. Then we have

Proposition 2.1. The affine set arising from S with respect to ℓ∞ can be written

Aℓ∞(S) =

{

(1, a, b, c, d) |
(

a b

c d

)

∈ CS
}

.

Proof. Let κ be the Plücker map from the set of lines of PG(3, q) to the point-set

of the Klein quadric Q = Q+(5, q) : Y0Y5 + Y1Y4 + Y2Y3 = 0 of Λ = PG(5, q).

Then κ(ℓ∞) = x = (0, 0, 0, 0, 0, 1) and κ(ℓ) = (1, c, d,−a, b, ad − bc), where

ℓ =

{

(X0, X1, X2, X3) | (X2, X3) = (X0, X1)

(

a b

c d

)

, X0, X1 ∈ GF(q)

}

is a line of S. Hence the corresponding ovoid O of Q is

O =

{

(1, c, d,−a, b, ad − bc) |
(

a b

c d

)

∈ CS
}

∪ {x}.
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Let ϕ : Λ → Λ be the collineation with equations

Y ′
0 = Y0 Y ′

2 = Y4 Y ′
4 = Y2

Y ′
1 = −Y3 Y ′

3 = Y1 Y ′
5 = Y5 .

Then ϕ(O) = {(1, a, b, c, d, ad − bc) |
(

a b

c d

)

∈ CS} ∪ {x} is the ovoid of the

quadric ϕ(Q) : Y0Y5 − Y1Y4 + Y2Y3 = 0. By projecting ϕ(O) from x onto the

hyperplane Ω′ : Y5 = 0 we get

Aℓ∞(S) = {(1, a, b, c, d) |
(

a b

c d

)

∈ CS} ∪ {x} . �

Now, let A be a set of q2 points of Ω′ = PG(4, q) with properties (i) and (ii).

Choose projective coordinates X0, X1, X2, X3, X4 in Ω′ in such a way that Ω is

the hyperplane with equation X0 = 0 and Q+(3, q) is the hyperbolic quadric

of Ω with equation X1X4−X2X3 = 0. In this case we have that each point of A
has coordinates (1, a, b, c, d). Moreover,if

C =

{

X =

(

a b

c d

)

| (1, a, b, c, d) ∈ A
}

,

then by property (ii) for any X,Y ∈ C, X 6= Y , the matrix X−Y is non-singular,

i.e. C is a spread set. If S is the spread of PG(3, q) defined by C, it is clear that

A = Aℓ∞(S).

Remark 2.2. The affine sets arising from a Desarguesian spread with respect

to any line are affine planes whose line at infinity is disjoint from the quadric

Q+(3, q).

Remark 2.3. It should be noticed that the notion of affine set given above

coincides with the notion of geometric spread set introduced by M. Law and

T. Penttila in [7, p. 29].

3. Affine sets in PG(4, q)

Let Q = Q+(3, q) be the hyperbolic quadric of a 3-dimensional projective space Ω

embedded in Ω′ = PG(4, q), which is disjoint from the secant lines of two affine

sets A and A′ of Ω′. Let G denote the subgroup of PΓO
+(4, q) = Aut(Q) fixing

the reguli of Q. We give the following

Definition 3.1. The affine sets A and A′ are said to be equivalent if there exists

a collineation ϕ of PΓL(5, q) fixing the hyperplane Ω, such that ϕ|Ω ∈ G and

ϕ(A) = A′.
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Proposition 3.2. Let A = Aℓ(S) and A′ = Aℓ(S ′) be two affine sets arising from

two spreads S and S ′ sharing a common line ℓ. Then A and A′ are equivalent if

and only if there exists a collineation Φ of PG(3, q), fixing the line ℓ and such that

Φ(S) = S ′.

Proof. Suppose that A and A′ are equivalent. Then, there exists a collineation ϕ

of Ω′ = PG(4, q) such that ϕ(Ω) = Ω, ϕ|Ω ∈ G and ϕ(A) = A′.

Recall that

A =

{

(1, a, b, c, d) |
(

a b

c d

)

∈ CS
}

and

A′ =

{

(1, a′, b′, c′, d′) |
(

a′ b′

c′ d′

)

∈ CS′

}

.

Since ϕ(Ω) = Ω, if σ is its companion automorphism, then ϕ sends the point

(0, z1, z2, z3, z4) of Ω to the point (0, z′1, z
′
2, z

′
3, z

′
4) where













0

z′1
z′2
z′3
z′4













=













1 0 0 0 0

d1 m11 m12 m13 m14

d2 m21 m22 m23 m24

d3 m31 m32 m33 m34

d4 m41 m42 m43 m44

























0

zσ
1

zσ
2

zσ
3

zσ
4













with di,mij ∈ GF(q). Also, since ϕ|Ω ∈ G, we have

(

z′1 z′2
z′3 z′4

)

= A

(

zσ
1 zσ

2

zσ
3 zσ

4

)

B

where A = (aij), B = (bij) are non-singular 2 × 2 matrices over GF(q) (see

[6, p.28]), i.e.

M = (mij) =









a11b11 a11b21 a12b11 a12b21

a11b12 a11b22 a12b12 a12b22

a21b11 a21b21 a22b11 a22b21

a21b12 a21b22 a22b12 a22b22









.

Hence ϕ sends the point (1, z1, z2, z3, z4) of Ω′ \ Ω to the point (1, z′1, z
′
2, z

′
3, z

′
4)

such that
(

z′1 z′2
z′3 z′4

)

=

(

d1 d2

d3 d4

)

+ A

(

zσ
1 zσ

2

zσ
3 zσ

4

)

B . (1)

Since ϕ(A) = A′, if D =

(

d1 d2

d3 d4

)

we have that

CS′ = {D + AMσB | M ∈ CS}.
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Now, if (X0, X1, X2, X3) = (X,Y ) are the projective coordinates of PG(3, q) and

Xt =

(

X0

X1

)

denotes the transpose of X, the collineation Φ defined by

Φ:

(

X ′
t

Y ′
t

)

=

(

A−1
t 0

DtA
−1
t Bt

)(

Xσ
t

Y σ
t

)

(2)

fixes the line ℓ∞ = ℓ and sends the line

ℓM = {(X,XM) | X ∈ GF(q) × GF(q)}

of S to the line ℓD+AMσB of S ′, i.e. Φ(S) = S ′. Indeed,

Φ(ℓM ) =
{

(XσA−1, Xσ(A−1D + MσB)) | X ∈ GF(q) × GF(q)
}

=
{

(X ′, X ′(D + AMσB)) | X ′ ∈ GF(q) × GF(q)
}

= ℓD+AMσB .

Conversely, suppose that there exists a collineation Φ of PG(3, q) such that

Φ(ℓ) = ℓ and Φ(S) = S ′ and let ℓ = ℓ∞. It is easy to see that a collineation

fixing the line ℓ∞ can be written as in (2); since Φ(S) = S ′, we have CS′ =

{D+AMσB | M ∈ CS}. Now, the matrices A,B,D and the field automorphism

σ define in PG(4, q) a collineation ϕ given by (1) such that ϕ(A) = A′. Since

ϕ(Ω) = Ω and ϕ|Ω ∈ G, we are done. �

By the previous proposition equivalent affine sets produce isomorphic spreads.

The converse is not true. Indeed, isomorphic spreads could produce non-equiv-

alent affine sets. So it makes sense to ask how many non-equivalent affine sets

arise from a given spread. We have the following proposition.

Proposition 3.3. Let S be a spread of Σ = PG(3, q) and let H be the subgroup of

PΓL(4, q) leaving invariant the spread S. The number of non-equivalent affine sets

arising from S equals the number of H-orbits on the lines of S.

Proof. Let ℓ, m be two lines of the spread S of PG(3, q) and choose projective

coordinates in PG(3, q) in such a way that ℓ = ℓ∞ : X0 = X1 = 0 and m = ℓ0 :

X2 = X3 = 0 and let (X0, X1, X2, X3) = (X,Y ). Suppose that there exists a

collineation Ψ such that Ψ(S) = S and Ψ(ℓ∞) = ℓ0. Then Ψ can be written as

Ψ:

(

X ′
t

Y ′
t

)

=

(

CtA
−1
t Bt

A−1
t 0

)(

Xσ
t

Y σ
t

)

,

where A,B,C are 2 × 2 matrices over GF(q), A and B non-singular and σ ∈
Aut(GF(q)). Here, Ψ sends the line

ℓM = {(X,XM) | X = (X0, X1) ∈ GF(q) × GF(q)}
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to the line

{

(Xσ(A−1C + MσB), XσA−1) | X ∈ GF(q) × GF(q)
}

=
{

(X ′(C + AMσB), X ′) | X ′ ∈ GF(q) × GF(q)
}

= ℓC+AMσB

(see Section 2 for notation). Since Ψ(S) = S, we have that a spread set of S
associated with ℓ0 is given by CS(ℓ0) = {C + AMσB | M ∈ CS}.

As in the previous proof, the matrices D = C, A and B and the automor-

phism σ define in PG(4, q) a collineation ϕ of type (1) such that ϕ(Aℓ∞(S)) =

Aℓ0(S).

Now, suppose that Aℓ∞(S) and Aℓ0(S) are equivalent. Then, as in the previ-

ous proof, there exist three 2 × 2 matrices D,A,B, with A and B non-singular

and σ ∈ Aut(GF(q)) such that

CS(ℓ0) = {D + AMσB | M ∈ CS(ℓ∞)},

i.e. S consists of the lines

S =
{

{

(X(D + AMσB), X) | X ∈ GF(q) × GF(q)
}

| M ∈ CS(ℓ∞)
}

∪ {ℓ0} .

The collineation Ψ with equations

(

X ′
t

Y ′
t

)

=

(

DtA
−1
t Bt

A−1
t 0

)(

Xσ
t

Y σ
t

)

leaves S invariant and sends ℓ∞ to ℓ0. This concludes the proof. �

From the previous proposition we have that if S is a transitive spread (i.e.

Aut(S) is transitive on S), then there is a unique affine set arising from it, up to

equivalence.

4. Affine sets of symplectic spreads

Let S be a symplectic spread of Σ = PG(3, q) and let ℓ be a line of S. The

corresponding affine set Aℓ(S) lies in a 3-dimensional projective subspace of

PG(4, q). Indeed, since S is symplectic the corresponding ovoid O of the Klein

quadric Q+(5, q) is contained in a parabolic quadric Q(4, q) which lies in a hy-

perplane Λ′ = PG(4, q). Hence if x is the point of O corresponding under the

Plücker map to the line ℓ of S, then by projecting O from the point x to a

4-dimensional projective subspace Λ = PG(4, q) as in Section 1, we get that

Aℓ(S) is contained in the 3-dimensional projective subspace Γ = Λ ∩ Λ′. Con-

versely, if Aℓ(S) is contained in a 3-dimensional subspace Γ of Λ = PG(4, q), the



I I G

◭◭ ◮◮

◭ ◮

page 8 / 12

go back

full screen

close

quit

ACADEMIA

PRESS

corresponding ovoid of Q+(5, q) constructed as in Section 1, is contained in a

parabolic quadric Q(4, q) and S is symplectic. So we have proven the following

Proposition 4.1. A spread S is symplectic if and only if there exists a line ℓ of S
such that Aℓ(S) is contained in a 3-dimensional projective space. �

From the previous proposition it follows that an affine set A = Aℓ(S) of a

symplectic spread is a set of q2 points of a 3-dimensional projective space Γ such

that

(i’) A ⊂ Γ \ π, where π is a plane of Γ and

(ii’) the secant lines of A are disjoint from a given non-degenerate conic C
of π.

Hence the set D(Aℓ(S)) consisting of the intersection points of the secant

lines of Aℓ(S) with the plane π = Γ ∩ Ω is disjoint from the conic C, so

|D(Aℓ(S))| ≤ q2. If q is even this upper bound becomes q2 − 1, as we prove in

the following proposition.

Proposition 4.2. Let q be even and let N be the nucleus of the conic C. Then

N 6∈ D(Aℓ(S)) and hence |D(Aℓ(S))| ≤ q2 − 1.

Proof. Let A = Aℓ(S) be a symplectic affine set. This means that A is a set of

q2 points of a 3-dimensional projective space Γ = PG(3, q), q even, such that

(1) A ⊂ Γ \ π, where π is a plane of Γ ;

(2) D(A) ∩ C = ∅, where C is a non-degenerate conic of π .

Let N be the nucleus of C and embed Γ in a 4-dimensional projective space Λ

in such a way that C is contained in a parabolic quadric Q(4, q) of Γ having

nucleus N . Let x be a point of Q(4, q) such that π ⊂ x⊥ (where ⊥ is the orthog-

onal polarity induced by Q(4, q)) and let O be the ovoid of Q(4, q) containing x

such that Ax(O) = A (see Introduction). By way of contradiction, suppose that

N ∈ D(A) and let y and z be two points of A such that N ∈ 〈y, z〉. Also, let

y1 and z1 be the two points of O projected by x onto y and z, respectively. Let

P
′ ∼= PG(3, q) be a 3-dimensional projective space of Λ not on N . By projecting

the ovoid O from N onto P
′ we get an ovoid of P

′ [5, Ch. 7] containing the three

collinear points which are the projection of x, y1 and z1 from the nucleus N ;

a contradiction. �

So far, the known symplectic spreads of PG(3, q) which are not Desarguesian

are the Kantor semifield spreads for q = ph (p odd prime and h > 1), the Payne-

Thas semifield spreads for q = 3h ( h > 2), the sporadic semifield spread of

Penttila-Williams when q = 35, the Ree-Tits spreads for q = 32h+1 (h > 0) and

the Lüneburg spread for q = 22h+1 (h > 0).
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If S is a symplectic semifield spread with respect to the line ℓ∞ ∈ S, then the

corresponding affine set Aℓ∞(S) can be written as

Aℓ∞(S) =

{

(1, u, v, v, f(u, v)) |
(

u v

v f(u, v)

)

∈ CS
}

,

where f : GF(q) × GF(q) → GF(q) is an additive map such that f(0, 0) = 0.

Hence D(Aℓ∞(S)) is induced by the set of non-zero vectors

{(0, t, s, s, f(t, s)) | (t, s) ∈ GF(q) × GF(q), (t, s) 6= (0, 0)} .

So, in this case if GF(q′) is the maximal subfield of GF(q) with respect to which

f(t, s) is linear (i.e. f(λt, λs) = λf(t, s) for each λ ∈ GF(q′) and t, s ∈ GF(q)),

and q = q′
n
, then D(Aℓ∞(S)) is a so-called GF(q′)-linear set of rank 2n and

hence |D(Aℓ∞(S))| ≤ q′2n−1
q′−1 = q2−1

q′−1 [2, Eq. (5)]. Hence if q′ > 2, then

the number of directions determined by Aℓ∞(S) is less than q2 − 1. On the

other hand, if q is even, the only symplectic semifield spread of PG(3, q) is the

Desarguesian one [3, Thm.1], say F , and in such a case the number of directions

of Aℓ(F) is q + 1, for any ℓ ∈ S.

The only symplectic spreads of PG(3, q) which are not semifield spreads are

the Ree-Tits spread and the Lüneburg spread.

The stabilizer of the Ree-Tits spread SRT of PG(3, q), q = 32h+1 (h > 0) has

three orbits on SRT of length 1, q and q(q − 1), respectively (see, for example,

[9, §2.2]). If ℓ ∈ SRT is the line fixed by the stabilizer of SRT , then when h =

1 or 2, computational results show that D(Aℓ∞(SRT )) = q(q−1)+ q−1
2 < q2−1.

In the next section we will prove that the affine sets arising from the Lüneburg

spread attain the upper bound of Proposition 4.2.

5. The affine set of the Lüneburg spread

The Lüneburg spread S is a transitive sympelctic spread, i.e. there exists a

collineation group which fixes S and acts transitively on the elements of S. So

there exists, up to equivalence, a unique affine set arising from S. In this section

we study this affine set. Let X0, X1, X2, X3 be homogeneous projective coordi-

nates in Σ = PG(3, q), q = 22e+1, e ≥ 1 and let σ : x ∈ GF(q) 7→ x2e+1 ∈ GF(q).

Then S = {ℓuv | u, v ∈ GF(q)} ∪ {ℓ∞}, where

ℓuv =

{

(a, b, c, d) | (c, d) = (a, b)

(

uσ u + vσ+1

u + vσ+1 vσ

)

, a, b ∈ GF(q)

}
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and ℓ∞ = {(0, 0, c, d) | c, d ∈ GF(q)}, is the Lüneburg spread of PG(3, q). Hence

Aℓ∞(S) = {(1, uσ, u + vσ+1, u + vσ+1, vσ) | u, v ∈ GF(q)}

and it lies in the 3-dimensional projective space Γ with equation X2 = X3.

Denoting by Z0, Z1, Z2, Z3 the homogeneous projective coordinates in Γ, the set

D(Aℓ∞(S)) is contained in the plane π : Z0 = 0 and it is disjoint from the conic

C :

{

Z0 = 0

Z1Z3 − Z2
2 = 0 .

Let N = (0, 0, 1, 0) be the nucleus of the conic C and let Q be the point of C
with coordinates (0, 1, 0, 0). Let αa : Z3 = aZ0, where a ∈ GF(q), be the generic

plane of Γ passing through the line 〈N,Q〉 and different from π. Then the set

{αa}a∈GF(q) partitions the affine set Aℓ∞(S) and the intersection between αa

and Aℓ∞(S) is the set

Oa = {(1, uσ, u + a2e+1, a) | u ∈ GF(q)} .

Note that O0 is a q-arc that can be completed to a translation hyperoval H0 =

O0 ∪ {Q,N} (see [5, Ch.4, §3]). Also, the collineation ϕa : (Z0, Z1, Z2, Z3) 7→
(Z0, Z1, Z2 + a2e+1Z0, Z3 + aZ0) maps H0 into Ha = Oa ∪ {Q,N}. Hence we

have proved the following proposition.

Proposition 5.1. The affine set arising from a Lüneburg spread is the union of q

q-arcs, and each of them can be completed to a translation hyperoval. �

Proposition 5.2. Let S be the Lüneburg spread of Σ = PG(3, q) and let A(S) be

the affine set arising from S. Then |D(A(S))| = q2 − 1.

Proof. The plane πm : Z1 = mZ3, with m ∈ GF(q), intersects the plane π in the

tangent line tm to the conic C at the point Pm = (0,m,
√

m, 1) and the plane

π∞ : Z3 = 0 intersects the plane π in the tangent line t∞ to the conic C at the

point P∞ = (0, 1, 0, 0). Let Im = πm ∩ A(S) for any m ∈ J = GF(q) ∪ {∞}.

Since {πj | j ∈ J} is the pencil of planes through the line Z3 = Z1 = 0, we have

A(S) =
⋃

m∈J Im. Hence in order to prove the result, it is sufficient to show that

D(Im) = tm \ {Pm, N} for each m ∈ J . Recall that D(A(S))∩ (C ∪ {N}) = ∅. If

m ∈ GF(q), we have

Im = {(1,ma, a2e+1 + m2e

a2e

, a) | a ∈ GF(q)} .

Since D(Im) is induced by the set of non-zero vectors

{

(0,m(a + a′), a2e+1 + a′2e+1 + m2e

(a + a′)2
e

, a + a′) | a, a′ ∈ GF(q), a 6= a′
}

,
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we can write

D(Im) =

{(

0,m,
a2e+1 + a′2e+1

a + a′
+m2e

(a+a′)2
e−1, 1

)

| a, a′ ∈ GF(q), a 6= a′

}

,

and putting t = a + a′ (hence t ∈ GF(q)∗) we get

a2e+1 + a′2e+1

a + a′
+ m2e

(a + a′)2
e−1 =

a2e+1 + (t + a)2
e+1

t
+ m2e

t2
e−1

= t2
e

+ at2
e−1 + a2e

+ m2e

t2
e−1 , (3)

i.e. D(Im) =
{

(0,m, t2
e

+ at2
e−1 + a2e

+ m2e

t2
e−1, 1) | a, t ∈ GF(q), t 6= 0

}

. If

a = m2e

, then (3) becomes t2
e

+ m22e

= t2
e

+
√

m, hence

D(Im) =
{

(0,m, b, 1) | b ∈ GF(q), b 6= √
m
}

= tm \ {Pm, N} ,

i.e. |D(Im)| = |tm| − 2 = q − 1. Finally, I∞ = {(1, uσ, u, 0) | u ∈ GF(q)}
and hence D(I∞) = {(0, aσ−1, 1, 0) | a ∈ GF(q), a 6= 0} = t∞ \ {P∞, N}, i.e.

|D(I∞)| = q − 1. �

Remark 5.3. We end the paper with a question that could be of some inter-

est. As we have seen, the affine sets arising from the Lüneburg spreads attain

the upper bound of Proposition 4.2. Does this property characterize Lüneburg

spreads?

References

[1] R. H. Bruck and R.C. Bose, The construction of translation planes from

projective spaces, J. Algebra 1 (1964), 85–102.

[2] G. Bonoli and O. Polverino, Fq–linear blocking sets in PG(2, q4), Innov.

Incidence Geom. 2 (2005), 35–56.

[3] I. Cardinali, G. Lunardon, O. Polverino and R. Trombetti, Spreads in

H(q) and 1–systems of Q(6, q), European J. Combin. 3 (2002), 367–376.

[4] P. Dembowski, Finite Geometries, Springer–Verlag, Berlin Heidelberg,

New York, 1968.

[5] Handbook of Incidence Geometry, Buildings and foundations, edited by

F. Buekenhout, North-Holland, Amsterdam, 1995.

[6] J. W. P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford

University Press, New York, 1985.



I I G

◭◭ ◮◮

◭ ◮

page 12 / 12

go back

full screen

close

quit

ACADEMIA

PRESS

[7] M. Law and T. Penttila, Flocks, ovals and generalised quadrangles (Four

Lectures in Napoli, June 2000), preprint n. 40 (2000), Dipartimento di

Matematica e Applicazioni “R. Caccioppoli” – Università degli Studi di
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