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Directions in AG(2, p2)
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Abstract

In this paper we prove that if q is the square of a prime and U is a

set of q points determining at least q+3

2
directions, then either U is affinely

equivalent to the graph of the function x
q+1

2 or it determines at least q+p

2
+1

directions. This is sharp, the example is due to Polverino, Szőnyi and Weiner

[10]. Our method combines the lacunary polynomial and the double power

sum approach.
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1. Introduction

Throughout this paper U = {(ai, bi) : i = 1, . . . , q} will denote a q-element point

set in AG(2, q), the Desarguesian affine plane of order q. We write

D =

{

bi − bj

ai − aj
| i 6= j

}

and call elements of this set the directions determined by U . This is a subset of

GF(q) ∪ {∞} and consists of slopes of lines joining two points of U . Finally, let

N = |D|, the number of determined directions.

The problem of determining the possible values of N and characterizing the

corresponding point sets has received a lot of attention in recent years. For

motivation and the history of the problem we refer to [3] and [4]. Here we

summarize some known results.

∗The authors were supported by Magyary and Bolyai grants, TÉT grants E16/04 and SI-2/2007,

OTKA grants F043772, T043758, T049662, T067867.
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Result 1.1 (Rédei [11]; Blokhuis, Ball, Brouwer, Storme, Szőnyi [4] and Ball

[1]). Let q = ph and let s = pe be maximal with the property that any line

containing at least two points of U meets U in a multiple of s points. Then one of

the following holds:

(i) s = 1 and q+3
2 ≤ N ≤ q + 1 ;

(ii) GF(s) is a subfield of GF(q) and 1 + q/s ≤ N ≤ (q − 1)/(s − 1) ;

(iii) s = q and N = 1 .

Moreover, if s > 2, then U can be regarded as a coset of a vector space over GF(s).

This result solves the problem entirely for the case N < q+3
2 . It was first

proved in [4] with some exceptions for the characteristic 2 and 3 cases. Recently

S. Ball [1] found an easier proof which also handles the missing cases.

For the case N ≥ q+3
2 there have been results only when q is a prime:

Result 1.2. (i) (Lovász and Schrijver [9]) If q is a prime, then the only sets

determining q+3
2 directions are the affine equivalents of the graph of the

function x
q+1

2 .

(ii) (Gács [7]) If q is prime and N > q+3
2 , then N ≥

[

2 q−1
3 + 1

]

.

Note that for the case q is a prime Result 1.1 gives that N is at least q+3
2 ,

unless N = 1 (that is U is a line). This was already observed by Rédei and

Megyesi, see [11]. The graph of x
q+1

2 determines q+3
2 directions for any odd

prime power q, showing that the bound in Result 1.1(i) is sharp.

In this paper we consider the next case, that is, when q is the square of a

prime. We prove an analogous result to the two statements of Result 1.2:

Theorem 1.3. Suppose that q = p2, where p is prime and U is a set of q points in

AG(2, q) determining at least q+3
2 directions. Then either U is affinely equivalent

to the graph of x
q+1

2 , or the number of directions is at least q+p
2 + 1.

The bound is sharp: Polverino, Szőnyi and Weiner [10] constructed an ex-

ample determining q+
√

q
2 + 1 directions when q is a square. We conjecture that

for any square prime power, this should be the next possible value for N , that

is, q+3
2 < N < q+

√
q

2 + 1 cannot happen for q square.

We continue with some preliminary remarks on polynomials over finite fields

and Lucas’ theorem. For proofs, see [8].

When U does not determine all directions, that is, when N < q + 1, one can

find a suitable transformation (not affecting N) to achieve that U = {(x, f(x)) |

x ∈ GF(q)} for some function f . After this we have another form for D; namely,
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it is easy to see that D consists of those c ∈ GF(q) for which f(x) − cx is not

bijective.

Over the finite field GF(q) any function can be written as a polynomial of

degree at most q − 1. This is called the reduced form of f . For any f(x) =

cq−1x
q−1 + · · ·+ c1x+ c0, we have

∑

x∈GF(q) f(x) = −cq−1. Such an f is called a

permutation polynomial if it is bijective as a function. For such polynomials we

have
∑

x∈GF(q) f(x)k = 0 for any 1 ≤ k ≤ q − 2; this is equivalent to saying that

in the reduced form of f(x)k the coefficient of xq−1 is zero.

Lucas’ theorem tells how binomial coefficients behave modulo a prime p. Let

the p-adic expansion of n and k be n =
∑r

i=1 nip
i−1 and k =

∑r
i=1 kip

i−1,

respectively. Then
(

n
k

)

≡
(

n1

k1

)

· · ·
(

nr

kr

)

modulo p.

Finally, we show how the direction problem is connected to blocking sets

in PG(2, q). A blocking set B in the projective plane PG(2, q) is a set of points

meeting every line. A blocking set B is called non-trivial if it contains no line,

and minimal if it does not properly contain a blocking set.

If U is a set of q points in AG(2, q) and D is the set of determined directions,

then embedding AG(2, q) into PG(2, q) and adding to U the infinite points cor-

responding to elements in D, we get a blocking set B of the projective plane. It

contains a line if and only if either U is an affine line or U determines every di-

rection. Then B has the property that there is a line (the line at infinity) missing

exactly q points of B. It is easy to see that this property characterizes minimal

blocking sets arising from the above construction; they are called blocking sets

of Rédei type.

In the next section we deal with blocking sets in general. After some easy

observations we will end up in a result about Rédei type blocking sets (Proposi-

tion 2.4), which will be used in the proof of Theorem 1.3.

We will consider PG(2, q) as AG(2, q) extended by the line at infinity, l∞. The

infinite point of lines with slope c will be denoted by (c), the infinite point of

the vertical lines will be denoted by (∞).

2. Blocking sets

Suppose that B is a blocking set in PG(2, q) with |B| < 2q − 1 and (∞) /∈ B.

Write U = B \ l∞ = {(ai, bi) | i = 1, . . . , k} and let D = B ∩ l∞ = {(yi) | i =

1, . . . , N}. The Rédei polynomial of U is defined as

H(X,Y ) =
k

∏

i=1

(X + aiY + bi) .
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We will often use the Rédei polynomial of B also, which is

H∗(X,Y ) =
N
∏

i=1

(Y + yi)H(X,Y ) .

Finally, the homogeneous Rédei polynomial of B is defined as

R(X,Y, Z) =

N
∏

i=1

(Y + yiZ)

k
∏

i=1

(X + aiY + biZ) .

Note that R is the homogenization of H∗.

The partial derivatives of R with respect to X, Y and Z will be denoted by

R′
X , R′

Y and R′
Z , respectively.

Lemma 2.1. (i) There exist polynomials f1 and f2 of degree at most |B| − q

such that

H∗(X,Y ) = (Xq − X)f1(X,Y ) + (Y q − Y )f2(X,Y ) ;

(ii) there exist homogeneous polynomials f, g, h of degree |B| − q such that

R(X,Y, Z) = Xqf + Y qg + Zqh ;

(iii) Xf + Y g + Zh = 0 for the polynomials found in (ii);

(iv) for any (x, y, z) ∈ GF(q)3 \ (0, 0, 0), we have

f(x, y, z) = −R′
X(x, y, z) ,

g(x, y, z) = −R′
Y (x, y, z) ,

h(x, y, z) = −R′
Z(x, y, z) ,

for the polynomials found in (ii).

Proof. (i) is well-known, see Blokhuis [2]. For the homogenization of H∗ it

gives that it is of the form R = Xqf∗
1 + Y qf∗

2 − Zq−1(Xf∗
1 + Y f∗

2 ). Hence the

polynomials f = f∗
1 , g = f∗

2 and h = − 1
Z (Xf∗

1 + Y f∗
2 ) will be appropriate for

(ii) and (iii), provided that we can prove that Z | Xf∗
1 + Y f∗

2 . Consider the

terms of R not containing Z. These are Y N
∏

i(X + aiY ). Since (∞) /∈ B, each

element of GF(q) occurs at least once as an ai. Hence the terms we are looking

for can be written as XMY N (Xq−1 − Y q−1)s(X,Y ) (M,N ≥ 1). They all come

from Xqf∗
1 + Y qf∗

2 , so we have to find out the terms containing Xq and Y q,

which are XqXM−1Y Ns(X,Y ) and −Y qXMY N−1s(X,Y ). Hence the terms in

Xf∗
1 +Y f∗

2 not containing Z are XXM−1Y Ns(X,Y )−Y XMY N−1s(X,Y ) = 0.

Now (iv) easily follows from (iii) and the derivative of (ii). �
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The following lemma gives an easy consequence of Lemma 2.1.

Lemma 2.2. Suppose that the line l : aX + bY + cZ = 0 is a 1-secant to B. Then

the unique intersection point of l and B is (f(a, b, c), g(a, b, c), h(a, b, c)).

Proof. The point (f(a, b, c), g(a, b, c), h(a, b, c)) is on the line in question because

of Lemma 2.1(iii). At this stage it is more convenient not to distinguish between

the affine and infinite points of B, so write B = {(ui, vi, wi) | i = 1, . . . , k + N},

hence R(X,Y, Z) =
∏k+N

i=1 (uiX +viY +wiZ). Differentiate R with respect to X

to find R′
X(X,Y, Z) =

∑

i ui

∏

j 6=i(ujX + vjY + wjZ). If we substitute X = a,

Y = b and Z = c, then all products in the sum will be zero, except for the case

when (ui, vi, wi) is the intersection point, hence R′
X(a, b, c) = ui

∏

j 6=i(uja +

vjb + wjc) (for this i). Similarly we have R′
Y (a, b, c) = vi

∏

j 6=i(uja + vjb + wjc)

and R′
Z(a, b, c) = wi

∏

j 6=i(uja + vjb + wjc). Since the line aX + bY + cZ = 0 is

a 1-secant to B, this product is non-zero. By Lemma 2.1(iv), we are done. �

Note that when the line aX + bY + cZ = 0 meets B in more than one point,

then f(a, b, c) = g(a, b, c) = h(a, b, c) = 0.

Now we suppose that B is of Rédei type. Hence we have k = q and D =

{(yi) | i = 1, . . . , N} is the set of determined directions of the affine set U =

{(ai, bi) | i = 1, . . . , q}.

Note that in this case we have f(X,Y, Z) =
∏N

i=1(Y + yiZ) in Lemma 2.1.

Definition 2.3. The index I of B is defined so that the X-degree of the polyno-

mial Y qg + Zqh is q − I.

From Lemma 2.1(iii) we see that q−I is also the X-degree of g and h (unless

one of them is 1 and the other is 0). Note that considering H as a polynomial

in X (with coefficient polynomials in Y ), Xq−I is the first term after Xq with

non-vanishing coefficient polynomial.

Proposition 2.4. (i) If the infinite point (y) does not belong to B (that is, (y)

is not a determined direction), then the affine part of B is equivalent to
{

( 1
cg(t, y,−1), t) | t ∈ GF(q)

}

, where c 6= 0 depends on y ;

(ii) If q−N > N +I−q, then by a suitable linear transformation we can suppose

that the affine part of B is the graph of a polynomial of degree q − I .

Proof. If (y) is not determined, then all affine lines through it are 1-secants,

hence by calculating the intersections of B and these lines, we can determine

the q affine points.
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The lines in question have equation tX0 + yX1 − X2 = 0, so by Lemma 2.1,

we find that the affine part of B is

{(f(t, y,−1), g(t, y,−1), h(t, y,−1)) | t ∈ GF(q)} .

We know that f(t, y,−1) =
∏

(y − yi), and from Lemma 2.1(iii) we have

yg(t, y,−1) − h(t, y,−1) = −
∏

(y − yi)t. Note that c :=
∏

(y − yi) is a con-

stant, hence after the transformation X ′
2 = X2 − yX1 we find the form claimed

in (i).

By the definition of I, after (i) we only need that there is a suitable non-

determined direction (y), for which the degree of g(X, y,−1) is the same as the

X-degree of g. We have q−N choices for y. The coefficient of Xq−I in g(X,Y, Z)

is a homogeneous polynomial g0(Y,Z) of degree |B| − q − (q − I) = N + I − q.

If this is smaller than q − N , then from the fact that g0 is not identically zero,

we should have an appropriate y. �

Remark 2.5. Similar ideas and some of the results were used by Sziklai to prove

results about small blocking sets, see [12].

3. Results about directions for general q

In the spirit of the introduction, from now on U = {(x, f(x)) | x ∈ GF(q)},

D =

{

f(x) − f(y)

x − y
| x 6= y

}

= {c ∈ GF(q) | f(x) − cx is not a perm. pol.} ,

and N(f) = |D|. Here f(x) = cnxn + · · · + c0 with deg(f) = n ≤ q − 1. In

this section we introduce two more parameters depending on f and relate them

to N(f).

By the remarks at the end of the introduction, U∪D is a blocking set of Rédei

type. In this case the Rédei polynomial is

H(X,Y ) =
∏

t∈GF(q)

(X + tY + f(t)) .

Expanding H in powers of X, we have

H(X,Y ) = Xq + h1(Y )Xq−1 + · · · + hq(Y ) . (1)

Write hi(Y ) =
∑

j σi−j,jY
j . Note that hi is the i-th elementary symmetric

polynomial of the multiset {Y t + f(t) | t ∈ GF(q)}. It is easy to see that σ0,i,

that is, the coefficient of Y i in hi, is the i-th elementary symmetric polynomial

of the set GF(q). This is zero for 1 ≤ i ≤ q − 2, so for these i’s, deg(hi) ≤ i − 1.
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In general for (a, b) 6= (0, 0) we have the following for σa,b (the coefficient of

Y a in ha+b, that is, the coefficient of Xq−a−bY a in H(X,Y )):

σa,b =
∑

t1,...,ta,u1,...,ub

t1 · · · ta · f(u1) · · · f(ub) ,

where the sum is over all choices of t1, . . . , ta, u1, . . . , ub all different. For a =

b = 0, we have σ0,0 = 1.

The use of H(X,Y ) is that it translates intersection properties of U to alge-

braic ones. This was used in all proofs mentioned in the Introduction and in

Section 2.

Lemma 3.1. Fixing Y = y0 and considering H(X, y0) as a polynomial in X, the

multiplicities of its roots are the same as a multiset as the intersection sizes of lines

through the infinite point (−y0) with U .

Proof. See Rédei [11]. �

We introduce another series of polynomials:

gk(c) :=
∑

t∈GF(q)

(f(t) + ct)k =

k
∑

i=0

(

k

i

)

πi,k−ic
i , (2)

where πa,b =
∑

t∈GF(q) taf(t)b. Define π0,0 to be 1. Note that the gk ’s are the

power sums of the multiset {f(t) + ct | t ∈ GF(q)}.

The two parameters (depending on the reduced polynomial f) to be intro-

duced are the following.

Definition 3.2. The first index I1(f) of f is defined to be the smallest positive

integer k for which the polynomial hk defined by (1) is not identically zero.

The second index I2(f) of f is defined to be the smallest positive integer k

for which the polynomial gk defined by (2) is not identically zero.

Note that I1(f) coincides with the index (of the blocking set) defined in the

previous section. The reason for not using the same notation is that we want

to stress that I is a parameter of the blocking set B, while I1 (and I2) are

parameters of the affine part U of the blocking set.

The proofs in [1] and in [4] make use of lacunary polynomials arising from

H(X,Y ), this means the consideration of the parameter I1(f). On the other

hand, [7] and [9] use double power sums in the proof, this is the consideration

of the parameter I2(f).

In this paper we use both parameters, it seems that this might be the way of

attacking the N ≥ q+3
2 case. Next we relate I1, I2 and N to each other. Most of
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these observations are at least implicitly stated in one of the above mentioned

papers. The first part was also observed by Evans, Greene and Niederreiter [6].

Lemma 3.3. (i) If I1(f) ≥ q+1
2 , then N(f) ≤ q−1

p−1 ;

(ii) if N(f) > 1, then q + 1 − N(f) ≤ I1(f) ≤ I2(f), with I1(f) = I2(f) if and

only if p does not divide I1(f) .

Proof. For (i) we refer to [4]. This is the first easy step of the proof which was

already found by Rédei [11].

The fact that I1(f) ≤ I2(f) and the characterization of the case of equality

is a consequence of the Newton formulas relating power sums and elementary

symmetric polynomials.

For q+1−N(f) ≤ I1(f) note that fixing any −y /∈ D we have H(X, y) = Xq−

X, hence for these y’s we have h1(y) = · · · = hq−2(y) = 0. For h1, . . . , hq−N(f)

these are more roots than their degrees, so these hi’s are identically zero. �

Corollary 3.4. Suppose q is odd. If q+3
2 ≤ N(f) ≤ q+p

2 , then I1(f) = I2(f) .

Proof. From Lemma 3.3 we deduce q−p
2 + 1 ≤ I1(f) ≤ q−1

2 , so I1 cannot be

divisible by p. The same lemma gives I1 = I2. �

Lemma 3.5. Suppose N(f) < 3q/4 and I1(f) ≤ q−1
2 . Then one can make a linear

transformation for the graph of f to find the graph of another polynomial f1 with

deg(f1) = q − I1(f1) = q − I1(f).

Proof. This is a consequence of Proposition 2.4(ii). The conditions are easily

seen to be satisfied, so after transformation, we can find the desired f1. Since

this is in fact a transformation of the blocking set that fixes the Rédei line,

N(f1) = N(f) and by the original definition of I, we see that I1(f) = I1(f1).

�

The following lemma gives a relation between the above defined σk,l’s and

πk,l’s. It can be considered as a generalization of the Newton-Girard formulas

relating elementary symmetric polynomials to power sums.

Lemma 3.6. Fix two positive integers k and l. The following formula holds:

k
∑

r=0

l
∑

s=0

w(r, s) πr,s σk−r,l−s = 0 ,
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where the function w(r, s) is defined as follows: fix two field-elements a and b, then

w(0, 0) := ak + bl; while for (r, s) 6= (0, 0)

w(r, s) := (−1)r+s

((

r + s − 1

s

)

a +

(

r + s − 1

r

)

b

)

.

(That is, we get a formula for every choice of a and b.)

Proof. It is easy to see that after multiplication on the left hand side we have

monomials of the form trf(t)s t1 · · · tk−r f(u1) · · · f(ul−s), where t, t1, . . . , ul−s

are different field elements and 0 ≤ r ≤ k, 0 ≤ s ≤ l.

If r and s are both positive, then we can get such a term from three sum-

mands: πr,s σk−r,l−s, πr−1,s σk+1−r,l−s and πr,s−1 σk−r,l+1−s. Hence the coeffi-

cient of such a monomial is w(r, s) + w(r, s − 1) + w(r − 1, s) = 0.

If r = 0, s > 1, then there are two summands giving the monomial in ques-

tion: π0,s σk,l−s and π0,s−1 σk,l+1−s, so the coefficient of such a monomial is

w(0, s) + w(0, s − 1) = 0. The s = 0, r > 1 case is similar.

The {r, s} = {0} and {r, s} = {0, 1} cases are the same, so what is left is to

show that monomials of the form t1 · · · tk f(u1) · · · f(uk) also have zero coeffi-

cient. There are three summands giving them: π0,0 σk,l (one time), π1,0 σk−1,l

(k times) and π0,1 σk,l−1 (l times). Hence the coefficient in question is w(0, 0)+

lw(0, 1) + kw(1, 0) = 0. �

We will use two corollaries of this lemma. The first one was noticed by

Chou [5].

Corollary 3.7. (i) deg(f) ≤ q − I1(f) ;

(ii) in the reduced form of f2 the only non-zero terms of degree higher than

q + 1 − I1(f) can be those of degree divisible by p .

Proof. (i) By the definition of I1, we know that σk,l = 0 for every 0 < k + l <

I1(f). We use the formula of Lemma 3.6 with l = 1, a = 0 and b = 1.

It gives (−1)k+1
(

k
k

)

πk,1 = 0 for all k ≤ I1(f) − 2, which means that the

coefficients of xq−1, xq−2, . . . , xq−I1(f)+1 are zero in f .

(ii) Similarly to (i), we now use the formula with l = 2, a = 0, b = 1 to find

(−1)k+2
(

k+1
k

)

πk,2 = 0 for all k ≤ I1(f) − 3. This gives that in the reduced

form of f2xk, the coefficient of xq−1 is zero, unless p | k+1; this is exactly

what we wanted. �

In the next theorem, we summarize what we have so far.
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Theorem 3.8. Suppose U is a set of q points in AG(2, q) determining N ≤ q+p
2

directions, where q is a proper power of the odd prime p. Then either N ≤ q+1
2 and

we know all such examples from the classification [1, 4], or U is affinely equivalent

to the graph of a polynomial f with I1(f) = I2(f) = q−1
2 and deg(f) = q+1

2 .

Proof. The previous lemmas together yield that after transformation, U is the

graph of a polynomial f(x) = xn + · · · + c2x
2 + c1x + c0 with

q − p

2
+ 1 ≤ I1(f) = I2(f) = q + 1 − n ≤

q + 1

2
.

All we need is that n = q+1
2 .

Write n = q−1
2 + r with 1 ≤ r ≤ p−1

2 . Consider the reduced form of fp. The

term xn will give x(q−1)/2+rp (after reduction). It follows that
∑

x(q−1)/2−rpf(x)p 6= 0 .

Since
(

(q−1)/2−rp+p
p

)

6= 0 by Lucas’ theorem, this gives that g(q−1)/2−(r−1)p 6= 0

identically, hence by the definition of I2, we have (q − 1)/2 − (r − 1)p ≥ I2 >

(q − p)/2. This is only possible for r = 1. �

The above theorem implies in particular, that to prove Theorem 1.3 or even

its generalization to an arbitrary odd prime power q (which is not a prime), one

can suppose that the set U is the graph of a polynomial of degree q+1
2 .

4. Proof of Theorem 1.3

From now on suppose q = p2 for a prime p. For p = 2 and p = 3 there is

nothing to prove, so suppose p ≥ 5. By Theorem 3.8 let f(x) = x
q+1

2 + · · · + c0

be a polynomial with q+3
2 ≤ N(f) ≤ q+p

2 and I1 = I2 = q−1
2 . We make a

transformation to achieve c q−1

2

= c1 = c0 = 0. It is not difficult to see that this

does not affect I1 or I2. We have to prove that f is equivalent to x
q+1

2 . The

proof will be carried out in several steps.

Claim 1. Consider the intervals

Ai =

(

q − 1

2
− (i + 1)p,

q − 1

2
− ip

]

for i = 0, 1, . . . ,
p − 3

2
.

The only possible indices j ∈ Ai with cj 6= 0 are

q − 1

2
− ip,

q − 1

2
− ip − 1, . . . ,

q − 1

2
− ip − (i − 1)

(for i = 0 this means that for all j ∈
(

q−1
2 − p, q−1

2

]

, cj = 0).
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Proof. We use Corollary 3.7(ii). Here q + 1 − I1 = q+3
2 .

Using that in f2 the coefficients of xq−1, . . . , xq−p+1 are zero, we find that

c q−3

2

= · · · = c(q−1)/2−p+1 = 0. Then using the fact that in f2 there is no

xq−p−1, . . . , xq−2p+1, we find that c(q−1)/2−p−1 = · · · = c(q−1)/2−2p+1 = 0.

Again we cannot cancel c(q−1)/2−2p, but also c(q−1)/2−2p−1. The reason for the

latter is that in f2 the terms x
q+1

2 x(q−1)/2−2p−1 and (x(q−1)/2−p)2 give terms of

the same degree, so they might cancel each other.

In general we use induction on i. Suppose we have proved the statement

for 0, . . . , i − 1 but c(q−1)/2−ip−j 6= 0 for a j ≥ i. Considering f2 again, we

find a term of degree q − ip − j. This is a contradiction unless we can have

this term from the product of two terms of the form (q − 1)/2 − i1p − j1 and

(q − 1)/2 − i2p − j2 for some i1, i2 ≤ i − 1 and j1 ≤ i1 − 1, j2 ≤ i2 − 1 (by the

induction hypothesis). An easy calculation shows that this is not possible. �

Note that what we have proved implies in particular that all terms below q+1
2

have degree between 0 and p−1
2 modulo p.

Claim 2. If f(x) 6= x
q+1

2 , then f(x) = x
q+1

2 + c(q−1)/2−jpx
(q−1)/2−jp + · · · with

c(q−1)/2−jp 6= 0. (That is, the first term after q+1
2 with nonzero coefficient has to

be congruent to p−1
2 modulo p.)

Proof. Let f(x) = x
q+1

2 + csx
s + · · · . Then in the reduced form of f(x)2 the

coefficient of the term x(q+1)/2+s is not zero, hence by Corollary 3.7(ii), q+1
2 + s

is divisible by p. �

Claim 3. If f(x) 6= x
q+1

2 , then f(x) = x
q+1

2 + c(q−1)/2−px
(q−1)/2−p + · · · with

c(q−1)/2−p 6= 0 (hence j = 1 in Claim 2) and cp
(q−1)/2−p + c(q−1)/2−p = 0.

Proof. By the remark after Claim 1, one can show that after reduction f(x)p =

x(q−1)/2+p + cp
(q−1)/2−jpx

(q−1)/2−j + · · · . Multiplying f and the reduced form

of fp we find that in the reduced form of fp+1 there are two big terms, namely

cp
(q−1)/2−jpx

q−j and c(q−1)/2−jpx
q−1−(j−1)p. These can cancel each other if j =

1 and cp
(q−1)/2−jp + c(q−1)/2−jp = 0, in all other cases fp+1 has a non-zero term

of degree q − j. But this cannot happen, since this would mean that gp+j is not

zero identically (note that
(

p+j
p+1

)

is not zero for j ≥ 1). �

Claim 4. f(x) = x
q+1

2 .
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Proof. Suppose f(x) 6= x
q+1

2 . We summarize what we have from the previous

three claims:

f(x) = x(q+1)/2 + c(q−1)/2−px
(q−1)/2−p + · · · ;

f(x)p = x(q+1)/2+p−1 + cp
(q−1)/2−px

(q−3)/2 + · · · ;

0 = cp
(q−1)/2−p + c(q−1)/2−p . (3)

Now consider x2
(

xp−1f(x) − f(x)p
)2

. This polynomial is the linear combi-

nation of polynomials of the form xkf(x)l with
(

k+l
k

)

6= 0, hence by the def-

inition of I2, after reduction it cannot have a term of degree q − 1 (unless

2p + 2 ≥ I1). It is easy to see that this gives cp
(q−1)/2−p − c(q−1)/2−p = 0,

which together with (3) implies c(q−1)/2−p = 0, a contradiction.

So the proof is finished except for the case 2p + 2 ≥ I1 = q−1
2 ; this can only

happen for p = 5. This case can be ruled out by computer. �
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