

A note on the group of projectivities of finite projective planes

Peter Müller

Gábor P. Nagy*

Dedicated to Professor Gábor Korchmáros on the occasion of his sixtieth birthday.

Abstract

In this short note we show that the group of projectivities of a projective plane of order 23 cannot be isomorphic to the Mathieu group M_{24} . By a result of T. Grundhöfer [6], this implies that the group of projectivities of a non-desarguesian projective plane of finite order n is isomorphic either to the alternating group A_{n+1} or to the symmetric group S_{n+1} .

Keywords: projective planes, projectivities, loops MSC 2000: 20N05, 51E15

1. Introduction

Any projective plane Π can be coordinatized by a planar ternary ring (R, T), see [7]. There is a natural bijection between the set of points of an arbitrary line ℓ and the set $R \cup \{\infty\}$. Let P denote the group of projectivities of Π ; then P acts 3-transitively on the point set of ℓ . Equivalently, we can consider the group P of projectivities as a permutation group acting on $R \cup \{\infty\}$.

The fundamental theorem of projective planes says that Π is pappian if and only if *P* is sharply 3-transitive. In [6], T. Grundhöfer has shown that the group of projectivities of a non-desarguesian projective plane Π of finite order *n* is either the alternating group A_{n+1} , or the symmetric group S_{n+1} , or n = 23 and

^{*}This paper was written during the second author's Marie Curie Fellowship MEIF-CT-2006-041105.

2. Coordinate loops and their multiplication groups

For a loop $(L, \cdot, 1)$, we denote by L_x and R_x the left and right translation maps by x, respectively. These maps generate the multiplication group Mlt(L) of L. The stabilizer of the unit element $1 \in L$ is the inner mapping group Inn(L) of L. The left (or right) translations form a sharply transitive set of permutations. Moreover, for any $x, y \in L$, $L_x R_y L_x^{-1} R_y^{-1} \in Inn(L)$.

The next result was already noticed by A. Drápal [3] in a slightly weaker form.

Lemma 2.1. The Mathieu group M_{22} of degree 22 does not contain the multiplication group of a loop of order 22.

Proof. Let $G = M_{22}$ act on $\{1, 2, ..., 22\}$. Let e be the unit element of G, and $H = G_1$ be the stabilizer in G of 1. Assume that $Mlt(L) \leq G$. Then G contains two sharply transitive subsets U, V of order 22 such that $e \in U, V$ and $uvu^{-1}v^{-1} \in H$ for all $u \in U, v \in V$. For any $c \in N_{S_{22}}(G)$ there is an element $w \in V$ such that $H^{wc} = H$. Thus the pair $c^{-1}Uc, c^{-1}w^{-1}Vc$ has the same properties as U, V: the commutator element

$$c^{-1}(uw^{-1}vu^{-1}(w^{-1}v)^{-1})c = c^{-1}w^{-1}(wuw^{-1}u^{-1})(uvu^{-1}v^{-1})wc$$

is indeed contained in $H^{wc} = H$. Thus, U can be replaced by some conjugate under $Aut(M_{22}) = N_{S_{22}}(G)$. Up to conjugacy by $Aut(M_{22})$ there are only 3 fixed point free elements in G represented by

 $(1\ 2\ 15\ 14\ 17\ 11)$ $(3\ 8\ 19\ 22\ 9\ 13)$ $(4\ 10)$ $(5\ 7\ 18)$ $(6\ 16\ 12)$ $(20\ 21)$, $(1\ 2\ 20\ 3\ 18\ 21\ 9\ 22)$ $(4\ 6\ 19\ 8\ 5\ 11\ 7\ 17)$ $(10\ 15\ 16\ 14)$ $(12\ 13)$, and $(1\ 2\ 9\ 16\ 18\ 22\ 8\ 15\ 10\ 11\ 6)$ $(3\ 7\ 5\ 19\ 17\ 14\ 12\ 21\ 4\ 20\ 13)$.

These three elements generate G, so they describe the action of G we work with. Pick $e \neq a \in U$. By the previous remark we may assume that a is one of the given 3 elements. Note that $1^a = 2$. By transitivity of U there are $b, c \in U$ with $1^b = 3$ and $1^c = 4$.

Let *F* denote the set of fixed point free elements of *G* and for $X \subseteq G$ define the set $S_X = \{g \in F \mid xgx^{-1}g^{-1} \in H \; \forall x \in X\}$. Note that if *X* is a subset of *U*, then S_X contains *V*. In particular, S_X is transitive on $\{1, \ldots, 22\}$. However, a straightforward computer calculation (see the remark below) shows that for

any *a* as above and $b, c \in F$ with $ab^{-1}, bc^{-1}, ca^{-1} \in F$, $1^b = 3$, $1^c = 4$, the set $S_{\{a,b,c\}}$ is intransitive on $\{1, \ldots, 22\}$. This proves the lemma. \Box

With a given planar ternary ring (R, T), one can introduce two binary operations x + y = T(1, x, y) and $x \cdot y = T(x, y, 0)$ in such a way that (R, +, 0) and $(R^* = R \setminus \{0\}, \cdot, 1)$ are loops.

Lemma 2.2. Let P be the group of projectivities of the projective plane Π . Then the 2-point stabilizer $P_{0,\infty}$ contains the multiplication group $Mlt(R^*, \cdot)$ of the multiplicative loop (R^*, \cdot) .

Proof. Easy calculation shows that for any $a \in R^*$, the projectivities

 $\alpha = ([1] (0) [1,0] (\infty) [a,0] (0) [1]),$ $\beta = ([1] (0,0) [a] (0) [1])$

map the point (1, y) of [1] to $(1, a \cdot y)$ and $(1, y \cdot a)$, respectively. Moreover, α and β leave the points (1, 0) and (∞) fixed.

Our main result completes the solution of the conjecture in [2, p. 160].

Theorem 2.3. The group of projectivities of a non-desarguesian projective plane of finite order n contains the alternating group A_{n+1} .

Proof. By [6], we only have to exclude the case n = 23 and $P = M_{24}$. However, if this case would exist, then by Lemma 2.2, M_{22} would contain the multiplication group of a loop, which contradicts Lemma 2.1.

We conclude this note with two remarks. First, we notice that both the alternating and the symmetric group can be the group of projectivities of a nondesarguesian finite projective plane, see [5] and the references therein. The second remark concerns the computer calculation in the proof of Lemma 2.1. Let a be one of the 3 possibilities from above, then the number of possibilities for $b \in F$ with $ab^{-1} \in F$ and $1^b = 3$ is 3214, 3290, or 3318, respectively. The sizes of the sets $S_{\{a,b\}}$ are between 355 and 538. In the majority of the cases $S_{\{a,b\}}$ is intransitive on $\{1, \ldots, 22\}$. In the remaining cases one determines the possibilities for c, and shows that $S_{\{a,b,c\}}$ is intransitive again.

The computation takes about 40 minutes on an average home PC. The algorithm was implemented twice independently in the computer algebra systems GAP [4] and Magma [1].

44	
•	
page 4 / 4	
go back	
full screen	
close	
quit	

References

- [1] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, *J. Symbolic Comput.* **24** (1997), no. 3/4, 235–265.
- [2] P. Dembowski, *Finite Geometries*, Springer-Verlag, Berlin-New York, 1968.
- [3] **A. Drápal**, Multiplication groups of loops and projective semilinear transformations in dimension two, *J. Algebra* **251** (2002), no. 1, 256–278.
- [4] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.3, 2002 (http://www.gap-system.org).
- [5] **T. Grundhöfer**, Die Projektivitätengruppen der endlichen Translationsebenen, *J. Geom.* **20** (1983), no. 1, 74–85.
- [6] _____, The groups of projectivities of finite projective and affine planes, Eleventh British Combinatorial Conference (London, 1987), *Ars Combin.* 25 (1988), A, 269–275.
- [7] D. R. Hughes and F. C. Piper, *Projective Planes*, Springer-Verlag, New York-Berlin, 1973.

Peter Müller

INSTITUT FÜR MATHEMATIK, UNIVERSITÄT WÜRZBURG, AM HUBLAND, 97074 WÜRZBURG, GERMANY *e-mail*: peter.mueller@mathematik.uni-wuerzburg.de *website*: http://mathematik.uni-wuerzburg.de/~mueller

Gábor P. Nagy

BOLYAI INSTITUTE, UNIVERSITY OF SZEGED, ARADI VÉRTANÚK TERE 1, H-6720 SZEGED, HUNGARY e-mail: nagyg@math.u-szeged.hu website: http://www.math.u-szeged.hu/~nagyg

