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Abstract

A semifield of type (q2n

, q
n

, q
2
, q

2
, q) (with n > 1) is a finite semi-

field of order q
2n (q a prime power) with left nucleus of order q

n, right

and middle nuclei both of order q
2 and center of order q. Semifields of

type (q6
, q

3
, q

2
, q

2
, q) have been completely classified by the authors and

N. L. Johnson in [10]. In this paper we determine, up to isotopy, the form

of any semifield of type (q2n

, q
n

, q
2
, q

2
, q) when n is an odd integer, proving

that there exist n−1

2
non isotopic potential families of semifields of this type.

Also, we provide, with the aid of the computer, new examples of semifields

of type (q14
, q

7
, q

2
, q

2
, q), when q = 2.
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1. Introduction

A finite semifield S is a finite algebraic structure satisfying all the axioms for a

skew field except (possibly) associativity. The subsets

Nl = {a ∈ S | (ab)c = a(bc), ∀b, c ∈ S} ,

Nm = {b ∈ S | (ab)c = a(bc), ∀a, c ∈ S} ,

Nr = {c ∈ S | (ab)c = a(bc), ∀a, b ∈ S} and

K = {a ∈ Nl ∩ Nm ∩ Nr | ab = ba, ∀b ∈ S}

are fields and are known, respectively, as the left nucleus, the middle nucleus, the

right nucleus and the center of the semifield. A finite semifield is a vector space
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over its nuclei and its center (for more details on semifields see e.g. [4, 9]). If S

satisfies all the axioms of a semifield except possibly the existence of the identity

element of the multiplication, then S is called pre-semifield. From now on the

terms semifield and pre-semifield will be always used to denote a finite semifield

and a finite pre-semifield. If S = (S,+, ◦) is a pre-semifield, then (S,+) is an

elementary abelian p-group (p prime); hence, S is an Fp-vector space. Now, if

S = (S,+, ◦) and S
′ = (S′,+, ◦′) are two pre-semifields whose additive groups

are elementary abelian p-groups, then S and S
′ are isotopic if there exist three

invertible Fp-linear maps, f1, f2 and f3 of S into S
′ such that

f1(x) ◦′ f2(y) = f3(x ◦ y) ,

for each x, y ∈ S. The dimensions of a semifield S over its nuclei and its center

are invariant under the isotopy relation. From any pre-semifield it is possible

to construct a semifield which is isotopic to the starting pre-semifield. The sizes

of the nuclei as well as the size of the center of a semifield are invariant under

isotopy.

Semifields coordinatize certain translation planes (called semifield planes)

and two semifield planes are isomorphic if and only if the corresponding semi-

fields are isotopic (see [1]). A semifield is isotopic to a field if and only if the

corresponding semifield plane is Desarguesian.

Let b be an element of a semifield S with center K; then the map ϕb mapping

x ∈ S to xb ∈ S is a linear map when S is regarded as a left vector space over Nl.

The set S = {ϕb | b ∈ S} is called the spread set of linear maps of S; it is closed

under the sum of linear maps, |S| = |S| and λϕb = ϕλb for any λ ∈ K, i.e. S is a

K-vector subspace of the vector space V of all Nl-linear maps of S.

We say that a semifield is of type (q2n, qn, q2, q2, q) (q a prime power), if it has

order q2n, left nucleus of order qn, right and middle nuclei both of order q2 and

center of order q.

In this paper we prove that a semifield S of type (q2n, qn, q2, q2, q), n odd, is

isotopic to a semifield Sj = (Fq2n ,+, ◦), n+1
2 ≤ j < n, with multiplication given

by

x ◦ y = (α1 + α2a2 + · · · + αjaj)x + (β1b1 + β2b2 + · · · + βn−jbn−j)x
qn

,

where y = α1 + α2a2 + · · ·+ αjaj + β1b1 + β2b2 + · · ·+ βn−jbn−j (αi, βi ∈ Fq2)

and {1, a2, . . . , aj , b1, b2, . . . , bn−j} is an Fq2 -basis of Fq2n such that

(

α1 + α2a2 + · · · + αjaj

β1b1 + β2b2 + · · · + βn−jbn−j

)qn+1

6= 1 ,

for each αi, βi ∈ Fq2 , (β1, . . . , βn−j) 6= (0, . . . , 0). Moreover, by using the geo-

metric properties of the spread sets of linear maps associated with such semi-

fields we prove that two semifields Sj and Sj′ with n+1
2 ≤ j, j′ < n and j 6= j′
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are not isotopic. Hence the semifields of type (q2n, qn, q2, q2, q), n odd, are par-

titioned into n−1
2 non-isotopic families.

Some semifields of type S n+1

2

are constructed by the authors and N. Johnson

in [11, Section 4] generalizing the cyclic semifields [8]. Moreover, semifields

of type Sn−1 belong to a family of semifields introduced in [16] and studied in

[20]. The other classes seem to be likely places to search for new semifields.

Indeed, computational results obtained using MAGMA provide some new ex-

amples of semifields of type (q14, q7, q2, q2, q), for q = 2 and j = 5.

2. Preliminary results

Let S = (Fq2n ,+, ◦) be a semifield two dimensional over its left nucleus Fqn ,

with identity element 1 and center Fq, and let S be the spread set of Fqn -linear

maps of Fq2n defining the multiplication ◦, i.e. x ◦ y = ϕy(x) where ϕy is the

unique element of S such that ϕy(1) = y. Since S has center Fq, we have

x ◦ y = xy = y ◦ x for each x ∈ Fq and y ∈ Fq2n , and hence S contains the field

of linear maps Fq = {x ∈ Fq2n 7→ αx ∈ Fq2n | α ∈ Fq}. An element z ∈ Fq2n

belongs to the right nucleus of S if x ◦ (y ◦ z) = (x ◦ y) ◦ z for each x, y ∈ Fq2n ,

i.e. z ∈ Nr if ϕy◦z = ϕzϕy (juxtaposition stands for the composition of maps)

for each y ∈ Fq2n . So the right nucleus of S defines a field Nr = {ϕz | z ∈ Nr}
of linear maps contained in S isomorphic to Nr with respect to which S is a left

vector space, i.e. NrS = {µϕ | µ ∈ Nr, ϕ ∈ S} = S and Nr can be characterized

as the maximal field of linear maps contained in S with respect to which S is

a left vector space. Similarly, the middle nucleus of S defines a field Nm =

{ϕz | z ∈ Nm} of linear maps contained in S isomorphic to Nm with respect

to which S is a right vector space, i.e. SNm = S and Nm can be characterized

as the maximal field of linear maps contained in S with respect to which S is a

right vector space.

If Ψ and Φ are invertible Fqn -linear maps of Fq2n and σ is an automorphism

of Fq2n , then the set

S′ = ΨSσΦ = {ΨϕσΦ | ϕ ∈ S} (∗)

(where ϕσ : x 7→ aσx + bσxqn

for ϕ : x 7→ ax + bxqn

and the composition of

maps is to be read from right to left) is an additive spread set of linear maps that

defines on Fq2n a pre-semifield S
′ isotopic to S. Conversely, any pre-semifield

S
′ = (Fq2n ,+, ◦′) isotopic to S is defined by a spread set S′ of type (∗) (see

e.g. [10, 11]).

Note that ΨNσ
r Ψ−1 is a field, isomorphic to Nr, with respect to which S′

is a left vector space, i.e. ΨNσ
r Ψ−1S′ = S′ and similarly Φ−1Nσ

mΦ is a field,
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isomorphic to Nm, such that S′Φ−1Nσ
mΦ = S′. Hence we have the following

property.

Property 2.1. If S
′ is a pre-semifield, with associated spread set S′, isotopic to the

semifield S, then the right (respectively, middle) nucleus of S is isomorphic to the

maximal field K of linear maps contained in V with respect to which KS′ = S′

(respectively, S′K = S′).

Any element ϕ ∈ V can be uniquely written as

ϕ = ϕa,b : x ∈ Fq2n 7→ ax + bxqn

∈ Fq2n

and ϕa,b is non-invertible if and only if aqn+1 = bqn+1 (see [14, p. 361]). Since

q(ϕa,b) = aqn+1 − bqn+1 is a quadratic form of V over Fqn , the non-invertible

elements of V define the hyperbolic quadric

Q =
{

[ϕa,b]Fqn | aqn+1 − bqn+1 = 0, (a, b) 6= (0, 0)
}

of the 3-dimensional projective space P = PG(V, Fqn) = PG(3, qn). Here the

symbol [ϕa,b]Fqn denotes the 1-dimensional Fqn -vector subspace of V generated

by ϕa,b.

If S is the spread set of Fqn -linear maps of a pre-semifield S = (Fq2n ,+, ◦)
with center Fq, then S is an Fq-vector subspace of V of dimension 2n and all

the non-zero elements of S are invertible maps. Therefore, the Fq-linear set

L(S) =
{

[ϕ]Fqn | ϕ ∈ S, ϕ 6= 0
}

of P defined by the nonzero vectors of S is

disjoint from Q. Also, any semilinear map of V of type

Γ: ϕ ∈ V 7→ ΨϕσΦ ∈ V , (♦)

where Ψ and Φ are invertible Fqn -linear maps of V and σ ∈ Aut(Fq2n), induces

a collineation of P preserving the reguli of Q, and conversely (see [3]). Hence:

Theorem 2.2 ([3]). Two isotopic semifields two dimensional over their left nu-

clei define linear sets isomorphic under the action of the collineation group G ≤
PΓO+(4, qn) preserving the reguli of Q.

We say that a point P = [ϕ]Fqn of P has weight i in L(S) if dimFq
(S∩ [ϕ]Fqn ) =

i (i = 0, . . . , n) (see e.g. [10, 19]) and we will write w(P ) = i. In a similar way,

we say that a line l = [ϕ,ϕ′]Fqn of P has weight i in L(S) if dimFq
(S∩[ϕ,ϕ′]Fqn ) =

i (i = 0, . . . , 2n); if i = 0, then the line l is external to L(S), while, if i = 2n,

then L(S) = l. Also, the following properties concerning the weight of points

and lines hold true.

Property 2.3 ([10, Property 3.1]). A line l of P is contained in L(S) if and only

if the weight of l in L(S) is at least n + 1.
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Property 2.4. The weight of a point as well as the weight of a line in L(S) is

invariant under isotopy, i.e. if S1 and S2 are isotopic pre-semifields and SΓ
1 = S2,

where Γ is an invertible semilinear map of V of type (♦), and P (respectively, r) is

a point (respectively, a line) of P of weight i in L(S1), then Pϕ (respectively, rϕ)

has weight i in L(S1)
ϕ = L(S2) where ϕ is the collineation of P induced by Γ.

Proof. Two pre-semifields S1 and S2 with associated spread sets S1 and S2, re-

spectively, are isotopic if and only if SΓ
1 = S2, where Γ is an invertible semilinear

map of V of type (♦). Now, noting that an invertible semilinear map of V pre-

serves the dimension of the Fq-vector subspaces, the result easily follows. �

Starting from a given semifield S = (Fq2n ,+, ◦) with left nucleus Fqn , two

other semifields, two dimensional over their left nuclei, can be constructed:

the transpose semifield S
T and the translation dual semifield S

⊥ of S. More

precisely, if πS is the semifield plane coordinatized by the semifield S, then S
T is

the semifield which coordinatizes the dual plane of πS; whereas S
⊥ is defined by

using the polarity ⊥ associated with the hyperbolic quadric Q of P as originally

introduced in [15] (for more details see also [9, Chapter 85]).

In [18] the following has been proved.

Theorem 2.5 ([18, Theorem 4.1]). Let S = (Fq2n ,+, ◦) be a semifield with left

nucleus Fqn and let S be the associated spread set of linear maps. Then ST =

{ϕa,bqn | ϕa,b ∈ S} is a spread set defining the transpose semifield S
T .

The polar form associated with the quadratic form q(ϕa,b) = aqn+1 − bqn+1

of V is σ(ϕa,b, ϕa′,b′) = aqn

a′ + a′qn

a − bqn

b′ − b′q
n

b. Hence 〈ϕa,b;ϕa′,b′〉 =

Trqn/q(σ(ϕa,b, ϕa′,b′)), where Trqn/q is the trace function of Fqn over Fq, is a

non-degenerate bilinear form of V over Fq and

S⊥ = {ϕa′,b′ | 〈ϕa,b;ϕa′,b′〉 = 0 ∀ϕa,b ∈ S}

is the orthogonal complement of S with respect to 〈· ; ·〉. By [18, Section 3],

S⊥ is a spread set of Fqn -linear maps of Fq2n defining a pre-semifield isotopic to

the translation dual S
⊥ of S.

We end this section by recalling the following property.

Property 2.6. If l is a line of P of weight j in L(S), then l⊥ has weight j in L(S⊥)

as well.

Proof. The statement follows from Equality (3) of [19, Section 2.1] in the case

r = 4, t = 2n and i = 1. �
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3. The main Theorem

We start by stating the following lemma.

Lemma 3.1. Let F be a set of Fqn -linear maps of Fq2n , n odd, such that

(i) F is a field of order q2 with respect to the sum and the composition of linear

maps;

(ii) F contains the field of linear maps Fq = {x ∈ Fq2n 7→ αx ∈ Fq2n | α ∈ Fq} .

Then there exists an invertible Fqn -linear map Ψ of Fq2n such that

Ψ−1FΨ = Fq2 = {x ∈ Fq2n 7→ ηx ∈ Fq2n | η ∈ Fq2} .

Proof. A slight generalization of [11, Lemma 2.1]. �

In light of this result, we are able to prove the main Theorem of the paper.

Theorem 3.2. Let S be a semifield of type (q2n, qn, q2, q2, q), n odd. Then S is

isotopic to a semifield Sj = (Fq2n ,+, ◦), n+1
2 ≤ j < n, with multiplication given

by

x ◦ y = (α1 + α2a2 + · · · + αjaj)x + (β1b1 + β2b2 + · · · + βn−jbn−j)x
qn

, (1)

where y = α1 + α2a2 + · · · + αjaj + β1b1 + β2b2 + · · · + βn−jbn−j (αi, βi ∈ Fq2)

and {1, a2, . . . , aj , b1, b2, . . . , bn−j} is an Fq2 -basis of Fq2n such that

(

α1 + α2a2 + · · · + αjaj

β1b1 + β2b2 + · · · + βn−jbn−j

)qn+1

6= 1 , (2)

for each αi, βi ∈ Fq2 , (β1, . . . , βn−j) 6= (0, . . . , 0).

Conversely, if {1, a2, . . . , aj , b1, b2, . . . , bn−j} is an Fq2 -basis of Fq2n (n odd and
n+1

2 ≤ j < n) satisfying (2), then the algebraic structure Sj = (Fq2n ,+, ◦) where

◦ is defined as in (1), is a semifield of type (q′2t, q′t, q′2, q′2, q′), where q′ = qs,

n = st and s | gcd(n, j) .

Proof. Let S be a semifield of type (q2n, qn, q2, q2, q), n odd. Since S has or-

der q2n, left nucleus of size qn and center of size q, we may assume that

S = (Fq2n ,+, ◦), Nl = Fqn and hence K = Fq. Then the spread set S associated

with S contains the field of linear maps Fq and the right and the middle nuclei

of S determine two subsets Nr and Nm of V which are fields of linear maps of

order q2 containing the field Fq and such that NrS = S and SNm = S. By the

previous lemma there exist two invertible Fqn -linear maps of Fq2n , Φ and Ψ,
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such that Φ−1NrΦ = Ψ−1NmΨ = Fq2 . So the pre-semifield S
′ = (Fq2n ,+, ◦′)

defined by the set of Fqn -linear maps S′ = Φ−1SΨ is isotopic to S, and since

Fq2S′ = Φ−1NrSΨ = Φ−1SΨ = S′

and

S′Fq2 = Φ−1SNmΨ = Φ−1SΨ = S′,

the pre-semifield S
′ is a left and a right vector space over the field of linear

maps Fq2 . Hence we have that, if β̄ : x 7→ βx, with β ∈ Fq2 , then

β̄ϕ, ϕβ̄ ∈ S′ ,

for all ϕ ∈ S′. Therefore, if ϕ = ϕa,b : x 7→ ax + bxqn

, then

β̄ϕ − ϕβ̄ : x 7→ b(β − βq)xqn

is an element of S′ for each β ∈ Fq2 . This implies that x 7→ bxqn

belongs to S′

as well as the map x 7→ ax. Then we can write S′ = S1 ⊕ S2, where S1 is an

Fq2 -vector subspace of

D = {x 7→ ax | a ∈ Fq2n} = {aI | a ∈ Fq2n} (with I : x ∈ Fq2n 7→ x ∈ Fq2n)

and S2 is an Fq2 -vector subspace of

D′ = {x 7→ bxqn

| b ∈ Fq2n} = {bJ | b ∈ Fq2n}

(with J : x ∈ Fq2n 7→ xqn

∈ Fq2n) .

Since S′ is an n-dimensional Fq2 -vector subspace of V, then we have that if

dimF
q2

S1 = j, then dimF
q2

S2 = n − j. So, if S1 = [a1I, . . . , ajI]F
q2

and S2 =

[b1J, . . . , bn−jJ ]F
q2

, we can write the spread set S′ in the following way:

S′ =
{

x 7→ (α1a1 + · · · + αjaj) x

+ (β1b1 + · · · + βn−jbn−j) xqn

| αi, βi ∈ Fq2

}

. (3)

The linear map Γ: ϕa,b ∈ V 7→ ϕa,bJ = ϕb,a ∈ V defines a pre-semifield isotopic

to S
′. By these arguments we may assume that, up to isotopy, S′ is of type (3)

with j ≥ n+1
2 . Note that if j = n, then S′ = D = {aI | a ∈ Fq2n} and hence

the spread set S′ defines the field Fq2n ; so in our hypothesis n+1
2 ≤ j < n.

Also, the spread set a−1
1 S′ = {a−1

1 ϕ | ϕ ∈ S′} contains the identity map I and

defines a semifield isotopic to S
′. Hence we may suppose, up to isotopy, that

a1 = 1. Finally, since all the non-zero maps of S′ are invertible we easily get

condition (2).
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Now, suppose that {1, a2, . . . , aj , b1, b2, . . . , bn−j} is an Fq2 -basis of Fq2n

(n+1
2 ≤ j < n) satisfying (2). Then the map

ϕα1,...,αj ,β1,...,βn−j
: x 7→ (α1 + α2a2 + · · · + αjaj) x

+ (β1b1 + · · · + βn−jbn−j) xqn

is non-singular for any αi, βi ∈ Fq2 not all zero. So

Sj = {ϕα1,...,αj ,β1,...,βn−j
| αi, βi ∈ Fq2}

is an additive spread set of Fqn -linear maps and it defines a semifield Sj =

(Fq2n ,+, ◦), where ◦ is defined as in (1), with left nucleus Fqn . Recall that by

Property 2.1, the right nucleus of Sj is isomorphic to the maximal field K of

linear maps contained in V such that KSj = Sj . Hence, since Fq2Sj = Sj ,

we have Fq2 ⊆ K. Now, let ϕ : x 7→ Ax + Bxqn

be any element of K. Then

ϕϕα1,...,αj ,0,...,0 ∈ Sj for any αi ∈ Fq2 , and, since j > n − j, this implies B = 0.

Hence K ⊂ D and this implies that K = Fq2s = {Ā : x → Ax | A ∈ Fq2s} for

some s | n, so the right nucleus of Sj is Fq2s . Also, since Āϕα1,...,αj ,β1,...,βn−j
=

Aϕα0,...,αj ,β1,...,βn−j
∈ Sj for each A ∈ Fq2s , we get that [1, a2, . . . , aj ]F

q2
and

[b1, b2, . . . , bn−j ]F
q2

are Fq2s -subspaces of Fq2n and hence s | j and s | (n − j).

From these arguments we easily get that K also is the maximal field of linear

maps contained in V such that SjK = Sj , i.e. the middle nucleus of Sj is Fq2s

as well. Then the semifield Sj has center Fq′ where q′ = qs and hence, if n = st,

Sj is a semifield of type (q′2t, q′t, q′2, q′2, q′). �

We will denote by Sj (n+1
2 ≤ j < n) a semifield whose multiplication is

defined as in (1) and by Sj the associated spread set of Fqn -linear maps.

Remark 3.3. Note that the spread set

Sj = {x 7→ (α1 + α2a2 + · · · + αjaj) x

+ (β1b1 + · · · + βn−jbn−j) xqn

| αi, βi ∈ Fq2}

can be written in the following way:

Sj = {x 7→ (α1 + α2a2 + · · · + αjaj) x

+ b(β1 + β2b
′

2 + · · · + βn−jb
′

n−j) xqn

| αi, βi ∈ Fq2} ,

where b = b1 and b′k = bk

b1
for k = 2, . . . , n − j. Hence condition (2) in Theo-

rem 3.2 can be rewritten as

bqn+1 /∈

{(

α1 + · · · + αjaj

β1 + · · · + βn−jb′n−j

)qn+1 ∣
∣

∣

∣

∣

αi, βi ∈ Fq2 ,

(β1, . . . , βn−j) 6= (0, . . . , 0)

}

. (4)
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In what follows, we will show that two semifields Sj and Sj′ , with j 6= j′

(j, j′ ≥ n+1
2 ) are not isotopic. To this aim we start by proving the following

lemma.

Lemma 3.4. The linear set L(Sj) (j ≥ n+1
2 ) associated with the semifield Sj

contains a unique line of P and such a line has weight j in L(Sj).

Proof. Let r and r⊥ (where ⊥ is the polarity induced by the quadric Q) be the

lines of P defined by the 2-dimensional Fqn -subspaces D = {aI | a ∈ Fq2n} and

D′ = {bJ | b ∈ Fq2n} of V, respectively. Since

Sj = {x 7→ (α1 + α2a2 + · · · + αjaj) x

+ (β1b1 + · · · + βn−jbn−j) xqn

| αi, βi ∈ Fq2} ,

r and r⊥ have weight 2j and 2(n − j) in L(Sj), respectively. More precisely,

S1 = D ∩ Sj = [I, a2I, . . . , ajI]F
q2

and dimFq
S1 = 2j, while S2 = D′ ∩ Sj =

[b1J, b2J, . . . , bn−jJ ]F
q2

and dimFq
S2 = 2(n − j).

We first prove that any point of r has weight at most j in L(Sj). Indeed,

let P = [vI]Fqn (with v ∈ F
∗

q2n) be a point of r with weight i in L(Sj), i.e.,

dimFq
([vI]Fqn ∩ S1) = i and hence Sv = S1 ∩ [vI]Fqn is an Fq-vector subspace

of D of dimension i over Fq. So we can write Sv = [λ1vI, . . . , λivI]Fq
⊆ [vI]Fqn ,

where λ1, . . . , λi ∈ Fqn are linearly independent over Fq. Since Sv ⊆ S1 and S1

is an Fq2 -subspace, we get [Sv]F
q2

= [λ1vI, . . . , λivI]F
q2

⊆ S1; moreover, since

n is odd, λ1, . . . , λi are linearly independent over Fq2 , as well. This implies that

2i = dimFq
[Sv]F

q2
≤ dimFq

S1 = 2j ,

i.e. i ≤ j. In a similar way we get that the weight of any point of r⊥ in L(Sj) is

at most n − j.

Now, as the line r has weight 2j in L(Sj) and 2j ≥ n + 1, by Property 2.3,

r is contained in L(Sj). By way of contradiction suppose that there exists a line

ℓ = PG(W, Fqn) of P different from r contained in L(Sj). Then, by Property 2.3,

ℓ has weight t = dimFq
(Sj ∩ W ) ≥ n + 1 in L(Sj). If ℓ ∩ r = ∅,

2n = dimFq
Sj ≥ dimFq

[Sj ∩ W,Sj ∩ D]Fq
= t + 2j ≥ 2n + 2 ,

a contradiction. Hence ℓ∩r 6= ∅. Let π = PG(U, Fqn) be the plane of P containing

ℓ = PG(W, Fqn) and r = PG(D, Fqn) and let P = l ∩ r. From the previous

arguments it follows that w(P ) = dimFq
(Sj ∩ D ∩ W ) ≤ j and if Q = r⊥ ∩ π,

then w(Q) = dimFq
(Sj ∩ D′ ∩ U) ≤ n − j. Since

dimFq
(Sj ∩ U) ≥ dimFq

[Sj ∩ D,Sj ∩ W ]Fq

= dimFq
(Sj ∩ D) + dimFq

(Sj ∩ W ) − w(P ) = 2j + t − w(P ) ,
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we have

2n = dimFq
Sj = dimFq

[Sj ∩ U, Sj ∩ D′]Fq

= dimFq
(Sj ∩ U) + dimFq

(Sj ∩ D′) − w(Q)

≥ 2j + t − w(P ) + 2(n − j) − w(Q)

≥ 2j + n + 1 − j + 2(n − j) − n + j = 2n + 1 ,

a contradiction. �

We are now able to prove the following theorem.

Theorem 3.5. Two semifields Sj and Sj′ , with j 6= j′ (j, j′ ≥ n+1
2 ) are not

isotopic.

Proof. By way of contradiction, suppose that Sj and Sj′ , with j 6= j′ (where

j, j′ ≥ n+1
2 ) are isotopic. Then there exists an invertible semilinear map Γ of

type (♦) such that SΓ
j = Sj′ . If ϕ is the collineation of P induced by Γ, then

L(Sj)
ϕ = L(Sj′) and by Lemma 3.4 ϕ fixes the line r. This means that, by

Property 2.4, the line rϕ = r has weight j in L(Sj)
ϕ = L(Sj′), a contradiction.

�

By Theorems 3.2 and 3.5 the semifields of type (q2n, qn, q2, q2, q), n odd, are

partitioned into n−1
2 not isotopic (potential) families: Gn+1

2

(q, n),Gn+3

2

(q, n), . . . ,

Gn−1(q, n), according with the form of their multiplication as explained in The-

orem 3.2.

Theorem 3.6. The families Gj(q, n), n+1
2 ≤ j ≤ n − 1, are closed under the

transpose and the translation dual operations.

Proof. Let Sj = (Fq2n ,+, ◦) be a semifield belonging to Gj(q, n) (n+1
2 ≤ j ≤

n − 1). Since the transpose operation leaves invariant the order of the left nu-

cleus and interchanges the order of the right and middle nuclei [17], while the

translation dual operation leaves invariant the order of the nuclei [18, The-

orem 5.3], then S
T
j and S

⊥

j are semifields of type (q2n, qn, q2, q2, q) as well.

Also, by Theorem 3.2 and by Theorem 2.5 we get that S
T
j belongs to the family

Gj(q, n). Similarly, by Property 2.6 and Lemma 3.4, L(S⊥

j ) contains a unique

line of P and such a line has weight j in L(S⊥

j ). Thus S
⊥

j belongs to the family

Gj(q, n) as well. �

In the case n = 3, it turns out that we have a unique family of semifields of

type (q2n, qn, q2, q2, q), namely, G2(q, 3). There exist examples of such semifields

for any value of q; moreover semifields belonging to G2(q, 3) were completely

classified in [10].
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By Theorem 3.2 and by Remark 3.3, there exists a semifield of type Sj =

(Fq2n ,+, ◦) (n odd) if there exists an Fq2 -basis {1, a2, . . . , aj , b, bb
′

2, . . . , bb
′

n−j}
of Fq2n satisfying condition (4). In [11], it has been proven that if u is an

element of Fqn not belonging to any proper subfield of Fqn and b is an element

of Fq2n such that bqn+1 = A + Bu + Cu2 (A,B,C ∈ Fq) with either C = 0

and B 6= 0 or C 6= 0 and the polynomial f(x) = A + Bx + Cx2 ∈ Fq[x]

having two distinct roots in Fq, then {1, u, u2, . . . , u
n−1

2 , b, bu, bu2, . . . , bu
n−3

2 } is

an Fq2 -basis of Fq2n satisfying condition (4) and the corresponding semifield

S n+1

2

has center Fq. Hence we have the following theorem.

Theorem 3.7. The family Gn+1

2

(q, n) is not empty for any odd n and for any value

of q.

The examples exhibited above (JMPT semifields of List (L)) are obtained

in [11] generalizing the cyclic semifields (JJ semifields of List (L)), and they

are either cyclic semifields or isotopic to cyclic semifields. However, in the same

paper, by using the computer algebra software MAGMA, two new examples of

semifields of type S n+1

2

for n = 5 of orders 210 and 410 with centers F2 and F4,

respectively, have been exhibited (JMPT(45,165) semifields of (L)). Such exam-

ples are neither cyclic nor isotopic to cyclic semifields.

In [16] a potential family of semifields of type (q2n, qn, q2, q2, q), n odd, has

been introduced and in [20, Section 2] it has been proved that such semifields

are of type Sn−1. Also in [20], examples of semifields belonging to Gn−1(q, n)

for n = 5 and q = 2 are exhibited (MT semifields of List (L)).

If n ≥ 7, Theorem 3.2 provides other potential families of new semifields of

type (q2n, qn, q2, q2, q), n odd. Indeed, we will prove that any possible semifield

belonging to Gn+3

2

,Gn+5

2

, . . . ,Gn−2 would be new. More precisely, we show any

such semifield would not be isotopic to any known semifield nor isotopic to any

derivative of a known semifield. Here, a derivative of a semifield S is, up to

isotopy, a semifield obtained from S either by a Knuth operation (see [13]) or

by the translation dual operation.

Below we list the known examples of semifields (the classes are not neces-

sarily disjoint, see C and D). This list comes from [9, Chapter 37].
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(L) LIST OF KNOWN SEMIFIELDS

B Knuth binary commutative semifields

F Flock semifields and their 5th cousins:

F1 Kantor-Knuth

F2 Cohen-Ganley, 5th cousin: Payne-Thas.

F3 Penttila-Williams symplectic semifield order 35, 5th cousin,

Bader, Lunardon, Pinneri flock semifield

C Commutative semifields/symplectic semifields.

C1 Kantor-Williams Desarguesian Scions (symplectic), Kantor-

Williams commutative semifields

C2 Ganley commutative semifields and symplectic cousins

C3 Coulter-Matthews commutative semifields and symplectic

cousins

D Generalized Dickson/Knuth/Hughes-Kleinfeld semifields

S Sandler semifields

JJ Jha-Johnson cyclic semifields (gen. Sandler, also of type S(ω,m, n))

JMPT Johnson-Marino-Polverino-Trombetti semifields (generalizes Jha-

Johnson type S(ω, 2, n)-semifields)

JMPT(45
, 165) Johnson-Marino-Polverino-Trombetti non-cyclic semifields

of order 45 and order 165

T Generalized twisted fields

JH Johnson-Huang 8 semifields of order 82

CF Cordero-Figueroa semifield of order 36

Recently, in [5], [6], [7] and [20] the following semifields have been con-

structed.

EMPT of order q
2n, n odd Ebert-Marino-Polverino-Trombetti semifields

of type (q2n, qn, q, q, q) for any odd integer n > 2 and any prime

power q

EMPT of order q
2n, n even Ebert-Marino-Polverino-Trombetti semifields

of type (q2n, qn, q2, q2, q) for any even integer n > 2 and any odd

prime power q

EMPT of order q
6 Ebert-Marino-Polverino-Trombetti semifields of type

(q6, q3, q2, q, q) and semifields of type (q6, q3, q, q2, q) for any odd

prime power q

MT Marino-Trombetti semifield of order 210
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We notice that the last example belongs to the family Gn−1(q, n) for q = 2

and n = 5.

Theorem 3.8. Semifields belonging to Gn+3

2

(q, n), Gn+5

2

(q, n), . . . , Gn−2(q, n)

(with n odd ≥ 5) are new, if they exist.

Proof. First we prove that no semifield of the previous list nor any derivative

of such a semifield is of type (q2n, qn, q2, q2, q), n ≥ 5 odd, apart from the JJ,

JMPT, JMPT(45, 165) and MT semifields.

Recall that the Knuth operations permute the nuclei of a given semifield with

certain rules as shown in [17] and that the translation dual operation leaves the

sizes of the nuclei invariant [18]. A symplectic semifield and hence a flock semi-

field (which is the translation dual of a symplectic semifield two-dimensional

over its left nucleus) has right and middle nuclei both isomorphic to the center

[12, 17]; whereas a semifield isotopic to a commutative semifield has left and

right nuclei both isomorphic to the center. Hence no semifield of type B, F, C

listed above nor any of their derivatives is of type (q2n, qn, q2, q2, q).

Since a Knuth semifield D of type (17), (18) or (19) (see [4, p. 241]) is

2-dimensional over at least two of its nuclei and since a Knuth semifield of

type (20) (see [4, p. 242]) has the three nuclei equal to the center, no Knuth

semifield of type (17), (18), (19) or (20) nor any of their derivatives is of type

(q2n, qn, q2, q2, q).

Straightforward computations show that the Knuth operations map a gener-

alized Dickson semifield (see [4, p. 241, multiplication (15)]) to a generalized

Dickson semifield. So, to prove that none of the derivatives of a generalized

Dickson semifield is of type (q2n, qn, q2, q2, q) (n odd), it suffices to show that

a generalized Dickson semifield which is two dimensional over its left nucleus,

is not of type (q2n, qn, q2, q2, q) (n odd). To this aim, observe that a general-

ized Dickson semifield of order q2 is 2-dimensional over its left nucleus Fq when

α = id. If σ = β and σ = β−1 then multiplication (15) coincides with the multi-

plication of a Knuth semifield of type (18). Hence, let either σ 6= β or σ 6= β−1.

In this case, we easily get that the nuclei of the generalized Dickson semifield

are as follows: Nr = Fix(σβ) 6 Nl = Fq, Nm = Fix(βσ−1) 6 Nl = Fq and

K = Fq∩Fix(σ)∩Fix(β). Such a semifield can not be of type (q′2n, q′n, q′2, q′2, q′)

for any n odd.

Next, a Sandler semifield has order qm2

, with left nucleus and center of or-

der q (see [4, p. 243] and [21, Thm. 1]); hence, again by comparing the

nuclei, one can see that Sandler semifields and their derivatives are not of type

(q2n, qn, q2, q2, q) (n odd).

Also, the multiplication of a generalized twisted field of order q depends

on two automorphisms of Fq, say S and T with S 6= id, T 6= id and S 6= T
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and |Nl| = |Fix T |, |Nr| = |Fix S| and |Nm| = |Fix ST−1| (see [1, Lem-

ma 1]). If either a generalized twisted field or any of its derivatives were of

type (q2n, qn, q2, q2, q) (n odd), it would have order s2n (n odd), two of its

nuclei would have order s2 and the third nucleus would have order sn; and this

is not possible. Finally, JH and CF semifields are not of type (q2n, qn, q2, q2, q)

with (n ≥ 5 odd) because of their orders.

Now, recall that JJ, JMPT and JMPT(45, 165) semifields belong to Gn+1

2

(q, n)

and that the MT semifield belongs to Gn−1(q, n). So, by these arguments and by

Theorems 3.2 and 3.6, the assertion now follows. �

4. The question of isotopisms

From Lemma 3.4, it follows that if Sj and S
′

j (n+1
2 ≤ j ≤ n− 1) are two isotopic

semifields of the family Gj(q, n), then there exists an element ϕ of the group

G such that L(Sj)
ϕ = L(S′

j) and rϕ = r, where r is the line of P defined by

D = {aI | a ∈ Fq2n}. Hence, as in [5, Prop. 5.2 and Prop. 5.4], we get the

following result.

Theorem 4.1. The spread sets

Sj = {x 7→ (α1 + α2a2 + · · · + αjaj) x

+ b(β1 + β2b2 + · · · + βn−jbn−j) xqn

| αi, βi ∈ Fq2}

and

S′

j = {x 7→ (α1 + α2a
′

2 + · · · + αja
′

j) x

+ b′(β1 + β2b
′

2 + · · · + βn−jb
′

n−j) xqn

| αi, βi ∈ Fq2}

define isotopic semifields if and only if there exist λ ∈ F
∗

q2n , M ∈ F
∗

q2n and σ ∈
Aut(Fq2n) such that

λ[1, aσ
2 , . . . , aσ

j ]F
q2

= [1, a′

2, . . . , a
′

j ]Fq2
and

λbσMqn
−1[1, bσ

2 , . . . , bσ
n−j ]Fq2

= b′[1, b′2, . . . , b
′

n−j ]Fq2
. �

5. Computational results

In this final section we prove that there exist examples of semifields of type

(q2n, qn, q2, q2, q), n odd, not belonging to Gn+1

2

and Gn−1; indeed we will pro-

vide some examples of semifields belonging to Gn−2(q, n) for q = 2 and n = 7.
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By Theorem 3.2 and Remark 3.3, if n = 7 a semifield belonging to the family

G5(q, 7) is of type S5 = (Fq14 ,+, ◦) with multiplication given by

x ◦ y = (α1 + α2a2 + α3a3 + α4a4 + α5a5)x + b(β1 + β2B)xq7

, (5)

where ai, b, B ∈ Fq14 such that

{

{1, a2, . . . , a5, b, bB} is an Fq2 -basis of Fq14 ,

N(b) = bq7+1 /∈ P (1, a2 . . . a5, B) ,
(6)

where

P (1, a2, . . . , a5, B) =

{(

α1 + α2a2 + · · · + α5a5

β1 + β2B

)q7+1 ∣
∣

∣

∣

∣

αi, βi ∈ Fq2 ,

(β1, β2) 6= (0, 0)

}

.

Let B′ = α+βB
γ+δB with α, β, γ, δ ∈ Fq2 such that αδ − βγ 6= 0. If λ ∈ F

∗

q2 , σ = id

and b′ = b(γ + δB), we get

λ[1, a2, a3, . . . , a5]F
q2

= [1, a2, a3, . . . , a5]F
q2

and

λb[1, B] = λb(γ + δB)

[

1,
α + βB

γ + δB

]

F
q2

= b′[1, B′]F
q2

.

Hence it follows from Theorem 4.1 that a semifield S
′

5 defined by the basis

{1, a2, . . . , a5, b
′, b′B′}, if it exists, would be isotopic to the semifield S5 defined

by the basis {1, a2, . . . , a5, b, bB}.

Now let q = 2 and ω be a primitive element of F27 with minimal polynomial

x7 + x + 1 ∈ F2[x] and let z be a primitive element of F214 with minimal poly-

nomial x14 + x7 + x5 + x3 + 1 ∈ F2[x]. We look for elements B ∈ F214 \ F22 for

which there exists b ∈ F
∗

214 such that N(b) /∈ P (1, ω, ω2, ω3, ω4, B). If B is such

an element and b ∈ F
∗

214 with N(b) /∈ P (1, ω, ω2, ω3, ω4, B), we denote by Sω,b,B

the corresponding semifield. By the previous arguments, for any B′ = α+βB
γ+δB ,

with α, β, γ, δ ∈ F22 and αδ−βγ 6= 0, the semifield Sω,b′,B′ , with b′ = b(γ +δB),

is isotopic to Sω,b,B .

Given two elements B,B′ ∈ F214 \ F22 , we say that B and B′ are F22 -equiva-

lent if there exist α, β, γ, δ ∈ F22 with αδ − βγ 6= 0 such that B′ = α+βB
γ+δB . Note

that such a relation is an equivalence relation.

In light of these remarks, MAGMA computations [2] show that the elements

B ∈ F214 \ F22 producing a semifield Sω,b,B for some b ∈ F
∗

214 , up to the above
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equivalence relation, are those listed in Table 1. For each such B there exists

exactly one element η ∈ F27 \P (1, ω, ω2, ω3, ω4) and such an element is listed in

the second column of Table 1. So, for each element b ∈ F214 such that N(b) = η,

we get a semifield of type Sω,b,B .

B N(b)

B1 = z1647 η1 = ω21

B2 = z106 η2 = ω40

B3 = z122 η3 = ω50

B4 = z441 η4 = ω19

Table 1

Also, if Bi 6= Bj (i, j ∈ {1, 2, 3, 4}), then Bi and Bj are not F22 -equivalent. Note

that, if b, b′ ∈ F
∗

214 such that N(b) = N(b′), then there exists M ∈ F
∗

214 with

b′ = M
27

−1
b and, hence, Sω,b,B and Sω,b′,B are isotopic (see Theorem 4.1 with

λ = 1, σ = id and M = M). Then, for any i ∈ {1, 2, 3, 4}, the pair (Bi, ηi)

defines, up to isotopy, a unique semifield of type Sω,bi,Bi
, where N(bi) = ηi.

Hence there exist at most 4 semifields of type Sω,b,B , up to isotopy.

Now suppose that the two semifields of type Sω,b,B and Sω,b′,B′ are isotopic.

Then there exist λ ∈ F
∗

214 , M ∈ F
∗

214 and σ ∈ Aut(F214) such that

λ[1, ωσ, ω2σ, ω3σ, ω4σ]F
q2

= [1, ω, ω2, ω3, ω4]F
22

(7)

and

λbσM214
−1[1, B]F

q2
= b′[1, B′]F

22
. (8)

If σ : x 7→ x2, condition (7) becomes

λ[1, ω2, ω4, ω6, ω8]F
22

= [1, ω, ω2, ω3, ω4]F
22

,

and since ω7 + ω + 1 = 0 it is equivalent to say that

λ[1, ω, ω2, ω4, ω6]F
22

= [1, ω, ω2, ω3, ω4]F
22

,

and this easily implies that λ = 0, a contradiction. In a similar way, we get a

contradiction for any σ ∈ Aut(F214) with σ 6= id.

On the other hand, if σ = id, straightforward computations show that if

conditions (7) and (8) are satisfied then

λ ∈ F
∗

22 , B′ =
α + βB

γ + δB
, b′ = bM214

−1(γ + δB) ,

where α, β, γ, δ ∈ F22 and αδ − βγ 6= 0, i.e. B and B′ are F22 -equivalent. So we

get the following result.
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Theorem 5.1. The semifields Sω,b,B = (F214 ,+, ◦) and Sω,b′,B′ = (F214 ,+, ◦)
with multiplication

x ◦ y = (α1 + α2ω + · · · + α5ω
4) x + b(β1 + β2B) x27

and

x ◦ y = (α1 + α2ω + · · · + α5ω
4) x + b′(β1 + β2B

′) x27

,

respectively, are isotopic if and only if

B′ =
α + βB

γ + δB
and b′ = bM214

−1(γ + δB) ,

for some M ∈ F
∗

214 , where α, β, γ, δ ∈ F22 and αδ − βγ 6= 0 . �

As a corollary we have:

Corollary 5.2. The semifields Sω,bi,Bi
, i ∈ {1, 2, 3, 4}, are pairwise non-isotopic.

�

Also, by the previous arguments and by Theorem 3.8, we get the following

result.

Theorem 5.3. In the family G5(2, 7) there exist at least four non-isotopic semi-

fields, and they are new. �
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