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Abstract

In PG(2, q) a point set K is sharply transitive if the collineation group

preserving K has a subgroup acting on K as a sharply transitive permuta-

tion group. By a result of Korchmáros, sharply transitive hyperovals only

exist for a few values of q, namely q = 2, 4 and 16. In general, sharply

transitive complete arcs of even size in PG(2, q) with q even seem to be spo-

radic. In this paper, we construct sharply transitive complete 6(
√

q−1)-arcs

for q = 42h+1, h ≤ 4. As far as we are concerned, these are the smallest

known complete arcs in PG(2, 47) and in PG(2, 49); also, 42 seems to be a

new value of the spectrum of the sizes of complete arcs in PG(2, 43). Our

construction applies to any q which is an odd power of 4, but the problem

of the completeness of the resulting sharply transitive arc remains open for

q ≥ 411. In the second part of this paper, sharply transitive subsets arising

as orbits under a Singer subgroup are considered and their characters, that

is the possible intersection numbers with lines, are investigated. Subsets of

PG(2, q) and certain linear codes are strongly related and the above results

from the point of view of coding theory will also be discussed.
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1 Introduction

A collineation group G of PG(2, q), q power of a prime p, has a faithful action on

the set of points of the plane and some point orbits of G may have remarkable

geometric properties. This has emerged from previous work on transitive ovals,

hyperovals, arcs, (k, n)-arcs, blocking sets and subplanes [3, 4, 20, 21, 23, 24].

Well-known sharply transitive complete arcs other than the conics are the

cyclic (q −√
q + 1)-arcs in PG(2, q) for any square q [5, 13, 14, 19], the Lunelli-
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Sce hyperoval in PG(2, 16), and the regular hyperovals in PG(2, 2) and PG(2, 4).

Some more examples, especially for q odd, are also known in the literature,

see [24].

In the first part of the paper we deal with sharply transitive arcs in PG(2, q) for

q even. Apart from small q’s, complete sharply transitive arcs of even size appear

to be rare objects. Non-existence results are found in [20, 24, 23]. Korchmáros

[20] showed that no sharply transitive hyperoval for either q = 8 or q ≥ 32

exists. The group G cannot be both cyclic and linear, as proved by Storme and

Van Maldeghem [24]. By a result of Storme [23], if G is linear and does not

fix a line, a point, a triangle, or an imaginary triangle (that is, a triangle in

PG(2, q3)), then the size of the sharply transitive arc is in {6, 18, 36, 72}.

Our contribution is on the positive side. We exhibit a complete sharply tran-

sitive 6(
√
q − 1)-arc in PG(2, q) for each q = 42h+1, 1 ≤ h ≤ 4. For h = 3 and

h = 4 this seems to be the smallest known complete arc in PG(2, 42h+1). Also,

as far as we are concerned, no other example of a complete 42-arc in PG(2, 64)

is known [9]. As we prove in section 2, the above arcs are members of an infi-

nite class of sharply transitive arcs of size 6(
√
q − 1) in PG(2, q), with q = 42h+1,

h ≥ 0. When h = 0, then the hyperoval in PG(2, 4) is obtained. It is still open

the problem of determining whether other arcs in the family are complete.

In the second part of the paper, the case where G is a subgroup of the Singer

group of PG(2, q) is taken into consideration. Let S be a Singer subgroup, that is

a subgroup of the Singer group, then |S| = q2+q+1
t

with t a divisor of q2 + q+ 1.

Since the Singer group is sharply transitive on PG(2, q), any two point orbits

under S are projectively equivalent. Let Et be one of such orbits. For t small, an

important feature of Et is to have only a few characters. Even, Et may happen

to have only two characters. Some sufficient conditions for this, where q is a

square, are due to Hamilton and Penttila [15]. In particular, this is the case

when either t divides q − √
q + 1 [10], or q is a fourth power and t divides

(q2 + q + 1)/(
√
q + 4

√
q + 1) [12], or p ≡ 2 (mod 3) and t = 3 [7]. For some

sporadic examples with q non-square, see [2]. The case t = 3 was thoroughly

investigated in [6, 8].

A useful tool in this investigation is the map φt : i 7→ p · i (mod t). Actually,

as p does not divide t, φt is a permutation of Zt. Hamilton and Penttila ob-

served that Et has only two characters provided that φt has only two cycles, the

trivial one and the other consisting of the remaining t − 1 elements. A natural

generalization which will be shown in section 3 is that Et has a few characters

provided that φt has only a few cycles. More precisely, if φt has r cycles, then Et

has at most r characters. From this, a sufficient condition on (q, t) is obtained in

order that Et has at most three characters, see Proposition 3.12. Interestingly,

E7 is always a set with at most three characters. Furthermore, when t is small,
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then the largest character of Et is small compared to the size of Et, see Theo-

rem 3.10. We point out in section 4 that in some cases the linear codes arising

from Et are optimal as their parameters attain the Griesmer bound, see Table 1.

2 A family of transitive arcs of size 6(
√

q − 1)

Throughout this section, we assume that q = 42h+1, for some integer h ≥ 1.

Denote (X : Y : T ) the homogenous coordinates of a point in PG(2, q). Let

c = 3(22h+1 − 1) = 3(
√
q − 1).

Note that c is a divisor of q − 1.

Let α be a primitive c-th root of unity in Fq. Consider the following collineations

of PG(2, q):

η : (X : Y : T ) 7→ (αX : α−1Y : T ) , and

φ : (X : Y : T ) 7→ (α
√

q−1Y
√

q : α
√

q−1X
√

q : T
√

q) .

It is straightforward to check that φ is an involution, whereas η has order c. As

φηφ = η2
√

q−3,

the group G generated by φ and η has order 2c.

Let K be the orbit of P = (1 : 1 : 1) under the action of G. Note that the

stabilizer of P in G is trivial, whence |K| = 2c.

Proposition 2.1. The point set K is an arc in PG(2, q), which is complete for

q = 42h+1, 1 ≤ h ≤ 4.

Proof. Note that K = K1 ∪K2, where

K1 =
{

(αi : α−i : 1) | i = 0, . . . , c− 1
}

, and

K2 =
{

(αi : α−i+2
√

q−2 : 1) | i = 0, . . . , c− 1
}

.

As both K1 and K2 are subsets of an irreducible conic, and φ is an involution

mapping K1 on K2, we only need to show that no line joining a point S ∈ K1

and a point R ∈ K2 meets K1 in a point different from S. Also, as the group

generated by η acts transitively on both K1 and K2, S = P can be assumed. Let

R = (αj : α−j+2
√

q−2 : 1), and let lSR denote the line through S and R. Then a

number of cases can occur. When j 6≡ 0 (mod
√
q − 1), the line lSR meets the

conic C : XY = T 2 in P and in Q =
(

β : 1
β

: 1
)

with β = αj+1
α−j+2

√

q−2+1
. If j = 0,
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then lSR meets C in P and in (0 : 1 : 0). If j = 2
√
q − 2 then the intersection of

lSR and C consists of P and (1 : 0 : 0). Finally, if j =
√
q − 1 then P is the only

common point of lSR and C.

Hence, we can assume that j 6≡ 0 (mod
√
q − 1). The point Q belongs to K1

only if βc = 1, that is,

β3 = α3j 1 + αj + α2j + α3j

1 + αj + α3j + α2
√

q−2(αj + α2j)
∈ F√

q , (1)

where F√
q denotes the subfield of Fq of order

√
q.

Note that the group of c-th roots of unity in Fq can be partitioned in the three

cosets of the multiplicative group of F√
q :

E0 = F
⋆√

q
, E1 = αF

⋆√
q
, E2 = α2

F
⋆√

q
.

As
√
q − 1 ≡ 1 (mod 3), we have that E1 = α

√
q−1E0, E2 = α2

√
q−2E0. Three

cases need to be distinguished.

• αj ∈ E0. In this case all the powers of αj belong to F√
q, whence (1) holds

if and only if α2
√

q−2 ∈ F√
q , which is clearly impossible.

• αj ∈ E1. Write αj = α
√

q−1γ for γ ∈ F√
q, γ 6= 1. Then, taking into

account that α2
√

q−2 + α
√

q−1 = 1, condition (1) reads

1 +
γ + γ2

1 + γ + γ3 + α
√

q−1(γ + γ2)
∈ F√

q ,

which is impossible as α
√

q−1 /∈ F√
q.

• αj ∈ E2. Write αj = α2
√

q−2γ for γ ∈ F√
q, γ 6= 1. In this case (1) reads

1 + γ + γ3 + α
√

q−1(γ + γ2)

1 + γ + γ2 + γ3
∈ F√

q ,

which is again impossible as α
√

q−1 /∈ F√
q .

Therefore, K is an arc. The completeness of K for q = 42h+1, 1 ≤ h ≤ 4, has

been obtained as a result of a computer search. �

For h > 4 we have not been able to establish whether the arc K is complete

or not.

Remark 2.2. It is worth noticing that G is not the full collineation group of K.

It is straighforward to check that the collineation

ψ : (X : Y : T ) 7→ (Y 4 : X4 : T 4)
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preserves K and fixes the point (1 : 1 : 1). As ψ has order 4h+ 2, the size of the

collineation group ofK is at least 6(4h+2)(
√
q−1). Actually it has been checked

by means of a computer search that the collineation group of K coincides with

the group generated by G and ψ when either h = 1 or h = 2. When h = 0, the

collineation group of K is the whole symmetric group S6, see e.g. [16, p. 369].

3 Characters of cyclic sets of Singer type

Let q = ph for some prime p and some positive integer h. Following Singer [22],

the projective plane PG(2, q) can be represented by means of a cubic extension

Fq3 of Fq: points are non-zero elements of Fq3 such that two elements x, y ∈ Fq3

represent the same point if and only if x = λy for some λ ∈ Fq. Let ω denote a

primitive element in Fq3 . As the set

{

ω0, ω1, . . . , ωq2+q
}

contains exactly one element from each class representing a point, one gets a

representative system for points by choosing ωi, where i ranges over Zv, with

v = q2 + q + 1, so that both σ : ωi 7→ ωi+1 and τ : ωi 7→ ωip become per-

mutations on the points of PG(2, q). The cyclic group G generated by σ is a

subgroup of PGL(3, q) acting regularly on the set of points of PG(2, q). Actu-

ally, up to conjugacy, this is the only cyclic group acting regularly on the set of

points of PG(2, q), and in the sequel it will be referred to as the Singer group

of PG(2, q). The group U generated by τ is a group of collineations of PG(2, q)

which normalizes every subgroup of G in PΓL(2, q); moreover, the order of U

is 3h. Throughout this section, the point represented by ωi will be denoted

by Pi.

For any divisor n of q2 + q + 1, let O0, . . . , Ot−1 be the orbits of PG(2, q)

under the unique subgroup Sn of G of order n. Clearly, t = (q2 + q + 1)/n

and |Oi| = n. Indexes can be arranged in such a way that both P0 ∈ O0 and

Os = σs(O0) hold. Note that τ acts on the set of orbits O0, . . . , Ot−1 as follows:

τ(Oi) = Opi (mod t).

The following definition will be useful.

Definition 3.1. Let s(p, t) be the number of orbits of Zt \ {0} under the action

of the permutation group generated by the map

i 7→ p · i .

Note that s(p, t) ≤ t−1
2 unless p ≡ 1 (mod t), which can only happen for

t = 3.
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Proposition 3.2. Let s(p, t) be as in Definition 3.1. Then the cyclic group gener-

ated by τ acts on the set O1, . . . , Ot−1 with a number of orbits equal to s(p, t).

When t is prime the integer s(p, t) can be easily computed.

Proposition 3.3. Let t be a prime. Then s(p, t) divides t−1 and s(p, t) is the least

integer i such that p ≡ ωi (mod t) for some primitive element ω ∈ Zt .

Proof. Let e be the order of p (mod t) in the multiplicative group of Zt. Then

s(p, t) = t−1
e

, and p (mod t) is the s(p, t)-th power of a primitive element in Zt.

This proves the assertion. �

Proposition 3.4. If t ≤ 7, then s(p, t) ≤ 2.

Proof. The assertion is obvious for t = 3. As q2 + q + 1 is odd, neither cases

t = 2 nor t = 4 can occur. It is straightforward to check that q2 + q + 1 is

not divisible by 5 either, for any prime power q. When t = 7, we consider

the subgroup H generated by q in the multiplicative group of Z7. It certainly

contains the subgroup generated by p. As 7 | q3 − 1 = (q2 + q + 1)(q − 1), the

order of H is a divisor of 3. As q 6≡ 1 (mod 7), such order is precisely 3. �

It is well known (see e.g. [11, 2.3.1]) that under the action of a cyclic

collineation group of a finite projective plane π, the point set and the line set

of π have the same cyclic structure. Therefore, as τ fixes P0, at least one line l0
has to be left invariant by τ . Set

mi = |l0 ∩Oi| . (2)

Lemma 3.5. Let l be any line in PG(2, q). Then

|l ∩O0| = mi

for some i = 0, . . . , t+ 1.

Proof. The group G acts regularly on the set of lines of PG(2, q). Therefore,

l = σj(l0) for some j = 0, . . . , q2 + q. Let Oi = (σj)−1(O0). Then clearly

|l ∩O0| = mi. �

Lemma 3.6. The number of distinct values of the integers mi is at most s(p, t)+1,

with s(p, t) as in Definition 3.1.

Proof. As l0 is fixed by τ , mi = mpi (mod t) holds. This proves the assertion. �

Then the following result is obtained.
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Theorem 3.7. Let Et be any orbit under the action of the subgroup of the Singer

group of size (q2 + q + 1)/t, and let s = s(p, t) be as in Definition 3.1. Then the

number of characters of Et is at most s(r, t) + 1.

Some lower and upper bounds on the characters of O0 will be provided.

Lemma 3.8. Let mi be as in (2). Then

(i)
∑t−1

i=0 mi = q + 1 ;

(ii)
∑t−1

i=0 m
2
i =

q2 + (t+ 1)q + 1

t
.

Proof. The former assertion is trivial. To prove (ii), we consider the action of Sn

on the set of lines of PG(2, q). For i = 0, . . . , t − 1, let Li be the line orbit

under Sn containing σi(l0).

For any u = 0, . . . , q2 + q, let su be such that 0 ≤ su ≤ t − 1 and su ≡ −u
(mod t). As the collineation σu maps the orbit Osu

on O0,

|σu(l0) ∩O0| = |l0 ∩Osu
| = msu

holds. This proves that for any i = 0, . . . , t − 1 the line orbit Li consists of

lines meeting O0 in the same number of points m−i (mod t). Then, as O0 and Li

have the same size, through any point P ∈ O0 there pass exactly m−i (mod t)

lines in Li, each of which meets O0 in m−i (mod t) points. Therefore, the points

on O0 can be counted as follows:

q2 + q + 1

t
= 1 +

t−1
∑

i=0

mi(mi − 1) ,

or, equivalently,

q2 + q + 1

t
+ q =

t−1
∑

i=0

m2
i , (3)

whence the assertion follows. �

Corollary 3.9. Let s = s(p, t) be as in Definition 3.1. Let Oi1 , . . . , Ois
be orbit

representatives of the action of τ on the orbits O1, . . . , Ot−1. If t is prime, then

(i) m0 +
t− 1

s

∑s

j=1mij
= q + 1 ;

(ii) m2
0 +

t− 1

s

∑s

j=1m
2
ij

=
q2 + (t+ 1)q + 1

t
.
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Theorem 3.10. Let Et be any orbit under the action of the subgroup of the Singer

group of size (q2 + q+1)/t, and let s = s(p, t) be as in Definition 3.1. If t is prime,

then all but at most one character ℓ satisfy

q + 1 −
(

1 +
√
ts

)√
q

t
≤ ℓ ≤ q + 1 +

(

1 +
√
ts

)√
q

t
, (4)

and if ℓ̃ is the possible exception, then

q + 1 − (t− 1)
√
q

t
≤ ℓ̃ ≤ q + 1 + (t− 1)

√
q

t
. (5)

Proof. Let Oi1 , . . . , Ois
be orbit representatives of the action of τ on the orbits

O1, . . . , Ot−1. Assume without loss of generality that Et = O0. We are going to

prove that
q + 1 − (t− 1)

√
q

t
≤ m0 ≤ q + 1 + (t− 1)

√
q

t
(6)

and, for each j = 1, . . . , s,

q + 1 −
(

1 +
√
ts

)√
q

t
≤ mij

≤ q + 1 +
(

1 +
√
ts

)√
q

t
. (7)

Let x̄ the arithmetic mean of {mi1 , . . . ,mis
}, and let V be its variance. Let

ȳ = x̄2 + V . By Corollary 3.9 we have that

(

q + 1 − (t− 1)x̄
)2

+ (t− 1)ȳ =
q2 + (t+ 1)q + 1

t
.

By straightforward computation it follows that

x̄
(

2(q + 1) − tx̄
)

=
q2 + q + 1

t
+ V .

Then x̄
(

2(q + 1) − tx̄
)

≥ q2+q+1
t

implies that

q + 1 −√
q

t
≤ x̄ ≤ q + 1 +

√
q

t
. (8)

Then (6) follows from (8), taking into account that m0 = q + 1 − (t− 1)x̄.

Also, since x̄
(

2(q+1)−tx̄
)

≤ q2+2q+1
t

, we have that V ≤ q
t
. Then Chebyshev’s

inequality yields

|mij
− x̄| ≤

√

s
q

t
,

whence, taking into account (8), equation (7) follows. �
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Note that equality in (5) can hold, for instance when t = q −√
q + 1. In this

case, Et is a Baer subplane and ℓ̃ =
√
q + 1.

The case s(p, t) = 1 was thoroughly investigated in [15].

When s(p, t) = 2, Theorem 3.10 can be slightly improved. Let t = 2d+ 1 and

assume without loss of generality that

m1 = · · · = md ≥ md+1 = · · · = mt−1 .

Let U1 = m1 + md+1 and U2 = m1 − md+1. Then from Corollary 3.9 the

following equality is easily obtained:

2(q2 + q + 1) +
t2U2

1

2
− 2t(q + 1)U1 = − tU

2
2

2
,

that is,

tU2
2 + (tU1 − 2q − 2)2 = 4q .

Therefore,

m1 ≤ md+1 + 2

√
q√
t
.

On the other hand (8) yields that

md+1 ≤ −m1 +
2

t
(q +

√
q + 1) .

Then

2m1 ≤ 2

t
(q +

√
q + 1) + 2

√
q√
t
,

and finally the following improvement of (7) is obtained.

Proposition 3.11. Assume that s(p, t) = 2 and that t is prime. Then for all but

one characters ℓ of Et , the following holds:

q + 1 − (1 +
√
t)
√
q

t
≤ ℓ ≤ q + 1 + (1 +

√
t)
√
q

t
.

A sufficient condition for s(p, t) = 2 is pointed out.

Proposition 3.12. Let t be a prime number such that 6 | (t − 1). Let q = ph be

such that p ≡ ω2 for some primitive element ω in Zt. Let ωi be a primitive 6-th

roots of unity in Zt. If either

h = i+ d

(

t− 1

2

)

or h = 2i+ d

(

t− 1

2

)

for some positive integer d, then both t | q2 + q + 1 and s(r, t) = 2 hold.
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Proof. Note that ω2i and ω4i are two distinct roots of X2 +X+1. The condition

t | p2h + ph + 1 is then equivalent to either ph ≡ ω2i (mod t) or ph ≡ ω4i

(mod t). As p ≡ ω2, the claim follows. �

Remark 3.13. When p ≡ 1 (mod 3), s(p, 3) = 2 holds. Then by Theorem 3.7

the number of characters of E3 is at most 3. Actually, in [8] it was proved that

equality holds.

Remark 3.14. In [2], two sporadic examples of sets Et with s(p, t) > 1 and only

2 characters were pointed out. Whether these are the only examples remains an

open problem.

4 Linear codes arising from sharply transitive sets

Given a subset K of n points in PG(2, q), the matrix whose columns are ho-

mogenous coordinates of the points in K can be viewed as a generator matrix

for an [n, 3, d]q-code, that is, a q-ary linear code CK of length n, dimension 3

and minimum distance d. The same matrix is a parity check matrix for the dual

code C⊥
K .

The relationship between subsets of PG(2, q) and their associated codes has

been thoroughly investigated, see for instance the survey paper [17]. In partic-

ular, the weight distributions of both CK and C⊥
K is determined by the geometry

of K, as codewords in CK of weight w correspond to lines meeting K in exactly

n− w points.

Denote by r(K) the largest character of K. As the minimum distance d of CK

is n−r(K), the case when r(K) is small with respect to n is of particular interest

when the error capability of CK is considered. In particular, optimal codes are

obtained when the Griesmer bound n ≥ ∑2
i=0⌈d/qi⌉ [25, Theorem 5.2.6] is

attained, that is, when

n > (r(K) − 2)q + r(K) .

On the other hand, when K is a complete arc the dual code C⊥
K has good cov-

ering properties. More precisely, C⊥
K is a quasi-perfect MDS code with best

covering density when n is as small as possible. It should also be pointed out

that if K is fixed by a group G of collineations of PG(2, q), then G is isomorphic

to a semilinear automorphism group of both CK and C⊥
K , which can be a useful

tool for efficient decoding, see [18].

The following corollary to Theorem 3.10 is immediately obtained.



On sharply transitive sets in PG(2, q) 149

Theorem 4.1. Let Et be any orbit under the action of the subgroup of the Singer

group of size (q2 + q + 1)/t. If t is prime, then

r(Et) ≤
q + 1

t
+
t− 1

t

√
q .

Theorem 4.1 yields that if t is small, then the size n of Et is large with respect

to r(Et). In general, the best that can be done to get a set with large size with

respect to its maximum character r is taking the union of ⌊r/2⌋ conics, see the

survey paper [1]. This gives arcs for which n/q is about r/2. For a set Et,

Theorem 4.1 yields that n/q is greater than r −
√
tr. It is worth noticing that

the Griesmer bound is attained by Et for the following values of q and t (the

computation of r(Et) is a result of a computer search).

q t n r(Et)

23 7 79 5

29 13 67 4

32 7 151 6

81 7 949 13

109 21 571 7

256 13 5061 21

343 37 3189 11

625 21 18631 31

Table 1: [n, 3, n− r(Et)]q-codes attaining the Griesmer bound
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