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A characterisation of the lines external to a
quadric cone in PG(3, ¢), ¢ odd

Susan G. Barwick David K. Butler

Abstract

In this article, the lines not meeting a quadric cone in PG(3, q) (¢ odd)
are characterised by their intersection properties with points and planes.
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1. Introduction

Recently, Durante and Olanda [4] and Di Gennaro, Durante and Olanda [3]
have characterised the lines external to the non-singular quadrics in PG(3, q)
using their combinatorial properties. These results are listed below.

Theorem 1.1 ([4]). Let .Z be a set of lines in PG(3, q), ¢ > 2 such that:
(i) Every point lies on 0 or $q(q + 1) lines of Z;
(ii) Every plane contains ¢* or %q(q — 1) lines of Z.

Then .Z is the set of external lines to an ovoid of PG(3, q).

Theorem 1.2 ([3]). Let .Z be a non-empty set of lines in PG(3,q), ¢ odd such
that:

(i) Every point lies on 0 or %q(q — 1) lines of Z;

(i) Every plane contains 0 or q(q — 1) lines of .Z;
(iii) In every plane there are 0, 3(q—1) or 1(q+1) lines of .# through any point.
Then the set of points on no lines of .£ forms either one line, two skew lines or a

hyperbolic quadric. In the last case, £ is precisely the set of external lines to the
hyperbolic quadric.
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Theorem 1.3 ([3]). Let .Z be a non-empty set of lines in PG(3, q), q even, g > 2
such that:

(i) In every plane there are 0 or %q lines of £ through any point.

Then the set of points on no lines of £ forms either one line, two skew lines or a
hyperbolic quadric. In the last case, £ is precisely the set of external lines to the
hyperbolic quadric.

It is also possible to characterise the external lines to the singular irreducible
quadric in PG(3, ¢). That is, the quadric cone. Barwick and Butler have provided
this characterisation in the case when ¢ is even:

Theorem 1.4 ([1]). Let .£ be a non-empty set of lines in PG(3, q), q even, such
that:

(i) Every point lies on 0 or %qg lines of .Z;
(i) Every plane contains 0, ¢* or q(q — 1) lines of Z.
Then £ is the set of external lines to a hyperoval cone of PG(3, ¢), and hence is the

set of external lines to q + 2 oval cones.

In this article, we give a characterisation of the quadric cone when ¢ is odd.
In particular, we prove the following theorem:

Theorem 1.5. Let £ be a non-empty set of lines in PG(3, q) (q odd) such that:
(i) Every point lies on 0, %q(q +1)or %q(q — 1) lines of &;
(ii) Every plane contains 0, ¢ or %q(q — 1) lines of %;

(iii) For any point P, if P is on two planes which contain the same number of
lines of £, then P is on the same number of lines of £ in both planes.

Then £ is the set of external lines to a quadric cone.

Note that a similar characterisation of the planes meeting a non-singular
quadric of PG(4, g) in a conic is given in the preprint [2].

2. The proof of Theorem 1.5

Let .Z be a set of lines as described in Theorem 1.5. We will prove that . is the
set of lines external to a quadric cone by a series of lemmas. In order to make
the argument clearer, we will introduce some terminology:
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A point on 0 lines of . will be called a black point; all other points will be
called white points.

A (white) point on %q(q —1) lines of . will be called an external point and
a (white) point on 1¢(g + 1) lines of . will be called an internal point.

e A plane containing 0 lines of .# will be called a O-plane.
e A plane containing ¢ lines of . will be called a V-plane.

e A plane containing 3¢(q — 1) lines of .# will be called a secant plane.

We show that the set of black points is a quadric cone %, and that .# is precisely
the set of external lines to ¥". The 0-planes are those planes containing a gener-
ator of ¢, the V-planes are those planes that meet ¥ in only its vertex, and the
secant planes are those planes that meet % in a conic.

We are now ready to state the first lemma:

Lemma 2.1. For a white point P, every line of £ through P is on the same
number of V-planes.

Proof. Let P be a white point and let L p be the number of lines of .# through P.
By Condition (iii) of Theorem 1.5, P lies on the same number of lines of .# in
every secant plane through P. Let this number of lines be L p,. Similarly, P lies
on the same number of lines of . in every V-plane through P. Let this number
be L Pu-

Let / be a line of . through P and let v, be the number of V-planes through /.
Since a 0-plane contains no lines of .Z, there are no 0-planes through /. So, the
number of secant planes through ¢ is (¢ + 1 — vy). We will count the lines of .¥
through P by considering the lines of . through P in each plane about /.

Each V-plane through ¢ contains L p,, lines of .Z through P, including ¢. Each
secant plane through ¢ contains Lp lines of . through P, including ¢. Count-
ing this way, we have included / itself ¢ + 1 times. So:

Lp=vLp,+(q+1—v)Llps —q. (D

In the above equation, Lp, Lp, and Lp, are constants, so v, is uniquely deter-
mined by P. That is, every line of . through P lies on the same number of
V-planes. O

Lemma 2.2. A line of .Z lies on at most two V-planes.

Proof. Let ¢ be a line of .. Let v, be the number of V-planes through ¢ and
I, the number of internal points on /. Since ¢ contains no black points, there
are (¢ + 1 — I;) external points on ¢; and since /¢ lies on no O-planes, there are



(¢+1—wvy) secant planes through /. Let L, be the number of lines of . meeting

¢ (not including / itself). We will count these lines in two ways.

P " . We first count L, by considering the lines of . through each point on ¢. Each

internal point is on 3¢(q + 1) lines of .# (including ¢), and each external point

page 4/ 10 is on £¢(gq — 1) lines of . (including ¢). Counting this way, we have included ¢

itself ¢ + 1 times, so Ly, = 3q(q¢+ 1)Is + 3q(¢ — 1)(¢+ 1 — I;) — (¢ + 1).

go back On the other hand, we may also count L, by considering the lines of .# in

each plane through ¢. Each V-plane contains ¢ lines of . (including /), and

Sl EeEE each secant plane contains 1¢(¢ — 1) lines of .# (including ¢). Again, we have

included ¢ itself (¢ + 1) times, so Ly = ¢®ve + 3q(q — 1)(¢+ 1 —ve) — (g + 1).

close . . . e .
Equating the above two expressions for L, and simplifying gives:

Now Iy < g+ 1,s0 (¢ + 1)vg < 2(¢+1). Thus v, < 2. O

Lemma 2.3. Every point in a V-plane = is on 0 or g lines of £ in .

Proof. Let w be a V-plane. We begin by showing that every point of 7 lies on at
most ¢ lines of . in 7. Suppose that P is a point of 7 on ¢ + 1 lines of . in .
Let Lp be the total number of lines of .# through P and vp be the number of
V-planes through P. By Condition (iii) of Theorem 1.5, every V-plane through
P contains the same number of lines of . through P. That is, every V-plane
through P contains ¢ + 1 lines of .# through P. Also, by Lemma 2.1, every line
of £ through P lies on the same number of V-planes. Let this number be vpy.
By Lemma 2.2, vp, < 2. However, since P lies on lines of .# in the V-plane ,
every line of .Z through P is on at least one V-plane. That is, vpy = 1 or 2. We
will form an equation relating Lp, vp and vp, by counting a set of pairs.

Let X = {({,«) | ¢is a line of .# through P, « is a V-plane through ¢}. Count-
ing ¢ then a, we have Lp lines of .# through P and vp, V-planes through each.
So | X| = Lpvp,. Counting « then ¢, we have vp V-planes through P and (¢+1)
lines of . through P in each. So |X| = (¢ + 1)vp. Thus:

(¢ +1)vp = Lpupy. (3)

Suppose vp, = 1. That is, suppose that there is exactly one V-plane through
each line of .Z containing P. Any V-plane « through P other than = will meet
7 in a line through P. Since all lines through P in 7 are lines of .#, the line
a N7 is a line of . with two V-planes through it. However, each line of .¥
e through P lies on exactly one V-plane. So, P lies on no V-plane other than 7.

That is vp = 1. Equation (3) now becomes ¢ + 1 = Lp. Now Lp = %q(q - 1)
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or %q(q + 1), and neither of these can be equal to ¢ + 1 for odd integer ¢. Thus
vpe # 1 and hence vpy = 2.

Since every line of . through P lies on two V-planes, the ¢ + 1 lines of .
in 7 define ¢ + 1 further V-planes. There can be no further V-planes through P
as any plane through P other than = must meet 7 in a line through P. Thus
vp = q+2. Equation (3) now becomes (¢+1)(¢+2) = 2Lp. Now 2Lp = q(q+1)
or q(q¢ — 1). Both of these are contradictions, so the point P cannot exist and
every point of 7 lies on at most ¢ lines of . in .

Let / be a line of .Z in 7. Since every line in 7 meets ¢, we may count the lines
of .Z in 7 by counting the lines of . through each point on ¢. Fori =1,...,q,
let a; be the number of points of ¢ on i lines of .Z. (Recall that every point of 7
is on at most ¢ lines of . in 7.) Counting this way, we have included ¢ itself
g + 1 times — once for each point on /. Thus:

a1+ 4ae1-(g—1)+a-q=¢ +q. 4
We also have:
ar+--+ag-1+ag=q+1. 5)
Subtracting equation (4) from ¢ times equation (5) gives:

(q_l).all_i_..._i_l.aq_lzo. (6)

Nowg—1,...,1 >0and ay,...,a,-1 > 0, so equation (6) is only possible if
a;p = - =0aqg—-1 =0.

Hence, a, = ¢+ 1 and all points on a line of .Z in 7 are on ¢ lines of . in 7.
That is, all points of 7 are on 0 or ¢ lines of . in 7. O

Lemma 2.4. Every line of .Z lies on one V-plane and q secant planes. Also, every
line of £ contains % (q + 1) internal points and %(q + 1) external points.

Proof. Let ¢ be a line of .# lying on v, V-planes and containing I, internal points.
Equation (2) in Lemma 2.2 states that 2/, = (¢ + 1)ve. Also, by Lemma 2.2,
vy < 2. We will rule out the cases of v, = 0, 2 by considering the lines through
one point on /.

Let P be a point on / lying on Lp lines of . in total and L p, lines of . in
each secant plane. If r is a V-plane through ¢, then P lies on at least one line
of £ in n. Lemma 2.3 implies that P lies on ¢ lines in 7, so by Condition (iii)
of Theorem 1.5, P lies on ¢ lines of . in each V-plane. Using equation (1) in
Lemma 2.1, we have:

Lp=v-q+(q+1—wv)Lps—q.
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If v, = 0, then from equation (2) in Lemma 2.2, I, = 0, so all points on / are
external points. Thus Lp = 5¢(¢ — 1). Hence:

1q(¢—1)=(¢+1)Lps — q;

LPs - %q

But ¢ is odd, so %q is not an integer. This is a contradiction, so v, # 0.

If v, = 2, then from equation (2) in Lemma 2.2, I, = ¢ + 1, so all points on ¢
are internal points. Thus Lp = 1¢(¢ + 1). Hence:

tqlg+1) =29+ (¢—1)Lps —q;

1
LPS = iq .
This is a contradiction as before, so v, # 2.

Hence vy = 1 and Iy = 1(¢+ 1) -1 = (g + 1). This leaves ¢ secant planes
through ¢ and 3(¢ + 1) external points on /. O

Note that the above lemma ensures the existence of secant planes, V-planes,
internal points and external points as .# is non-empty.

Lemma 2.5. An internal point lies on q lines of . in every V-plane and 3 (q + 1)
lines of £ in every secant plane. An external point lies on q lines of £ in every
V-plane and % (q — 1) lines of £ in every secant plane.

Proof. Let P be a white point and let ¢ be a line of . through P. By Lemma 2.4,
¢ is contained in a unique V-plane. Let this plane be x. In the plane 7, P lies
on at least one line of ., and so by Lemma 2.3, P lies on ¢ lines of . in .
Condition (iii) of Theorem 1.5 implies that every V-plane through P contains
the same number of lines of .¢ through P. Thus P lies on exactly ¢ lines of .¥
in every V-plane.

Let Lps be the number of lines of .# through P in a secant plane and let Lp
be the total number of lines of ¥ through P. We can now use equation (1)
from Lemma 2.1. Through /¢ there are ¢ secant planes and one V-plane, and the
V-plane contains q lines of .# through P. Thus Lp = qLps+1-q—q = qLps. If
P is an internal point, then Lp = 3¢(q+ 1), and so Lp, = 5(¢ +1). If Pis an
external point, then Lp = 1¢(q — 1), and so Lp, = (g — 1). O

Lemma 2.6. A V-plane contains exactly one black point, and the lines of £ in the
plane are exactly those lines not through this black point.

Proof. Let w be a V-plane and let W, be the number of white points in 7. Con-
sider the set

X = {(P,¢) | P is a white point of 7, ¢ is a line of . through P in 7} .
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We will count the size of X in two ways.

Each line of .# in 7 contains (¢ + 1) white points, so | X| = ¢*>(¢ + 1). On the
other hand, each white point is on ¢ lines of .Z in every V-plane by Lemma 2.5.
So every white point in 7 lies on ¢ lines of .Z in = and |X| = ¢W,. Thus
qWr = ¢*(¢+1) and so W, = ¢° + q. This leaves one black point V in 7. There
are ¢* lines of .% in 7, none of which can pass through a black point. On the
other hand, there are ¢? lines of = not through V. Thus, the lines of 7 in . are
exactly those lines not through V. O

Note that, since there must exist a V-plane, the above lemma ensures the
existence of black points.

Lemma 2.7. There exists a unique (black) point V through which all 0-planes
and V-planes pass. The secant planes are precisely those planes not containing V.

Proof. Let m be a V-plane and let its unique black point be V.

Let o be another V-plane and suppose that o does not pass through V. Then
a must meet 7 in a line ¢ not through V. Since / is a line of 7 not through V,
it is a line of .. But now we have a line of . on two V-planes. This is a
contradiction to Lemma 2.4, so o must pass through V.

Let 3 be a 0-plane and suppose that S does not pass through V. Then § must
meet 7 in a line ¢ not through V. Again, this line must be a line of .. But
now we have a line of .# in a 0-plane. This is a contradiction, so 5 must pass
through V.

So we see that all O-planes and all V-planes pass through V. Thus the planes
not through V are all secant planes. To complete the proof we must show that
there are no secant planes through V.

Let v be a secant plane containing V' and let ¢ be a line of .# in ~. Since V'
is a black point, ¢ does not pass through V. Now the ¢ other planes through ¢
do not contain V, and so they must all be secant planes. But now / is a line
of .Z on ¢ + 1 secant planes. This is a contradiction to Lemma 2.4, so y cannot
contain V. OJ

The next three lemmas will complete the proof of Theorem 1.5.

Lemma 2.8. Let m be a line not in .£. If m passes through V, then m contains
1 or ¢+ 1 black points. If m does not pass through V, then m contains 1 or 2 black
points.

Proof. Suppose m passes through V, and also suppose that there exists a black
point P other than V' on m. Let 7 be a plane through m. Since 7 contains V,
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it is either a O-plane or a V-plane by Lemma 2.7. Lemma 2.6 states that every
V-plane contains a single black point. However, 7 contains two black points
(P and V), so it cannot be a V-plane. Thus 7 is a O-plane. So, every plane
through m is a O-plane. Since none of these planes has any line of .Z, there are
no lines of . meeting m. Hence, there are no lines of . through any point
on m. That is, m consists of ¢ + 1 black points. So, if m passes through V, it has
1 or ¢ + 1 black points.

Suppose m does not pass through V. Then exactly one plane through m con-
tains V and ¢ planes do not. These ¢ planes are all secant planes by Lemma 2.7.
In light of this, let 7 be a secant plane through m.

Let B,, be the number of black points on m, let E,,, be the number of external
points on m, and let [,,, be the number of internal points on m. We count the
number of lines of .# in 7 by considering the lines of . through each point
on m. There are no lines of .# through each black point, (g + 1) through each
internal point and 1 (g — 1) through each external point. Thus:

lag(g—1) =g+ V)L + (g~ DE;
Yg— (g~ Ew) = bla+ )L, @

Now (¢ + 1) and (¢ — 1) are coprime, so (g + 1) divides ¢ — E,,,. That is,
(g+1)). Since 0 < E,,, < g+1, we have that E,,, = 1(¢—1)

If E,, = 3(¢ — 1), then by equation (7), we have I,, = 1(¢ — 1) and so
B,=q+1—-1(q—1)—1(¢—1)=2.If E,, = ¢, then by equation (7), I,,, = 0
and so B,, = ¢+ 1 — 0 — g = 1. Thus if m does not pass through V, it contains

1 or 2 black points. O

Lemma 2.9. The set of black points in a secant plane forms a conic.

Proof. Let 7 be a secant plane and let F, be the number of external points
in 7. Let X = {(P,¢) | P is an external point of 7, £ is a line of Z in 7}. We
will count X in two ways. Counting P first then ¢, we have E, choices for an
external point in m and 1 (¢ — 1) choices for a line of .# in 7 through each by
Lemma 2.5. So |X| = E, - (¢ — 1). Counting / first then P, we have 3¢(q — 1)
choices for a line of . in m and 1 (¢+1) choices for an external point on each by
Lemma 2.4. So | X| = 1¢(¢—1)1(¢+1). Thus E;-1(¢—1) = 1¢(¢—1)1(¢+1) and
so Er = 2q(q+ 1). A similar argument shows that there are 3¢(¢ — 1) internal
points in 7. The number of white points in 7 is thus 1¢(q¢ — 1) + 2¢(g+ 1) = ¢*.
This leaves ¢ + 1 black points in 7. We will show that these ¢ + 1 points form an
arc. That is, that no three are collinear.

A line of .Z contains no black points, so let m be a line of 7 not in .. No
secant plane passes through V' by Lemma 2.7, so the line m cannot contain V.



page 9/ 10

go back

full screen

close

quit

ACADEMIA
PRESS

) &

UNIVERSITEIT
GENT

By Lemma 2.8, this implies that m contains 1 or 2 black points. Thus, the lines
of 7 contain at most 2 black points and the set of black points is a (¢ + 1)-arc.
That is, the black points are an oval. By Segre [5], every oval in PG(2, q), ¢ odd,
is a conic, so the set of black points in 7 forms a conic. O

Lemma 2.10. The set of black points ¢ is a quadric cone and £ is the set of
external lines to €.

Proof. Let 7 be a secant plane and let &' the conic made by the black points in .
Let P be a point of ¢’ and consider the line V' P. This line passes through V' and
has more than one black point, so it has ¢ + 1 black points by Lemma 2.8. Thus,
the set of black points ¥ contains the lines V P for any P € 0.

On the other hand, suppose that @) is any black point other than V. Then the
line V@ contains ¢ + 1 black points by the same argument as above. This line
V@ meets 7 in a single point, which is a black point since V() consists only of
black points. Now the black points in 7 are precisely the points of the conic &,
so the line V@ is a line V P for some P € ¢. Thus % is exactly the lines V P for
P € 0. That is, ¢ is a quadric cone.

The lines of . contain no black points and so are all external lines to the
cone %. Any line not in .Z contains at least one black point by Lemma 2.8. So
Z is precisely the set of external lines to the quadric cone % O
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