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On the intersection of Hermitian surfaces

Nicola Durante* Gary Ebert'

Abstract

In [6] and [3] the authors determine the structure of the intersection of
two Hermitian surfaces of PG(3, ¢°) under the hypotheses that in the pencil
they generate there is at least one degenerate surface. In [1] and [3] it
is shown that under suitable hypotheses the intersection of two Hermitian
surfaces generating a non-degenerate pencil is a pseudo-regulus. Here we
completely determine all possible intersection configurations for two Her-
mitian surfaces of PG(3, ¢*) generating a non-degenerate pencil.
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1. Introduction

A Hermitian variety H in PG(n, ¢?) is the set of absolute points for some Her-
mitian form defined on the underlying vector space. The variety H is called
degenerate if the corresponding Hermitian form is degenerate; else, it is called
non-degenerate. If n = 2, H is called a Hermitian curve, while if n = 3, 'H
is called a Hermitian surface. A point P on H is called singular if any line
through P either intersects H only in P or is contained in H. The vertex of H
is the set of all singular points of H, and it is denoted by V(). It is clear that
V(H) is a projective subspace of PG(n,¢?), and the rank of H is the number
r(H) =n — dim(V(H)).

Let Ho and H; be two distinct Hermitian varieties of PG(n, ¢*) with homo-
geneous equations f, = 0 and f; = 0, respectively. Then the Hermitian pencil
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F defined by H, and H; is the set of all Hermitian varieties with equations
ap fo + a1 f1 =0, as ap and ay vary over the subfield GF(q) , not both zero. Note
. " N that there are ¢ + 1 distinct Hermitian varieties in the pencil F, some of which

may be degenerate. The set B = H, N H; is called the base of F, and any two

page 2/ 15 distinct varieties in F intersect precisely in B.

We now restrict to the case n = 3, and let H, and H; denote two distinct Her-

go back mitian surfaces in PG(3, ¢%) with associated polarities vy and uy, respectively. If

the pencil F generated by H, and H; contains at least one degenerate Hermi-
full screen tian surface, then the structure of the base B = Hy N H; is completely known

(see [6] and [3]).

close Thus we are interested in the situation when all Hermitian surfaces in the

pencil F are non-degenerate. In this case, since the Hermitian surfaces of a

quit

pencil cover all the points of PG(3,¢?), straightforward counting shows that
|B| = (¢® + 1)2. Conversely, if ¢ > 4 and |B| = (¢* + 1)?, then the pencil F
generated by H, and H; necessarily contains only non-degenerate Hermitian
surfaces. Indeed, going through the list in [6] or [3] of all possibilities for the
cardinality of B, when at least one of the surfaces in F is degenerate, we see that
|B| = (¢*>+1)? only occurs for g = 3and |B| = ¢* +¢*> —¢*> +1 =100 = (¢* +1)?
org=2and |B| = ¢+ ¢*+1=25=(¢° + 1)% We thus have the following
result.

Proposition 1.1. For q > 4 the Hermitian pencil F contains only non-degenerate
surfaces if and only if the base B has size (¢°> + 1)*.

In the sections that follow we prove the following result.

Theorem 1.2. Let H and H; be two non-degenerate Hermitian surfaces in PG(3, ¢°),
and let B = Hy N 'Hy be the base of the Hermitian pencil F they generate. If F
contains only non-degenerate surfaces, then one of the following holds:

e B contains exactly two skew lines and ¢* — 1 other points;

e B contains exactly two skew lines L and M, a third line N intersecting both
L and M, and ¢* — ¢? other points;

e B contains exactly four lines forming a quadrangle and ¢* — 2¢® + 1 other
points;

e B is ruled by a pseudo-regulus.

Moreover, all such cases occur.
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2. Preliminary results

In [10] B. Segre defines two Hermitian surfaces in PG(3, ¢*) to be permutable if
and only if their associated polarities commute, and then he proves the follow-
ing result.

Theorem 2.1 ([10]). Let q be odd, and Hy and H; be two permutable Hermitian
surfaces in PG(3, ¢?) with associated polarities ug and u;, respectively. Then ugu
is a projectivity with two skew lines, say L and M, of fixed points. That is, ugu is
a biaxial harmonic involutorial collineation with fundamental lines L and M.

The fundamental lines associated with two permutable Hermitian surfaces
may or may not be lines lying on those surfaces. The lines completely contained
in a Hermitian surface are called the generators of the surface, and a set of k
mutually skew generators of a Hermitian surface H is called a k-span of H. A
k-span of ‘H is called H-complete if it is not contained in a (k + 1)-span of H.
In [4] the following is proved.

Proposition 2.2 ([4]). The ¢® + 1 generators meeting two skew generators of H
form an H-complete span. This H-span has no further transversals.

In general, any set of ¢ + 1 mutually skew lines in PG(3, ¢?) with exactly two
transversals is called a pseudo-regulus. This notion was introduced by J. Free-
man in [5], where he proved that any pseudo-regulus can be extended to a
spread of PG(3, ¢?). The set of (¢*> + 1)? points covered by a pseudo-regulus is
called a hyperbolic Qp-set in [2]. In this paper we see that this set of points nat-
urally arises as one of the possible intersections B for H, and H;. The following
result is proved in [1].

Theorem 2.3 ([1]). Let ¢ be an odd prime power, and let Hy and H; be per-
mutable Hermitian surfaces in PG(3, ¢?). If the fundamental lines L and M are
contained in B = Hy N Hy, then B is a ruled determinantal variety consisting of
the points on a pseudo-regulus. In particular, this pseudo-regulus is a complete
(¢* + 1)-span of both Hy and ‘H;.

The hypotheses in the previous theorem are weakened in [3], where it is
shown that the point set of a pseudo-regulus can be obtained as the intersection
of two Hermitian surfaces in the even characteristic case as well. In particular,
the following result is proved.

Theorem 2.4 ([3]). Let Ho and H; be two distinct Hermitian surfaces in PG(3, ¢?)
with associated polarities ug and uy, respectively. Suppose that L and M are two
skew lines contained in B = HoN'H1. Then B is a hyperbolic Q -set with transver-
sals L and M if and only if ug and u, agree on the points of L U M.
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An investigation of other possible intersection configurations for H, and H;
is started in [3], where the following three results appear.

Proposition 2.5. If B = HyNH; contains a line L, then every plane © through L
intersects B in one of the following configurations:

the points of the line L;

the points on a pair of distinct lines L and M;

the points lying on a Baer subpencil of lines containing L;

the points on a degenerate Cr-set (that is, the union of L and an affine Baer
subplane).

Proposition 2.6. If B = Hy N H; contains a line L such that ug and u, agree on
the points of L, then B is the union of ¢° + 1 pairwise skew lines, all intersecting L.
If, in addition, B contains a line M skew with L, then necessarily B is a hyperbolic
Q p-set.

Proposition 2.7. If B = Hy N 'Hy contains a line L such that ug and u, agree on
the points of L and also on a point of B\ L, then B is a hyperbolic Q r-set.

In order to conduct our investigation of the possible configuration patterns
for the base of a Hermitian pencil in PG(3, ¢?) containing only non-degenerate
Hermitian surfaces, it is useful to first recall the possible intersection config-
urations of two Hermitian curves in PG(2,¢?). This will be done in the next
section.

3. The intersection of Hermitian curves

In this section F will be a Hermitian pencil of curves in PG(2,¢%). We refer
to [8], [9] and [3] for the results catalogued here. A straightforward counting
argument shows that if all the Hermitian curves in F are non-degenerate, then
the base has size ¢ — ¢ + 1. In fact, such a base is a complete arc, often called a
Kestenband arc. At the other end of the spectrum, the following result lists the
possibilities for the base when all the Hermitian curves in F are degenerate of
rank 2.

Proposition 3.1. Let Cy and C; be two rank 2 degenerate Hermitian curves in
PG(2,q?). If the pencil they generate contains only rank 2 degenerate Hermitian
curves, then the base B = Cy N Cy of F is one of the following: a line, a pair
of distinct lines, or a degenerate Cp-set (the union of a line and an affine Baer
subplane).
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The general situation, when at least one of the Hermitian curves in ¥ is non-
degenerate, is described below in Proposition 3.2. We use the notation from [3].
A rank 1 Hermitian curve (that is, a line of PG(2, ¢?) repeated ¢ + 1 times) can
meet a non-degenerate Hermitian curve in either one point or a Baer subline,
thus accounting for the first two intersections mentioned in Proposition 3.2.
As previously stated, if all Hermitian curves in F are non-degenerate, the base
Co N Cy is a Kestenband arc. Thus the remaining possibilities can be obtained
by intersecting a non-degenerate Hermitian curve C with a Baer subpencil P of
lines with center P (Hermitian curve of rank 2). There are four such configura-
tions:

e Suppose P ¢ C and exactly two of the lines in P are tangent to C. Then
PNC contains the points on ¢— 1 Baer sublines (through P) and two other
points (one on each of the tangent lines to C in P). Thus B = C NP has
size ¢° + 1, and this base is called a Cp-set in PG(2, ¢?).

e Suppose P € C and exaclty one of the lines in P is tangent to C (at P).
Then P N C contains the points on ¢ Baer sublines (through P) and thus
again has size ¢® + 1. This base is called a I'-set in PG(2, ¢?).

e Suppose P ¢ C and exactly one of the lines in P is tangent to C, say at
the point ). Then P N C contains the points on ¢ Baer sublines (through
P) and the point ). This base has size ¢> + ¢ + 1, and is called a K-set
in PG(2, ¢?). It should be noted that this base can also be obtained as the
intersection of C with a Baer subpencil through ) (and no tangent lines
to C), and thus there are 2¢ + 1 Baer sublines contained in this base.

e Suppose P ¢ C and none of the lines in P is tangent to C. Then P NC
contains the points on ¢ + 1 Baer sublines (through P) and thus has size
(¢+1)2. This base is called an H-set in PG(2, ¢?). It turns out that this base
is partitioned by three different Baer subpencils through three distinct
points, none of which are in the base, and thus there are 3(¢ + 1) Baer
sublines contained in this base.

Diagrams for these last four intersections can be found on page 112 of [8],
where Figures 1, 2,3, and 4 correspond to H-sets, K-sets, Cp-sets, and I'-sets,
respectively.

The following result summarizes the above discussion.

Proposition 3.2. Let Cy and C; be two Hermitian curves in PG(2,q?). If the
Hermitian pencil F they generate contains at least one non-degenerate Hermitian
curve, then Cy N C; is one of the following: a point, a Baer subline, a (complete)
Kestenband (q* — q + 1)-arc, a Cp-set, a I'-set, a K-set, or an H-set.
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4. The intersection of Hermitian surfaces

We now return to our fundamental problem of determining the possible inter-
section patterns for the base B of a Hermitian pencil F in PG(3, ¢*) containing
all non-degenerate Hermitian surfaces. As stated previously, this is the only
remaining open case. We will denote by Hy, H1,...,H, the ¢ + 1 Hermitian
surfaces of the pencil F generated by H, and H;, and by wug,us,...,u, their
associated polarities. Recall that in this case the base B necessarily has size
(¢ +1)%

We first consider the situation where B contains a line L, and refine the
possibilities listed in Proposition 2.5.

Proposition 4.1. Assume the Hermitian pencil F contains all non-degenerate Her-
mitian surfaces, and that the base B contains a line L. Then any plane 7 through
L intersects B nontrivially, and B N 7 is one of the following:

e the set of points on a pair of distinct (intersecting) lines L and M;

e the set of points on a degenerate Cp-set (the union of L and an affine Baer
subplane).

Proof. Suppose 7 is a plane through L that meets 55 in the points on a Baer
subpencil P of lines, one of which is necessarily L, and let P be the center of
this pencil. Then |7 N (B\ L)| = ¢® and |B\ L| = (¢*> + 1)¢?. Since every plane
through L intersects B\ L in 0, ¢? or ¢> points by Proposition 2.5, the existence
of = implies the existence of another plane 7’ through L intersecting B only
in L.

We now work with the plane 7’. Since 7’ N B = L, there necessarily exists a
point Q on L\ {P} such that 7’ = Q% fori =0, 1,2,...,q (otherwise, 7’ cannot
intersect B only in ). Hence 7’ contains ¢ 4+ 1 Baer subpencils of lines through
@ that share only the line L. This yields ¢(¢ + 1) + 1 lines through @ in 7/, a
contradiction. The result now follows from Proposition 2.5. O

Remark 4.2. Note that if a plane 7 intersects B in two lines, say L and M, then
m = P% for every i, where P = L N M. Conversely, if there exists a point P on
L such that two of the polarities agree on P, then all of the polarities agree on
P and 7 = P“0 meets B3 in L and another line, say M, passing through P.

Proposition 4.3. If B contains a line L, then one of the following cases occurs:

e all planes through L intersect BB in a degenerate Cg-set (the union of L and
an affine Baer subplane);

e there exists a unique plane through L intersecting B in L and another line;
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e there exist exactly two planes through L intersecting B in L and another line;

e all planes through L intersect B in L and another line.

Proof. By Proposition 4.1 every plane through L intersects B either in L and
another line, or in L and an affine Baer subplane. If there is a point ) on L on
which the ¢+ 1 polarities u; agree, then the plane Q"0 (= Q*: for all ¢) intersects
B in L and another line, and conversely. Hence the multiset of intersection
configurations of B and the various planes through L depends on the number
of points of L on which the ¢ + 1 polarities u; agree. But this is the same as the
number of fixed points of the projectivity uou; ' on the line L by Remark 4.2.
From the fundamental theorem of projective geometry, this number must be
one of the following: 0,1,2 or ¢ + 1 (see [12], for instance). Thus the four
configurations in the statement of the proposition are the only possibilities. [J

If B contains two intersecting lines, then more can be said.

Proposition 4.4. If B contains two intersecting lines, say L and M, then one of
the following occurs:

(1) B contains exactly three lines, and the third line meets either L or M (but
not both);

(2) B contains exactly four lines which form a quadrilateral;

(3) B contains exactly q*>+3 lines, forming a pseudo-regulus and its two transver-
sals.

Proof. The stabilizer of a Hermitian surface in PG(3, ¢?) acts transitively on pairs
of intersecting generators (see [11], for instance). Thus, after choosing our
favorite Hermitian surface, say Ho : XoX3§ + X1 XJ + Xo X7 + X3X{ = 0, we
may also choose our favorite pair of intersecting lines in B = Hy N Hy, say
L:Xy=X;=0and M : X; = X3 = 0. If H; is the Hermitian matrix giving
the equation of H;, then H; is of the following form:

a o [ v

al b 6 €
H BT 61 ¢ v’

¥4 €1 9 d

where the diagonal elements a,b,¢,d are in GF(¢q) and the other elements in
GF(¢?).

Since B contains the points P : (0,0,1,0), @ : (0,0,0,1) and R : (1,0,0,0),
we necessarily have ¢ = ¢ = d = 0. Moreover, the tangent plane to H, at the



point P = LN M is P" : X; = 0, and this plane also must be the tangent plane

to Hy at P. This further implies that 5 = v = 0, and the matrix H; must have

" the following restricted form:
<« | 2
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Note that v = 0 implies det(H;) = 0, contradicting our fundamental as-

sumption that the pencil F contains only non-degenerate Hermitian surfaces.

close .. .
So, v # 0. Next observe that the polarities u; and uq agree on the point

Q@ :(0,0,0,1) of the line L if and only if e = 0. Similarly, these polarities agree

it
- on the point X : (0,0, 1,() of the line L, where { # 0, if and only if e(? = v — 4.

Thus we have the following possibilities:

(i) If e # 0 and v # 9, then for any choice of ~, ¢ and § there is a unique point
X of L\ {P} on which the polarities v, and u, agree;

(ii) Ife # 0 and v = 9, then there is no point of L\ { P} on which the polarities
agree;

(iii) If e = 0 and ~ # J, then @ is the unique point of L \ {P} on which the
polarities agree;

(iv) If e = 0 and v = 4, then the polarities agree on all the points of L.

Similarly, the polarities u; and u( agree on the point R : (1,0,0,0) of M if
and only if & = 0, and they agree on the point Y : (1,0, (,0), where ¢ # 0, if
and only if (?(y? — §) = a?. Thus we again have four possibilities:

(1)’ If « # 0 and § # 79, then there is a unique point Y of M \ {P} on which
the polarities uy and u, agree;

(i)’ If @ # 0 and 6 = ~9, then there is no point of M \ {P} on which the
polarities agree;

(iii)’ If « = 0 and 0 # 4, then R is the unique point of M \ {P} on which the
polarities agree;

(iv)’ If « = 0 and 0 = ~9, then the polarities agree on all the points of M.

Hence on L\ { P} the polarities uy and u; agree on no point, one point, or all

ACADEMIA points. A similar statement holds for M \ { P}. If the polarities agree on exactly

FRESS one point of (L U M) \ {P}, then Proposition 4.1 (and the ensuing remark)
implies that 5 contains exactly three lines as described in statement (1).
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If the polarities agree on exactly one point of L \ {P} and agree on exactly
one point of M \ {P}, then Proposition 4.1 implies that 13 contains exactly four
lines. In particular, B contains a line M’ meeting L (but not M) and a line L’
meeting M (but not L). Consider the plane 7 generated by L and M’, which by
Proposition 4.1 meets B precisely in L U M’. Since the line L’ necessarily meets
7 in a point, this point must lie on M’ and we get the configuration described
in statement (2).

If the polarities agree on no point of (L U M) \ {P}, then from the above
analysis of the entries in the matrix H; we have v = § = 79, and thus v € GF(q).
In this case the determinant of the matrix representing a generic Hermitian
surface in the pencil F is (y+t)%, where ¢ is a generic element of GF(q). Thus, by
choosing t = —v, we get a degenerate Hermitian surface in F, a contradiction.
Hence this possibility does not occur. Moreover, we get the same contradiction
if the polarities agree on all points of L U M, or if the polarities agree on all
points of L (respectively, M) but on no point of M \ { P} (respectively, L\ {P}).

Thus the only remaining case to consider is if the polarities agree on all
points of L (respectively, M) and on exactly one point of M \ {P} (respec-
tively, L \ {P}). In this case Proposition 2.7 implies that B is the point set of a
pseudo-regulus, and we get the configuration described in statement (3). This
completes the proof. O

Straightforward computations show that all possibilities listed in the above
proposition indeed do occur. Moreover, it now follows from Proposition 4.4 that
if B contains any lines, then the only remaining case to be studied is when those
lines are pairwise skew.

Proposition 4.5. If the lines contained in B are pairwise skew, then BB contains at
most two lines.

Proof. Suppose B contains three pairwise skew lines, say Lg, L; and L. Then
Ho contains the union of two “quadratically extended” subreguli (see [7]), say
Ly, Ly, Ls,...,Ly and My, My, Ms, ..., M,. Similarly, for any ¢ # 0, H; con-
tains the union of two “quadratically extended” subreguli, say Lo, L1, L2, . .., L,
and Mg, M{, My, ..., M,. Note that the first subregulus is the same since it
is uniquely determined by Lo, L; and L,. Let R be the regulus of PG(3,¢?)
containing {Lo, L1, Lo, ...,L,}, so that R°PP is the regulus containing both
{Mo, My, My, ..., My} and {Mg, M{.M;, ..., M;}.

Now suppose that {Mo, My, My, ..., My} 0 {Mg, M{.Mj,...,M]} = ( for
every choice of i # 0. Then the ¢ + 1 Hermitian surfaces in the pencil F
will contain ¢ + 1 mutually disjoint subreguli of R°PP, a contradiction. Thus
B must contain at least one (actually, two) lines of R°PP as well as the lines
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in {Lo, L1, Lo, ..., Ly}, implying that B contains intersecting lines. This final
contradiction proves the result. O

We next show that the possible configuration for B consisting of exactly two
skew lines and ¢* — 1 other points is always possible. Without loss of generality
we may assume that the Hermitian surface H, has equation X, X{ + X; XJ +
XoX{+ X3X] =0. ThenL: Xo =X; =0and M : X, = X3 = 0 are two
skew generators contained in Hj. If there exists another Hermitian surface H;
containing L and M such that uy and u; agree on no point of L U M, then from
Remark 4.2 and Proposition 4.5 we know that B contains exactly two lines.

We now show that such a Hermitian surface H; exists. Namely, consider the
Hermitian surface

Hy (X2 —+ Xg)Xg + OéngXiI + X0X2q + (XO + OéXl)Xg =0

with o a nonzero element of GF(¢?) (otherwise it is degenerate). Straightfor-
ward computations show that H; contains L U M and, moreover, uy and u; do
not agree on either P = (0,0,0,1) or @ = (0, 1,0,0).

Next consider an arbitrary point R = (0,0, 1, () of L\ { P}, where ¢ # 0. Then
R"0 has equation (?Xy+ X; = 0, and R"“* has equation (1+(?) Xy +a(?X; = 0.
Hence R“ = R“! if and only if 1 + (¢ = a(??; that is, if and only if az? —z — 1
has a root in GF(¢?). This occurs precisely when Tro(a) = 0 for ¢ is even or
when 1 + 4« is a square in GF(¢?) for ¢ odd. Here Trq denotes the absolute
trace of GF(¢?) over GF(2) when q is even.

Finally, consider an arbitrary point S = (1,(,0,0) of M \ {Q}, where again
¢ # 0. Then S*° has equation (?X5 + X3 = 0, and S"* has equation X, + (1 +
a?¢?) X3 = 0. Thus S“° = S“t if and only if a9(??+ (9 = 1; that is, if and only if
alz? + x — 1 has a root in GF(¢?). Again this occurs precisely when Tro(a) = 0
for ¢ even or when 1 + 44 is a square in GF(¢?) for ¢ odd.

Hence w; and ug agree on no points of L U M if and only if Tro(«) = 1 when
q is even, and if and only if 1 + 4« is a non-square of GF(¢?) when ¢ is odd.
Choosing such an element o € GF(¢?), we obtain a non-degenerate Hermitian
surface H; such that B = H; N H, contains exactly two skew lines and ¢* — 1
other points.

5. Proof of Theorem 1.2

From the results in the previous section, it remains to study two cases: when B
contains exactly one line, and when 5 contains no line. In this section we will
prove that both cases are not possible. We make extensive use of the results
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recalled in Section 3 on the intersection of two Hermitian curves. We start with
three observations.

Observation 5.1. Let 7 be a plane. Then m N'H; is either a Baer subpencil of lines
or a non-degenerate Hermitian curve. Moreover w N BB is the common intersection
of all the Hermitian curves mN'H;. Since none of those curves is a rank 1 Hermitian
curve, we have that = N B cannot be a Baer subline.

Proof. If the intersection of two Hermitian curves C and C’ is a Baer subline /,
then the line L containing ¢, counted ¢ + 1 times, is an Hermitian curve (of
rank 1) contained in the pencil generated by C and C’. OJ

Observation 5.2. No plane 7 intersects 3 in a non-degenerate Hermitian curve.

Proof. Suppose that Hy and H; contain the non-degenerate Hermitian curve
C, whose equation we may assume is X' + X¢*" + x7*!' — 0. Thus both
H; and H- meet the plane with equation X, = 0 in the curve C. Hence these
Hermitian surfaces have equations of the form X' 4 x4 x I+t 4 g, x It 4
If F is the pencil generated by H, and H;, then Hy — H; must be in F. But
a straightforward determinant argument shows that Hy — H; is a degenerate
Hermitian surface, contradicting our assumption on F. O

Observation 5.3. Through every point P of B there is at least one Baer subline
contained in B, and every Baer subline contained in B is contained in a generator
of some Hermitian surface H,;.

Proof. Through every point P of B there is a Baer subline of B since |B| =
(¢> + 1)%. Moreover, let ¢ be a Baer subline contained in B, and let L be the
line containing ¢. If L is contained in B, then it is a generator of H; for ev-
ery i. Otherwise, we assume L is not contained in B, and consider some plane
7 through L. If 7 meets each H; in a degenerate Hermitian curve, then by
Proposition 3.1 we only need consider the case where = N B is a degenerate
Cr-set. But in this case L is necessarily a generator of some 7 N H;, and hence
a generator of H;. Finally, in the case when every plane 7 meets at least one H;
is a non-degenerate Hermitian curve, then by Observation 5.1, Observation 5.2,
and Proposition 3.2 we may assume that the plane 7 meets 5 in one of the fol-
lowing: an H-set, a K-set, a I'-set, or a Cg-set. In all these cases the line L is a
generator of some Hermitian surface H,. O

We are now ready to show that B must contain at least two lines. We begin
with a weaker proposition.
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Proposition 5.4. If ¢ > 4, then B contains at least a line.

Proof. Suppose B contains no line, and let ¢ be a Baer subline contained in B.
Then from Observation 5.3 we know that the line L containing / is a generator
of exactly one of the Hermitian surfaces, say H, in the pencil 7. We also know
from Proposition 3.1, Proposition 3.2, and Observation 5.1 that every plane
through L intersects B in one of the following: an H-set, a K-set, a I'-set, or a
Cr-set. Let a be the number of planes through L intersecting 5 in an H-set, and
let b be the number of planes through L intersecting B either in a I'-set or in a
Cr-set. Then

¢ +2¢7+1=|Bl=a(@®+q) +b¢®—q)+(*+1—a—b)¢g*+q+1,

which implies that a — b = ¢ — 1.

Now fix some point P of ¢, and count the number of Baer sublines contained
in B through P. Note that planes through L yield different numbers of Baer
sublines through P contained in B, depending upon the planar intersection
with B. Indeed, if such a plane 7 intersects I3 in an H-set, then 7 yields two
Baer sublines through P contained in B, other than ¢. If 7 intersects B in a
Cr-set, then we obtain no Baer subline, other than ¢, passing through P and
contained in B. If 7 intersects B in a I'-set, then we obtain either 0 or ¢ — 1
Baer sublines, other than ¢, contained in B and incident with P. Finally, if 7
intersects 13 in a K -set, then we obtain either 1 or ¢ Baer sublines, other than /,
contained in 5 and passing through P.

The classification in [8] and the geometry of tangent planes to Hermitian
surfaces shows that the tangent plane 7y to H, at P is either a I'-set with center
P or a K-set with center P. Moreover, 7 is the only plane through L that can
meet B in either a I'-set or a K-set with center P. Thus, since ¢ > 4, mg is
the only plane through L whose intersection with B contains at least three Baer
sublines through P.

Suppose first that 7o N B is a K-set with center P, and thus contains ¢ Baer
sublines through P other than /. Planes, other than 7, through L which meet
B in a K-set do not have center P and thus provide exactly one additional Baer
subline through P in B. There are ¢? — a — b such planes. All planes through L
meeting B in a I'-set provide no additional Baer sublines through P in B, as is
true for all planes through L meeting B in a Cp-set. Hence, counting the total
number of Baer sublines through P, other than ¢, that are contained in B, we
obtain

1-qg+a-2+b-0+(¢*>—a—-0)-1=¢*+q+a—-b=¢*+2¢—1

sincea—b=q—1.
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Suppose now that 7o N3 is a I'-set with center P, and thus contains ¢— 1 Baer
sublines through P other than /. Planes, other than 7, through L which meet
B in a I'-set do not have center P and thus provide no additional Baer sublines
through P in B, as is true for all planes through L meeting B in a Cp-set. The
planes through L meeting B in a K-set, of which there are ¢> —a — (b — 1) =
q*> +1 —a — b, each provide one additional Baer subline through P in B. Again,
counting the total number of Baer sublines through P, other than ¢, that are
contained in BB, we obtain

1-(¢g—D+a-24+(F+1—a-b)-1=¢+q+a—-b=q¢*+2¢—1,

the same count as in the previous case. Hence, after including the Baer subline /,
in all cases we obtain precisely ¢? + 2¢ Baer sublines through P contained in 3.

Finally, counting in two ways the total number of flags (P,¢), where 7 is a
Baer subline contained in BB, we see that the number of Baer sublines in B is
(¢*> +2q)(¢*> +1)%/(q+ 1). Since this must be an integer, we have (¢+ 1) | 4 and
hence ¢ = 3, a contradiction. O

Remark 5.5. Note that for ¢ = 3 there is an example of a base B of size ¢* +
> —q¢*>+1 =100 = (¢ +1)? containing no lines. However, the associated pencil
F contains a degenerate Hermitian surface.

Proposition 5.6. If ¢ > 4, then B contains at least two lines.

Proof. The argument is a refinement of the above proof. Suppose that 5 con-
tains exactly one line, say M. Then every plane through M intersects B in a
degenerate Cp-set (that is, the union of M and an affine Baer subplane) by
Proposition 4.1. Let ¢ be a Baer subline contained in B which intersects M in
one point (through every point P € B there is at least one such a Baer subline),
and let L be the line containing ¢. Every plane through L intersects 3 in one of
the following: an H-set, a K-set, a I'-set, a Cp-set, or a degenerate Cp-set. Let a
be the number of planes through L intersecting B in an H-set, and let b be the
number of planes through L intersecting B either in a I'-set or in a Cp-set. Then

" +2¢°+1=|B=a(¢®+q) +b(¢* —q) + (" —a—b)g* +2¢° + 1,

implying that « — b = 0 and hence a = .

Now let P be the point ¢ N M, and count the total number of Baer sublines
contained in B which are incident with P but are not contained in M. A com-
putation analogous to that made in the proof of Proposition 5.4 shows that this
number is

20+ (¢° —a—b)+q=¢"+q,
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since a = b. Note that the tangent plane to H, at P, where H, is the unique
Hermitian surface in the pencil F which contains the line L, is the plane inter-
secting 3 in a degenerate Cp-set.

Next let () be a point of / different from P = /N M. Counting the number of
Baer sublines incident with () and contained in B, we obtain

2a+ (> —a—0b)+(¢— 1)+ (¢ +1) = ¢* + 2q,

again using a = b. Note that the tangent plane to H, at ) is not the plane
intersecting B in a degenerate Cp-set, and hence meets B either in a I'-set or
a K-set with center (). The count is the same in both cases, as in the proof of
Proposition 5.4.

Counting in two ways the number of flags (P, ¢), where ¢ is a Baer subline
contained in B and not contained in M, we see that the total number of such
sublines is ((¢*> + q)(¢> + 1) + (¢® + 2q¢)(¢* + ¢*®))/(q¢ + 1). As this must be an
integer, we have that (¢ + 1) | 2, a contradiction. O]

Theorem 1.2 now follows from Propositions 4.4, 4.5, and 5.6 when ¢ > 4.
For ¢ = 2 and ¢ = 3, the result follows from an exhaustive computer search.
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