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Abstract

In [6] and [3] the authors determine the structure of the intersection of

two Hermitian surfaces of PG(3, q
2) under the hypotheses that in the pencil

they generate there is at least one degenerate surface. In [1] and [3] it

is shown that under suitable hypotheses the intersection of two Hermitian

surfaces generating a non-degenerate pencil is a pseudo-regulus. Here we

completely determine all possible intersection configurations for two Her-

mitian surfaces of PG(3, q
2) generating a non-degenerate pencil.
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1 Introduction

A Hermitian variety H in PG(n, q2) is the set of absolute points for some Her-

mitian form defined on the underlying vector space. The variety H is called

degenerate if the corresponding Hermitian form is degenerate; else, it is called

non-degenerate. If n = 2, H is called a Hermitian curve, while if n = 3, H
is called a Hermitian surface. A point P on H is called singular if any line

through P either intersects H only in P or is contained in H. The vertex of H
is the set of all singular points of H, and it is denoted by V (H). It is clear that

V (H) is a projective subspace of PG(n, q2), and the rank of H is the number

r(H) = n − dim(V (H)).

Let H0 and H1 be two distinct Hermitian varieties of PG(n, q2) with homo-

geneous equations f0 = 0 and f1 = 0, respectively. Then the Hermitian pencil
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F defined by H0 and H1 is the set of all Hermitian varieties with equations

a0f0 + a1f1 = 0, as a0 and a1 vary over the subfield GF(q) , not both zero. Note

that there are q + 1 distinct Hermitian varieties in the pencil F , some of which

may be degenerate. The set B = H0 ∩ H1 is called the base of F , and any two

distinct varieties in F intersect precisely in B.

We now restrict to the case n = 3, and let H0 and H1 denote two distinct Her-

mitian surfaces in PG(3, q2) with associated polarities u0 and u1, respectively. If

the pencil F generated by H0 and H1 contains at least one degenerate Hermi-

tian surface, then the structure of the base B = H0 ∩ H1 is completely known

(see [6] and [3]).

Thus we are interested in the situation when all Hermitian surfaces in the

pencil F are non-degenerate. In this case, since the Hermitian surfaces of a

pencil cover all the points of PG(3, q2), straightforward counting shows that

|B| = (q2 + 1)2. Conversely, if q ≥ 4 and |B| = (q2 + 1)2, then the pencil F
generated by H0 and H1 necessarily contains only non-degenerate Hermitian

surfaces. Indeed, going through the list in [6] or [3] of all possibilities for the

cardinality of B, when at least one of the surfaces in F is degenerate, we see that

|B| = (q2 +1)2 only occurs for q = 3 and |B| = q4 +q3−q2 +1 = 100 = (q2 +1)2

or q = 2 and |B| = q3 + q3 + 1 = 25 = (q2 + 1)2. We thus have the following

result.

Proposition 1.1. For q ≥ 4 the Hermitian pencil F contains only non-degenerate

surfaces if and only if the base B has size (q2 + 1)2.

In the sections that follow we prove the following result.

Theorem 1.2. Let H0 and H1 be two non-degenerate Hermitian surfaces in PG(3, q2),

and let B = H0 ∩ H1 be the base of the Hermitian pencil F they generate. If F
contains only non-degenerate surfaces, then one of the following holds:

• B contains exactly two skew lines and q4 − 1 other points;

• B contains exactly two skew lines L and M , a third line N intersecting both

L and M , and q4 − q2 other points;

• B contains exactly four lines forming a quadrangle and q4 − 2q2 + 1 other

points;

• B is ruled by a pseudo-regulus.

Moreover, all such cases occur.
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2 Preliminary results

In [10] B. Segre defines two Hermitian surfaces in PG(3, q2) to be permutable if

and only if their associated polarities commute, and then he proves the follow-

ing result.

Theorem 2.1 ([10]). Let q be odd, and H0 and H1 be two permutable Hermitian

surfaces in PG(3, q2) with associated polarities u0 and u1, respectively. Then u0u1

is a projectivity with two skew lines, say L and M , of fixed points. That is, u0u1 is

a biaxial harmonic involutorial collineation with fundamental lines L and M .

The fundamental lines associated with two permutable Hermitian surfaces

may or may not be lines lying on those surfaces. The lines completely contained

in a Hermitian surface are called the generators of the surface, and a set of k

mutually skew generators of a Hermitian surface H is called a k-span of H. A

k-span of H is called H-complete if it is not contained in a (k + 1)-span of H.

In [4] the following is proved.

Proposition 2.2 ([4]). The q2 + 1 generators meeting two skew generators of H
form an H-complete span. This H-span has no further transversals.

In general, any set of q2 +1 mutually skew lines in PG(3, q2) with exactly two

transversals is called a pseudo-regulus. This notion was introduced by J. Free-

man in [5], where he proved that any pseudo-regulus can be extended to a

spread of PG(3, q2). The set of (q2 + 1)2 points covered by a pseudo-regulus is

called a hyperbolic QF -set in [2]. In this paper we see that this set of points nat-

urally arises as one of the possible intersections B for H0 and H1. The following

result is proved in [1].

Theorem 2.3 ([1]). Let q be an odd prime power, and let H0 and H1 be per-

mutable Hermitian surfaces in PG(3, q2). If the fundamental lines L and M are

contained in B = H0 ∩ H1, then B is a ruled determinantal variety consisting of

the points on a pseudo-regulus. In particular, this pseudo-regulus is a complete

(q2 + 1)-span of both H0 and H1.

The hypotheses in the previous theorem are weakened in [3], where it is

shown that the point set of a pseudo-regulus can be obtained as the intersection

of two Hermitian surfaces in the even characteristic case as well. In particular,

the following result is proved.

Theorem 2.4 ([3]). Let H0 and H1 be two distinct Hermitian surfaces in PG(3, q2)

with associated polarities u0 and u1, respectively. Suppose that L and M are two

skew lines contained in B = H0∩H1. Then B is a hyperbolic QF -set with transver-

sals L and M if and only if u0 and u1 agree on the points of L ∪ M .
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An investigation of other possible intersection configurations for H0 and H1

is started in [3], where the following three results appear.

Proposition 2.5. If B = H0 ∩H1 contains a line L, then every plane π through L

intersects B in one of the following configurations:

• the points of the line L;

• the points on a pair of distinct lines L and M ;

• the points lying on a Baer subpencil of lines containing L;

• the points on a degenerate CF -set (that is, the union of L and an affine Baer

subplane).

Proposition 2.6. If B = H0 ∩H1 contains a line L such that u0 and u1 agree on

the points of L, then B is the union of q2 +1 pairwise skew lines, all intersecting L.

If, in addition, B contains a line M skew with L, then necessarily B is a hyperbolic

QF -set.

Proposition 2.7. If B = H0 ∩H1 contains a line L such that u0 and u1 agree on

the points of L and also on a point of B \ L, then B is a hyperbolic QF -set.

In order to conduct our investigation of the possible configuration patterns

for the base of a Hermitian pencil in PG(3, q2) containing only non-degenerate

Hermitian surfaces, it is useful to first recall the possible intersection config-

urations of two Hermitian curves in PG(2, q2). This will be done in the next

section.

3 The intersection of Hermitian curves

In this section F will be a Hermitian pencil of curves in PG(2, q2). We refer

to [8], [9] and [3] for the results catalogued here. A straightforward counting

argument shows that if all the Hermitian curves in F are non-degenerate, then

the base has size q2 − q + 1. In fact, such a base is a complete arc, often called a

Kestenband arc. At the other end of the spectrum, the following result lists the

possibilities for the base when all the Hermitian curves in F are degenerate of

rank 2.

Proposition 3.1. Let C0 and C1 be two rank 2 degenerate Hermitian curves in

PG(2, q2). If the pencil they generate contains only rank 2 degenerate Hermitian

curves, then the base B = C0 ∩ C1 of F is one of the following: a line, a pair

of distinct lines, or a degenerate CF -set (the union of a line and an affine Baer

subplane).
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The general situation, when at least one of the Hermitian curves in F is non-

degenerate, is described below in Proposition 3.2. We use the notation from [3].

A rank 1 Hermitian curve (that is, a line of PG(2, q2) repeated q + 1 times) can

meet a non-degenerate Hermitian curve in either one point or a Baer subline,

thus accounting for the first two intersections mentioned in Proposition 3.2.

As previously stated, if all Hermitian curves in F are non-degenerate, the base

C0 ∩ C1 is a Kestenband arc. Thus the remaining possibilities can be obtained

by intersecting a non-degenerate Hermitian curve C with a Baer subpencil P of

lines with center P (Hermitian curve of rank 2). There are four such configura-

tions:

• Suppose P /∈ C and exactly two of the lines in P are tangent to C. Then

P∩C contains the points on q−1 Baer sublines (through P ) and two other

points (one on each of the tangent lines to C in P). Thus B = C ∩ P has

size q2 + 1, and this base is called a CF -set in PG(2, q2).

• Suppose P ∈ C and exaclty one of the lines in P is tangent to C (at P ).

Then P ∩ C contains the points on q Baer sublines (through P ) and thus

again has size q2 + 1. This base is called a Γ-set in PG(2, q2).

• Suppose P /∈ C and exactly one of the lines in P is tangent to C, say at

the point Q. Then P ∩ C contains the points on q Baer sublines (through

P ) and the point Q. This base has size q2 + q + 1, and is called a K-set

in PG(2, q2). It should be noted that this base can also be obtained as the

intersection of C with a Baer subpencil through Q (and no tangent lines

to C), and thus there are 2q + 1 Baer sublines contained in this base.

• Suppose P /∈ C and none of the lines in P is tangent to C. Then P ∩ C
contains the points on q + 1 Baer sublines (through P ) and thus has size

(q+1)2. This base is called an H-set in PG(2, q2). It turns out that this base

is partitioned by three different Baer subpencils through three distinct

points, none of which are in the base, and thus there are 3(q + 1) Baer

sublines contained in this base.

Diagrams for these last four intersections can be found on page 112 of [8],

where Figures 1, 2, 3, and 4 correspond to H-sets, K-sets, CF -sets, and Γ-sets,

respectively.

The following result summarizes the above discussion.

Proposition 3.2. Let C0 and C1 be two Hermitian curves in PG(2, q2). If the

Hermitian pencil F they generate contains at least one non-degenerate Hermitian

curve, then C0 ∩ C1 is one of the following: a point, a Baer subline, a (complete)

Kestenband (q2 − q + 1)-arc, a CF -set, a Γ-set, a K-set, or an H-set.
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4 The intersection of Hermitian surfaces

We now return to our fundamental problem of determining the possible inter-

section patterns for the base B of a Hermitian pencil F in PG(3, q2) containing

all non-degenerate Hermitian surfaces. As stated previously, this is the only

remaining open case. We will denote by H0,H1, . . . ,Hq the q + 1 Hermitian

surfaces of the pencil F generated by H0 and H1, and by u0, u1, . . . , uq their

associated polarities. Recall that in this case the base B necessarily has size

(q2 + 1)2.

We first consider the situation where B contains a line L, and refine the

possibilities listed in Proposition 2.5.

Proposition 4.1. Assume the Hermitian pencil F contains all non-degenerate Her-

mitian surfaces, and that the base B contains a line L. Then any plane π through

L intersects B nontrivially, and B ∩ π is one of the following:

• the set of points on a pair of distinct (intersecting) lines L and M ;

• the set of points on a degenerate CF -set (the union of L and an affine Baer

subplane).

Proof. Suppose π is a plane through L that meets B in the points on a Baer

subpencil P of lines, one of which is necessarily L, and let P be the center of

this pencil. Then |π ∩ (B \ L)| = q3 and |B \ L| = (q2 + 1)q2. Since every plane

through L intersects B \ L in 0, q2 or q3 points by Proposition 2.5, the existence

of π implies the existence of another plane π′ through L intersecting B only

in L.

We now work with the plane π′. Since π′ ∩ B = L, there necessarily exists a

point Q on L\{P} such that π′ = Qui for i = 0, 1, 2, . . . , q (otherwise, π′ cannot

intersect B only in L). Hence π′ contains q + 1 Baer subpencils of lines through

Q that share only the line L. This yields q(q + 1) + 1 lines through Q in π′, a

contradiction. The result now follows from Proposition 2.5. �

Remark 4.2. Note that if a plane π intersects B in two lines, say L and M , then

π = Pui for every i, where P = L ∩ M . Conversely, if there exists a point P on

L such that two of the polarities agree on P , then all of the polarities agree on

P and π = Pu0 meets B in L and another line, say M , passing through P .

Proposition 4.3. If B contains a line L, then one of the following cases occurs:

• all planes through L intersect B in a degenerate CF -set (the union of L and

an affine Baer subplane);

• there exists a unique plane through L intersecting B in L and another line;
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• there exist exactly two planes through L intersecting B in L and another line;

• all planes through L intersect B in L and another line.

Proof. By Proposition 4.1 every plane through L intersects B either in L and

another line, or in L and an affine Baer subplane. If there is a point Q on L on

which the q+1 polarities ui agree, then the plane Qu0 (= Qui for all i) intersects

B in L and another line, and conversely. Hence the multiset of intersection

configurations of B and the various planes through L depends on the number

of points of L on which the q + 1 polarities ui agree. But this is the same as the

number of fixed points of the projectivity u0u
−1
1 on the line L by Remark 4.2.

From the fundamental theorem of projective geometry, this number must be

one of the following: 0, 1, 2 or q2 + 1 (see [12], for instance). Thus the four

configurations in the statement of the proposition are the only possibilities. �

If B contains two intersecting lines, then more can be said.

Proposition 4.4. If B contains two intersecting lines, say L and M , then one of

the following occurs:

(1) B contains exactly three lines, and the third line meets either L or M (but

not both);

(2) B contains exactly four lines which form a quadrilateral;

(3) B contains exactly q2+3 lines, forming a pseudo-regulus and its two transver-

sals.

Proof. The stabilizer of a Hermitian surface in PG(3, q2) acts transitively on pairs

of intersecting generators (see [11], for instance). Thus, after choosing our

favorite Hermitian surface, say H0 : X0X
q
3 + X1X

q
2 + X2X

q
1 + X3X

q
0 = 0, we

may also choose our favorite pair of intersecting lines in B = H0 ∩ H1, say

L : X0 = X1 = 0 and M : X1 = X3 = 0. If H1 is the Hermitian matrix giving

the equation of H1, then H1 is of the following form:

H1 =









a α β γ

αq b δ ǫ

βq δq c ν

γq ǫq νq d









,

where the diagonal elements a, b, c, d are in GF(q) and the other elements in

GF(q2).

Since B contains the points P : (0, 0, 1, 0), Q : (0, 0, 0, 1) and R : (1, 0, 0, 0),

we necessarily have a = c = d = 0. Moreover, the tangent plane to H0 at the
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point P = L∩M is Pu0 : X1 = 0, and this plane also must be the tangent plane

to H1 at P . This further implies that β = ν = 0, and the matrix H1 must have

the following restricted form:

H1 =









0 α 0 γ

αq b δ ǫ

0 δq 0 0

γq ǫq 0 0









.

Note that γ = 0 implies det(H1) = 0, contradicting our fundamental as-

sumption that the pencil F contains only non-degenerate Hermitian surfaces.

So, γ 6= 0. Next observe that the polarities u1 and u0 agree on the point

Q : (0, 0, 0, 1) of the line L if and only if ǫ = 0. Similarly, these polarities agree

on the point X : (0, 0, 1, ζ) of the line L, where ζ 6= 0, if and only if ǫζq = γ − δ.

Thus we have the following possibilities:

(i) If ǫ 6= 0 and γ 6= δ, then for any choice of γ, ǫ and δ there is a unique point

X of L \ {P} on which the polarities u0 and u1 agree;

(ii) If ǫ 6= 0 and γ = δ, then there is no point of L\{P} on which the polarities

agree;

(iii) If ǫ = 0 and γ 6= δ, then Q is the unique point of L \ {P} on which the

polarities agree;

(iv) If ǫ = 0 and γ = δ, then the polarities agree on all the points of L.

Similarly, the polarities u1 and u0 agree on the point R : (1, 0, 0, 0) of M if

and only if α = 0, and they agree on the point Y : (1, 0, ζ, 0), where ζ 6= 0, if

and only if ζq(γq − δ) = αq. Thus we again have four possibilities:

(i)’ If α 6= 0 and δ 6= γq, then there is a unique point Y of M \ {P} on which

the polarities u0 and u1 agree;

(ii)’ If α 6= 0 and δ = γq, then there is no point of M \ {P} on which the

polarities agree;

(iii)’ If α = 0 and δ 6= γq, then R is the unique point of M \ {P} on which the

polarities agree;

(iv)’ If α = 0 and δ = γq, then the polarities agree on all the points of M .

Hence on L\{P} the polarities u0 and u1 agree on no point, one point, or all

points. A similar statement holds for M \ {P}. If the polarities agree on exactly

one point of (L ∪ M) \ {P}, then Proposition 4.1 (and the ensuing remark)

implies that B contains exactly three lines as described in statement (1).
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If the polarities agree on exactly one point of L \ {P} and agree on exactly

one point of M \ {P}, then Proposition 4.1 implies that B contains exactly four

lines. In particular, B contains a line M ′ meeting L (but not M) and a line L′

meeting M (but not L). Consider the plane π generated by L and M ′, which by

Proposition 4.1 meets B precisely in L∪M ′. Since the line L′ necessarily meets

π in a point, this point must lie on M ′ and we get the configuration described

in statement (2).

If the polarities agree on no point of (L ∪ M) \ {P}, then from the above

analysis of the entries in the matrix H1 we have γ = δ = γq, and thus γ ∈ GF(q).

In this case the determinant of the matrix representing a generic Hermitian

surface in the pencil F is (γ+t)4, where t is a generic element of GF(q). Thus, by

choosing t = −γ, we get a degenerate Hermitian surface in F , a contradiction.

Hence this possibility does not occur. Moreover, we get the same contradiction

if the polarities agree on all points of L ∪ M , or if the polarities agree on all

points of L (respectively, M) but on no point of M \{P} (respectively, L\{P}).

Thus the only remaining case to consider is if the polarities agree on all

points of L (respectively, M) and on exactly one point of M \ {P} (respec-

tively, L \ {P}). In this case Proposition 2.7 implies that B is the point set of a

pseudo-regulus, and we get the configuration described in statement (3). This

completes the proof. �

Straightforward computations show that all possibilities listed in the above

proposition indeed do occur. Moreover, it now follows from Proposition 4.4 that

if B contains any lines, then the only remaining case to be studied is when those

lines are pairwise skew.

Proposition 4.5. If the lines contained in B are pairwise skew, then B contains at

most two lines.

Proof. Suppose B contains three pairwise skew lines, say L0, L1 and L2. Then

H0 contains the union of two “quadratically extended” subreguli (see [7]), say

L0, L1, L2, . . . , Lq and M0,M1,M2, . . . ,Mq. Similarly, for any i 6= 0, Hi con-

tains the union of two “quadratically extended” subreguli, say L0, L1, L2, . . . , Lq

and M ′

0,M
′

1,M
′

2, . . . ,M
′

q. Note that the first subregulus is the same since it

is uniquely determined by L0, L1 and L2. Let R be the regulus of PG(3, q2)

containing {L0, L1, L2, . . . , Lq}, so that Ropp is the regulus containing both

{M0,M1,M2, . . . ,Mq} and {M ′

0,M
′

1.M
′

2, . . . ,M
′

q}.

Now suppose that {M0,M1,M2, . . . ,Mq} ∩ {M ′

0,M
′

1.M
′

2, . . . ,M
′

q} = ∅ for

every choice of i 6= 0. Then the q + 1 Hermitian surfaces in the pencil F
will contain q + 1 mutually disjoint subreguli of Ropp, a contradiction. Thus

B must contain at least one (actually, two) lines of Ropp as well as the lines
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in {L0, L1, L2, . . . , Lq}, implying that B contains intersecting lines. This final

contradiction proves the result. �

We next show that the possible configuration for B consisting of exactly two

skew lines and q4 − 1 other points is always possible. Without loss of generality

we may assume that the Hermitian surface H0 has equation X0X
q
3 + X1X

q
2 +

X2X
q
1 + X3X

q
0 = 0. Then L : X0 = X1 = 0 and M : X2 = X3 = 0 are two

skew generators contained in H0. If there exists another Hermitian surface H1

containing L and M such that u0 and u1 agree on no point of L∪M , then from

Remark 4.2 and Proposition 4.5 we know that B contains exactly two lines.

We now show that such a Hermitian surface H1 exists. Namely, consider the

Hermitian surface

H1 : (X2 + X3)X
q
0 + αqX3X

q
1 + X0X

q
2 + (X0 + αX1)X

q
3 = 0

with α a nonzero element of GF(q2) (otherwise it is degenerate). Straightfor-

ward computations show that H1 contains L ∪ M and, moreover, u0 and u1 do

not agree on either P = (0, 0, 0, 1) or Q = (0, 1, 0, 0).

Next consider an arbitrary point R = (0, 0, 1, ζ) of L\{P}, where ζ 6= 0. Then

Ru0 has equation ζqX0+X1 = 0, and Ru1 has equation (1+ζq)X0+αζqX1 = 0.

Hence Ru0 = Ru1 if and only if 1 + ζq = αζ2q; that is, if and only if αx2 − x− 1

has a root in GF(q2). This occurs precisely when Tr0(α) = 0 for q is even or

when 1 + 4α is a square in GF(q2) for q odd. Here Tr0 denotes the absolute

trace of GF(q2) over GF(2) when q is even.

Finally, consider an arbitrary point S = (1, ζ, 0, 0) of M \ {Q}, where again

ζ 6= 0. Then Su0 has equation ζqX2 + X3 = 0, and Su1 has equation X2 + (1 +

αqζq)X3 = 0. Thus Su0 = Su1 if and only if αqζ2q +ζq = 1; that is, if and only if

αqx2 + x − 1 has a root in GF(q2). Again this occurs precisely when Tr0(α) = 0

for q even or when 1 + 4αq is a square in GF(q2) for q odd.

Hence u1 and u0 agree on no points of L∪M if and only if Tr0(α) = 1 when

q is even, and if and only if 1 + 4α is a non-square of GF(q2) when q is odd.

Choosing such an element α ∈ GF(q2), we obtain a non-degenerate Hermitian

surface H1 such that B = H1 ∩ H0 contains exactly two skew lines and q4 − 1

other points.

5 Proof of Theorem 1.2

From the results in the previous section, it remains to study two cases: when B
contains exactly one line, and when B contains no line. In this section we will

prove that both cases are not possible. We make extensive use of the results
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recalled in Section 3 on the intersection of two Hermitian curves. We start with

three observations.

Observation 5.1. Let π be a plane. Then π ∩Hi is either a Baer subpencil of lines

or a non-degenerate Hermitian curve. Moreover π ∩ B is the common intersection

of all the Hermitian curves π∩Hi. Since none of those curves is a rank 1 Hermitian

curve, we have that π ∩ B cannot be a Baer subline.

Proof. If the intersection of two Hermitian curves C and C′ is a Baer subline ℓ,

then the line L containing ℓ, counted q + 1 times, is an Hermitian curve (of

rank 1) contained in the pencil generated by C and C′. �

Observation 5.2. No plane π intersects B in a non-degenerate Hermitian curve.

Proof. Suppose that H0 and H1 contain the non-degenerate Hermitian curve

C, whose equation we may assume is Xq+1
1 + Xq+1

2 + Xq+1
3 = 0. Thus both

H1 and H2 meet the plane with equation X0 = 0 in the curve C. Hence these

Hermitian surfaces have equations of the form Xq+1
1 +Xq+1

2 +Xq+1
3 +aiX

q+1
0 +

biX0X
q
1 + ciX0X

q
2 + diX0X

q
3 + bq

i X
q
0X1 + cq

i X
q
0X2 + dq

i X
q
0X3 = 0, for i = 1, 2.

If F is the pencil generated by H0 and H1, then H0 − H1 must be in F . But

a straightforward determinant argument shows that H0 − H1 is a degenerate

Hermitian surface, contradicting our assumption on F . �

Observation 5.3. Through every point P of B there is at least one Baer subline

contained in B, and every Baer subline contained in B is contained in a generator

of some Hermitian surface Hi.

Proof. Through every point P of B there is a Baer subline of B since |B| =

(q2 + 1)2. Moreover, let ℓ be a Baer subline contained in B, and let L be the

line containing ℓ. If L is contained in B, then it is a generator of Hi for ev-

ery i. Otherwise, we assume L is not contained in B, and consider some plane

π through L. If π meets each Hi in a degenerate Hermitian curve, then by

Proposition 3.1 we only need consider the case where π ∩ B is a degenerate

CF -set. But in this case L is necessarily a generator of some π ∩ Hi, and hence

a generator of Hi. Finally, in the case when every plane π meets at least one Hi

is a non-degenerate Hermitian curve, then by Observation 5.1, Observation 5.2,

and Proposition 3.2 we may assume that the plane π meets B in one of the fol-

lowing: an H-set, a K-set, a Γ-set, or a CF -set. In all these cases the line L is a

generator of some Hermitian surface Hi. �

We are now ready to show that B must contain at least two lines. We begin

with a weaker proposition.
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Proposition 5.4. If q ≥ 4, then B contains at least a line.

Proof. Suppose B contains no line, and let ℓ be a Baer subline contained in B.

Then from Observation 5.3 we know that the line L containing ℓ is a generator

of exactly one of the Hermitian surfaces, say H0, in the pencil F . We also know

from Proposition 3.1, Proposition 3.2, and Observation 5.1 that every plane

through L intersects B in one of the following: an H-set, a K-set, a Γ-set, or a

CF -set. Let a be the number of planes through L intersecting B in an H-set, and

let b be the number of planes through L intersecting B either in a Γ-set or in a

CF -set. Then

q4 + 2q2 + 1 = |B| = a(q2 + q) + b(q2 − q) + (q2 + 1 − a − b)q2 + q + 1,

which implies that a − b = q − 1.

Now fix some point P of ℓ, and count the number of Baer sublines contained

in B through P . Note that planes through L yield different numbers of Baer

sublines through P contained in B, depending upon the planar intersection

with B. Indeed, if such a plane π intersects B in an H-set, then π yields two

Baer sublines through P contained in B, other than ℓ. If π intersects B in a

CF -set, then we obtain no Baer subline, other than ℓ, passing through P and

contained in B. If π intersects B in a Γ-set, then we obtain either 0 or q − 1

Baer sublines, other than ℓ, contained in B and incident with P . Finally, if π

intersects B in a K-set, then we obtain either 1 or q Baer sublines, other than ℓ,

contained in B and passing through P .

The classification in [8] and the geometry of tangent planes to Hermitian

surfaces shows that the tangent plane π0 to H0 at P is either a Γ-set with center

P or a K-set with center P . Moreover, π0 is the only plane through L that can

meet B in either a Γ-set or a K-set with center P . Thus, since q ≥ 4, π0 is

the only plane through L whose intersection with B contains at least three Baer

sublines through P .

Suppose first that π0 ∩ B is a K-set with center P , and thus contains q Baer

sublines through P other than ℓ. Planes, other than π0, through L which meet

B in a K-set do not have center P and thus provide exactly one additional Baer

subline through P in B. There are q2 − a − b such planes. All planes through L

meeting B in a Γ-set provide no additional Baer sublines through P in B, as is

true for all planes through L meeting B in a CF -set. Hence, counting the total

number of Baer sublines through P , other than ℓ, that are contained in B, we

obtain

1 · q + a · 2 + b · 0 + (q2 − a − b) · 1 = q2 + q + a − b = q2 + 2q − 1

since a − b = q − 1.
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Suppose now that π0∩B is a Γ-set with center P , and thus contains q−1 Baer

sublines through P other than ℓ. Planes, other than π0, through L which meet

B in a Γ-set do not have center P and thus provide no additional Baer sublines

through P in B, as is true for all planes through L meeting B in a CF -set. The

planes through L meeting B in a K-set, of which there are q2 − a − (b − 1) =

q2 + 1− a− b, each provide one additional Baer subline through P in B. Again,

counting the total number of Baer sublines through P , other than ℓ, that are

contained in B, we obtain

1 · (q − 1) + a · 2 + (q2 + 1 − a − b) · 1 = q2 + q + a − b = q2 + 2q − 1,

the same count as in the previous case. Hence, after including the Baer subline ℓ,

in all cases we obtain precisely q2 + 2q Baer sublines through P contained in B.

Finally, counting in two ways the total number of flags (P, ℓ), where ℓ is a

Baer subline contained in B, we see that the number of Baer sublines in B is

(q2 + 2q)(q2 + 1)2/(q + 1). Since this must be an integer, we have (q + 1) | 4 and

hence q = 3, a contradiction. �

Remark 5.5. Note that for q = 3 there is an example of a base B of size q4 +

q3−q2 +1 = 100 = (q2 +1)2 containing no lines. However, the associated pencil

F contains a degenerate Hermitian surface.

Proposition 5.6. If q ≥ 4, then B contains at least two lines.

Proof. The argument is a refinement of the above proof. Suppose that B con-

tains exactly one line, say M . Then every plane through M intersects B in a

degenerate CF -set (that is, the union of M and an affine Baer subplane) by

Proposition 4.1. Let ℓ be a Baer subline contained in B which intersects M in

one point (through every point P ∈ B there is at least one such a Baer subline),

and let L be the line containing ℓ. Every plane through L intersects B in one of

the following: an H-set, a K-set, a Γ-set, a CF -set, or a degenerate CF -set. Let a

be the number of planes through L intersecting B in an H-set, and let b be the

number of planes through L intersecting B either in a Γ-set or in a CF -set. Then

q4 + 2q2 + 1 = |B| = a(q2 + q) + b(q2 − q) + (q2 − a − b)q2 + 2q2 + 1,

implying that a − b = 0 and hence a = b.

Now let P be the point ℓ ∩ M , and count the total number of Baer sublines

contained in B which are incident with P but are not contained in M . A com-

putation analogous to that made in the proof of Proposition 5.4 shows that this

number is

2a + (q2 − a − b) + q = q2 + q,
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since a = b. Note that the tangent plane to H0 at P , where H0 is the unique

Hermitian surface in the pencil F which contains the line L, is the plane inter-

secting B in a degenerate CF -set.

Next let Q be a point of ℓ different from P = ℓ∩M . Counting the number of

Baer sublines incident with Q and contained in B, we obtain

2a + (q2 − a − b) + (q − 1) + (q + 1) = q2 + 2q,

again using a = b. Note that the tangent plane to H0 at Q is not the plane

intersecting B in a degenerate CF -set, and hence meets B either in a Γ-set or

a K-set with center Q. The count is the same in both cases, as in the proof of

Proposition 5.4.

Counting in two ways the number of flags (P, ℓ), where ℓ is a Baer subline

contained in B and not contained in M , we see that the total number of such

sublines is ((q2 + q)(q2 + 1) + (q2 + 2q)(q4 + q2))/(q + 1). As this must be an

integer, we have that (q + 1) | 2, a contradiction. �

Theorem 1.2 now follows from Propositions 4.4, 4.5, and 5.6 when q ≥ 4.

For q = 2 and q = 3, the result follows from an exhaustive computer search.
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