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Abstract

We show that a double-Baer group implies the existence of a double-

retraction in a translation plane with kernel containing a field K = GF(q). If

the associated spread is in PG(3, q) then a lifted spread in PG(3, q2) admits a

double-Baer group. The double-retraction group produces a maximal partial

mixed partition of PG(3, q2) of lines and PG(3, q). This result is generalized

and new examples of translation planes admitting double-Baer groups are

given.
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We both met Gabor Korchmáros in 1985 when the “triangle” of Potenza-Bari-

Lecce met for a series of seminars at Lecce and we were visiting the university.

Many finite geometers have been greatly influenced by the tremendous depth

and range of the geometry of Gabor. In particular, we gratefully acknowledge

that our foundations’ book on translation planes with Mauro Biliotti grew out

of a summer school organized by Gabor and his group at Potenza during the

summer of 1996. We are privileged to dedicate this article to Gabor on the

occasion of his sixtieth birthday.

1 Introduction

This article somewhat concerns the concept of ‘geometric lifting’, which is de-

scribed in the text by Hirschfeld and Thas [4]. In particular, from a subgeometry

partition of a finite projective space, there is a construction that produces a cor-

responding finite spread, and hence, from which we obtain a finite translation

plane. The subgeometry partition may consist entirely of Baer subgeometries

or be a so-called ‘mixed subgeometry partition’ where the partition has at least

two non-isomorphic subgeometries comprising the partition.
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In Johnson [10], the question was considered as how to recognize spreads

that have been geometrically lifted from Baer subgeometry or mixed subge-

ometry partitions of a finite projective space. It was determined that the in-

trinsic character is that the translation plane have order qt with subkernel K

isomorphic to GF(q) and admit a collineation group (on the nonzero vectors)

which contains the scalar group K∗, written as GK∗, such that GK∗ union the

zero mapping is a field isomorphic to GF(q2) (see Johnson [10] and Johnson-

Mellinger [11]). With such a recognition theorem on collineation groups, it

is then possible to ‘retract’ such a translation plane or spread to construct a

variety of Baer subgeometry or mixed subgeometry partitions of an associated

projective space written over GK as a quadratic field extension of K. Since sub-

geometry partitions often first arise directly from translation planes admitting

a retraction group, it is therefore of common interest to study situations that

force translation planes to admit such a group. Furthermore, mixed partitions

produce translation planes of square order and often implicit in the translation

plane is a combination of Baer groups (the group fixes a Baer subplane point-

wise). The main thrust of this article is that such a combination of Baer groups

produces, in turn, a retraction group that produces a mixed subgeometry par-

tition. Of course, the question of what sorts of translation planes admit such

Baer groups becomes of major interest. In this regard, there is a very unlikely

connection with what are called ‘algebraically lifted planes’.

There is also an algebraic construction procedure for spreads which is called

‘algebraic lifting’ (or more simply ‘lifting’ in Johnson [9]) by which a spread in

PG(3, q) may be lifted to a spread in PG(3, q2). More precisely, this construc-

tion is a construction on the associated quasifields for the spread and different

quasifields may produce different algebraically lifted spreads. This material is

explicated in Biliotti, Jha and Johnson and the reader is referred to this text for

additional details and information (see [1, p. 437]).

Recently, in Jha and Johnson [5] the following surprising result is obtained.

Theorem 1.1 (Jha and Johnson [5]). Let S be any spread in PG(3, q). Then there

is a mixed subgeometry partition of PG(3, q2), which geometrically lifts to a spread

in PG(3, q2) that algebraically contracts to S.

Corollary 1.2 (Jha and Johnson [5]). The set of mixed subgeometry partitions of

a 3-dimensional projective space PG(3, k2), constructs all spreads of PG(3, k).

In this article, we provide further fundamental connections between these

two constructions. In particular, we establish connections between what are

called ‘double-Baer groups’ and ‘double-retraction’ and basically show that the

existence of one is equivalent to the existence of the other. (In this context,

double-retraction refers to the possibility that there are two collineation groups
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of a given translation plane with the above properties allowing retraction using

either one of these fields to produce subgeometry partitions of isomorphic pro-

jective spaces.) Furthermore, in Johnson [10] and using Jha and Johnson [5], it

is shown that spreads in PG(3, q2) lifted from spreads in PG(3, q) always admit

double-Baer groups of the type above and hence there is an associated double-

retraction. In this case, one retraction provides a mixed subgeometry partition

of q2 + 1 lines and q2(q − 1) PG(3, q)’s of a PG(3, q2).

Considered vectorially, retraction may be considered more generally over in-

finite vector spaces, even infinite vector spaces of infinite dimension over their

kernels. Hence, in essence, geometric lifting may be more generally considered,

even though in this article, we restrict ourselves to the finite situation.

To be clear on what we mean by ‘retraction’, we end this section with the

second author’s theorem involving groups of order q2−1 and our specific defini-

tions. The following theorem deals with the situation considered in this article,

although the theorem can be stated in a more general form.

Theorem 1.3 (Johnson [10]). Let π be a translation plane of order q2ar and

kernel containing GF(q). Let G be a collineation group of order q2 − 1 containing

the kernel homology group of order q − 1 and assume that G ∪ {0} (the zero

mapping) is a field K.

Then the component orbit lengths of G are either 1 or q +1. Forming the projec-

tive space PG(2ar − 1, q2), the orbits of length 1 become projective subgeometries

isomorphic to PG(2a−1r − 1, q2) and the orbits of length q + 1 become projective

subgeometries isomorphic to PG(2a−1r − 1, q).

The set of subgeometries partition the points of the projective space providing a

‘mixed subgeometry partition’.

Furthermore, as mentioned, there is a ‘geometric lifting’ process that con-

structs translation planes of order q2ar and kernel containing GF(q) from any

mixed subgeometry partition.

There is also a corresponding result in Johnson [10] for translation planes of

order qt, for t odd but admitting collineation groups of order q2 − 1 having the

properties of the group in the previous theorem. In this setting, all component

orbits will have length q + 1 and the associated subgeometry partition is said to

be a ‘Baer subgeometry partition’.

In general, we define the process of ‘retraction’ as follows.

Definition 1.4. Assume that a finite translation plane with kernel containing

GF(q) admits a collineation group of order q2 − 1 that contains the kernel ho-

mology group of order q − 1 such that together with the zero mapping, a field
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isomorphic to GF(q2) is obtained. Then the group is said to be a ‘retraction

group’.

Definition 1.5. A retraction group is said to be ‘trivial’ in the projective space

PG(2n−1, q2) associated with the spread, if the subgeometries are all isomorphic

to PG(n − 1, q2).

Remark 1.6. It is immediate that a retraction group is trivial if and only if it is

a kernel homology group of the translation plane.

Proof. The construction process of ‘geometric lifting’ constructs a translation

plane with kernel isomorphic to GF(q), such that each subgeometry produces

exactly one component of the translation plane, which is fixed by a group of

order q2 − 1. Hence, the retraction group is a kernel homology group of order

q2 − 1. �

Definition 1.7. The associated process of constructing the subgeometry par-

tition from a non-trivial retraction group is said to be ‘retraction’ (or ‘spread

retraction’). If there are two distinct retraction groups G1 and G2 that central-

ize each other, we shall say that we have ‘double-retraction’. More generally, if

there are k distinct retraction groups that centralize each other, we say that we

have ‘k-retraction’. We note that we are allowing ‘double-retraction’ to include

the possibility that one the associated fields is a kernel field of the translation

plane.

In this article, we show fundamental connections between double-retraction

and what are called ‘double-Baer groups’. Furthermore, new constructions of

Dempwolff [2] provide several new double-Baer groups and hence will con-

struct some new subgeometry partitions. In addition, the concept of ‘multiple-

retraction’ is considered within the context of double-Baer groups and double-

homology groups. In a sense made clear in the article, double-retraction is

equivalent to the existence of either a double-Baer group or a double-homology

group.

2 Double-Baer groups

We recall that a ‘Baer group’ in a translation plane of order h2 is a group in

the translation complement that fixes a Baer subgroup pointwise. Indeed, such

Baer groups have orders that divide h(h−1). Here we let h = q2ar and consider

the possibility of having two Baer groups of order q + 1. The reason for consid-

eration of such Baer groups may be seen from algebraic lifting, where a spread

in PG(3, q) algebraically lifts to a spread in PG(3, q2) admitting a Baer group of



Double-Baer groups 231

order q + 1. In this setting, the order of the translation plane has order q4. The

following theorem recalls the main ideas. The reader is directed to Biliotti, Jha,

and Johnson [1] for details on algebraic lifting. Actually, this concept originated

in Hiramine-Matsumoto-Oyama [3] for the odd order case and here we provide

the details for arbitrary order planes.

Theorem 2.1. Let π be a translation plane with spread S in PG(3, q). Let F

denote the associated field of order q and let K be a quadratic extension field with

basis {1, θ} such that θ2 = θα + β for α, β ∈ F . Choose any quasifield and write

the spread as follows:

x = 0, y = x

[

g(t, u) h(t, u) − αg(t, u) = f(t, u)

t u

]

∀t, u ∈ F ,

where g, f are unique functions on F × F and h is defined as noted in the matrix,

using the term α.

Define F (θt + u) = −g(t, u)θ + h(t, u). Then

x = 0, y = x

[

θt + u F (θs + v)

θs + v (θt + u)q

]

∀t, u, s, v ∈ F

is a spread SL in PG(3, q2) called the spread ‘algebraically lifted’ from S. We note

that there is a derivable net

x = 0, y = x

[

w 0

0 wq

]

∀w ∈ K ≃ GF(q2)

with the property that the derived net (replaceable net) contains exactly two Baer

subplanes which are GF(q2)-subspaces and the remaining q2 − 1 Baer subplanes

form (q − 1) orbits of length q + 1 under the kernel homology group.

Hence, we obtain a mixed partition of (q − 1) PG(3, q)’s and q4 − q lines of

PG(3, q2).

So, from any quasifield, we obtain a spread in PG(3, q) which lifts and derives

to a spread permitting retraction which produces a mixed partition of (q − 1)

PG(3, q)’s and q4 − q lines of PG(3, q2).

In the previous result, we used the derived plane of the algebraically lifted

plane to construct the subgeometry partitions. However, there is also a more

direct construction which proves Theorem 1.1. We revisit that proof here as it

may be directly generalized.

We note that in the above situation,

B1 =
〈

diag(e−1, 1, 1, e−1) | e has order q + 1
〉
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maps

y = x

[

u F (z)

z uq

]

onto

y = x

[

e 0

0 1

] [

u F (z)

z uq

] [

1 0

0 e−1

]

= x

[

ue F (z)

z (ue)q

]

and so is a collineation of the algebraically lifted translation plane. Further-

more, B1 fixes the vector subspace

FixB1 =
〈

(0, x2, y1, 0) | x2, y1 ∈ GF(q2)
〉

pointwise, which implies that B1 is a Baer group of order q + 1. Since, we have

kernel GF(q2) in the lifted plane, it follows that

B2 = 〈diag(1, e, e, 1) | e has order q + 1〉

is also a Baer group fixing the vector subspace

〈

(x1, 0, 0, y2) | x1, y2 ∈ GF(q2)
〉

pointwise. Furthermore, B1 and B2 commute and note that B1 is contained

in the group B2K
2∗, where K2∗ denotes the kernel homology group of order

q2 − 1. Now let K2 be the kernel homology group of order q2 − 1 and form

〈B1, B2〉K2∗, which we claim is

D =
〈

diag(a, b, b, a) | a, b ∈ GF(q2)∗ such that aq+1 = bq+1
〉

of order (q+1)(q2−1). Note that the order of 〈B1, B2〉K2∗ is (q+1)2(q2−1)/I,

where I is the intersection with B1B2 and K2∗. This group leaves invariant

the subplane FixB1, B1 fixes it pointwise, B2 induces a kernel group on it as

does K2∗. Hence, the group induced on FixB1 is isomorphic to K2∗. But, since

B1 of order q + 1 fixes FixB1 pointwise, it follows that the group has order

(q + 1)(q2 − 1).

When a = b, D contains K2∗ and when a = 1, D contains B1, similarly,

D contains B2. Since D has a K2∗ as a normal subgroup of index q + 1, we see

that B1B2K
2∗ = D.

Let q = pr, for p a prime and form the following set of fields Kpi of order q2,

for σ = pi for i dividing 2r.

Lσ =
〈

diag(a, aσ, aσ, a) | a ∈ GF(q2)∗
〉

∪ {0} .

To obtain L∗

σ in our group, then aσ(q+1) = aq+1, which implies that if σ = pi,

then q divides pi, so let σ = q or 1.
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Now each of the fields Lσ satisfies the hypothesis of the retraction theorem

so that we obtain a double-retraction. However, when σ = 1, in this particu-

lar setting, the subgeometry partition is essentially trivial as K1 is the kernel

homology group of the associated translation plane so that we do not actually

obtain a mixed partition as all subgeometries are isomorphic to PG(1, q2)’s. In a

more general setting, we often do obtain true double-retraction from such pairs

of Baer groups.

We generalize this concept below. In the following setting, however, we make

no assumption on the kernel of the translation plane, so π is a translation plane

of order q2ar, with unspecified kernel.

There are two principal situations where the use of Baer groups provides

double-retraction. First, two Baer groups of order q + 1 in translation planes

that admit a subkernel isomorphic to GF(q2) and two Baer groups of order

(2, q − 1)(q + 1) in translation planes that admit a subkernel isomorphic to GF(q).

Of course, when q is even, we may use either of these conditions for our results.

Definition 2.2. Let B1 and coB1 be distinct commuting Baer groups of the same

order and in the same net of degree q2a−1r + 1 in a translation plane π of order

q2ar and kernel containing K for (r, 2) = 1. If either K is isomorphic to GF(q2)

and B1 is divisible by q + 1 or if K is isomorphic to GF(q) and B1 is divisible by

(2, q − 1)(q + 1), the pair (B1,coB1) shall be called a ‘double-Baer group’. The

‘order’ of the double-Baer group is the order of either Baer group in the set.

Definition 2.3. Any Baer group whose order is that of a double-Baer group is

said to be ‘critical’.

2.1 (q + 1, q
2)-double-Baer groups

To fix the situation, we assume that we have a double-Baer group of order

divisible by q+1 and a translation plane of order q2ar, where there is a subkernel

of Kq2 isomorphic to GF(q2).

Lemma 2.4. We may choose coordinates so that B1 and coB1 have the following

representation:

B1 =
〈

diag(I,A, I, A) | A ∈ K+
1 of order dividing q + 1

〉

and

coB1 =
〈

diag(C, I, C, I) | C ∈ K+
2 of order dividing q + 1

〉

where both K+
1 and K+

2 are fields isomorphic to GF(q2), and K+
i is the Kq-module

generated over Kq by A or C respectively for i = 1, 2.
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Proof. To see this, we note that any Baer group of order q + 1 fixes both of the

Baer subplanes indicated and induces a kernel homology group on one subplane

and the identity on the other. Hence, the elements A are contained in the kernel

of a translation plane of order q2ar. So, it follows that there exist sub-kernels

of the Baer subplanes that are isomorphic to GF(q2). Note also that the Baer

groups are linear over Kq so it must be that both of the Baer subplanes are fixed

by the kernel of the super translation plane. Hence, we see that Kq may be

assumed to be a subfield of K+
1 and K+

2 . �

Then, we have the following representation for B1 coB1K
∗

q2 :

B1 coB1K
∗

q2 =
〈

diag(Cα,Aα,Cα,Aα) | A ∈ K+
1 , C ∈ K+

2

of orders dividing (q + 1) and α ∈ Kq2 − {0}
〉

.

We note our previous argument in the dimension 2 situation applies directly

here to show that the order of this group is (q + 1)(q2 − 1).

B1 coB1K
∗

q2 = 〈diag(Cα,Aα,Cα,Aα)〉

=
〈

diag(D,E,D,E) | Dq+1 = Eq+1 for D ∈ K+
1 , E ∈ K+

2

〉

.

Since K+
1 and K+

2 are isomorphic fields of matrices containing Kq, they are

conjugate by an Kq-matrix H. So, let K+H
2 = K+

1 and consider the following

fields Kσ

Lσ =
〈

diag(D,DσH ,D,DσH) | D ∈ K+
1 , σ automorphism of K+

1

〉

.

By our previous argument L∗

σ belongs to our group if and only if σ = 1 or q.

We now have the conditions for double-retraction as given in Theorem 1.3. Of

course, in this setting, A and C are in the kernel group Kq2 but in a related

setting to follow, this will not be the case.

Hence, we have the following theorem.

Theorem 2.5. Let π be a translation plane of order q2ar for (r, 2) = 1, admitting a

double-Baer group of order divisible by q+1 with kernel containing Kq2 isomorphic

to GF(q2).

From the double-Baer group, there are exactly two retraction fields Lσ, for σ = 1

or q, for the translation plane so we have double-retraction.

2.2 ((2, q − 1)(q + 1), q)-double-Baer groups

Now we will consider a translation plane of order q2ar with kernel containing

Kq isomorphic to GF(q) that admits a double-Baer group of order divisible by



Double-Baer groups 235

(2, q − 1)(q + 1). Now if we reread the argument given in the previous subsec-

tion, we see that we can still create two fields Lσ, for σ = 1 or q. In particular,

we have

B1 coB1K
∗

q =
〈

diag(Cα,Aα,Cα,Aα) | C and A have

orders divisible by(2, q − 1)(q + 1)z and α ∈ K∗

q

〉

.

The order of this group is ((2, q−1)(q+1))2(q−1)/I, where I is the intersection

of B1 coB1 and K∗

q . In order that an element of g ∈ B1 coB1 be also in K∗

q , then

C = A has order dividing (q − 1). If q is even, then I is clearly 〈1〉, so assume

that q is odd. Then, we have a group of order 4(q + 1)2(q − 1)/I. First assume

that (q − 1)/2 is odd. Then clearly we have a group of order 2(q + 1)(q2 − 1).

If (q − 1)/2 is even then there is a cyclic group of order 4 in both B1, coB1 and

K∗

q , so that the group has order (q + 1)(q2 − 1).

Therefore, in all situations, we have the subgroup of B1 coB1K
∗

q

〈

diag(D,E,D,E) | Dq+1 = Eq+1, for D ∈ K+
1 , E ∈ K∗

2

〉

of order (q + 1)(q2 − 1) and we obtain the fields Lσ, for σ = 1 or q, exactly as in

the previous situation.

However, in this setting, the field L1 need not be a kernel homology group.

Therefore, we obtain the following theorem.

Theorem 2.6. Let π be a translation plane of order q2ar for (r, 2) = 1, admitting

a double-Baer group of of order divisible by (2, q−1)(q +1) with kernel containing

Kq isomorphic to GF(q).

(1) From the double-Baer group, we may construct two retraction fields Lσ, for

σ = 1 or q, for the translation plane so we have double-retraction.

(2) If the plane has kernel GF(q2) but L1 is not a kernel homology group, we

obtain triple-retraction.

3 The fusion of Baer groups

One important procedure for the construction of double-Baer groups is the fol-

lowing theorem.

Theorem 3.1. Let π be a semifield plane of order q2ar and kernel containing K

isomorphic to GF(q), for (r, 2) = 1. Assume that the right nucleus and middle

nucleus of the associated semifield contain fields isomorphic to GF(q2). If there is

a derivable net that contains a middle nucleus net invariant under the associated

affine homology group then the derived plane admits a double-Baer group.
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Proof. In Jha and Johnson [7], it is possible to ‘fuse’ isomorphic sub- right and

middle nuclei in semifields (identify the fields defining the nuclei). This means

that there are affine homology groups of order q2 − 1 that leave invariant the

derivable net. Under derivation, such groups are transformed into Baer groups

that form a double-Baer group. �

So, it would appear that a natural development to the study of Baer groups

is to consider a ‘fusion’ of Baer groups. Note in the case of the (q + 1, q2)-Baer

groups, we will have a natural fusion.

Definition 3.2. Let π be a translation plane of order q2ar admitting a double-

Baer group. Then both associated Baer groups are represented by fields K+
1 and

K+
2 isomorphic to GF(q2). If these fields can be identified, we shall say that the

Baer groups are ‘fused’.

Let B1 and B2 denote the two Baer groups of the double-Baer group. If there

is a field L+ isomorphic to GF(q2) whose multiplicative group is a collineation

group such that B2 ⊆ B1L
+∗, we shall say that L+ ‘intertwines’ the double-Baer

group, or that L+ is an ‘intertwining field’ for the double-Baer group.

We note that when the fields corresponding to the Baer groups in a double-

Baer group are fused, we still might not have the situation that one of the fields

constructed above Lσ, for σ = 1 or q is a kernel homology group.

We now connect ‘spread-retracton’ and the fusion of Baer groups.

We observe that fusion arises when a double-Baer group actually commutes

with a retraction field and although this result is less general than when fusion

does not occur, it conceivably is a more common occurrence.

Theorem 3.3. Let π of order q2ar and kernel containing K isomorphic to GF(q)

admit spread-retraction relative to the group G1K
∗. Assume that a double-Baer

group B1B2 commutes with G1K
∗. Let N denote the net containing the axes of

the Baer groups Bi, for i = 1, 2.

(1) Then G1K
∗B1B2 fixes at least two components of the net N containing the

axes of Bi, i = 1, 2.

(2) Assume that G1K
∗ fixes all components of the net N .

(a) Then the kernel of the Baer subplane FixBi contains G1K
∗ ∪ {0} = L+.

(b) Furthermore, the double-Baer group may be fused and L+ is an intertwin-

ing field for the double-Baer group.

Proof. The double-Baer group fixes a set of q2a−1r + 1 components which are

necessarily permuted by G1K
∗, a group of order q2 − 1. The component orbit
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lengths of G1K
∗ are 1 and q + 1. Since q + 1 divides q2a−1r − 1, it follows that

there must be a common set of at least two fixed components, say L and M .

Decompose both L and M relative to K+
1 and apply the previous arguments

which show that the groups B1 and B2, since both cyclic, must diagonalize

relative to K+
1 in the same manner on both L and M. Furthermore, the group

element acting on a 1-dimensional K+
1 -subspace on L or M must act on that

1-space as a K+
1 -scalar mapping. Assume that on L, B1 has the general form:

(x1, . . . , xq2a−1r ) 7→ (a1x1, a2x2, a3x3, a4x4, . . . )

for ai ∈ K+
1 of orders dividing q + 1. Since we know that the vectors on FixB1

and the vectors on FixB2 direct sum on L to the entire space, this is also true

when considering the vectors written over K+
1 . Since B2 must also have the

same general form, it follows that we may rearrange the K+
1 -basis elements

on L so that the nontrivial elements of the group B1 have a2j+1 = 1 and a2k 6= 1

and the nontrivial elements of the group B2 have a2k = 1 and a2j+1 6= 1.

Furthermore, since G1K
∗ has orbits of length 1 or q + 1, we have the kernel

group of order q − 1 acting on the two Baer subplanes, since they are pointwise

fixed by collineation groups of π. On FixB1 = π1, we also have the K-scalar

group fixing all components relative to K+
1 . This means that relative to π1,

we have a subgroup of order at least (q2 − 1)/(2, q − 1) of K+
1 acting on each

K+
1 -component on L. It follows easily that there is a subkernel on π1 which

may be identified with K+
1 . The same is true for FixB2. Relative to π1, the

kernel of π1 is a K+
1 -group which acts like a scalar group on each component.

Furthermore, the group is cyclic and if g is a generator then gq−1 is the K-kernel

homology group restricted to π1. Let x1 7→ ax1 and x2j+1 7→ ai2j+1x2j+1 on L.

Since we have a field, it follows that i2j+1 = pλ(2j+1) and since gq−1, it follows

that i2j+1 = 1 or q for all components.

It then follows that a generator h1 for B1maps on L

(x1, . . . , xq2a−1r ) 7→ (cx1, x2, c
qλ(3)

x3, x4, c
qλ(5)

x5, . . . ) ,

where c has order q + 1. The analogous decomposition may be assumed on M.

If a generator h2 is chosen so that x2 7→ cqx2, then the product of h1h2

maps the K+
1 -components xi or yi to cqλ(i)

xi or cqρ(i)

i yi, respectively. Since we

have G1K
+ as a collineation group, it follows that h1h2 cannot be in G1K

∗.

Now assume that there are more c′s than cq′s in the decomposition of h1h2.

Then multiplication by c−1I in G1K
∗ implies that we have a collineation which

violates the Baer condition on numbers of fixed points. Hence, there are exactly

half c′s and exactly half cq′s in the decomposition of h1h2. Now suppose on L

there are more than half c′s then cq′s. If there are at least some c′s on M , we

obtain again by multiplication of c−1I, a planar collineation which violates the
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Baer condition. We choose the collineations h1 and h2 so that we would have at

least one c and at least one cq on L. If there are no c′s on M then multiplication

by c−qI provides a contradiction. Hence, there are half c′s and half cq′s on L

and half c′s and half cq′s on M . We now assert that relative to B1, we still have

essentially the same parity on elements which are not 1. If we have more c′s

than cq′s, again multiplication by c−1I gives a collineation which must be Baer,

thus implying that we have all c′s. Hence, either we have all c′s, all cq′s or half

c′s and half cq′s relative to B1.

However, we have assumed that the group G1K
∗ fixes all components on the

net N defined by π1 and π2. Since G1K
∗ leaves π1 and π2 invariant and fixes

all components on N , it must induce a kernel homology group of order q2 − 1

on both subplanes.

In this case, then choosing a third component of N as y = x, the representa-

tion already given for G1K
∗ is basically valid over the translation plane, since

now x = 0, y = 0, y = x are fixed. However, the representation of B1 must

then have all c′s or all cq′s. In other words, we may represent the group B1 as

previous

B1 =
〈

diag(I,A, I, A) | A ∈ K+
1 of order dividing q + 1

〉

.

Now since the kernel acting on π2 is diag(A,A), it follows that L+ acting

on π1 is K+
1 . It now follows that A = aq−1I2a−2r (recalling that a ∈ K+

1 isomor-

phic to GF(q2)). Furthermore, we now have that a1−qI2arB1 is B2. Hence, the

double-Baer group may be fused and L+ is an intertwining group. �

Corollary 3.4. Let π be a translation plane of order q2ar and kernel containing K

isomorphic to GF(q). If π admits spread-retraction with a group G1K
∗ and admits

a Baer group B1 or order q + 1 such that B1 and G1K
∗ commute and G1K

∗ fixes

all components of the net N containing FixB1 then there is a double-Baer group

of order q + 1 and two intertwining fields.

Hence, the plane admits double-retraction.

Proof. By the above theorem, it remains to check that there is a second inter-

twining field which gives rise to retraction. We have the following group:

B1 coB1G1K
∗ =

〈

diag(CD,AD,CD,AD) | A,C ∈ K+ ⊇ K of orders

dividing q + 1 and D ∈ K+ − {0}
〉

.

Letting A = aq−1I2a−2r, C = I2a−2r and D = aI2a−2r, we obtain:

〈

diag(aI2a−2r, a
qI2a−2r, aI2a−2r, a

qI2a−2r) | a ∈ K+ − {0}
〉

.
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We clearly obtain a double-Baer group and this group is fixed-point-free and

the union with the zero forms a field containing the K-kernel homology group.

Hence, by Johnson and Mellinger [11], it follows that this is a G2K
∗ group

providing a second retraction. �

Corollary 3.5. Let π be a translation plane of order q2ar and kernel containing F

isomorphic to GF(q2).

(1) If π admits a Baer group of order q + 1 then a double-Baer group exists with

intertwining field F .

(2) Furthermore, then the three fields, kernel and two associated Baer-fields may

be fused.

(3) Double-retraction exists.

Proof. Since there is a subkernel isomorphic to GF(q2), we may apply the pre-

vious theorem since now all components of the net N are fixed and the Baer

subplanes are fixed pointwise by groups of order q +1, the subplanes are kernel

subspaces and so commutes with the kernel homology group. �

We now consider the possibility of multiple-retraction under the assumption

that there is a kernel isomorphic to GF(q2), and two commuting double-Baer

groups.

Theorem 3.6. Let π be a translation plane of order q2ar and kernel containing

K isomorphic to GF(q). Furthermore, assume that there is a kernel subfield K+

isomorphic to GF(q2) with associated group G0K
∗. Assume that there exist k

mutually distinct commuting double-Baer groups B1iB2i for i = 1, 2, . . . , k. Then

the plane admits (k + 1)-retraction.

Proof. Each of the double-Baer groups produces a retraction group GiK
∗ in ad-

dition to G0K
∗. If G0K

∗ is generated by aI then the associated fixed-point-free

groups whose union with the zero are fields may be written as aIB1i. If two

such retraction groups are identical then aIB1j = aIB1i for i 6= j, a contradic-

tion. Hence, we obtain a set of k retraction groups all distinct from each other

which together with G0K
∗ gives (k + 1)-retraction. �

Thus, we have the following converse to our main result of the previous

section on multiple-retraction.

Theorem 3.7. Let π be a translation plane of order q2ar, (r, 2) = 1 with subkernel

F isomorphic to GF(q2) containing K isomorphic to GF(q).

(1) If π admits t distinct commuting Baer subgroups of order q + 1 then π admits

(t + 1)-retraction and has kernel a subfield of GF(q2r) where r is odd.
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(2) Moreover, for 2a−1r = n and if t = 2n−1, then π admits symmetric homology

groups of orders q + 1.

Actually, part (2) of the previous theorem requires some explanation. Sup-

pose that we have a translation plane of order q6, with kernel containing K

isomorphic to GF(q) so n = 3 in the above notation. Let F be a field isomorphic

to GF(q2) and assume the associated vector space V is an F -space. Now con-

sider the following 23 − 1 fields in the associated vector space of dimension 12

over GF(q)

F(i1,...,i6) =
〈

diag(aqi1
, aqi2

, . . . , aqi6
) | a ∈ GF(q2)

〉

,

where exactly three of the integers (i1, . . . , i6) are equal to 1 and the remaining

three are q. Then each of these fields satisfies the basic conditions to be a

retraction field. Conversely, suppose that have 7-retraction in the translation

plane. Choose a representation for that F = F1 appears as the scalar field

for V as a 6-dimensional F -space. By assumption, the remaining retraction

fields commute with F1. In this setting, the remaining fields Fi, for i = 2, . . . , 6

each permute the orbits of length 1 of F ∗

1 . Suppose that F ∗

1 has a orbits of

components of length 1 and b orbits of length q + 1, so that

a + b(q + 1) = q6 + 1 .

Hence, a is at least 2 since q + 1 divides q6 − 1. Consider the action of F ∗

i , for

i > 1 on the components of length 1 Λ1 of F ∗

1 . If F ∗

i does not fix a component

of Λ1 then q + 1 divides Λ1, a contradiction. Hence, F ∗

1 F ∗

i fixes two component

for each i > 1. Since a ≡ 2 (mod q + 1), then F ∗

1 F ∗

i fixes ai components,

where also ai ≡ 2 (mod q + 1). Hence, F ∗

j for j > 1 and j 6= i fixes two

components. Therefore, the group in the product of the set of 6 fields fixes at

least two components, say L and M . Let F ∗

2 have an irreducible component N

on L. Then by Schur’s lemma, the centralizer of F ∗

2 is a field. Since both fields

F1 and F2 have the same order, this means that the two fields act identically on

an irreducible component and the dimension of N is 1 over F . Using Maschke’s

theorem, this implies that we may diagonalize each of the fields Fi and since

these are retraction groups, our previous analysis shows that the fields are those

of F(i1,...,i6).

However, not all of the associated groups can act as a collineation group of a

translation plane as can be seen as follows. Note that we obtain a q+1-homology

group from the product fields F(1,1,1,1,1,1)F(1,1,1,q,q,q).

Consider F(1,1,1,1,1,1)F(1,q,1,q,q,1) and F(1,1,1,1,1,1)F(1,q,1,q,1,q). In the first group,

we obtain the Baer group

B1 =
〈

diag(1, a1−q, 1, a1−q, a1−q, 1) | a ∈ GF(q2)∗
〉

,
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with fixed point space

FixB1 =
{

(x1, 0, x3, 0, 0, x6) | x1, x3, x6 ∈ GF(q2)
}

.

In the second group, we have the Baer group

B2 =
〈

diag(1, aq−1, 1, a1−q, 1, a1−q) | a ∈ GF(q2)∗
〉

with fixed point space

FixB2 =
{

(x1, 0, , x3, 0, x5, 0) | x1, x3, x5 ∈ GF(q2)
}

.

Hence, B1B2 fixes

FixB1 ∩ FixB2 =
{

(x1, 0, x3, 0, 0, 0) | x1, x3, x5 ∈ GF(q2)
}

,

which cannot be a subplane or line or either, which is a contradiction. In a

similar manner and in general, it follows fairly direct that if we have (2n − 1)-

retraction in a translation plane of order q2n, then n ≤ 2 and since retraction

makes sense only when n ≥ 2, we have the following theorem.

Theorem 3.8. Let π be a translation plane of order q2n and kernel containing

GF(q) that admits (2n−1)-retraction. Then, n = 2 and we obtain triple-retraction.

4 Double-homology groups

We revisit part of our previous results and show connections to what are called

‘double-homology groups’.

Theorem 4.1. Let π be a translation plane of order q2ar and kernel containing K

isomorphic to GF(q).

(1) When q is even, a double-Baer group of order q + 1 implies double-retraction.

(2) For arbitrary order, a double-Baer group of order q + 1 with intertwining field

implies double-retraction.

(3) A double-Baer group of order (2, q − 1)(q + 1) implies double-retraction.

(4) Double-retraction implies a double-Baer group of order q+1 or two commuting

homology groups of order q + 1–a ‘double-homology group’ of order q + 1.

(5) A double-homology group of order q + 1 in a semifield plane implies double-

retraction.

Proof. It remains to prove (4) and (5). Assume that we have double-retraction.

Write one of the fixed-point-free groups as G1K
∗ and decompose the space so
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that this group looks like a scalar group of order q2 − 1 generated by z 7→ az.

Then, we know that the second group G2K
∗ must look either like xi 7→ axi

or xj 7→ aqxj and there are exactly half a′s and half aq′s. It follows that by

multiplication, we may obtain a commuting pair of homology groups of order

q + 1 or a double-Baer group of order q + 1, which proves (3).

Now assume that we have a semifield plane and we have a double-homology

group of order q + 1. Hence, we must have a double-homology group of order

q2 − 1. Moreover, we can ‘fuse’ the nuclei. The possible products produce two

fixed-point-free fields of order q2 − 1. We need that these fields contain the

K-kernel homology group of order q − 1. Let a subgroup of the product of the

two homology groups be given by

Fqλ

: (x, y) 7→ (xA, yAqλ

) ;A ∈ F+∗ ,

where F+∗ is a field of order q2. However, since the homologies are K-linear

groups, it follows that F+∗ commutes with the kernel homology group K∗ so

that by Schur’s lemma, 〈F+∗,K∗〉 are contained in a field. It follows by unique-

ness of cyclic groups that K ⊆ F+.

Hence, both Fqλ

for λ = 0 or 1 produce retraction. Hence, double-retraction

exists. �

Definition 4.2. Let π be a translation plane of order q2n and kernel containing

K isomorphic to GF(q). A ‘double-homology group’ is a pair of commuting ho-

mology groups of orders divisible by a critical Baer order. A ‘double-generalized

central group’ is either a double-homology group or a double-Baer group.

Corollary 4.3. Let π be a semifield plane of even order q2n and kernel containing

K isomorphic to GF(q).

Then double-retraction is equivalent to a double-generalized central group of

order (q + 1), when the kernel contains GF(q2).

We now assume that we have a translation plane of order q2ar, which has

kernel isomorphic to GF(q2) and also assume that we have right and middle

subnuclei isomorphic to this subkernel F . Assume that we can fuse these nuclei

(this is possible, for example when the plane is a semifield by Jha and John-

son [7]). Let Q denote a quasifield coordinatizing the plane π. Let K be a

subkernel subfield of F and isomorphic to GF(q). If K commutes with Q then

there is an associated K-regulus in the spread. Furthermore, we assume that F

does not commute over the associated quasifield. Then, we take the subkernel

F acting as z 7→ az for all vectors z, writing the vector space over F . Moreover,

if the axis and coaxis are taken as x = 0 and y = 0, we have the action of either

homology group as z 7→ atz where t = 0, 1 or q, assuming that K commutes

with the quasifield.
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We claim that from the two homology groups, we obtain two distinct retrac-

tion-groups not equal to the kernel group. Each of these groups provides in turn

a double-Baer group of order q + 1. Hence, we obtain:

Theorem 4.4. Let π be a translation plane of order q2ar, (r, 2) = 1 with sub-

kernel F isomorphic to GF(q2). Assume that we have right and middle subnuclei

both fields and field-isomorphic to this subkernel F . Let K denote the subfield

isomorphic to GF(q).

If the associated quasifield commutes over K but does not commute over F then

we obtain commuting double-Baer groups providing double-retraction, as well as

double-homology groups that provide double-retraction.

Now applying this to semifield planes, we obtain:

Theorem 4.5. Let π be a semifield plane of order q2ar for (r, 2) = 1 admit sub-

nuclei, left, right and middle all isomorphic to GF(q2). Assume also that there is

a double-Baer group of order q + 1 that is not in the group generated by the three

associated homology groups.

Then π admits triple-retraction.

Proof. Since we have a semifield plane, we know that we can fuse the nuclei. By

the above theorem, a double-Baer group must be commensurate with a kernel

group of order q2 − 1. �

Actually, the results stated above can be made somewhat more general. For

example, assume that a right and middle nucleus of a semifield plane of square

order are isomorphic to GF(q2). In the product of order (q2−1)2 of the two affine

homology groups of order q2 − 1 union the zero vector, there are a number of

fields of order q2 − 1. Represent the groups as follows:

〈[

I 0

0 M

]

| M ∈ L∗

〉

, where L is a field of order q2, and

〈[

N 0

0 I

]

| N ∈ J∗

〉

, where J is a field of order q2 .

In general, we would know that it is possible to ‘split’ the fields so that L ∩ J

share any subfield of order pz, for q = pr, where pz − 1 divides q2 − 1. Let

LH = J , where H is a suitable matrix, considering J and L are matrix fields.

Then in
〈[

N 0

0 M

]

| N ∈ J,M ∈ L

〉

,
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we may form the fields

〈[

MσH 0

0 M

]

| M ∈ L

〉

,

where σ is a fixed automorphism of M . This has all of the requirements for

a retraction field except that the field may not contain the kernel homology

field isomorphic to GF(q). But, if σ = 1 or q, we do have proper retraction and

when σ is not one of these two, we simply retract with a smaller field. For

example, if σ = p then we have a retraction field of order p2. In this way, there

are a tremendous variety of subgeometry partitions available to us in various

projective spaces.

In the settings where σ = 1 or q and we have kernel GF(q2), and with the

manner of splitting, we obtain triple-retraction. Hence, the previous theorem

can be improved as follows.

Theorem 4.6. Let π be a semifield plane of order q2ar for (r, 2) = 1 admit subnu-

clei, left, right and middle all isomorphic to GF(q2).

(1) Then π admits triple-retraction.

(2) Assume that q = pr and r is odd then π admits triple-retraction with fields of

order p2t − 1, for any t dividing r. (Note that the size of the projective space

remains the same while the size of the subgeometries decreases.)

5 New examples of double-Baer groups

As we mentioned previously, one of the main sources of translation planes or

quasifibrations (see [6]) admitting double-Baer groups comes from the struc-

tures that are algebraically lifted. When the original geometry is a semifield

plane, then the lifted structure is a semifield plane.

Furthermore, Johnson [8] has shown that a semifield plane of order q4 that

admits a Baer collineation of order a prime p-primitive divisor of q2−1 is neces-

sarily a plane that may be algebraically lifted. More generally, recently, Demp-

wolff [2] has extended the general theory of Johnson and determined a variety

of semifield planes that admit Baer groups.

In general, let π be a translation plane of order q4, where q = pr, for p a

prime. And, let B be a Baer group of order dividing q2 − 1. Then, in the net

defined by the FixB, there is a second Baer subplane, called coFix B, upon

which B acts faithfully. If B acts irreducibly as a linear GF(p)-subgroup on

any component of coFix B, then Dempwolff terms the group B an ‘irreducible

planar Baer group’. Note that B necessarily acts on coFix B as a cyclic kernel
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homology group so if the order of B contains a p-primitive divisor of q2−1 then

B is irreducible.

Dempwolff [2] provides three classes of semifield planes of order q4 that

admit irreducible planar Baer groups. We shall begin with the last of these

classes (Dempwolff’s class (4.3)). Consider the following matrices:























u 0 at + btq (ct + dtq)q

0 uq ct + dtq (at + btq)q

t 0 uq 0

0 tq 0 u









| u, t ∈ GF(q2)















,

a, b, c, d constants. For certain choices of a, b, c, d, this gives a semifield of or-

der q4, and if two of a, c, d are non-zero then it has right = middle = kernel =

GF(q) = center. So, it is a semifield of dimension 4 over the center. Further-

more,

⋆ c = d = 0 if and only if we have the left nucleus as GF(q2) ;

⋆ a = d = 0 if and only if the middle nucleus is GF(q2) ;

⋆ a = c = 0 if and only if the right nucleus is GF(q2) ;

⋆ and if ac 6= 0 then right = middle = GF(q) .

Dempwolff shows that it is always possible to find elements so that acd 6= 0.

This set forms a new class of semifields.

Note that the group 〈diag(I, P, P, I) for P = diag(e, eq) such that eq = e−1〉

is a Baer group of order q +1, although we do not actually obtain a double-Baer

group in this case. Although, it is easy to see that we do obtain a double-Baer

group when c = d = 0.

In any case, there is a way to obtain a double-Baer group situation.

Furthermore, the semifield plane is derivable, and the right = middle homol-

ogy groups of order q − 1 become Baer groups in the derived plane. So, the

derived plane of order q4 admits two Baer groups of order q − 1. Now suppose

that q = p2ar, where (2, r) = 1 so we have a plane of order p2a+2r with two Baer

groups of order p2ar − 1. So, assume that q = h2 so we have two Baer groups of

order h+1 in a translation plane of order h8 with kernel GF(h2). Therefore, we

obtain double-Baer groups that are fused and hence we have double-retraction.

Theorem 5.1. The class of Dempwolff semifield planes π of order q4, for acd 6= 0,

listed above are derivable.

(1) When q is a square, let π∗ denote the translation plane obtained by derivation

of the net

x = 0, y = xdiag(u, uq, uq, u) ;u ∈ GF(q2) .
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There is a collineation group of order q = h2 that contains a kernel subgroup

of order h − 1 and is fixed-point-free and we obtain a double-Baer group and

double-retraction.

(2) Hence, there is a retraction to a mixed subgeometry partition of PG(7, h2) by

subgeometries isomorphic to PG(7, h) or PG(3, h2).

Dempwolff also points out that there are known classes of semifield planes of

order q4 that admit a Baer group of order q + 1, as well as double-Baer groups

in some situations.

Dempwolff’s class (4.1) is defined as follows: Let q = pk, for m = 2k and

define multiplication as follows:

(u, v) ∗ (x, y) = (ux + gvpa

ypb

, y + vxpk

), for u, v, x, y ∈ GF(q2 = pm) ,

where a, b ∈ {0, 1, . . . ,m − 1} and such that pm 6= pm(pb+1+p|a−b|+1+pk+b
−1) and

g in GF(pm) and of order not pm(pb+1+p|a−b|+1+pk+b
−1). Then the above multipli-

cation defines a semifield (actually, a generalized Knuth semifield). The kernel

is GF(p(a,m)), middle nucleus GF(p(k+a−b,m)) and right nucleus GF(p(k−b,m)). In

all cases, there is a Baer group of order q + 1 = pk + 1. Moreover, the semifield

plane is derivable with a net of the form

x = 0, y = xdiag(u, uq, uq, u) ;u ∈ GF(q2) .

First assume that a is even so that we have a subkernel GF(p2(a/2,k)). Now

consider GF(p2(a/2,k)) ∩ GF(q2) = GF(p2(a/2,k,2k)). Now assume that k is odd

so as (a/2, k, 2k) divides k, we see that we have a sub-Baer group of order

p(a/2,k,2k) + 1 = p(a/2,k) + 1. This means we have a double-Baer group of order

p(a/2,k) + 1, and hence by Corollary 3.5, we have double-retraction. Hence, we

have the following theorem.

Theorem 5.2. Consider the semifield

(u, v) ∗ (x, y) = (ux + gvpa

ypb

, y + vxpk

), for u, v, x, y ∈ GF(q2 = pm) .

Assume that a is even and k is odd (a ≤ 2k−1). Then there is a double-Baer group

of order p(a/2,k) + 1, which may be fused so that double-retraction occurs.

When we derive the net, we obtain Baer groups of orders p(k+a−b,m) − 1 and

p(k−b,m) − 1, and we may fuse the obvious intersection Baer groups of order

p((k−a−b,2k),(k−b,2k)) − 1. Hence, we have double-Baer groups of this order. The

kernel of the derived plane is

GF(q) ∩ GF(p(a,2k)) = GF(p(a,2k,k)) = GF(p(a,k)).



Double-Baer groups 247

Furthermore, we may fuse all subnuclei isomorphic to

GF(p(a,2k)) ∩ GF(p(k+a−b,2k)) ∩ GF(p(k−b,2k)) = GF(p((a,2k),(k+a−b,2k),(k−b,2k))).

And if the subfield is a square GF(h2), then we obtain double-retraction.

Theorem 5.3. The derivation of the semifield plane listed in the previous theorem

admits two fused Baer groups of order

p((k−a−b,2k),(k−b,2k)) − 1 .

If ((a, 2k), (k + a − b, 2k), (k − b, 2k)) is even, then we obtain double-Baer groups

and double-retraction.
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