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Abstract

In this short note we show that the group of projectivities of a projective

plane of order 23 cannot be isomorphic to the Mathieu group M24. By a

result of T. Grundhöfer [6], this implies that the group of projectivities of a

non-desarguesian projective plane of finite order n is isomorphic either to

the alternating group An+1 or to the symmetric group Sn+1.
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1. Introduction

Any projective plane Π can be coordinatized by a planar ternary ring (R, T ),

see [7]. There is a natural bijection between the set of points of an arbitrary

line ℓ and the set R ∪ {∞}. Let P denote the group of projectivities of Π; then

P acts 3-transitively on the point set of ℓ. Equivalently, we can consider the

group P of projectivities as a permutation group acting on R ∪ {∞}.

The fundamental theorem of projective planes says that Π is pappian if and

only if P is sharply 3-transitive. In [6], T. Grundhöfer has shown that the group

of projectivities of a non-desarguesian projective plane Π of finite order n is

either the alternating group An+1, or the symmetric group Sn+1, or n = 23 and
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P is the Mathieu group M24. In this paper, we show that the latter case cannot

occur. Our proof uses computer calculations.

2. Coordinate loops and their multiplication groups

For a loop (L, ·, 1), we denote by Lx and Rx the left and right translation maps

by x, respectively. These maps generate the multiplication group Mlt(L) of L.

The stabilizer of the unit element 1 ∈ L is the inner mapping group Inn(L) of L.

The left (or right) translations form a sharply transitive set of permutations.

Moreover, for any x, y ∈ L, LxRyL−1
x R−1

y ∈ Inn(L).

The next result was already noticed by A. Drápal [3] in a slightly weaker

form.

Lemma 2.1. The Mathieu group M22 of degree 22 does not contain the multipli-

cation group of a loop of order 22.

Proof. Let G = M22 act on {1, 2, . . . , 22}. Let e be the unit element of G, and

H = G1 be the stabilizer in G of 1. Assume that Mlt(L) ≤ G. Then G con-

tains two sharply transitive subsets U, V of order 22 such that e ∈ U, V and

uvu−1v−1 ∈ H for all u ∈ U, v ∈ V . For any c ∈ NS22
(G) there is an element

w ∈ V such that Hwc = H. Thus the pair c−1Uc, c−1w−1V c has the same

properties as U, V : the commutator element

c−1(uw−1vu−1(w−1v)−1)c = c−1w−1(wuw−1u−1)(uvu−1v−1)wc

is indeed contained in Hwc = H. Thus, U can be replaced by some conjugate

under Aut(M22) = NS22
(G). Up to conjugacy by Aut(M22) there are only 3 fixed

point free elements in G represented by

(1 2 15 14 17 11) (3 8 19 22 9 13) (4 10) (5 7 18) (6 16 12) (20 21),

(1 2 20 3 18 21 9 22) (4 6 19 8 5 11 7 17) (10 15 16 14) (12 13), and

(1 2 9 16 18 22 8 15 10 11 6) (3 7 5 19 17 14 12 21 4 20 13).

These three elements generate G, so they describe the action of G we work

with. Pick e 6= a ∈ U . By the previous remark we may assume that a is one of

the given 3 elements. Note that 1a = 2. By transitivity of U there are b, c ∈ U

with 1b = 3 and 1c = 4.

Let F denote the set of fixed point free elements of G and for X ⊆ G define

the set SX = {g ∈ F | xgx−1g−1 ∈ H ∀x ∈ X}. Note that if X is a subset of U ,

then SX contains V . In particular, SX is transitive on {1, . . . , 22}. However,

a straightforward computer calculation (see the remark below) shows that for
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any a as above and b, c ∈ F with ab−1, bc−1, ca−1 ∈ F , 1b = 3, 1c = 4, the set

S{a,b,c} is intransitive on {1, . . . , 22}. This proves the lemma. �

With a given planar ternary ring (R, T ), one can introduce two binary oper-

ations x + y = T (1, x, y) and x · y = T (x, y, 0) in such a way that (R,+, 0) and

(R∗ = R \ {0}, ·, 1) are loops.

Lemma 2.2. Let P be the group of projectivities of the projective plane Π. Then

the 2-point stabilizer P0,∞ contains the multiplication group Mlt(R∗, ·) of the mul-

tiplicative loop (R∗, ·) .

Proof. Easy calculation shows that for any a ∈ R∗, the projectivities

α =
(

[1] (0) [1, 0] (∞) [a, 0] (0) [1]
)

,

β =
(

[1] (0, 0) [a] (0) [1]
)

map the point (1, y) of [1] to (1, a · y) and (1, y · a), respectively. Moreover,

α and β leave the points (1, 0) and (∞) fixed. �

Our main result completes the solution of the conjecture in [2, p. 160].

Theorem 2.3. The group of projectivities of a non-desarguesian projective plane

of finite order n contains the alternating group An+1.

Proof. By [6], we only have to exclude the case n = 23 and P = M24. However,

if this case would exist, then by Lemma 2.2, M22 would contain the multiplica-

tion group of a loop, which contradicts Lemma 2.1. �

We conclude this note with two remarks. First, we notice that both the al-

ternating and the symmetric group can be the group of projectivities of a non-

desarguesian finite projective plane, see [5] and the references therein. The

second remark concerns the computer calculation in the proof of Lemma 2.1.

Let a be one of the 3 possibilities from above, then the number of possibilities

for b ∈ F with ab−1 ∈ F and 1b = 3 is 3214, 3290, or 3318, respectively. The

sizes of the sets S{a,b} are between 355 and 538. In the majority of the cases

S{a,b} is intransitive on {1, . . . , 22}. In the remaining cases one determines the

possibilities for c, and shows that S{a,b,c} is intransitive again.

The computation takes about 40 minutes on an average home PC. The algo-

rithm was implemented twice independently in the computer algebra systems

GAP [4] and Magma [1].
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Gábor P. Nagy

BOLYAI INSTITUTE, UNIVERSITY OF SZEGED, ARADI VÉRTANÚK TERE 1, H-6720 SZEGED, HUNGARY
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