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A characterisation of the lines external to a
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Abstract

In this article, the lines not meeting a quadric cone in PG(3, q) (q odd)

are characterised by their intersection properties with points and planes.
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1. Introduction

Recently, Durante and Olanda [4] and Di Gennaro, Durante and Olanda [3]

have characterised the lines external to the non-singular quadrics in PG(3, q)

using their combinatorial properties. These results are listed below.

Theorem 1.1 ([4]). Let L be a set of lines in PG(3, q), q > 2 such that:

(i) Every point lies on 0 or 1

2
q(q + 1) lines of L ;

(ii) Every plane contains q2 or 1

2
q(q − 1) lines of L .

Then L is the set of external lines to an ovoid of PG(3, q).

Theorem 1.2 ([3]). Let L be a non-empty set of lines in PG(3, q), q odd such

that:

(i) Every point lies on 0 or 1

2
q(q − 1) lines of L ;

(ii) Every plane contains 0 or 1

2
q(q − 1) lines of L ;

(iii) In every plane there are 0, 1

2
(q−1) or 1

2
(q +1) lines of L through any point.

Then the set of points on no lines of L forms either one line, two skew lines or a

hyperbolic quadric. In the last case, L is precisely the set of external lines to the

hyperbolic quadric.
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Theorem 1.3 ([3]). Let L be a non-empty set of lines in PG(3, q), q even, q > 2

such that:

(i) In every plane there are 0 or 1

2
q lines of L through any point.

Then the set of points on no lines of L forms either one line, two skew lines or a

hyperbolic quadric. In the last case, L is precisely the set of external lines to the

hyperbolic quadric.

It is also possible to characterise the external lines to the singular irreducible

quadric in PG(3, q). That is, the quadric cone. Barwick and Butler have provided

this characterisation in the case when q is even:

Theorem 1.4 ([1]). Let L be a non-empty set of lines in PG(3, q), q even, such

that:

(i) Every point lies on 0 or 1

2
q2 lines of L ;

(ii) Every plane contains 0, q2 or 1

2
q(q − 1) lines of L .

Then L is the set of external lines to a hyperoval cone of PG(3, q), and hence is the

set of external lines to q + 2 oval cones.

In this article, we give a characterisation of the quadric cone when q is odd.

In particular, we prove the following theorem:

Theorem 1.5. Let L be a non-empty set of lines in PG(3, q) (q odd) such that:

(i) Every point lies on 0, 1

2
q(q + 1) or 1

2
q(q − 1) lines of L ;

(ii) Every plane contains 0, q2 or 1

2
q(q − 1) lines of L ;

(iii) For any point P , if P is on two planes which contain the same number of

lines of L , then P is on the same number of lines of L in both planes.

Then L is the set of external lines to a quadric cone.

Note that a similar characterisation of the planes meeting a non-singular

quadric of PG(4, q) in a conic is given in the preprint [2].

2. The proof of Theorem 1.5

Let L be a set of lines as described in Theorem 1.5. We will prove that L is the

set of lines external to a quadric cone by a series of lemmas. In order to make

the argument clearer, we will introduce some terminology:
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• A point on 0 lines of L will be called a black point; all other points will be

called white points.

• A (white) point on 1

2
q(q−1) lines of L will be called an external point and

a (white) point on 1

2
q(q + 1) lines of L will be called an internal point.

• A plane containing 0 lines of L will be called a 0-plane.

• A plane containing q2 lines of L will be called a V-plane.

• A plane containing 1

2
q(q − 1) lines of L will be called a secant plane.

We show that the set of black points is a quadric cone C , and that L is precisely

the set of external lines to C . The 0-planes are those planes containing a gener-

ator of C , the V-planes are those planes that meet C in only its vertex, and the

secant planes are those planes that meet C in a conic.

We are now ready to state the first lemma:

Lemma 2.1. For a white point P , every line of L through P is on the same

number of V-planes.

Proof. Let P be a white point and let LP be the number of lines of L through P .

By Condition (iii) of Theorem 1.5, P lies on the same number of lines of L in

every secant plane through P . Let this number of lines be LPs. Similarly, P lies

on the same number of lines of L in every V-plane through P . Let this number

be LPv.

Let ℓ be a line of L through P and let vℓ be the number of V-planes through ℓ.

Since a 0-plane contains no lines of L , there are no 0-planes through ℓ. So, the

number of secant planes through ℓ is (q + 1 − vℓ). We will count the lines of L

through P by considering the lines of L through P in each plane about ℓ.

Each V-plane through ℓ contains LPv lines of L through P , including ℓ. Each

secant plane through ℓ contains LPs lines of L through P , including ℓ. Count-

ing this way, we have included ℓ itself q + 1 times. So:

LP = vℓLPv + (q + 1 − vℓ)LPs − q . (1)

In the above equation, LP , LPv and LPs are constants, so vℓ is uniquely deter-

mined by P . That is, every line of L through P lies on the same number of

V-planes. �

Lemma 2.2. A line of L lies on at most two V-planes.

Proof. Let ℓ be a line of L . Let vℓ be the number of V-planes through ℓ and

Iℓ the number of internal points on ℓ. Since ℓ contains no black points, there

are (q + 1 − Iℓ) external points on ℓ; and since ℓ lies on no 0-planes, there are
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(q+1−vℓ) secant planes through ℓ. Let Lℓ be the number of lines of L meeting

ℓ (not including ℓ itself). We will count these lines in two ways.

We first count Lℓ by considering the lines of L through each point on ℓ. Each

internal point is on 1

2
q(q + 1) lines of L (including ℓ), and each external point

is on 1

2
q(q − 1) lines of L (including ℓ). Counting this way, we have included ℓ

itself q + 1 times, so Lℓ = 1

2
q(q + 1)Iℓ + 1

2
q(q − 1)(q + 1 − Iℓ) − (q + 1).

On the other hand, we may also count Lℓ by considering the lines of L in

each plane through ℓ. Each V-plane contains q2 lines of L (including ℓ), and

each secant plane contains 1

2
q(q − 1) lines of L (including ℓ). Again, we have

included ℓ itself (q + 1) times, so Lℓ = q2vℓ + 1

2
q(q − 1)(q + 1 − vℓ) − (q + 1).

Equating the above two expressions for Lℓ and simplifying gives:

(q + 1)vℓ = 2Iℓ . (2)

Now Iℓ ≤ q + 1, so (q + 1)vℓ ≤ 2(q + 1). Thus vℓ ≤ 2. �

Lemma 2.3. Every point in a V -plane π is on 0 or q lines of L in π.

Proof. Let π be a V-plane. We begin by showing that every point of π lies on at

most q lines of L in π. Suppose that P is a point of π on q + 1 lines of L in π.

Let LP be the total number of lines of L through P and vP be the number of

V-planes through P . By Condition (iii) of Theorem 1.5, every V-plane through

P contains the same number of lines of L through P . That is, every V-plane

through P contains q + 1 lines of L through P . Also, by Lemma 2.1, every line

of L through P lies on the same number of V-planes. Let this number be vPℓ.

By Lemma 2.2, vPℓ ≤ 2. However, since P lies on lines of L in the V-plane π,

every line of L through P is on at least one V-plane. That is, vPℓ = 1 or 2. We

will form an equation relating LP , vP and vPℓ by counting a set of pairs.

Let X = {(ℓ, α) | ℓ is a line of L through P , α is a V-plane through ℓ}. Count-

ing ℓ then α, we have LP lines of L through P and vPℓ V-planes through each.

So |X| = LP vPℓ. Counting α then ℓ, we have vP V-planes through P and (q +1)

lines of L through P in each. So |X| = (q + 1)vP . Thus:

(q + 1)vP = LP vPℓ . (3)

Suppose vPℓ = 1. That is, suppose that there is exactly one V-plane through

each line of L containing P . Any V-plane α through P other than π will meet

π in a line through P . Since all lines through P in π are lines of L , the line

α ∩ π is a line of L with two V-planes through it. However, each line of L

through P lies on exactly one V-plane. So, P lies on no V-plane other than π.

That is vP = 1. Equation (3) now becomes q + 1 = LP . Now LP = 1

2
q(q − 1)
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or 1

2
q(q + 1), and neither of these can be equal to q + 1 for odd integer q. Thus

vPℓ 6= 1 and hence vPℓ = 2.

Since every line of L through P lies on two V-planes, the q + 1 lines of L

in π define q + 1 further V-planes. There can be no further V-planes through P

as any plane through P other than π must meet π in a line through P . Thus

vP = q+2. Equation (3) now becomes (q+1)(q+2) = 2LP . Now 2LP = q(q+1)

or q(q − 1). Both of these are contradictions, so the point P cannot exist and

every point of π lies on at most q lines of L in π.

Let ℓ be a line of L in π. Since every line in π meets ℓ, we may count the lines

of L in π by counting the lines of L through each point on ℓ. For i = 1, . . . , q,

let ai be the number of points of ℓ on i lines of L . (Recall that every point of π

is on at most q lines of L in π.) Counting this way, we have included ℓ itself

q + 1 times — once for each point on ℓ. Thus:

a1 · 1 + · · · + aq−1 · (q − 1) + aq · q = q2 + q . (4)

We also have:

a1 + · · · + aq−1 + aq = q + 1 . (5)

Subtracting equation (4) from q times equation (5) gives:

(q − 1) · a1 + · · · + 1 · aq−1 = 0 . (6)

Now q − 1, . . . , 1 > 0 and a1, . . . , aq−1 ≥ 0, so equation (6) is only possible if

a1 = · · · = aq−1 = 0.

Hence, aq = q + 1 and all points on a line of L in π are on q lines of L in π.

That is, all points of π are on 0 or q lines of L in π. �

Lemma 2.4. Every line of L lies on one V-plane and q secant planes. Also, every

line of L contains 1

2
(q + 1) internal points and 1

2
(q + 1) external points.

Proof. Let ℓ be a line of L lying on vℓ V-planes and containing Iℓ internal points.

Equation (2) in Lemma 2.2 states that 2Iℓ = (q + 1)vℓ. Also, by Lemma 2.2,

vℓ ≤ 2. We will rule out the cases of vℓ = 0, 2 by considering the lines through

one point on ℓ.

Let P be a point on ℓ lying on LP lines of L in total and LPs lines of L in

each secant plane. If π is a V-plane through ℓ, then P lies on at least one line

of L in π. Lemma 2.3 implies that P lies on q lines in π, so by Condition (iii)

of Theorem 1.5, P lies on q lines of L in each V-plane. Using equation (1) in

Lemma 2.1, we have:

LP = vℓ · q + (q + 1 − vℓ)LPs − q .
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If vℓ = 0, then from equation (2) in Lemma 2.2, Iℓ = 0, so all points on ℓ are

external points. Thus LP = 1

2
q(q − 1). Hence:

1

2
q(q − 1) = (q + 1)LPs − q ;

LPs = 1

2
q .

But q is odd, so 1

2
q is not an integer. This is a contradiction, so vℓ 6= 0.

If vℓ = 2, then from equation (2) in Lemma 2.2, Iℓ = q + 1, so all points on ℓ

are internal points. Thus LP = 1

2
q(q + 1). Hence:

1

2
q(q + 1) = 2q + (q − 1)LPs − q ;

LPs = 1

2
q .

This is a contradiction as before, so vℓ 6= 2.

Hence vℓ = 1 and Iℓ = 1

2
(q + 1) · 1 = 1

2
(q + 1). This leaves q secant planes

through ℓ and 1

2
(q + 1) external points on ℓ. �

Note that the above lemma ensures the existence of secant planes, V-planes,

internal points and external points as L is non-empty.

Lemma 2.5. An internal point lies on q lines of L in every V-plane and 1

2
(q + 1)

lines of L in every secant plane. An external point lies on q lines of L in every

V-plane and 1

2
(q − 1) lines of L in every secant plane.

Proof. Let P be a white point and let ℓ be a line of L through P . By Lemma 2.4,

ℓ is contained in a unique V-plane. Let this plane be π. In the plane π, P lies

on at least one line of L , and so by Lemma 2.3, P lies on q lines of L in π.

Condition (iii) of Theorem 1.5 implies that every V-plane through P contains

the same number of lines of L through P . Thus P lies on exactly q lines of L

in every V-plane.

Let LPs be the number of lines of L through P in a secant plane and let LP

be the total number of lines of L through P . We can now use equation (1)

from Lemma 2.1. Through ℓ there are q secant planes and one V-plane, and the

V-plane contains q lines of L through P . Thus LP = qLPs + 1 · q − q = qLPs. If

P is an internal point, then LP = 1

2
q(q + 1), and so LPs = 1

2
(q + 1). If P is an

external point, then LP = 1

2
q(q − 1), and so LPs = 1

2
(q − 1). �

Lemma 2.6. A V-plane contains exactly one black point, and the lines of L in the

plane are exactly those lines not through this black point.

Proof. Let π be a V-plane and let Wπ be the number of white points in π. Con-

sider the set

X = {(P, ℓ) | P is a white point of π, ℓ is a line of L through P in π} .
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We will count the size of X in two ways.

Each line of L in π contains (q + 1) white points, so |X| = q2(q + 1). On the

other hand, each white point is on q lines of L in every V-plane by Lemma 2.5.

So every white point in π lies on q lines of L in π and |X| = qWπ. Thus

qWπ = q2(q + 1) and so Wπ = q2 + q. This leaves one black point V in π. There

are q2 lines of L in π, none of which can pass through a black point. On the

other hand, there are q2 lines of π not through V . Thus, the lines of π in L are

exactly those lines not through V . �

Note that, since there must exist a V-plane, the above lemma ensures the

existence of black points.

Lemma 2.7. There exists a unique (black) point V through which all 0-planes

and V-planes pass. The secant planes are precisely those planes not containing V .

Proof. Let π be a V-plane and let its unique black point be V .

Let α be another V-plane and suppose that α does not pass through V . Then

α must meet π in a line ℓ not through V . Since ℓ is a line of π not through V ,

it is a line of L . But now we have a line of L on two V-planes. This is a

contradiction to Lemma 2.4, so α must pass through V .

Let β be a 0-plane and suppose that β does not pass through V . Then β must

meet π in a line ℓ not through V . Again, this line must be a line of L . But

now we have a line of L in a 0-plane. This is a contradiction, so β must pass

through V .

So we see that all 0-planes and all V-planes pass through V . Thus the planes

not through V are all secant planes. To complete the proof we must show that

there are no secant planes through V .

Let γ be a secant plane containing V and let ℓ be a line of L in γ. Since V

is a black point, ℓ does not pass through V . Now the q other planes through ℓ

do not contain V , and so they must all be secant planes. But now ℓ is a line

of L on q + 1 secant planes. This is a contradiction to Lemma 2.4, so γ cannot

contain V . �

The next three lemmas will complete the proof of Theorem 1.5.

Lemma 2.8. Let m be a line not in L . If m passes through V , then m contains

1 or q +1 black points. If m does not pass through V , then m contains 1 or 2 black

points.

Proof. Suppose m passes through V , and also suppose that there exists a black

point P other than V on m. Let π be a plane through m. Since π contains V ,
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it is either a 0-plane or a V-plane by Lemma 2.7. Lemma 2.6 states that every

V-plane contains a single black point. However, π contains two black points

(P and V ), so it cannot be a V-plane. Thus π is a 0-plane. So, every plane

through m is a 0-plane. Since none of these planes has any line of L , there are

no lines of L meeting m. Hence, there are no lines of L through any point

on m. That is, m consists of q +1 black points. So, if m passes through V , it has

1 or q + 1 black points.

Suppose m does not pass through V . Then exactly one plane through m con-

tains V and q planes do not. These q planes are all secant planes by Lemma 2.7.

In light of this, let π be a secant plane through m.

Let Bm be the number of black points on m, let Em be the number of external

points on m, and let Im be the number of internal points on m. We count the

number of lines of L in π by considering the lines of L through each point

on m. There are no lines of L through each black point, 1

2
(q + 1) through each

internal point and 1

2
(q − 1) through each external point. Thus:

1

2
q(q − 1) = 1

2
(q + 1)Im + 1

2
(q − 1)Em ;

1

2
(q − 1)(q − Em) = 1

2
(q + 1)Im . (7)

Now 1

2
(q + 1) and 1

2
(q − 1) are coprime, so 1

2
(q + 1) divides q − Em. That is,

Em ≡ q ≡ −1 (mod 1

2
(q+1)). Since 0 ≤ Em ≤ q+1, we have that Em = 1

2
(q−1)

or q.

If Em = 1

2
(q − 1), then by equation (7), we have Im = 1

2
(q − 1) and so

Bm = q + 1 − 1

2
(q − 1) − 1

2
(q − 1) = 2. If Em = q, then by equation (7), Im = 0

and so Bm = q + 1 − 0 − q = 1. Thus if m does not pass through V , it contains

1 or 2 black points. �

Lemma 2.9. The set of black points in a secant plane forms a conic.

Proof. Let π be a secant plane and let Eπ be the number of external points

in π. Let X = {(P, ℓ) | P is an external point of π, ℓ is a line of L in π}. We

will count X in two ways. Counting P first then ℓ, we have Eπ choices for an

external point in π and 1

2
(q − 1) choices for a line of L in π through each by

Lemma 2.5. So |X| = Eπ · 1

2
(q − 1). Counting ℓ first then P , we have 1

2
q(q − 1)

choices for a line of L in π and 1

2
(q+1) choices for an external point on each by

Lemma 2.4. So |X| = 1

2
q(q−1) 1

2
(q+1). Thus Eπ ·

1

2
(q−1) = 1

2
q(q−1) 1

2
(q+1) and

so Eπ = 1

2
q(q + 1). A similar argument shows that there are 1

2
q(q − 1) internal

points in π. The number of white points in π is thus 1

2
q(q − 1) + 1

2
q(q + 1) = q2.

This leaves q + 1 black points in π. We will show that these q + 1 points form an

arc. That is, that no three are collinear.

A line of L contains no black points, so let m be a line of π not in L . No

secant plane passes through V by Lemma 2.7, so the line m cannot contain V .
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By Lemma 2.8, this implies that m contains 1 or 2 black points. Thus, the lines

of π contain at most 2 black points and the set of black points is a (q + 1)-arc.

That is, the black points are an oval. By Segre [5], every oval in PG(2, q), q odd,

is a conic, so the set of black points in π forms a conic. �

Lemma 2.10. The set of black points C is a quadric cone and L is the set of

external lines to C .

Proof. Let π be a secant plane and let O the conic made by the black points in π.

Let P be a point of O and consider the line V P . This line passes through V and

has more than one black point, so it has q +1 black points by Lemma 2.8. Thus,

the set of black points C contains the lines V P for any P ∈ O.

On the other hand, suppose that Q is any black point other than V . Then the

line V Q contains q + 1 black points by the same argument as above. This line

V Q meets π in a single point, which is a black point since V Q consists only of

black points. Now the black points in π are precisely the points of the conic O,

so the line V Q is a line V P for some P ∈ O. Thus C is exactly the lines V P for

P ∈ O. That is, C is a quadric cone.

The lines of L contain no black points and so are all external lines to the

cone C . Any line not in L contains at least one black point by Lemma 2.8. So

L is precisely the set of external lines to the quadric cone C . �
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