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Locally hermitian partial ovoids of unitary

polar spaces and partial ovoids of orthogonal

polar spaces

Alessandro Siciliano

Abstract

In order to study unitals in the projective plane PG(2, q2), F. Bueken-

hout [5] gave a representation in PG(4, q) of the unitary polar space H(2, q2)

as points of a quadratic cone on a Q−(3, q).

In [16], G. Lunardon used the Barlotti-Cofman representation of PG(3, q2)

to represent H(3, q2) in PG(6, q) as a cone on a Q+(5, q). He also proved

that to any locally hermitian ovoid of H(3, q2) corresponds an ovoid of

Q+(5, q) and conversely.

In this paper, we study the Barlotti-Cofman representation of the unitary

polar space H(n, q2) for all n and we prove that to any locally hermitian

partial ovoid of such spaces corresponds a partial ovoid of an orthogonal

polar space, and conversely. Further the locally hermitian partial ovoid is

maximal if and only if the corresponding partial ovoid of the orthogonal

polar space is maximal. As a consequence of the previous connection and

a result of A. Klein [14] we obtain a geometric proof to derive that the

orthogonal polar space Q+(4n + 1, q) has no ovoid when n > q3.

Keywords: polar spaces, partial ovoids, ovoids

MSC 2000: 05B25, 51E20

1. Introduction

In the projective space PG(n, q) coordinatized by the finite field GF(q) let P
denote a classical polar space. The generators of P are the subspaces of maximal

dimension contained in it.
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An ovoid of P is a set of points having exactly one common point with every

generator. A partial ovoid of P is a set of points having at most one common

point with every generator of P. Equivalently, a partial ovoid is a set of points

consisting of pairwise non-conjugate points of P.

The following results on the existence and nonexistence of ovoids in finite

classical polar spaces are known.

The orthogonal polar space Q−(2n + 1, q) has ovoids only when n = 1 [25]

whereas Q+(2n + 1, q) has no ovoid when n ≥ 4 and q = 2, 3, see [13, 23]. For

n = 1, 2 Q+(2n+1, q) admits ovoids for all values of q [20]; Q+(7, q) has ovoids

at least in the following cases: q even, q an odd prime and q odd with q ≡ 0 or 2

(mod 3), see [6, 12, 13, 19, 7, 22].

The orthogonal polar space Q(2n, q), q even, has ovoids if and only if n = 2

[25]. If q is odd, ovoids of Q(2n, q) do not exist if n ≥ 4 [11] and the only

known ovoids of Q(6, q) are the unitary ovoid of Q(6, 3h) and the Ree ovoid of

Q(6, 32h+1) [12, 25].

For n even, the unitary polar space H(n, q2) has no ovoids [25]. When n is

odd, recently J. De Beule and K. Metsch [10] have proved the non-existence of

ovoids in the polar space H(5, 4) and A. Klein [14] has proved that H(2n+1, q2)

has no ovoids when n > q3. On the other hand, H(3, q2) has many ovoids.

Thus, to the knowledge of the author, the existence or nonexistence of ovoids

in the following cases are still open problems:

(a) Q+(7, q), q odd, q ≡ 1 (mod 3) and q not a prime;

(b) Q+(2n + 1, q), n ≥ 4, q > 3 ;

(c) Q(6, q), q 6= 3h ;

(d) H(5, q2), q > 2 ;

(e) H(2n + 1, q2), 2 < n ≤ q3 .

When the classical polar space P does not have ovoids, the emphasis lies on

studying maximal partial ovoids of it.

In this article we study in details the connection between certain type of

partial ovoids (called locally hermitian ) of the unitary polar space and partial

ovoids of orthogonal polar spaces.

A line L of PG(n, q) not contained in the polar space P is said to be external,

tangent or hyperbolic if L meets P in 0, 1 or s > 1 points, respectively. More

precisely, if P is the orthogonal polar space then s = 2 whereas if P is the

unitary polar space H(n, q2) then s = q + 1.

A (partial) ovoid O of H(n, q2) is said to be locally hermitian with respect to
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a point P of O if the points of O are contained in the union of hyperbolic lines

through P .

In [8] several infinite families of locally hermitian ovoids of H(3, q2) are

constructed. In particular these are translation ovoids of H(3, q2), i.e. there

is a collineation group of H(3, q2) fixing all lines of H(3, q2) through P and

acting regularly on points of the ovoid but not P . After [2] it is clear that there

is an intimate connection between translation ovoids of H(3, q2) and semifields

of dimension two over their left nucleus.

In [16], by using the Barlotti-Cofman representation of PG(3, q2), G. Lu-

nardon gave a representation of H(3, q2) in PG(6, q): the unitary polar space

H(3, q2) is represented by a cone projecting the orthogonal polar space Q+(5, q)

from its vertex at infinity. In the same paper G. Lunardon has proved that to ev-

ery locally hermitian ovoid of H(3, q2) with respect to a point P lying at infinity

corresponds an ovoid of Q+(5, q) and conversely.

The previous representation can be viewed as a particular case of a more

general process to represent the unitary polar space H(n, q2). Actually, the

case n = 2 was realized by F. Buekenhout in [5]: the polar space H(2, q2) is

represented by a quadratic cone projecting the orthogonal polar space Q−(3, q)

from its vertex at infinity.

When n = 4, F. Mazzocca, O. Polverino and L. Storme [18] have used the

Barlotti-Cofman representation of PG(4, q2) to construct maximal partial ovoids

of H(4, q2) of size q3 + 1 which are locally hermitian with respect to a point.

In this paper, by using the Barlotti-Cofman representation of H(n, q2), we

prove that there is a close correspondence between local hermitian partial ovoids

of H(n, q2) and partial ovoids of the corresponding orthogonal polar spaces.

Further the locally hermitian partial ovoid is a maximal partial ovoid if and

only if the corresponding partial ovoid of the orthogonal polar space is maxi-

mal. Finally, by using the result of A. Klein [14], we give a geometric proof that

the orthogonal polar space Q+(4n + 1, q) has no ovoids when n > q3.

2. The geometry of H(n, q2) in the Barlotti-Cofman

representation of PG(n, q2)

A line-spread of PG(2n + 1, q), n ≥ 2, is a set of mutually disjoint lines partition-

ing the point-set of PG(2n + 1, q). A line-spread N of PG(2n + 1, q) is said to be

normal if N induces a spread in any subspace generated by two elements of N ,

i.e. if A, B ∈ N , then

N〈A,B〉 = {X ∈ N | X ∩ 〈A,B〉 6= ∅}
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is a spread of 〈A,B〉.

It is possible to construct a normal line-spread of PG(2n + 1, q2) in the fol-

lowing way.

Denote by (x,y) be the homogeneous projective coordinates of a point of

PG(2n + 1, q2) with x = (x0, x1, . . . , xn), y = (y0, y1, . . . , yn) ∈ GF(q2)n+1. De-

note by σ the involutory collineation of PG(2n + 1, q2) defined by (x,y)σ =

(yq,xq) where xq = (xq
0, x

q
1, . . . , x

q
n) and yq = (yq

0, y
q
1, . . . , y

q
n).

Let PG(2n + 1, q) be the Baer subgeometry of PG(2n + 1, q2) pointwise fixed

by σ, i.e. the points of PG(2n + 1, q) have homogeneous projective coordinates

(x,xq). Let Γ be the n-dimensional subspace of PG(2n + 1, q2) with equation

y = 0. Then Γ is disjoint from PG(2n + 1, q) and the subspace Γσ has equa-

tion x = 0. For each point (x,0) of Γ the line joining the points (x,0) and

(0,xq) is fixed by σ and ℓ(x) = 〈(x,0), (0,xq)〉 intersects PG(2n + 1, q) in a

line. Moreover two lines ℓ(x) and ℓ(y), with x 6= y, are disjoint otherwise the

subspace 〈(x,0), (y,0), (0,xq), (0,yq)〉 is a plane, but this is impossible since

the lines 〈(x,0), (y,0)〉 of Γ and 〈(0,xq), (0,yq)〉 of Γσ are disjoint. Hence

N = {ℓ(x) ∩ PG(2n + 1, q) | (x,0) ∈ Γ} is a line-spread of PG(2n + 1, q).

For each line m of Γ, let Nm = {ℓ(x) ∩ PG(2n + 1, q) | (x,0) ∈ m}. Then Nm

is a regular spread of the 3-dimensional space 〈m,mσ〉 ∩ PG(2n + 1, q) [4]. If a

3-dimensional subspace Φ of PG(2n + 1, q) contains two lines ℓ(x) and ℓ(y) of

N and m is the line of Γ joining the points (x,0) and (y,0) then Φ = 〈m,mσ〉 ∩
PG(2n + 1, q) and NΦ = {n ∈ N | n ∩ Φ 6= ∅} = Nm is a spread of Φ.

For further details about normal spreads see [15], [21].

The Barlotti-Cofman representation of PG(n, q2) [3] can be described in the

following way.

Let α be a (n − 1)-dimensional subspace of Γ and Σ be the (2n − 1)-dimen-

sional subspace 〈α, ασ〉 ∩ PG(2n + 1, q). Then NΣ = {ℓ ∈ N | ℓ ∩ Σ 6= ∅} =

{ℓ(x) | x ∈ α} is a normal spread of Σ.

Let Σ′ be a hyperplane of PG(2n + 1, q) containing Σ. It is easily seen that

each line of N either meets Σ′ in a line of Σ or meets Σ′ \ Σ in exactly one

point. Further, if m is a line of Γ not contained in α then Nm meets Σ′ in a

plane intersecting Σ in a line of NΣ.

Thus, it is possible to define an incidence structure S(Σ′,Σ,NΣ) as follows:

points are either points of Σ′ not in Σ or lines of NΣ; lines are either planes

of Σ′ intersecting Σ in an element of NΣ or the spreads N〈A,B〉 where A and

B are distinct elements of NΣ; the incidence relation is the natural one. As

N is normal, S(Σ′,Σ,NΣ) is isomorphic to the projective space PG(n, q2). An

automorphism of S(Σ′,Σ,NΣ) is a 1-1 mapping of points onto points and lines

onto lines preserving incidence. In [3] it was also proved that the full automor-
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phism group of S(Σ′,Σ,NΣ) is isomorphic to the stabilizer of a hyperplane in

the collineation group of PG(n, q2).

Now we describe in details the geometry of the unitary polar space H(n, q2)

under the Barlotti-Cofman representation of PG(n, q2). We will proceed by in-

duction on n, where the link between H(3, q2) and Q+(5, q) stated in [16] is the

induction basis.

Assume first that n is even. Let Q+(2n + 1, q2) be the hyperbolic quadric of

PG(2n + 1, q2) with equation

x0yn−1 + x1yn−2 + · · · + xn−1y0 + xnyn = 0 .

Then the n-dimensional subspaces Γ and Γσ are contained in Q+(2n + 1, q2)

and Q+(2n + 1, q2) ∩ PG(2n + 1, q) has equation

x0x
q
n−1 + x1x

q
n−2 + · · · + xn−1x

q
0 + xq+1

n = 0 , (1)

which is quadratic over GF(q). In GF(q2) \ GF(q) we fix an element i whose

minimal polynomial over GF(q) is X2 − ωX + 1, with ω ∈ GF(q). Then we

have ī = 1/i and, if x ∈ GF(q2), we uniquely can write x = a + ib, with a, b ∈
GF(q). Thus, through straightforward calculations, we see that equation (1) is

the equation of an elliptic quadric Q−(2n + 1, q) of PG(2n + 1, q).

If a line ℓ(x) of N contains a point of Q−(2n + 1, q), then ℓ(x) is contained

in Q+(2n + 1, q2) because it is incident with three points of Q+(2n + 1, q2).

This implies that H = {ℓ(x) | ℓ(x) ∩ Q−(2n + 1, q) 6= ∅} is a line spread of

Q−(2n + 1, q). Furthermore, H(n, q2) = {(x, 0) ∈ Γ | ℓ(x) ∈ H} is the unitary

polar space in Γ defined by the equation

x0x
q
n−1 + x1x

q
n−2 + · · · + xq

0xn−1 + xq+1
n = 0 ; (2)

see also [26].

The (n − 1)-dimensional subspace α of Γ is either non-singular with respect

to H(n, q2) or tangent to H(n, q2).

Let α be non-singular with respect to H(n, q2). Then α ∩ H(n, q2) is a

unitary polar space Hn−1 = H(n − 1, q2). Since n − 1 is odd, by induction

the set {ℓ(x) ∩ Σ′ | x ∈ Hn−1} is a line spread of a orthogonal polar space

Q+(2n − 1, q). Further, since H(n, q2) is non-singular then Σ′ is a non-singular

section of Q−(2n + 1, q) that is, the representation of H(n, q2) in S(Σ′,Σ,NΣ)

is a orthogonal polar space Q(2n, q).

Now consider the case that α is tangent to H(n, q2) at (x,0). Then α in-

tersects H(n, q2) in a cone projecting a H(n − 2, q2) from (x,0). Since lines of

H(n, q2) through (x,0) are represented by regular line-spread of a 3-dimensional
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subspace of Σ, we see that {ℓ(x) ∩ Σ | x ∈ α} is union of regular line-spreads

which share precisely the line ℓ(x).

If P is a point of Σ′ ∩ Q−(2n + 1, q) not in Σ, then P = ℓ(y) ∩ Σ′ for some

(y,0) ∈ H(n, q2) such that 〈(x,0), (y,0)〉 is a hyperbolic line of H(n, q2) and

points of 〈(x,0), (y,0)〉 ∩ H(n, q2) are represented by points of a line of Σ′ ∩
Q−(2n + 1, q) through P and intersecting ℓ(x).

It follows that Σ′ intersects the quadric Q−(2n+1, q) in a cone, say K, whose

vertex is a point, say V , on the line ℓ(x); that is, Σ′ is tangent to the quadric

Q−(2n + 1, q) at the point V . With straightforward calculations we see that

K projects an elliptic quadric Q−(2n − 1, q) from V . Furthermore Σ intersects

Q−(2n + 1, q) in a cone whose vertex is the line ℓ(x).

Hence in S(Σ′,Σ,NΣ) points of H(n, q2) are either points of the cone K not

in Σ or lines of NΣ contained in the quadratic cone Σ ∩ Q−(2n + 1, q) ⊂ K.

Further lines of H(n, q2) not incident with (x,0) are planes of K meeting Σ in a

line of NΣ.

When n is odd we start with the hyperbolic quadric Q+(2n + 1, q2) with

equation

x0yn + · · · + xny0 = 0 .

Then Q+(2n + 1, q2) ∩ PG(2n + 1, q) has equation

x0x
q
n + · · · + xnxq

0 = 0 , (3)

which is quadratic over GF(q) and represents a hyperbolic quadric Q+(2n+1, q)

of PG(2n + 1, q). Again we see that H = {ℓ(x) | ℓ(x) ∩ Q+(2n + 1, q) 6= ∅} is a

line spread of Q+(2n + 1, q). Furthermore, H(n, q2) = {(x, 0) ∈ Γ | ℓ(x) ∈ H}
is the hermitian variety of Γ defined by the equation

x0x
q
n + · · · + xq

0xn = 0 ; (4)

see also [26].

By arguing similarly as we have done for n even, we see that H(n, q2) is

represented in S(Σ′,Σ,NΣ) either by a Q(2n, q) or by a cone K projecting a

hyperbolic quadric Q+(2n − 1, q) from a point on ℓ(x).

3. Locally hermitian (partial) ovoids of unitary space

and (partial) ovoids of orthogonal spaces

Consider first the case n even. Let ∆ be a hyperplane of Σ′ not containing V .

Then ∆∩Q−(2n+1, q) is a orthogonal polar space Q−(2n−1, q) of ∆ and ∆∩Σ

is the tangent hyperplane to Q−(2n − 1, q) at a point, say R, of ℓ(x) ∩ ∆.
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Now let O be a locally hermitian partial ovoid of H(n, q2) with respect to

(x,0) consisting of s hyperbolic lines. In S(Σ′,Σ,NΣ) the ovoid O is represented

by the union of s lines of K containing V one of which is ℓ(x). Note that each

of these lines but not ℓ(x) has q points in K \ Σ. Hence there is a set O of s + 1

points of Q−(2n − 1, q) such that 〈V,X〉, X ∈ O, are the s + 1 lines through V

representing O.

Theorem 3.1. The set O is a partial ovoid of Q−(2n − 1, q) containing R =

ℓ(x) ∩ ∆.

Proof. Let X,Y be two distinct points of O and suppose that X and Y are

collinear in Q−(2n − 1, q).

Let m be the line of NΣ incident with the point 〈X,Y 〉 ∩ Σ. If m = ℓ(x)

then the plane 〈ℓ(x), X, Y 〉 is a plane of the cone K which represents a line of

H(n, q2) through (x,0) not in α. But this is a contradiction. Hence m 6= ℓ(x).

Let S be the 3-dimensional subspace 〈ℓ(x),m〉 and S the regular line-spread

induced by N in S.

Thus the 4-dimensional subspace 〈S,X〉 represents a plane π which is tan-

gent to H(n, q2) at a point represented by a line of S and containing the point

(x,0) and the two points of H(n, q2) represented by X and Y . But this is impos-

sible because the plane generated by two hyperbolic lines of O through (x,0) is

never a tangent plane of H(n, q2). �

Theorem 3.2. Let O be a partial ovoid of Q−(2n − 1, q) of size s + 1 containing

R = ℓ(x) ∩ ∆. Let Ō be the set of lines 〈P,X〉, with X ∈ O. Then Ō represents a

locally hermitian partial ovoid O with respect to (x,0) of size sq + 1.

Proof. We can argue as in [16, Theorem 7]. �

When n is odd we can argue as before to prove the following result.

Theorem 3.3. Let O be a locally hermitian partial ovoid of H(n, q2), n odd, with

respect to (x,0) consisting of s hyperbolic lines. The set O defined as before is a

partial ovoid of Q+(2n − 1, q) of size s + 1 containing R = ℓ(x) ∩ ∆ . Conversely,

if O is a partial ovoid of Q+(2n− 1, q) of size s + 1 containing R = ℓ(x)∩∆ then

there exists a locally hermitian partial ovoid O with respect to (x,0) of size sq +1.

Corollary 3.4. The unitary polar space H(n, q2) has no locally hermitian ovoid

when n is odd, n ≥ 5 and q = 2, 3.

Proof. By way of contradiction the result follows since Q+(2n + 1, q) has no

ovoids when n ≥ 4 and q = 2, 3 [13, 23]. �
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Remark 3.5. We recall that H(5, 4) has no ovoid [10].

Corollary 3.6. The orthogonal space Q+(4n + 1, q) has no ovoids when n > q3.

Proof. By way of contradiction the result follows since H(2n + 1, q2) has no

ovoids when n > q3 [14, Theorem 3]. �

A partial ovoid of a classical polar space P is said to be maximal if it is not

contained in a larger partial ovoid of P. A locally hermitian partial ovoid of P
is said to be maximal if it is not contained in a larger locally hermitian partial

ovoid.

Theorem 3.7. Let O be a maximal locally hermitian partial ovoid of H(n, q2)

with respect to a point (x,0). Then O is a maximal partial ovoid of H(n, q2).

Furthermore, O is maximal if and only if the associated partial ovoid O of the

corresponding orthogonal polar space is maximal.

Proof. Let H(n, q2) be the unitary polar space defined by equation (2) if n is

even and equation (4) if n is odd. Let PGU(n + 1, q2) denote the group of the

linear collineations of Γ = PG(n, q2) leaving H(n, q2) invariant. Since such a

group acts transitively on points of H(n, q2), we can take x = (1, 0, . . . , 0). The

subgroup of PGU(n + 1, q2) fixing P = (x,0) and leaving invariant all the lines

of H(n, q2) through P contains the elementary abelian subgroup G of order q

whose elements can be written in the form











1 0 . . . a 0

0 1 . . . 0 0
...

...
. . .

0 0 . . . 0 1











if n is even and










1 0 . . . a

0 1 . . . 0
...

...
. . .

0 0 . . . 1











if n is odd where a ∈ GF(q2) and a + aq = 0 (see [24] for more details).

Straightforward calculations show that each element of G fixes all hyperbolic

lines through P and it has exactly one orbit on the q isotropic points distinct

from P on each hyperbolic line through P . This implies that the group G is a

collineation group of every locally hermitian partial ovoid of H(n, q2).

Now let O be a maximal locally hermitian partial ovoid of H(n, q2) and let

Q be a point of H(n, q2) \ {O} not collinear with any point of O. Then the line
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〈P,Q〉 is a hyperbolic line and every isotropic point of 〈P,Q〉\{P} can be added

to O. In fact, if Q1 of 〈P,Q〉 is collinear with a point P1 of O, take g ∈ XP,P⊥

such that gQ1 = Q. Then Q and gP1 are collinear, a contradiction. Thus, the

hyperbolic line 〈P,Q〉 can be added to O to get a larger locally hermitian partial

ovoid. But this is a contradiction because O is a maximal locally hermitian

partial ovoid of H(n, q2).

The last statement of the theorem easily follows by way of contradiction from

Theorems 3.1, 3.2 and 3.3. �

Theorem 3.8. Let O be a locally hermitian maximal partial ovoid of H(n, q2),

n ≥ 3, with respect to (x,0). Then

(i) O has size at least 2q2 − q + 1 if n = 3 and 2q2 + 1 for n ≥ 4 ;

(ii) O has size at most qn − qn/2 − q + 1 if n is odd and O is not an ovoid.

Proof. From Theorem 3.7, in S(Σ′,Σ,NΣ) O is represented as a maximal partial

ovoid of Qε(2n− 1, q) where ε is ‘+’ or ‘−’ according to whether n is odd or n is

even.

In [9] it was proved that a maximal partial ovoid of Qε(2n − 1, q) has at

least 2q points if n = 3 and at least 2q + 1 points if n ≥ 4. In the same paper it

was proved that a maximal partial ovoid of Q+(2n− 1, q) which is not an ovoid

has at most qn−1 + q
n−2

2 points.

By applying Theorems 3.1, 3.2, 3.3 and 3.7 we get the result. �

Remark 3.9. In the papers [1] and [16] it was proved that if O is a translation

ovoid of H(3, q2) then also the corresponding ovoid O of Q+(5, q) is. We remark

that if an analogue result is obtained for translation ovoids of H(2n + 1, q2),

n ≥ 2, then by using the classification result of G. Lunardon and O. Polverino

proved in [17] one gets a non-existence result for translation ovoids of such

unitary polar space.
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