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On approximate inclusion-exclusion

Andreas Klein∗ Klaus Metsch

Abstract

The inclusion-exclusion formula expresses the size of the union of a fam-

ily of sets in terms of the sizes of intersections of all subfamilies. In [2]

N. Linial and N. Nisan use linear programming to approximate the size

of the union when the intersection sizes are known only for certain sub-

families. In this article we use purely combinatorial methods to generalize

some of their results. As an application we will construct a contrast optimal

(n − 1)-out-of-n visual cryptography scheme.

Keywords: inclusion-exclusion formula, visual cryptography

MSC 2000: 05A20, 68P25

1. Introduction

The inclusion-exclusion formula states that

|A1 ∪ A2 ∪ · · · ∪ An| =
∑

i

|Ai| −
∑

i<j

|Ai ∩ Aj | +
∑

i<j<k

|Ai ∩ Aj ∩ Ak| − · · · − (−1)n|A1 ∩ · · · ∩ An| .

Obviously every term on the right-hand side is needed to determine the size of

the union. At this point we can ask whether it is possible to give an approximate

inclusion-exclusion formula. More formally we ask:
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by the Interuniversitary Attraction Poles Programme-Belgian State-Belgian Science Policy: project

P6/26-Bcrypt.
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Given integers m,n with m < n and sets A1, . . . , An and B1, . . . , Bn where

not all Bi are empty and where

∣

∣

∣

∣

⋂

i∈S

Ai

∣

∣

∣

∣

=

∣
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∣

∣

⋂

i∈S

Bi

∣

∣

∣

∣

for every subset S ⊆ {1, . . . , n} such that |S| < m, what is the smallest (or

largest) possible value for the fraction

|A1 ∪ · · · ∪ An|
|B1 ∪ · · · ∪ Bn|

?

In [2] N. Linial and N. Nisan use linear programming to reduce this question

to questions in approximation theory and in particular to the theory of Cheby-

shev polynomials. Their bound is nearly optimal for m ≤ √
n, but for larger

m the bound gets worse. In this paper we give an exact bound for m = n − 2

and improve the asymptotic bound for m = n − d, d fixed. The results we find

have applications in visual cryptography. More results for small m can be found

in [1].

2. The case m = n − 1

We start with the case m = n − 1. This case was solved in [2] using linear pro-

gramming methods. Here we present a more elementary purely combinatorial

proof. Besides being interesting for itself, the proof is a good warm up for the

more difficult case m = n − 2.

Theorem 2.1 (see [2, Theorem 3]). Let A1, . . . , An and B1, . . . , Bn be two col-

lections of sets satisfying
∣

∣

∣
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∣
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∣

for all proper subsets S of {1, . . . , n}. Then
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∣
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≤ 1

2n−1
.

Proof. We prove by induction on n that the conditions
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for all S ( {1, . . . , n} and the condition
∣

∣

∣

∣

n
⋃

i=1

Ai
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∣

+ k =
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∣

∣
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n
⋃

i=1

Bi

∣

∣

∣

∣

with k > 0 imply that
∣

∣

∣

∣

n
⋃

i=1

Bi

∣

∣

∣

∣

≥ k2n−1 .

For n = 1 this is trivial. Now suppose that the theorem holds for n and let

the sets A1, . . . , An+1 and B1, . . . , Bn+1 satisfy
∣
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for all S ( {1, . . . , n + 1} and

∣

∣

∣

∣
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⋃
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+ k =
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Bi
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∣

.

The collections A′
i = Ai\An+1 and B′

i = Bi\Bn+1 satisfy |⋃n
i=1 A′

i| + k =

|⋃n
i=1 B′

i| and for every proper subset S ( {1, . . . , n} we have
∣
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∣
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.

Thus the collections A′
i, B′

i satisfy the induction hypothesis, i.e. we have |⋃n
i=1 B′

i| ≥
k2n−1.

On the other hand, we have the collections A′′
i = Ai ∩ An+1 and B′′

i =

Bi ∩ Bn+1. Since
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and |⋃n
i=1 A′

i|+k = |⋃n
i=1 B′

i| we find that the collections A′′
i and B′′

i satisfy the

induction hypothesis with |⋃n
i=1 B′′

i | + k = |⋃n
i=1 A′′

i |. Thus |Bn+1| = |An+1| ≥
|⋃n

i=1 A′′
i | ≥ k2n−1. This proves
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+ |Bn+1| ≥ k2n−1 + k2n−1 = k2n
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as desired. �

This bound is sharp as the following example shows [3]: Let P({1, . . . , n})
be the power set of {1, . . . , n}. Choose Ai ⊆ P({1, . . . , n}) as the set of all

subsets of {1, . . . , n} that have even cardinality and contain i. Similarly Bi ⊆
P({1, . . . , n}) is set of all subsets of {1, . . . , n} that have odd cardinality and

contain i.

It is easy to check that |⋂i∈S Ai| = |⋂i∈S Bi| = 2n−1−|S| for each proper

subset S of {1, . . . , n}. Furthermore |⋃n
i=1 Ai| = 2n−1−1 and |⋃n

i=1 Bi| = 2n−1,

i.e. the bound in Theorem 2.1 is sharp.

3. The case m = n − 2

For k, x ∈ Z and k ≥ 0 let Sn(k, x) denote the minimal size of |⋃n
i=1 Bn| given

(1a) |⋂i∈S Ai| = |⋂i∈S Bi| for all S with |S| ≤ n − 2 ,

(2a) |⋂n
i=1 Ai| = |⋂n

i=1 Bi| − (−1)nx ,

(3a) |⋃n
i=1 Ai| + k = |⋃n

i=1 Bi| .

As in the previous section we want to determine the largest possible value of

∣

∣

⋃n
i=1 Bi

∣

∣ −
∣

∣

⋃n
i=1 Ai

∣

∣

∣

∣

⋃n
i=1 Bi

∣

∣

=
k

∣

∣

⋃n
i=1 Bi

∣

∣

.

For this we have to minimize
Sn(k,x)

k , provided k 6= 0.

3.1. A recursion formula for the upper bound

The first step is to prove a recursion formula for Sn(k, x). For simplicity we

extend the definition of Sn(k, x) to negative integers k by putting

Sn(k, x) := Sn(−k,−x)

for k < 0. Thus, for k < 0, the number Sn(k, x) can be interpreted as the size of

|⋃n
i=1 An|.

Lemma 3.1. Let n ≥ 2, then

Sn+1(k, x) ≥ min{Sn(k, x + y) + Sn(k + y, x) | y ∈ Z} . (1)
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Proof. The proof is very similar to the proof of Theorem 2.1. It is sufficient to

consider the case when k ≥ 0. Suppose A1, . . . , An+1 and B1, . . . , Bn+1 are sets

realizing Sn+1(k, x), that is (1a), (2a) and (3a) are satisfied and Sn+1(k, x) =

|⋃n+1
i=1 Bi|. Let y be the integer satisfying |⋂n

i=1 Ai| = |⋂n
i=1 Bi| − (−1)ny.

The sets A′
i = Ai\An+1 and B′

i = Bi\Bn+1 satisfy the following conditions:

(1) |⋂i∈S A′
i| = |⋂i∈S B′

i| for all S with |S| ≤ n − 2, since
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(2) |⋂n
i=1 A′

i| = |⋂n
i=1 B′

i| − (−1)n(y + x), since
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.

(3) |⋃n
i=1 A′

i| + k = |⋃n
i=1 B′

i|, since
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and |An+1| = |Bn+1| .

This proves |⋃n
i=1 B′

i| = |(⋃n
i=1 Bi)\Bn+1| ≥ Sn(k, x + y).

Now we prove a lower bound for |An+1| = |Bn+1|. The sets A′′
i = Ai ∩An+1,

B′′
i = Bi ∩ Bn+1 satisfy

(1) |⋂i∈S A′′
i | = |⋂i∈S B′′

i | for all S with |S| ≤ n−2, since |S|+1 ≤ (n+1)−2

and thus |⋂i∈S A′′
i | = |⋂i∈S Ai∩An+1| = |⋂i∈S Bi∩Bn+1| = |⋂i∈S B′′

i | ,

(2) |⋂n
i=1 A′′

i | − (−1)nx = |⋂n
i=1 B′′

i |, since
⋂n

i=1 A′′
i =

⋂n+1
i=1 Ai ,

(3) |⋃n
i=1 A′′

i | = |⋃n
i=1 B′′

i | + k + y , since
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∣

∣

∣
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∣

∣
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We distinguish two cases. If k + y ≥ 0 then |Bn+1| = |An+1| ≥ |⋃n
i=1 A′′

i | ≥
Sn(k + y, x). If k + y ≤ 0 then |An+1| = |Bn+1| ≥ |⋃n

i=1 B′′
i | ≥ Sn(−k − y,−x),

which is by definition equal to Sn(k + y, x).

This proves |⋃n+1
i=1 Bi| ≥ Sn(k, x + y) + Sn(k + y, x) . �

3.2. From discrete to continuous

In many aspects the discrete nature of the problem adds extra difficulties. There-

fore we look at a continuous version of the inclusion-exclusion problem.

Let (Ω,A, µ) be an arbitrary measurable space and let A1, . . . , An ∈ A and

B1, . . . , Bn ∈ A be collections of sets satisfying

(1b) µ(
⋂

i∈S Ai) = µ(
⋂

i∈S Bi) for all S with |S| ≤ n − 2 ,

(2b) µ(
⋂n

i=1 Ai) = µ(
⋂n

i=1 Bi) − (−1)nx ,

(3b) µ(
⋃n

i=1 Ai) + k = µ(
⋃n

i=1 Bi) .

For k, x ∈ R and k ≥ 0 we ask for the smallest possible value S̃n(k, x) for

µ(
⋃n

i=1 Bi) where the minimum is taken over all collections of sets in all finite

measurable spaces. Again we extend the definition of S̃n(k, x) to negative k by

putting S̃n(k, x) = S̃n(−k,−x) for k < 0.

Lemma 3.1 also holds for the continuous problem and we get the recursion

formula

S̃n+1(k, x) ≥ min{S̃n(k, x + y) + S̃n(k + y, x) | y ∈ R} . (2)

The only difference to (1) is that k, x, y can take real values. The reason why the

continuous case is easier than the discrete case is that we can restrict ourselves

to symmetric collections.

Definition 3.2. A collection A1, . . . , An is called symmetric if

µ
(

⋂

i∈S

Ai

)

= µ
(

⋂

i∈S′

Ai

)

whenever S, S′ ⊆ {1, . . . , n} and |S| = |S′|.

Lemma 3.3. Let (Ω,A, µ) be a finite measurable space and let n be a natural

number.

(a) Then there exists a finite measurable space (Ω′,A′, µ′) with the following

property:
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If A1, . . . , An are elements of A, then there exists elements A′
1, . . . , A

′
n ∈ A′

such that for every k with 1 ≤ k ≤ n we have: If S is a k-subset of {1, . . . , n},

then

µ′
(

⋂

i∈S

A′
i

)

is equal to the average of the numbers µ(
⋂

i∈T Ai) taken over all k-subsets T

of {1, . . . , n}.

(b) If A1, . . . , An and B1, . . . , Bn are two collections that satisfy (1b)–(3b), then

the collections A′
1, . . . , A

′
n and B′

1, . . . , B
′
n constructed in (a), also satisfy

(1b)–(3b).

Proof. (a) Consider n! mutually disjoint copies (Ωπ,Aπ, µπ) of (Ω,A, µ), one

for each permutation π of [n]. There is a unique measure µ̄ on the union

of these that extends each measure µπ. Put µ′ := µ̄/n!. Let fπ be the

canonical map from A to Aπ.

Consider any collection A1, . . . , An of (Ω,A, µ). Let A′
i be the union of the

sets fπ(Aπ(i)) taken over all permutations π of [n]. This gives a collection

A′
1, . . . , A

′
n with the required property.

(b) Since µ(
⋂

i∈S Ai) = µ(
⋂

i∈S Bi) for all S with |S| ≤ n−2 also the averages

must be equal, i.e. the collections A′
1, . . . , A

′
n and B′

1, . . . , B
′
n satisfy (1b).

Since {1, . . . , n} is the only subset of size n of {1, . . . , n} we find

µ
(

n
⋂

i=1

Ai

)

= µ′
(

n
⋂

i=1

A′
i

)

and µ
(

n
⋂

i=1

Bi

)

= µ′
(

n
⋂

i=1

B′
i

)

;

hence the collections A′
1, . . . , A

′
n and B′

1, . . . , B
′
n satisfy (2b).

Use the inclusion-exclusion formula to compute µ(
⋃n

i=1 Ai). It is invariant

under a permutation π of the indices. Thus µ′(
⋃n

i=1 A′
i) = µ(

⋃n
i=1 Ai) and

thus the collections A′
1, . . . , A

′
n and B′

1, . . . , B
′
n satisfy (3b). �

If we have collections Ai and Bi satisfying (1b), (2b) and (3b), then we can

use the preceding lemma to switch to symmetric collections A′
i and B′

i that sat-

isfy (1b), (2b) and (3b) with the same numbers x and k and even with the same

values of µ. This is the justification that S̃n(k, x) can be realized by symmetric

collections.

Theorem 3.4. For n ≥ 2, we have

S̃n+1(k, x) = S̃n(k, x + y) + S̃n(k + y, x) where y = −k + x

n + 1
. (3)
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Proof. Without loss of generality we may assume k ≥ 0.

Part 1: We show ≥ in (3).

Consider symmetric configurations A1, . . . , An+1 and B1, . . . , Bn+1 of sets

minimizing S̃n+1(k, x). Using the symmetry and properties (1b), (2b), and (3b)

we find

µ
(

n
⋂

i=1

Ai

)

= µ
(

n
⋂

i=1

Bi

)

+ (−1)n k + x

n + 1
.

Hence the value of y defined in the assertion is the one that was used in the

proof of Lemma 3.1. The proof of Lemma 3.1 therefore shows the ≥-part of (3).

Part 2: We show ≤ in (3).

By induction there exist symmetric collections A′
1, . . . , A

′
n and B′

1, . . . , B
′
n

realizing S̃n(k, x + y), that is satisfying (1b), (2b) and (3b) and such that

µ′(
⋃n

i=1 B′
i) = S̃n(k, x + y). There also exist symmetric collections B′′

1 , . . . , B′′
n

and A′′
1 , . . . , A′′

n realizing S̃n(k + y, x). Notice the order of the B′′
i and the A′′

i ,

which is meant as follows:

µ′′(
⋂n

i=1 B′′
i ) = µ′′(

⋂n
i=1 A′′

i ) − (−1)nx ,

µ′′(
⋃n

i=1 B′′
i ) + k + y = µ′′(

⋃n
i=1 A′′

i ) ,

µ′′(
⋃n

i=1 B′′
i ) = S̃n(k + y, x) if k + y ≤ 0 , and

µ′′(
⋃n

i=1 A′′
i ) = S̃n(k + y, x) if k + y ≥ 0 .

Without loss of generality we may assume that Ω′ =
⋃n

i=1 A′
i ∪

⋃n
i=1 B′

i and

Ω′′ =
⋃n

i=1 A′′
i ∪ ⋃n

i=1 B′′
i are disjoint. The measures µ′ on Ω′ and µ′′ on Ω′′

induce a measure µ on Ω′ ∪ Ω′′.

Define Ai = A′
i ∪ A′′

i and Bi = B′
i ∪ B′′

i , i = 1, . . . , n, An+1 =
⋃n

i=1 A′′
i ∪ A,

and Bn+1 =
⋃n

i=1 B′′
i ∪ B where A and B are chosen outside Ω′ ∪ Ω′′ and the

measure µ is extended in such a way that µ(An+1) = µ(Bn+1) = S̃n(k + y, x).

Depending on the sign of k + y we have either µ(A) = 0 or µ(B) = 0, i.e. we

may choose A = ∅ or B = ∅. We will show that the so defined collections Ai

and Bi satisfy (1b), (2b) and (3b) for n + 1. Having done this, we can conclude

that µ(
⋃n+1

i=1 Bi) ≥ Sn+1(k, x) and then the proof can be finished as follows:

S̃n+1(k, x) ≤ µ
(

n+1
⋃

i=1

Bi

)

= µ
(

n
⋃

i=1

B′
i

)

+ µ(Bn+1)

= S̃n(k, x + y) + S̃n(k + y, x) .
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The properties (2b) and (3b) are easy to see. In fact we have

µ
(

n+1
⋃

i=1

Ai

)

+ k = µ
(

n
⋃

i=1

A′
i

)

+ µ(An+1) + k

= µ
(

n
⋃

i=1

B′
i

)

+ µ(Bn+1) = µ
(

n+1
⋃

i=1

Bi

)

and

µ
(

n+1
⋂

i=1

Ai

)

= µ
(

n
⋂

i=1

A′′
i

)

= µ
(

n
⋂

i=1

B′′
i

)

+ (−1)nx = µ
(

n+1
⋂

i=1

Bi

)

− (−1)n+1x .

To see (1b) first notice that by construction we have

µ
(

⋂

i∈S

Ai

)

= µ
(

⋂

i∈S

Bi

)

whenever |S| ≤ n − 2 or |S| = n − 1 and n + 1 ∈ S. The only difficult part is to

prove the equality when |S| = n − 1 and n + 1 /∈ S. In that case we have

µ
(

⋂

i∈S

Ai

)

= µ
(

⋂

i∈S

A′
i

)

+ µ
(

⋂

i∈S

A′′
i

)

=

[

µ
(

⋂

i∈S

B′
i

)

+
k + (x + y)

n

]

+

[

µ
(

⋂

i∈S

B′′
i

)

− (k + y) + x

n

]

= µ
(

⋂

i∈S

Bi

)

.

This finishes the proof of (1b). �

3.3. Solving the recursion formula

In this section we derive an explicit formula for the recursion formula in Theo-

rem 3.4. To that end we define the numbers

cn,i := 2n−2 −
i−1
∑

j=0

(

n − 1

j

)

, −1 ≤ i ≤ n (4)

(so c−1 = c0 = 2n−2), and the intervals

In,−1 := (−∞, 0]

In,j :=

[

j

n − j
,

j + 1

n − j − 1

]

(0 ≤ j ≤ n − 2) (5)

In,n−1 := [n − 1,∞) .
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Theorem 3.5. The function S̃n(k, x) defined in the previous section satisfies

S̃n(k, x) =











cn,ik − cn,i+1x for k > 0 and x
k ∈ In,i ,

2n−2|x| for k = 0 ,

−cn,ik + cn,i+1x for k < 0 and x
k ∈ In,i .

(6)

Proof. We may restrict ourselves to k ≥ 0 since S̃n(−k, x) = S̃n(k,−x) by defi-

nition. First note that

cn,i − cn,i+1
i + 1

n − i − 1
= cn,i+1 − cn,i+2

i + 1

n − i − 1

and thus the function on the right hande side of (6) is well-defined. We prove

(6) using induction on n ≥ 2.

To determine S̃2(k, x), we search sets A1, A2, B1, B2 with µ(A1 ∩ A2) + x =

µ(B1 ∩ B2) and µ(A1 ∪ A2) + k = µ(B1 ∪ B2). It is easy to see that this implies

µ(B1 ∪ B2) ≥ max{x, k} .

Also, if x < 0, then µ(A1∪A2) ≥ µ(A1∩A2) ≥ −x and thus µ(B1∪B2) ≥ k−x.

Moreover, equality can be obtained easily. For example, if x > k ≥ 0, choose

sets satisfying B1 = B2 and A2 = ∅ and such that µ(Bi) = x, µ(A1) = x−k and

µ(A2) = 0. Thus for k ≥ 0 we have

S̃2(k, x) =











k − x for x ≤ 0 ,

k for 0 ≤ x ≤ k ,

x for k ≤ x ,

which proves (6) for n = 2.

For the induction step assume now that n ≥ 3. If k = 0 we may assume

without loss of generality x ≥ 0. In this case the recursion formula (3) gives

S̃n+1(0, x) = S̃n

(

0,
n

n + 1
x
)

+ S̃n

(

− x

n + 1
, x

)

= 2n−2 n

n + 1
x +

(

cn,−1
x

n + 1
+ cn,0x

)

= 2n−1x

as desired. Finally consider the case when n ≥ 3 and k > 0. Put y = −k+x
n+1 .

Using

x + y

k
=

n

n + 1
· x

k
− 1

n + 1
and, for x 6= nk,

x

k + y
=

n + 1

nk
x − 1

,
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it is straightforward to check the following implications.

x

k
∈ In+1,j ⇒ x + y

k
∈ In,j−1 for 0 ≤ j ≤ n ;

x

k
∈ In+1,−1 ⇒ x + y

k
∈ In,−1 ;

n 6=x

k
∈ In+1,j ⇒ x

k + y
∈ In,j for − 1 ≤ j ≤ n − 1 ;

x

k
= n ⇒ k + y = 0 ;

x

k
> n ⇒ k + y < 0 and

x

k + y
∈ In,−1 .

Hence, for 0 ≤ j ≤ n − 1 and x
k ∈ In+1,j we have

S̃n+1(k, x) = S̃n(k, x + y) + S̃n(k + y, x)

= [cn,j−1k − cn,j(x + y)] + [cn,j(k + y) − cn,j+1x]

= cn+1,jk − cn,j+1x ,

since cn,j−1+cn,j = cn+1,j by the recursion formula of the binomial coefficients.

If x
k ∈ In+1,−1 we have

S̃n+1(k, x) = S̃n(k, x + y) + S̃n(k + y, x)

= [2n−2k − 2n−2(x + y)] + [2n−2(k + y) − 2n−2x]

= 2n−1k − 2n−1x .

And finally for x
k ∈ In+1,n we have k + y ≤ 0 and thus

S̃n+1(k, x) = S̃n(k, x + y) + S̃n(k + y, x)

= [(1 − 2n−2)k + 2n−2(x + y)] + [−2n−2(k + y) + 2n−2x]

= (−2n−1 + 1)k + 2n−1x .

This proves the formula for S̃n+1 and completes the induction. �

With the explicit formula we are able to determine minx S̃n(k, x).

Theorem 3.6.

min

{

S̃n(k, x)

k

∣

∣

∣

∣

∣

k, x ∈ R, k > 0

}

=

(

n − 1

⌊n−1
2 ⌋

)

. (7)
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Proof. We have cn,i > 0 for i < n
2 , cn,i < 0 for i > n

2 and cn, n

2
= 0 for n

even. Thus for n even, the function x 7→ Sn(k, x) is decreasing for x ≤ n/2−1
n/2+1k,

constant in the interval
n/2−1
n/2+1k ≤ x ≤ k and increasing for x ≥ k. To obtain the

minimum we set x = k and get

S̃n(k, k) = cn,n/2−1k − cn,n/2k = k

(

n − 1

n/2 − 1

)

.

For n odd we find that the unique minimum is reached at x = k and is equal to

S̃n(k, k) = cn,n/2−1k − cn,n/2k = k

(

n − 1

(n − 1)/2

)

.

For n even and odd, this is expressed in the formula (7). �

This proves that two collections A1, . . . , An and B1, . . . , Bn with µ(
⋂

i∈S Ai) =

µ(
⋂

i∈S Bi) for |S| ≤ n − 2 satisfy

µ(
⋃

i∈S Ai)

µ(
⋃

i∈S Bi)
≥ 1 −

(

n − 1

⌊n−1
2 ⌋

)−1

.

With Stirlings formula this can be expressed as

µ(
⋃

i∈S Ai)

µ(
⋃

i∈S Bi)
= 1 + O(

√
n2−n)

which is far better that the general bound

µ(
⋃

i∈S Ai)

µ(
⋃

i∈S Bi)
= 1 + O(exp(−√

n))

from Theorem 1 (part 1) in [2].

3.4. From continuous to discrete

We have now solved the continuous version of the approximation problem. Now

we want to have a closer look on the discrete problem. First note that if we start

with rational numbers k, x every number occurring in Theorem 3.4 is rational.

Thus the measure of the sets in solution will be rational. We can make them

integral by multiplication with a suitable integer. This proves for each k, x ∈ Q

that there exist an integer t ∈ Z with tk, tx ∈ Z and

tS̃n(k, x) = Sn(tk, tx) .



I I G

◭◭ ◮◮

◭ ◮

page 13 / 22

go back

full screen

close

quit

ACADEMIA

PRESS

So the results translate from continuous to discrete. Especially Theorem 3.6

is also valid for the discrete case.

But we are left with the question of finding small discrete examples. For a

reason that will become clear in the next section we are especially interested in

symmetric collections A1, . . . , An and B1, . . . , Bn that maximize

|B1 ∩ · · · ∩ Bn−1| − |A1 ∩ · · · ∩ An−1|
|B1 ∪ · · · ∪ Bn|

.

Similar to Theorem 3.6 we obtain the following result.

Theorem 3.7. For symmetric collections A1, . . . , An and B1, . . . , Bn we have

|B1 ∩ · · · ∩ Bn−1| − |A1 ∩ · · · ∩ An−1|
|B1 ∪ · · · ∪ Bn|

≤ max

{

x + k

nSn(k, x)

∣

∣

∣

∣

∣

k, x ∈ R

}

=
2

n
( n−1
⌊n−1

2
⌋

) .

(8)

Since the numbers on the left-hand side are integers we know that the small-

est collection of that kind must satisfy

|B1 ∪ · · · ∪ Bn| ≥
n
( n−1
⌊n−1

2
⌋

)

2
. (9)

To prove that equality is possible in (9) we give an example. We give for

every subset S ⊆ {1, . . . , n} the sizes
∣

∣

∣

∣

⋂

i∈S

Ai\
⋃

i/∈S

Ai

∣

∣

∣

∣

and

∣

∣

∣

∣

⋂

i∈S

Bi\
⋃

i/∈S

Bi

∣

∣

∣

∣

.

The construction is best understood if we look at the example n = 9 first.

|S| 1 2 3 4 5 6 7 8 9

|⋂i∈S Ai\
⋃

i/∈S Ai| 0 3 0 1 0 0 2 0 4

|⋂i∈S Bi\
⋃

i/∈S Bi| 4 0 2 0 0 1 0 3 0

In general we will have a zigzag-line of numbers starting on the left side in

the B-row with the value ⌊n−1
2 ⌋, going down to 1, then has one gap and restart

with 1. The general rule is as follows:

∣

∣

∣

∣

⋂

i∈S

Ai\
⋃

i/∈S

Ai

∣

∣

∣

∣

=











|S| − ⌈n
2 ⌉ if |S| > n/2, and |S| is odd ,

⌈n
2 ⌉ − |S| if |S| < n/2, and |S| is even ,

0 in all other cases ;

(10)
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∣

∣

∣

∣

⋂

i∈S

Bi\
⋃

i/∈S

Bi

∣

∣

∣

∣

=











|S| − ⌈n
2 ⌉ if |S| > n/2, and |S| is even ,

⌈n
2 ⌉ − |S| if |S| < n/2, and |S| is odd ,

0 in all other cases .

(11)

Theorem 3.8. For each positive integer n, the collections A1, . . . , An and B1, . . . , Bn

described above satisfy

|B1 ∪ · · · ∪ Bn| =
n

2

(

n − 1

⌊n−1
2 ⌋

)

(12)

|B1 ∪ · · · ∪ Bn−1| = |A1 ∪ · · · ∪ An−1| + 1 (13)

and

|B1 ∪ · · · ∪ Bn−k| = |A1 ∪ · · · ∪ An−k| for each k ≥ 2 . (14)

Proof. To simplify notation, we shall prove this only for n = 4m. The other

cases can be handled by similar arguments. In the proof we will make use of

the following well known identities:

n
∑

i=0

(−1)i

(

n

i

)

= 0 for n ≥ 1 , (15)

n
∑

i=0

(−1)ii

(

n

i

)

= 0 for n ≥ 2 . (16)

(The second identity follows from the first using i
(

n
i

)

= n
(

n−1
i−1

)

.) We have

∣

∣

∣

∣

⋂

i∈S

Ai

∣

∣

∣

∣

=
∑

S⊆S′⊆{1,...,n}

∣

∣

∣

∣

⋂

i∈S′

Ai\
⋃

i/∈S′

Ai

∣

∣

∣

∣

and thus
∣

∣

∣

∣

n−k
⋂

i=1

Bi

∣

∣

∣

∣

−
∣

∣

∣

∣

n−k
⋂

i=1

Ai

∣

∣

∣

∣

=
k

∑

i=0

(−1)i(2m − i)

(

k

i

)

;

by (15) and (16) this sum vanishes for k ≥ 2. With the inclusion-exclusion
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formula this proves (13) and (14). Furthermore

∣

∣

∣

∣

n
⋃

i=1

Bi

∣

∣

∣

∣

=
∑

S⊆{1,...,n}

∣

∣

∣

∣

⋂

i∈S

Bi\
⋃

i/∈S

Bi

∣

∣

∣

∣

=
2m−1
∑

i=0

(2m − i)

(

n

i

)

=

2m−1
∑

i=0

[

2m

(

n

i

)

− 4m

(

n − 1

i − 1

)]

=

2m−1
∑

i=0

[

2m

(

n − 1

i

)

− 2m

(

n − 1

i − 1

)]

= 2m

(

n − 1

2m − 1

)

=
n

2

(

n − 1

⌊n−1
2 ⌋

)

which proves (12). �

3.5. Application to visual cryptography

In this section we want to study a particular nice application of the approximate

inclusion-exclusion formula.

In 1995 M. Naor and A. Shamir [3] invented a new type of cryptography. The

ciphertext and key consist of two transparencies showing a pattern of white and

black dots indistinguishable from random noise. The stack of the two trans-

parencies reveals an encrypted image. Due to its simplicity visual cryptography

can be used by anyone without any knowledge of cryptography and without the

help of a computer.

We look at a generalization of visual cryptography that uses n transparencies

so that the secret image is reconstructed whenever at least k of these trans-

parencies are stacked together whereas less than k transparencies reveal no

information about the secret image.

Formally the distribution of white and black pixels is described by boolean

n × m matrices, which leads to the following definition.

Definition 3.9 (see [3, Definition 1]). A k out of n visual secret sharing scheme

consists of two multisets C0 and C1 of (n × m)-matrices satisfying

1. For any subset {i1, . . . , ik} ⊆ {1, . . . , n} of size k and any M in C0 let M ′

be the (k × m)-matrix obtained by restricting M to the rows i1, . . . , ik.

Then at most d − αm columns of M ′ contain a non-zero entry.
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2. For any subset {i1, . . . , ik} ⊆ {1, . . . , n} of size k and any M in C1 let M ′

be the k×m matrix obtained by restricting M to the rows i1, . . . , ik. Then

at least d columns of M ′ contain a non-zero entry.

3. For any subset {i1, . . . , iq} of size q < k, the two multisets of q×m matrices

D0 and D1 obtained by restricting each n × m matrix in C0 and C1 to

the rows i1, . . . , iq are indistinguishable in the sense that they contain the

same matrices in the same frequencies.

A visual secret sharing scheme has three important parameters:

• The contrast α, that is a measure for the relative difference between

’white’ and ’black’ in the reconstructed image.

• The number of subpixels m used to encode the images. A white pixel is

encoded as follows. One chooses randomly a matrix M from C0. The

j-subpixel on transparency i, i = 1, . . . , n, is colored black if and only if

the (i, j)-entry of M is 1; otherwise it is left white. Similarly, a matrix of

C1 is used to encode a black pixel.

• The randomness r = max{|C0|, |C1|}, which is a measure for the number

of random bits needed to generate the visual secret sharing scheme. The

randomness r does not effect the quality of the picture.

The contrast α is commonly considered as the most important parameter,

while the randomness r is the least important parameter.

Theorem 3.8 allows us the construction of an optimal (n − 1) out of n visual

secret sharing scheme.

Theorem 3.10. The contrast of an (n − 1) out of n visual secret sharing scheme

satisfies

α ≤ 2

n
( n−1
⌊n−1

2
⌋

) (17)

and there exists an (n − 1) out of n visual secret sharing scheme with

α =
2

n
( n−1
⌊n−1

2
⌋

) and m =
n
( n−1
⌊n−1

2
⌋

)

2
. (18)

Proof. Without loss of generality we may assume that |C0| = |C1| = r. Define
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the collections Ai, Bi with 1 ≤ i ≤ n by

Ai = {(j, l) | 1 ≤ j ≤ m, 1 ≤ l ≤ r,

the l-th matrix in the collection C0 has a 1 at position (i, j)} ;

Bi = {(j, l) | 1 ≤ j ≤ m, 1 ≤ l ≤ r,

the l-th matrix in the collection C1 has a 1 at position (i, j)} .

Condition 3 of Definition 3.9 guarantees that |⋂i∈S Ai| = |⋂i∈S Bi| for each

S ⊆ {1, . . . , n} with |S| ≤ n − 2.

For each S ⊆ {1, . . . , n} with |S| = n − 1 condition 1 says that
∣

∣

∣

∣

⋂

i∈S

Ai

∣

∣

∣

∣

≤ r(d − αm)

and condition 2 says that
∣

∣

∣

∣

⋂

i∈S

Bi

∣

∣

∣

∣

≥ rd .

Application of Theorem 3.7 to the collections A1, . . . , An and B1, . . . , Bn yields

α ≤ 2

n
( n−1
⌊n−1

2
⌋

) .

Now we give a construction of an good (n − 1) out of n visual secret sharing

scheme. Choose collections A1, . . . , An and B1, . . . , Bn as described in Theo-

rem 3.8. Without loss of generality these sets are subsets of {1, . . . ,m} where

m = n
2

( n−1
⌊n−1

2
⌋

)

. Let S0 be the boolean n × m matrix with 1 at position (i, j) if

and only if j ∈ Ai. Similar let S1 be the n × m matrix corresponding to the

collection B1, . . . , Bn. By construction S0 and S1 satisfy the conditions 1 and 2

of Definition 3.9. Let Ci (i = 0, 1) be the multiset of size m! that contains Si

and all column permutations of Si. Then the collections C0 and C1 satisfy Defi-

nition 3.9. �

4. The case m = n − d, d fixed

Now we consider the case of two collections A1, . . . , An and B1, . . . , Bn with

|⋂i∈S Ai| = |⋂i∈S Bi| for each subset S with |S| ≤ m = n− d for some fixed d.

For this case we are still able to prove a recursion formula, but we have no

closed form.

Let µ be an arbitrary measure and let A1, . . . , An and B1, . . . , Bn be symmet-

ric collections of sets satisfying
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(1c) µ(
⋂j

i=1 Ai) = µ(
⋂j

i=1 Bi) for all j ≤ n − d ,

(2c) µ(
⋂n−j

i=1 Ai) = µ(
⋂n−j

i=1 Bi) − (−1)n−jxj , for 0 ≤ j < d .

As in the previous sections we ask for the smallest possible value Sn(x0, . . . , xd−1)

for max{µ(
⋃n

i=1 Ai), µ(
⋃n

i=1 Bi)} where again the minimum is taken over all

collections of sets in all finite measurable spaces. With arguments similar to

Theorem 3.4 we obtain the following result.

Theorem 4.1. The function Sn(x0, . . . , xd−1) defined above satisfies the recursion

formula

Sn+1(x0, . . . , xd−1) ≥ Sn(x0 + x1, x1 + x2, . . . , xd−2 + xd−1, xd−1 + 0)

+ Sn(x0, . . . , xd−1) (19)

for n ≥ d.

Proof. As in the proof of Lemma 3.1 we define A′
i = Ai\An+1, B′

i = Bi\Bn+1,

A′′
i = Ai ∩ Ai+1 and B′′

i = Bi ∩ Bn+1.

It is easy to check intersections of collections A′′
i , B′′

i to see that

max

{

µ
(

n
⋃

i=1

A′′
i

)

, µ
(

n
⋃

i=1

B′′
i

)

}

≥ Sn(x0, . . . , xd−1) .

And it is only slightly more complex the see that

µ
(

n−j
⋂

i=1

A′
i

)

= µ
(

n−1
⋂

i=1

Ai

)

− µ
(

n−1
⋂

i=1

Ai ∩ An+1

)

=

[

µ
(

n−1
⋂

i=1

Bi

)

− (−1)n+1−jxj

]

−
[

µ
(

n−1
⋂

i=1

Bi ∩ Bn+1

)

− (−1)n+1−j−1xj+1

]

= µ
(

n−j
⋂

i=1

B′
i

)

− (−1)n−j(−xj − xj+1)

where xj = 0 for j ≥ d. Thus

max

{

µ
(

n
⋃

i=1

A′
i

)

, µ
(

n
⋃

i=1

B′
i

)

}

≥ Sn(x0 + x1, x1 + x2, . . . , xd−2 + xd−1, xd−1 + 0) .
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All together we have

Sn+1(x0, . . . , xd−1)

= max

{

µ
(

n
⋃

i=1

Ai

)

, µ
(

n
⋃

i=1

Bi

)

}

= max

{

µ
(

n
⋃

i=1

A′
i

)

, µ
(

n
⋃

i=1

B′
i

)

}

+ µ(An+1)

≥ max

{

µ
(

n
⋃

i=1

A′
i

)

, µ
(

n
⋃

i=1

B′
i

)

}

+ max

{

µ
(

n
⋃

i=1

A′′
i

)

, µ
(

n
⋃

i=1

B′′
i

)

}

= Sn(x0 + x1, x1 + x2, . . . , xd−2 + xd−1, xd−1 + 0) + Sn(x0, . . . , xd−1) ,

which completes the proof. �

With the trivial bound Sd−1(x0, . . . , xd−1) ≥ |xd−1| we can use Theorem 4.1

to obtain

Sn(x0, . . . , xd−1) ≥ 2n−d+1|xd−1| .

This is almost all we need for the following asymptotic theorem.

Theorem 4.2. Let A1, . . . , An and B1, . . . , Bn be two collections of sets satisfying

|⋂i∈S Ai| = |⋂i∈S Bi| for all subsets S ⊆ {1, . . . , n} with |S| ≤ n − d. Then

|⋃n
i=1 Bi| − |⋃n

i=1 Ai|
|⋃n

i=1 Bi|
≤ O(nd−12−n)

or equivalently
|⋃n

i=1 Ai|
|⋃n

i=1 Bi|
≤ 1 + O(nd−12−n) .

Remarks. (1) Remember that we assume d constant in this section. The O-con-

stant in the theorem will thus depend on d.

(2) This bound is much better than the one given in [2, Theorem 1, Part 2].

(3) This a remark that motivates the method used in the proof. Clearly

µ(
⋃n

i=1 Bi) − µ(
⋃n

i=1 Ai)

µ(
⋃n

i=1 Bi)
=

∑d−1
i=0

(

n
i

)

xi

Sn(x0, . . . , xd−1)
.

If we could assure that |xi| ≤ cnd−1−i|xd−1| for some constant c, then the
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theorem would follow directly from

∑d−1
i=0

(

n
i

)

xi

Sn(x0, . . . , xd−1)
≤

∑d−1
i=0

(

n
i

)

nd−1−icxd−1

Sn(x0, . . . , xd−1)

=
O(nd−1|xd−1|)
2n−d+1|xd−1|)

= O(nd−12−n) .

The difficulty of the proof is to remove the restriction |xi| ≤ cnd−1−i|xd−1|.

Proof of Theorem 4.2. Choose constants c0, . . . , cd−1 > 0 satisfying

1 −
d−1
∑

j=i+1

(

n − d − 1

j − i

)

ci

cjnj−i
≥ 1

2
(20)

for i = 0, . . . , d − 2. Let imax be the value of i for which cin
i|xi| is maximal.

Using an inductive argument, the recursion formula (19) shows that

Sn(x0, . . . , xd−1) ≥
n+1−d
∑

j=1

(

n + 1 − d

j

)

Sd−1

(

x
(j)
0 , . . . , x

(j)
d−1

)

(21)

where

x
(j)
k =

d−1
∑

ℓ=k

(

j

ℓ − k

)

xℓ . (22)

For k = imax and all j ∈ {1, . . . , n − d + 1} this implies that (in the second

step we use the definition of imax and the last step uses (20))

|x(j)
imax

| ≥ |ximax
| −

d−1
∑

ℓ=imax+1

(

n − d + 1

ℓ − imax

)

|xℓ|

≥ |ximax
| −

d−1
∑

ℓ=imax+1

(

n − d − 1

ℓ − imax

)

cimax

cℓnℓ−imax

|ximax
|

≥ 1

2
|ximax

| .

Together with the trivial bound

Sd−1

(

x
(n−d+1,i)
0 , . . . , x

(j)
d−1

)

≥ |x(j)
imax

|

and (21) we find

Sn(x0, . . . , xd−1) ≥
n+1−d
∑

j=1

(

n + 1 − d

j

)

1

2
|ximax

| = 2n−d|ximax
| .
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Now we are finished, since by definition of imax ,

∑d−1
i=0

(

n
i

)

xi

Sn(x0, . . . , xd−1)
≤

∑d−1
i=0 ni|xi|

2n−d|ximax
|

≤
∑d−1

i=0
cimax

ci

nimax |ximax
|

2n−d|ximax
|

≤
(

2d
d−1
∑

i=0

cimax

ci

)

nimax2−n = O(nimax2−n)

The worst bound is obtained for imax = d − 1, i.e. in the simple case |xi| ≤
cnd−1−i|xd−1| mentioned in Remark (3) above. �

5. Open problems

We want to close this article with some open problems.

1. What is the discrete analogue for Theorem 3.6, i.e. find the minimal k for

which minx∈Z S(k, x) = minx∈R S̃(k, x). This is more difficult than the

discrete analogue for Theorem 3.7, since this time the discrete minimum

has to be asymmetric.

2. The visual cryptography scheme in Theorem 3.10 has randomness m!.

That is the trivial upper bound for the randomness. Improve that bound.

3. The explicit solution for m = n − 2 (Theorem 3.6) proves

|⋃n
i=1 Ai|

|⋃n
i=1 Bi|

≤ 1 + O(
√

n2−n)

which is better than the general bound

|⋃n
i=1 Ai|

|⋃n
i=1 Bi|

≤ 1 + O(n2−n)

proven in Theorem 4.2. Improve the bound of Theorem 4.2 for m = n−d,

d > 2.

4. Is it possible to adapt the arguments of Theorem 4.2 to deal with non-

constant d?
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