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Abstract

In this article, we prove a t (mod p) result for minimal weighted t-fold

(n − k)-blocking sets in PG(n, q), q = ph, p prime, h ≥ 1, n ≥ 2. Such

a theorem plays a crucial role in characterizing minimal weighted t-fold

(n − k)-blocking sets. Our result is based on generalizations of earlier the-

orems on blocking sets in PG(2, q) to weighted blocking sets of higher di-

mensions.
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1. Introduction

Throughout this paper, PG(n, q) and AG(n, q) will respectively denote the n-di-

mensional projective and affine space over the Galois field GF(q), where q = ph,

p prime, h ≥ 1.

A t-fold (n − k)-blocking set B of PG(n, q), with 0 < k < n, is a set of points

of PG(n, q) intersecting every k-dimensional subspace of PG(n, q) in at least t

points.
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A point P of B is called essential if there is a k-dimensional subspace through

P intersecting B in exactly t points. A t-fold blocking set B is called minimal

if all of its points are essential. A 1-fold (n − k)-blocking set is also called an

(n − k)-blocking set. A t-fold 1-blocking set in PG(2, q) is also called a t-fold

blocking set, or a t-fold planar blocking set. A 1-fold blocking set in PG(2, q) is

simply called a blocking set in PG(2, q).

These latter t-fold planar blocking sets have been studied in great detail.

General bounds can be found in Ball [1], and are mentioned in the following

table. In this table, and in the following tables, p is a prime, and c2 = c3 = 2−1/3,

where cp = 1 if p > 3. In the first table, the first two columns give the conditions

on q and t, while the third column gives the lower bound on k = |B| − t(q +1).

q conditions k = |B| − t(q + 1)

q no line in B ≥
√

tq + 1 − t

p > 3 1 < t < p/2 ≥ (p + 1)/2

p > 3 t > p/2 ≥ p − t

The following table contains what was proved for minimal t-fold blocking sets

of PG(2, q) in [3]. The last two columns give the structure of B, plus an implied

lower bound on the value k.

q t, k = |B| − t(q + 1) implies k B

p2d+1 t = 1, k < cpq2/3 line

p2d+1 1 < t < q/2 − cpq2/3/2 ≥ cpq2/3

p2d > 4 t = 1, k < cpq2/3 line or Baer subplane

p2d > 4 1 < t < cpq1/6, k < cpq2/3 ≥ t
√

q
union of t disjoint
Baer subplanes

p2 t = 1, k < p
˚

1
4

+
q

p+1
2

ˇ

line or Baer subplane

p2 1 < t < q1/4/2, k < p⌈ 1
4

+
q

p+1
2

⌉ ≥ t
√

q
union of t disjoint
Baer subplanes

The next two tables summarize the results of [2] for minimal t-fold blocking

sets of PG(2, q). The third and fourth column give the implied lower bounds

on k, the information on the structure of B, plus some extra remarks.
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q
t, k = |B| − t(q + 1),

other conditions
implies k remark

p6m
2 ≤ t < p3m/2/4, k < p4m√

p/2

no Baer subplane in B
≥ tp4m − 4t2p2m

p6m+1
2 ≤ t < p3m/2+1/4/4,

k < p4m+1 − 2p2m+1

≥ max
`

tp4m − 4t2p2m−1,

p4m+1 − p4m − p2m+1/2
´ m ≥ 1

p6m+2

2 ≤ t < p3/(4(p + 1)) if m = 1

2 ≤ t < p(3m+1)/2/4 if m > 1

k < p4m+2/2

no Baer subplane in B

≥ tp4m+1 − 4t2p2m
m ≥ 1

p ≥ 5

p6m+3
2 ≤ t < p(6m+3)/4/4,

k < p4m+2√p/2
≥ tp4m+2 − 4t2p2m+1

p ≥ 23 (m = 0)

p ≥ 3 (m = 1)

p6m+4

2 ≤ t < p(3m+2)/2/4,

k < p4m+3 − 2p2m+2

no Baer subplane in B

≥ max
`

tp4m+2 − 4t2p2m,

p4m+3 − p4m+2 − p2m+2/2
´ m ≥ 1

p6m+5

k < p4m+4/2,

2 ≤ t < p3m/2+5/4/4 for m > 0

2 ≤ t ≤ (p − 3)/4 for m = 0

≥ max
`

tp4m+3 − 4t2p2m+1,

p4m+7/2 − p4m+3 − p2m+2/2
´

p ≥ 5

q t, k = |B| − t(q + 1), other conditions B

p6m
2 ≤ t < p3m/2/4, k < min

`

p4m√
p/2,

2p4m + (t − 2)p3m − 16p2m´

t − 1 disjoint Baer

subplanes union a t-th

minimal blocking set

p6m+2
m ≥ 1, 2 ≤ t < p3m/2+1/2/4, k < min

`

p4m+2/2,

2p4m+1 + (t − 2)p3m+1 − 16p2m´

union of t disjoint

Baer subplanes

p6m+4

2 ≤ t < p(3m+2)/2/4,

k < min
`

p4m+3 − 2p2m+2, (t − 2)p3m+2 +

max(2p4m+2 − 16p2m, p4m+3 − p4m+2 − p2m+2/2)
´

union of t disjoint

Baer subplanes
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For a t-fold blocking set B, a “t (mod p) result” states that every line in-

tersects B in t (mod p) points. In the theory of t-fold planar blocking sets,

t (mod p) results for small minimal t-fold planar blocking sets play an impor-

tant role.

Definition 1.1. A blocking set of PG(2, q) is called small when it has less than

3(q + 1)/2 points.

If q = ph, p prime, h ≥ 1, the exponent e of the minimal blocking set B of

PG(2, q) is the maximal integer e such that every line intersects B in 1 (mod pe)

points.

Theorem 1.2 (Szőnyi [10], Sziklai [9]). Let B be a small minimal 1-fold blocking

set in PG(2, q), q = ph, p prime, h ≥ 1. Then B intersects every line in 1 (mod p)

points, so for the exponent e of B we have 1 ≤ e ≤ h. In fact this exponent is a

divisor of h.

The Linearity Conjecture (see Sziklai [9]) states that a small minimal block-

ing set is always a GF(pe)-linear blocking set, i.e. GF(pe) is a subfield of GF(q)

and the blocking set is a projected image of a suitable subgeometry PG(h/e, pe).

Let’s see how these notions were generalized for higher dimensions and for

t-fold blocking sets.

Definition 1.3. A 1-fold (n − k)-blocking set of PG(n, q) is called small when it

has less than 3(qn−k + 1)/2 points.

If q = ph, p prime, h ≥ 1, the exponent e of a minimal 1-fold (n− k)-blocking

set B in PG(n, q) is the maximal integer e such that every k-dimensional space

intersects B in 1 (mod pe) points.

Szőnyi and Weiner [11] proved a 1 (mod p) result for small minimal 1-fold

(n − k)-blocking sets in PG(n, q).

Theorem 1.4 (Szőnyi and Weiner [11]). A minimal 1-fold (n − k)-blocking set

in PG(n, q), q = ph, p > 2 prime, h ≥ 1, of size less than 3

2
(qn−k + 1) intersects

every subspace in zero points or in 1 (mod p) points.

The 1 (mod p) result in PG(2, q), q = ph, p prime, h ≥ 1, was extended by

Blokhuis et al. to a t (mod p) result on small minimal t-fold blocking sets in

PG(2, q).

Definition 1.5. A t-fold blocking set of PG(2, q) is called small when it has less

than tq + (q + 3)/2 points.

If q = ph, p prime, h ≥ 1, the exponent e of the minimal t-fold blocking set

B in PG(2, q) is the maximal integer e such that every line intersects B in t

(mod pe) points.
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Theorem 1.6 (Blokhuis et al. [2]). Let B be a small minimal t-fold blocking set

in PG(2, q), q = ph, p prime, h ≥ 1, then B intersects every line in t (mod p)

points.

For a multiset B in PG(n, q), we call the multiplicity of a point of B also the

weight of that point. A point of B is called simple if it has weight one. A multiple

point of B has weight larger than one. A weighted t-fold (n − k)-blocking set B

of PG(n, q), with 0 < k < n, is a multiset of points of PG(n, q) intersecting every

k-dimensional subspace of PG(n, q) in at least t points, counted with weights.

A point P of a weighted t-fold (n − k)-blocking set B is called essential if

there is a k-dimensional subspace through P intersecting B in t points, counted

with weights. A weighted t-fold (n− k)-blocking set B is called minimal if all of

its points are essential.

The General Linearity Conjecture for t-fold blocking sets (see Sziklai [9])

states that (if t is small enough then) a small minimal t-fold (n − k)-blocking

set in PG(n, q) is always the (not necessarily disjoint) union of GF(pei)-linear

(possibly multiple) (n − k)-blocking sets, i.e. for each of the (n − k)-blocking

sets GF(pei) is a subfield of GF(q) and it is a projected image of a suitable sub-

geometry PG(mi, p
ei).

The goal of this article is to prove a t (mod p) result on weighted minimal

t-fold (n − k)-blocking sets in PG(n, q), n ≥ 2.

Once such a t (mod p) result has been proved, characterization results can

be obtained. We illustrate this in [5] by characterizing minimal t-fold (n − k)-

blocking sets in PG(n, q), q square.

We prove in the following section a t (mod p) result on weighted minimal

t-fold blocking sets in PG(2, q), q = ph, p prime, h ≥ 1. This result is then used

to obtain a t (mod p) result on weighted minimal t-fold (n− k)-blocking sets in

PG(n, q), n > 2. Here the idea is based on the generalization of [11].

As a supplementary result, we also prove that small minimal weighted t-fold

blocking sets in PG(2, q), containing a line ℓ, are the sum of this line ℓ and a

minimal (t − 1)-fold blocking set. This implies that, when characterizing small

t-fold blocking sets in PG(2, q), it is possible to assume that they do not contain

any lines.

2. A t (mod p) result

Let B be a minimal weighted t-fold blocking set in PG(2, q), with |B| = tq+t+k,

where t + k < q.
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Assume that the line l∞ is an m-secant to B. Consider PG(2, q) as the affine

plane AG(2, q) with l∞ as the line at infinity. Assume that B ∩ l∞ = D =

{(∞), . . . , (∞), (y1), . . . , (ym−s)}, where (∞) is a point of weight s of B (1 ≤
s ≤ t), where some of the other points of D might be multiple points of B, and

that U = B \ D = {(ai, bi) : i = 1, . . . , tq + t + k − m}, where U is a multiset

when B has affine multiple points.

We first define the Rédei polynomial associated to the t-fold blocking set B.

The last equation in the following definition follows from the fact that this Rédei

polynomial is t times zero everywhere in GF(q) × GF(q) [4].

Definition 2.1 (The Rédei polynomial of the set B).

H(X,Y ) =

m−s
∏

j=1

(Y − yj)

tq+t+k−m
∏

i=1

(X + aiY − bi)

=

m−s
∏

j=1

(Y − yj)

tq+t+k−m
∑

i=0

Xtq+t+k−m−ihi(Y ) (1)

= (Xq − X)tf0(X,Y ) + (Xq − X)t−1(Y q − Y )f1(X,Y )

+ · · · + (Y q − Y )tft(X,Y ) ,
(2)

where deg(hi) ≤ i, i = 0, . . . , tq + t+k−m, and deg(fi) ≤ k + t−s, i = 0, . . . , t.

It is well-known that this polynomial encodes the intersection properties of B

with lines: e.g. a line with equation Y = mX + b intersects B in r points if and

only if the point (b,m) in the dual plane has multiplicity r on the curve H(X,Y )

(i.e. r linear factors of H go through (b,m)).

Choose a point (b,m), b 6∈ {bj | (0, bj) ∈ U}, m 6= yj . Consider H(X,m) =

(Xq − X)tf0(X,m). By the properties of the Rédei polynomial, the line Y =

mX + b intersects U in more than t points if and only if X = b is a root of

H(X,m) with multiplicity ≥ t + 1 if and only if (b,m) is a point of the algebraic

curve f0(X,Y ). Considering H(b, Y ) = (Y q − Y )tft(b, Y ) instead, we get that

the line Y = mX + b intersects U in more than t points if and only if (b,m) is a

point of the algebraic curve ft(X,Y ).

Therefore, these two algebraic curves f0 and ft have almost the same set of

GF(q)-rational points.

If m = yj or b ∈ {bj | (0, bj) ∈ U}, and the line Y = mX + b intersects U in

more than t points, then f0(b,m) = ft(b,m) = 0 holds again. As H(X,m) (or

H(b, Y )) is identically zero in this case, f0(b,m) = 0 or ft(b,m) = 0 does not

imply that Y = mX + b intersects U in more than t points.

Later on in this section, we will assume that there is no line contained in B.

As the following theorems will show, this is no restriction when 2t + k < q + 2.
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Theorem 2.2. Let B be a minimal weighted t-fold blocking set of PG(2, q), with

|B| = tq + t + k, where 2t + k < q + 2, containing a line ℓ. Then B is the sum of

the line ℓ and the minimal weighted (t − 1)-fold blocking set B∗, obtained from B

by reducing the weight of every point P of ℓ by one.

Proof. Since ℓ ⊆ B, |ℓ ∩ B| ≥ q + 1.

If |ℓ ∩B| ≥ q + t, then after reducing the weight of every point of ℓ by one, a

new weighted set B∗ is obtained which still intersects every line in at least t− 1

points. Since B is a minimal weighted t-fold blocking set, also B∗ is a minimal

weighted (t − 1)-fold blocking set.

Assume now that q + 1 ≤ |B ∩ ℓ| < q + t. Reduce again the weight of every

point on ℓ by one, and add a minimal number of simple points P1, . . . , Pr of ℓ

back, until a weighted (t− 1)-fold blocking set B∗ is obtained, hence |B∗ ∩ ℓ| =

t − 1. We need to add at most r ≤ t − 1 points to achieve this, hence |B∗| ≤
tq + t + k − (q + 1) + t − 1 = (t − 1)q + 2(t − 1) + k. A particular feature of a

point Pi, i = 1, . . . , r, is that the line ℓ is the only (t − 1)-secant to B∗ passing

through Pi.

Finally, we show that through Pi, there pass at least two (t−1)-secants, hence

the above case cannot occur. Now we choose our coordinate system in such a

way that (∞) ∈ B, Pi is an affine point (a, b), and ℓ∞ ∩ ℓ 6∈ B∗ and (∞) has

multiplicity s. Suppose that |ℓ∞ ∩ B∗| = m and write up the Rédei polynomial.

Since B∗ is a (t − 1)-fold blocking set, using a suitable indexing we get that

H∗(X,Y ) =
m−s
∏

j=1

(Y − yj)

tq+t+k+r−m
∏

i=q+2

(X + aiY − bi)

= (Xq − X)t−1f∗
0 (X,Y ) + (Xq − X)t−2(Y q − Y )f∗

1 (X,Y )

+ · · · + (Y q − Y )t−1f∗
t−1(X,Y ),

(3)

where deg(f∗
i ) ≤ |B∗| − q(t − 1) − s ≤ 2(t − 1) + k − s, i = 0, . . . , t − 1.

The argument before this theorem shows that if a line Y = mX + b inter-

sects B∗ in more than (t − 1) points, then (b,m) is a point of the curve f∗
0 .

Each line except ℓ through the point Pi = (a, b) intersects B∗ in at least t points.

These lines are points of the line X +aY −b in the dual plane. Hence X +aY −b

intersects f∗
0 in at least q − 1 points (we do not see the vertical line here). Since

degf∗
0 < q−1, Bézout’s theorem implies that the line X +aY −b is a component

of f∗
0 . Suppose that ℓ is the line ℓ = Y + m′X + b′. Then f∗

0 (b′,m′) = 0 and

since ℓ ∩ ℓ∞ 6∈ B∗, ℓ intersects B∗ in at least t points. This is a contradiction,

hence q + 1 ≤ |B ∩ ℓ| < q + t does not occur. �

As the next example shows, the above theorem is sharp.
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Example 2.3. Let S be the set of points lying on the lines of a dual hyperoval in

PG(2, q), q even. Then S is a ( q
2

+ 1)-fold blocking set of size ( q
2

+ 1)q + ( q
2

+ 1)

(each point in S has multiplicity one). Note that now t = q
2

+ 1, k = 0 and

2t+k = q+2. If we delete a line of S, then the resulting point set is not a q
2
-fold

blocking set.

Remark 2.4. Theorem 2.2 has some straightforward applications.

(1) It first of all shows that when characterizing minimal weighted t-fold block-

ing sets of size tq + t + k, where 2t + k < q + 2, in PG(2, q), it is possible to

assume that they do not contain any lines.

(2) Moreover, also when proving the t (mod p) result for a minimal weighted

t-fold blocking set B, |B| = tq + t + k, where 2t + k < q + 2, it is possible to

assume that there are no lines contained in B. If there is a line ℓ contained

in B, then Theorem 2.2 implies that you can reduce the weight of every

point of ℓ by one in order to obtain a new minimal weighted (t − 1)-fold

blocking set B∗. Proving the t (mod p) result for B is now reduced to

proving the (t − 1) (mod p) result for B∗.

(3) Now we are also able to characterize weighted minimal t-fold blocking sets

of size tq + t, with 2t < q + 2, and to exclude the existence of weighted

minimal t-fold blocking sets of size tq + t + 1, with 2t + 1 < q + 2.

Theorem 2.5. A weighted t-fold blocking set B in PG(2, q), of size |B| = tq + t,

where 2t < q + 2, is a sum of t lines.

There does not exist a weighted minimal t-fold blocking set B in PG(2, q) of size

|B| = tq + t + 1, 2t + 1 < q + 2.

Proof. Suppose that tq + t ≤ |B| ≤ tq + t + 1. Then counting the incidences of

the points of B with the lines through a point R not in B, we have that through

R all the lines are t-secants if |B| = tq + t and there is exactly one (t+1)-secant

and q t-secants through R if |B| = tq + t + 1.

Now count the incidences of the points of B with the lines through a point

R′ ∈ B. Assume first of all that |B| = t(q + 1). Then we get in total wt(R′) +

(q + 1)(t − wt(R′)) incidences if we assume that R′ only lies on t-secants to B.

Since |B| = t(q + 1), we obtain that t(q + 1) = t(q + 1) − qwt(R′), hence

wt(R′) = 0, but then R′ 6∈ B. So we get that R′ lies on at least one line ℓ

completely contained in B when |B| = tq + t.

Secondly, assume that |B| = t(q + 1) + 1, let R′ ∈ B, and assume that R′

does not lie on a line ℓ completely contained in B, then R′ only lies on t- and

(t+1)-secants to B. If we would assume that R′ only lies on t-secants to B, then

counting the incidences of the lines through R′ with the points of B, we obtain

wt(R′) + (q + 1)(t − wt(R′)) incidences. So, there still remain t(q + 1) + 1 −
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wt(R′)−t(q+1)+(q+1)wt(R′) = 1+qwt(R′) incidences of the lines through R′

with the points of B. Since we assume that R′ does not lie on a line completely

contained in B, these lines can share at most one extra point with B. There are

q + 1 lines through R′ and there remain 1 + qwt(R′) incidences. This implies

that wt(R′) = 1 and that R′ lies on q + 1 (t + 1)-secants, when |B| = tq + t + 1.

This latter case means that B is not minimal. Hence we can assume that each

point of B lies on at least one line completely contained in B.

Now the t points of any t-secant (which must exist) and Theorem 2.2 show

that B contains the sum of t lines, which is a t-fold blocking set already, of size

tq + t. �

Remark 2.6. One can observe now that a weighted t-fold blocking set in PG(2, q),

of size tq + t, where 2t < q + 2, intersects every line in t (mod p) points; also

that through any point of it there pass at least q + 1 − t t-secants.

Lemma 2.7. The polynomial
∏t−s

j=1
(Y − yj) divides f0(X,Y ) if k + t < q.

Proof. By (1),

H(X,Y ) =

tq+k
∑

i=0



hi(Y ) ·
t−s
∏

j=1

(Y − yj)



 Xtq+k−i .

So every coefficient polynomial of a term Xtq+k−i is divisible by
∏t−s

j=1
(Y − yj).

By (2), the high degree part

t−s
∏

j=1

(Y − yj) · Xtq+k + · · · + hk(Y ) ·
t−s
∏

j=1

(Y − yj) · Xtq

must be equal to Xtqf0(X,Y ), when one compares the X-degrees of the two

expressions (1) and (2) for H(X,Y ). So
∏t−s

j=1
(Y − yj) divides f0(X,Y ). �

If X = 0 intersects U in the, possible weighted, points (0, bj), j = 1, . . . , z,

then a similar argument shows that
∏z

j=1
(X − bj) divides ft(X,Y ), where the

product is taken over the values bj , according to their weights.

Theorem 2.8. Let B be a minimal weighted t-fold blocking set of PG(2, q), with

|B| = tq + t + k < (t + 1)q. Then every point of B lies on at least q + 1 − k − t

different t-secants.

Proof. Let P = (a, b) ∈ U and suppose that (∞) ∈ B, |l∞ ∩B| = t. Assume that

P lies on more than k + t different lines sharing at least t + 1 points with B.

Then more than k of those lines intersect l∞ in a point not belonging to B.
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Each of these latter lines defines a point of f0(X,Y )/
∏t−s

j=1
(Y − yj). More

precisely, they define intersection points, in the dual plane, of the algebraic

curve f0(X,Y )/
∏t−s

j=1
(Y −yj) = 0 with the line X +aY −b = 0. The polynomial

f0(X,Y )/
∏t−s

j=1
(Y −yj) has at most degree k, so by Bézout’s theorem, the linear

term X + aY − b is a factor of f0(X,Y )/
∏t−s

j=1
(Y − yj).

Consider a line through P with slope m 6= yj , m 6= ∞, so that we can use the

arguments above.

Evaluating H(X,Y ) at Y = m, we get

H(X,m) =
t−s
∏

j=1

(m − yj)

tq+k
∏

i=1

(X + aim − bi) = (Xq − X)tf0(X,m).

The fact that X + aY − b is a linear factor of f0 means geometrically that the

lines through P with slope m 6= yj , m 6= ∞, intersect U in at least t + 1 points.

We have shown that every line joining P to a point of l∞ \ B is a ≥ (t + 1)-

secant. But l∞ is an arbitrary t-secant, so for any t-secant l incident with P we

just need to find a t-secant incident with a point of l \ B. A point Q 6∈ B is

incident with at least q + 1 − k > t different t-secants, and so at least one of

them meets l in a point not in B. �

Corollary 2.9. Let B be a weighted t-fold blocking set of PG(2, q), with |B| =

tq + t + k < (t + 1)q. Assume that P is an essential point of B. Then there are at

least q + 1 − k − t different t-secants through P .

Proof. Delete the non-essential points of B one-by-one until a minimal t-fold

blocking set B′ is obtained. By Theorem 2.8, there will be at least q + 1 −
(|B′|− tq) different t-secants of B′ through P . Now if we add back the points of

B \B′, then through P , we will see at least q +1− (|B′|− tq)−|B \B′| t-secants

to B. �

We will now adapt the results of [2, 8] to the case when there are multiple

points. In this section, from now on, we suppose that |B| < tq + (q + 3)/2. The

cases of |B| = t(q + 1) and |B| = t(q + 1) + 1, with |B| < tq + (q + 3)/2, are all

discussed in Theorem 2.5, except for the case |B| = t(q +1) with t = q/2+1 for

q even.

The weighted t-fold blocking sets B in PG(2, q), q even, of size t(q + 1) with

t = q/2 + 1, have been classified in [6] and [7]. They are either a sum of

t = q/2 + 1 lines or equal to the (q/2 + 1)-fold blocking set of Example 2.3. So

we can consider all the t-fold blocking sets of sizes t(q + 1) and t(q + 1) + 1,

with |B| < tq + (q + 3)/2, to be classified. So from now on, we assume that

tq + (q + 3)/2 > |B| = tq + t + k ≥ tq + t + 2.
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Note that since k ≥ 2, we still have 2t + k < q + 2 so that Theorem 2.2 is

valid. Hence, we also can assume that B does not contain any line.

Furthermore, we choose our coordinate system so that ℓ∞ is a t-secant and

the point (∞) in B has multiplicity s, where 1 ≤ s ≤ t.

The following lemma can be proved in the same way as [2, Lemma 3.2]. Let

B be a minimal weighted t-fold blocking set of size tq + t + k, where t + k <

(q + 3)/2 and k ≥ 2. Recall the definition of the Rédei polynomial from the

beginning of this section.

Lemma 2.10. If a line Y = mX + b intersects B ∩ U in more than t points, then

f0(b,m) = · · · = ft(b,m) = 0.

The following lemma is similar to [2, Lemma 3.3].

Lemma 2.11. The algebraic curve f0(X,Y ) = 0 does not have linear components

depending on the variable X.

Proof. Such a linear component depending on X should have the form X +

aY − b = 0. The proof of Theorem 2.8 then shows that the point P = (a, b) is a

non-essential point of B; which contradicts the minimality of B. �

Lemma 2.12. If B is minimal, then the polynomials f0, . . . , ft cannot have a

common divisor different from Y − yj .

Proof. Such a polynomial would divide H(X,Y ); so would be linear. This can

only be of the form Y − yj . �

We now come to the main theorem of this section: the proof of the t (mod p)

result.

Theorem 2.13. Let B be a minimal weighted t-fold blocking set in PG(2, q), q =

ph, p prime, h ≥ 1, with |B| = tq + t + k, t + k < (q + 3)/2, k ≥ 2. Then every

line intersects B in t (mod p) points.

Proof. By Remark 2.4, it is possible to assume that B does not contain any lines.

We will assume that the line at infinity intersects B in t points. In this way, we

can use the beginning of the proof of [2, Theorem 3.1].

So let h(X,Y ) be an absolutely irreducible component of the polynomial

f0(X,Y )/
∏t−s

j=1
(Y − yj) of degree larger than one. The arguments of the proof

of [2, Theorem 3.1] imply that h′
X ≡ 0.

If Y = m 6= yi, we obtain H(X,m) = (Xq − X)tf0(X,m), having t (mod p)

solutions since f0(X,m) is a p-th power. So every line Y = mX + b, not con-

taining a point of B at infinity, intersects B in t (mod p) points.
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For every line ℓ of which we are not yet sure that it intersects B in t (mod p)

points, it is possible to find a new line at infinity intersecting B in t points and

intersecting ℓ in a point not belonging to B. Repeating the previous arguments

now shows that also ℓ intersects B in t (mod p) points. �

The next corollary follows from Theorem 2.8 and Remark 2.6.

Corollary 2.14. Let B be a weighted t-fold blocking set in PG(2, q), q = ph,

p prime, h ≥ 1, with |B| = tq + t + k, t + k < (q + 3)/2, 2t < q + 2. Assume

that all the points of B on the line ℓ are essential. Then ℓ intersects B in t (mod p)

points. �

When each line intersects B in t (mod q) points, then the characterization

of B is immediate.

Proposition 2.15. Let B be a minimal weighted t-fold blocking set in PG(2, q) of

size tq + t + k, where t + k < (q + 3)/2, k ≥ 2. Assume that each line intersects B

in t (mod q) points. Then B is a sum of t (not necessarily different) lines.

Proof. Let ℓ be a line of PG(2, q) not contained in B. Let P ∈ ℓ \ B. Since all

the lines, different from ℓ, through P contain at least t points of B, ℓ contains

at most t + k points of B.

Every point R of B lies on at least one line containing more than t points

of B, so on a line ℓ containing at least t + q points of B. Since t + k < t + q,

the preceding paragraph implies that ℓ is contained in B. By Theorem 2.2, B is

the sum of this line ℓ and a (t − 1)-fold blocking set B∗ intersecting every line

in (t− 1) (mod q) points. Repeating the above argument shows that B is a sum

of t lines. �

3. A lower bound on the size of B

We now determine a lower bound on the size of a minimal weighted t-fold

blocking set B in PG(2, q), q = ph, p prime, h ≥ 1.

We again assume that B does not contain any lines, for it is trivially possible

to construct a minimal weighted t-fold blocking set in PG(2, q) by taking a sum

B of t lines. Then |B| = t(q + 1).

Theorem 3.1. Let B be a minimal weighted t-fold blocking set in PG(2, q), q = ph,

p prime, h ≥ 1, with |B| = tq + t + k, t + k < (q + 3)/2, containing no lines.

Assume that h(X,Y ) is a component of f0, which can be written as h(X,Y ) =

g(Xpe

, Y ) with g′X 6≡ 0. Then k ≥ q+pe

pe+1
− t + 1.
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Proof. This can be proved in the same way as [2, Prop. 3.6]. �

4. A t (mod p) result in higher dimensions

Theorem 4.1. A minimal weighted t-fold 1-blocking set B in PG(n, q), q = ph,

p prime, h ≥ 1, of size |B| = tq + t + k, t + k ≤ (q − 1)/2, intersects every

hyperplane in t (mod p) points.

Proof. The proof goes by induction on n. For n = 2, see Theorem 2.13 and

Remark 2.6. Assume now that the theorem is true for n − 1 dimensions, we are

going to prove it for n dimensions. We will adapt the ideas of [11].

Part 1. We embed Πn = PG(n, q) into Π2n−2 = PG(2n − 2, q). Let H be a

hyperplane of Πn.

By the induction hypothesis, we can assume that B is not contained in H.

Assume therefore that B∩H is a weighted α-fold blocking set in H with respect

to hyperplanes of H and of cardinality α(q + 1) + β, where 0 ≤ α < t.

Consider an (n − 2)-dimensional subspace L in H sharing α points with B.

A counting argument shows that we can find an (n − 1)-dimensional subspace

H∗ 6= H of Πn, through L, containing exactly t points Pi, i = 1, . . . , t, of B.

We construct in Π2n−2 the cone C with vertex P , where P is an (n − 3)-di-

mensional space skew to Πn, and base B ∪ {Q}, with Q a point of H∗ \ H,

Q 6∈ B.

By [11, Remark 2.1], there exists a regular (n − 2)-spread W of the hyper-

plane 〈H∗, P 〉 of Π2n−2 so that it contains 〈P,Q〉 and L. Let πW denote the

projective plane defined by the (n− 2)-spread W and let C′ denote the image of

C in πW .

Part 2. We first discuss the structure of C′ on the line at infinity of πW .

The points of the cone with vertex P and base B in 〈P,H∗〉 are the points

of t, not necessarily different, (n − 2)-dimensional spaces 〈P, Pi〉, i = 1, . . . , t.

The space 〈P,Q〉 belongs to the (n − 2)-spread W and is given weight t in the

weighted set C′. The other elements of W are skew to 〈P,Q〉 and share at

most one point with each of the spaces 〈P, Pi〉, i = 1, . . . , t. If an element of

W \ {〈P,Q〉} contains γ points of the spaces 〈P, Pi〉, i = 1, . . . , t, then we give

this element weight γ in C′.

Hence the size of C′ is |B|qn−2 + t.
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Part 3. We prove that the set C′ is a t-fold blocking set in πW . The ideal point

corresponding to the spread element 〈P,Q〉 has multiplicity t and so the lines in

πW through this point are blocked at least t times by C′. Now take an arbitrary

line ℓ′ of πW not through this ideal point. The (n − 1)-dimensional subspace ℓ

of Π2n−2 corresponding to this line is skew to P . The projection ℓ∗ of ℓ from

P to Πn is an (n − 1)-dimensional subspace in Πn and so it contains at least t

points of B. If S is in ℓ∗ ∩ B then 〈P, S〉 ⊂ C′, hence the intersection point of ℓ

and 〈P, S〉 is a point of C′. Therefore ℓ contains at least t points of C′.

So, for |B| = tq+t+k, t+k ≤ (q−1)/2, we have |C′| = tqn−1+(t+k)qn−2+t =

tqn−1 + k′ + t in πW = PG(2, qn−1), with t + k′ < (qn−1 + 3)/2.

Note that in πW , the subspace H corresponds to a line h. In the rest of

the proof we will show that the points of h ∩ C′ are all essential to C′.

By Corollary 2.14, this will imply that h shares t (mod p) points with

C′, and equivalently, that H shares t (mod p) points with B.

Part 4. The ideal point L′ of πW corresponding to L is essential to C′. To see

this, note that we can find a second (n − 1)-dimensional subspace through L,

not lying in 〈H∗, P 〉, containing t points of B. Hence the corresponding line

in πW will be a t-secant through L′, which proves that the point L′ is essential

for C′.

Finally we show that the points of h \ L′ are all essential to C′.

Part 5. First we show that through each point Ri of (H \ L) ∩ B there is an

(n− 1)-space HRi
of Πn containing t points of B but not containing Q. Let H∗

Ri

be an (n− 1)-space of Πn through Ri containing t points of B and containing Q

as well.

We show that there is an (n − 3)-dimensional subspace Πn−3 in H∗
Ri

skew

to B, such that 〈Πn−3, Ri〉 6= 〈Πn−3, Q〉 and such that 〈Πn−3, Ri〉 only contains

the point Ri of B. To obtain this, project the points of (B ∩H∗
Ri

) \ {Ri} from Ri

to an (n − 2)-space T of H∗
Ri

through Q. Since |(B ∩ H∗
Ri

) \ {Ri}| ≤ t − 1, the

projection will contain at most t − 1 < q different points, hence we can choose

an (n − 3)-space M in T not containing Q nor any of the projections of the

points of (B ∩ H∗
Ri

) \ {Ri}. So 〈M,Ri〉 intersects B ∪ {Q} in Ri only, hence for

Πn−3 we can choose any of the (n − 3)-spaces of 〈M,Ri〉 that are skew to Ri.

We now project B from Πn−3 onto a plane π of Πn. We obtain a weighted

t-fold blocking set B∗ in π, of size |B∗| = tq + t + k, t + k ≤ (q − 1)/2, where

Ri is projected onto a point R∗
i having the same weight as Ri and where H∗

Ri
is

projected onto a t-secant through Ri. Hence Ri is an essential point of B∗ and
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so, by Corollary 2.9, we can choose a t-secant ℓ through R∗
i , but not through Q.

Then the (n − 1)-space HRi
= 〈Πn−3, ℓ〉 contains t points of B but does not

contain Q.

Part 6. Finally we show that the point R′
i in πW (corresponding to Ri) is

essential to C′. A particular property of an (n − 2)-spread in 〈H∗, P 〉 =

PG(2n − 3, q) is that every hyperplane of 〈H∗, P 〉 contains exactly one element

of the (n − 2)-spread. The hyperplane 〈HRi
, P 〉 of Π2n−2 intersects 〈H∗, P 〉 in

a (2n − 4)-dimensional subspace, so it contains one element w of W . The point

Q 6∈ HRi
, hence w 6= 〈P,Q〉. We show that 〈w,Ri〉 corresponds to a t-secant

in πW . As in Part 4, projecting the points of 〈w,Ri〉 from P to HRi
, we get a

one-to-one correspondence between the points of HRi
∩ B and 〈w,Ri〉, which

proves that R′
i is essential to C′. �

Theorem 4.2. Let B be a minimal weighted t-fold (n−k)-blocking set of PG(n, q),

q = ph, p prime, h ≥ 1, of size |B| = tqn−k + t + k′, with t + k′ ≤ (qn−k − 1)/2.

Then B intersects every k-dimensional subspace in t (mod p) points.

Proof. This proof is similar to the proof of [11, Theorem 2.7]. We include it

since it makes clear where the upper bound on the size of B comes from.

Case k = n− 1 is proved in Theorem 4.1. Now let k < n− 1. Embed PG(n, q)

in PG(n, qn−k) as a subgeometry. Consider PG(n, qn−k) as an (n + 1)(n− k)-di-

mensional vector space V over GF(q). A hyperplane of PG(n, qn−k) is an n(n −
k)-dimensional vector space and PG(n, q) is an (n+1)-dimensional vector space

in V . Hence, a hyperplane of PG(n, qn−k) contains at least a k-dimensional

subspace of PG(n, q). Therefore, B is a t-fold blocking set with respect to the

hyperplanes of PG(n, qn−k).

Then B is a minimal t-fold blocking set with respect to the hyperplanes of

PG(n, qn−k). Namely, consider a point P of B. Since B was minimal as a

t-fold (n − k)-blocking set in PG(n, q), there exists a k-dimensional subspace

K of PG(n, q) through P that intersects B in exactly t points. Any hyper-

plane of PG(n, qn−k) through K that intersects PG(n, q) exactly in K proves

that P is essential for B as t-fold blocking set with respect to the hyperplanes of

PG(n, qn−k).

To prove the t (mod p) result, every k-dimensional space K of PG(n, q) can

be extended to a hyperplane of PG(n, qn−k) intersecting PG(n, q) in precisely

this k-dimensional space K. Since |B| = tqn−k+t+k′, with t+k′ ≤ (qn−k−1)/2,

it is possible to apply Theorem 4.1. This hyperplane shares t (mod p) points

with B, so B shares t (mod p) points with K. �
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Lemma 4.3. Let B be a minimal weighted t-fold 1-blocking set of PG(n, q), q = ph,

p prime, h ≥ 1, of size |B| = tq + t + k′, with t + k′ ≤ (q − 1)/2.

By Theorem 4.1, each hyperplane intersects B in t (mod pe) points for some

e ≥ 1, with e the maximal integer for which this is true. Then for 0 ≤ s ≤ n − 1

and every s-dimensional subspace Πs, |B ∩ Πs| ∈ {0, 1, . . . , t} (mod pe).

Proof. Note that we can assume t < pe − 1, otherwise the statement is obvious.

Consider Πs with 0 ≤ s ≤ n − 2, and suppose to the contrary that |B ∩ Πs| ∈
{t+1, . . . , pe−1} (mod pe). Then each hyperplane through Πs contains at least

t + 1 further points from B \ Πs.

There are |PG(n − 1 − s, q)| hyperplanes through Πs, so the number of in-

cidences of the points of B \ Πs with the hyperplanes through Πs is at least

(t+1)(qn−s−1)/(q−1). As every point of B\Πs takes part in (qn−s−1−1)/(q−1)

incidences, we have |B| ≥ |B \Πs| ≥ (t + 1)(qn−s − 1)/(qn−s−1 − 1) ≥ (t + 1)q,

which is false. �

Theorem 4.4. Let B be a minimal weighted t-fold (n−k)-blocking set of PG(n, q),

q = ph, p prime, h ≥ 1, of size |B| = tqn−k + t + k′, with t + k′ ≤ (qn−k − 1)/2.

Let e ≥ 1 be the largest integer such that each k-dimensional subspace inter-

sects B in t (mod pe) points. Then, for 0 ≤ s ≤ k and every s-dimensional

subspace Πs, we have |B ∩ Πs| ∈ {0, 1, . . . , t} (mod pe).

Proof. As in the proof of Theorem 4.2, embed PG(n, q) in PG(n, qn−k) as a sub-

geometry and note again that B is a minimal t-fold blocking set with respect to

hyperplanes of PG(n, qn−k). Now apply Lemma 4.3. �

We note that all the known small minimal weighted t-fold (n − k)-blocking

sets are unions of (not necessarily disjoint) linear (n − k)-blocking sets (if t ≤
pe, then linear 1-fold (n − k)-blocking sets), satisfying the General Linearity

Conjecture for small minimal t-fold blocking sets. As these examples suggest,

we think that for 0 ≤ s ≤ k − 1, |B ∩Πs| ≡ 0 (mod pe) can only occur if B ∩Πs

is in fact empty (some assumption for t might be needed). For t = 1, this was

proved in [11].

5. Intervals on the sizes of minimal t-fold (n − k)-

blocking sets in PG(n, q)

First we prove a lower bound on the size of a minimal weighted t-fold 1-blocking

set.
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Theorem 5.1. Let B be a minimal weighted t-fold 1-blocking set in PG(n, q),

q = ph, p prime, h ≥ 1. Assume that |B| = tq + t + k, where t + k ≤ (q − 1)/2.

Let e be the largest integer for which each hyperplane intersects B in t (mod pe)

points. Then

|B| ≥ tq +
qn−1 + pe

qn−2(pe + 1)
− t

qn−2
.

For simplicity we note that this bound implies the slightly weaker bound

|B| ≥ tq +
q

pe + 1
− 1 .

Proof. By the maximality of e, there exists a hyperplane H such that |B∩H| 6≡ t

(mod pe+1). Embed PG(n, q) into PG(2n − 2, q) and as in the proof of Theo-

rem 4.1, construct the cone C. In the corresponding plane πW , C′ is a weighted

t-fold blocking set of size |C′| = |B|qn−2 + t. The blocking set C′ is not necessar-

ily minimal, but due to our construction, the subspace H corresponds to a line h

of πW so that all the points of h∩C′ are essential to C′. If there are non-essential

points in C′, delete them one-by-one until a minimal t-fold blocking set B′ of

πW is obtained. By Theorem 4.1, B′ intersects each line of πW in t (mod pe∗

)

points for some e∗ ≤ e. Since the lower bound in Theorem 3.1 is decreasing

in e, |C′| ≥ |B′| ≥ tqn−1 + qn−1
+pe

pe+1
+ 1 holds, from which the bound on |B|

follows. �

Theorem 5.1 immediately yields a lower bound on the size of minimal t-fold

(n−k)-blocking sets in PG(n, q). As in the proof of Theorem 4.2, embed PG(n, q)

in PG(n, qn−k) as a subgeometry and note again that B is a t-fold blocking set

with respect to hyperplanes of PG(n, qn−k).

Corollary 5.2. Let B be a minimal weighted t-fold (n−k)-blocking set in PG(n, q),

q = ph, p prime, h ≥ 1. Assume that |B| = tqn−k + t + k′, where t + k′ ≤
(qn−k − 1)/2. Let e be the largest integer for which each k-space intersects B in t

(mod pe) points. Then

|B| ≥ tqn−k +
qn−k

pe + 1
− 1 . �

Warning. From now on, we consider point sets without weights.

Theorem 5.3. Let B be a minimal t-fold (n − k)-blocking set in PG(n, q), n ≥ 2,

|B| = tqn−k + t + k′, with t + k′ ≤ (qn−k − 1)/2. Assume that q = ph, p prime,

h ≥ 1, and that B intersects every k-dimensional space in t (mod E) points, with

E = pe. If 2t < E, then

tqn−k +
qn−k

pe + 1
− 1 ≤ |B| ≤ tqn−k +

2tqn−k

E
.
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Proof. Let τt+iE be the number of k-dimensional spaces intersecting B in t+ iE

points. We count the number of k-dimensional spaces, the number of incident

pairs (R, π), with R ∈ B and with π a k-dimensional space through R, and

the number of triples (R,R′, π), with R and R′ distinct points of B and π a

k-dimensional space passing through R and R′.

Then the following formulas are valid.

∑

i≥0

τt+iE =
(qn+1 − 1)(qn − 1)

(qk+1 − 1)(qk − 1)
· C ,

∑

i≥0

(t + iE)τt+iE = |B|
(

qn − 1

qk − 1

)

· C ,

∑

i≥0

(t + iE)(t + iE − 1)τt+iE = |B|(|B| − 1) · C ,

where

C =
(qn−1 − 1) · · · (qn+1−k − 1)

(qk−1 − 1) · · · (q − 1)
.

Then
∑

i≥0
i(i − 1)E2τt+iE ≥ 0 implies that

|B|(|B| − 1) − (2t − 1)|B|
(

qn − 1

qk − 1

)

+ t2
(

(qn+1 − 1)(qn − 1)

(qk+1 − 1)(qk − 1)

)

− |B|E
(

qn − 1

qk − 1

)

+ tE

(

(qn+1 − 1)(qn − 1)

(qk+1 − 1)(qk − 1)

)

≥ 0 .

Under the condition 2t < E, this implies that

|B| ≤ tqn−k +
2tqn−k

E
or |B| ≥ Eqn−k + t .

The lower bound on the size of B was proved earlier. �

The preceding proof also leads to the following corollary.

Corollary 5.4. Let B be a minimal t-fold (n−k)-blocking set in PG(n, q). Assume

that q = ph, p prime, h ≥ 1, and that B intersects every k-dimensional space in

t (mod E) points, with E = pe. If max{2t, 4} < E, then

|B| ≤ tqn−k +
2tqn−k

E
or |B| ≥ Eqn−k + t . �
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6. A characterization result which follows from the

t (mod p) result

In [5], the preceding t (mod p) results are used to characterize minimal t-fold

(n − k)-blocking sets in PG(n, q), q square, of small cardinality.

Theorem 6.1. Let B be a minimal t-fold (n−k)-blocking set in PG(n, q), q square,

of size at most |B| ≤ tqn−k +2tqn−k−1
√

q < tqn−k +qn−k−1/3. Then B is a union

of t pairwise disjoint cones 〈πmi
,PG(2(n−k−mi−1),

√
q)〉, −1 ≤ mi ≤ n−k−1,

with vertex an mi-dimensional space πmi
and base PG(2(n − k − mi − 1),

√
q),

i = 1, . . . , t.

If t ≥ 2, then k > n/2 if B contains at least one (n − k)-dimensional space

PG(n − k, q) and k ≥ n/2 in the other cases. �
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HUNGARY, H-1117

e-mail: weiner@cs.elte.hu


	Introduction
	A t8mu(mod6mup) result
	A lower bound on the size of B
	A t 8mu(mod6mup) result in higher dimensions
	Intervals on the sizes of minimal t-fold (n-k)-blocking sets in PG(n,q)
	A characterization result which follows from the t8mu(mod6mup) result

