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Abstract

This note details the construction of the Tits ovoid in PG(3, 22e−1), e ≥ 2,

starting with an elliptic quadric in this space. The method employs a spe-

cial type of net replacement which is here called oval derivation applied to

a plane representation of the elliptic quadric.
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1 Introduction

Let PG(3, q) denote the 3-dimensional projective space over the finite field GF(q).

An ovoid of PG(3, q) is a set of q2 + 1 points of PG(3, q), no three of which are

collinear. The only known ovoids of PG(3, q) are the elliptic quadrics, which

exist for all q, and the Tits ovoids, which exist only when q = 22e−1, e ≥ 2.

An elliptic quadric in PG(3, q) is the set of all points whose homogeneous co-

ordinates satisfy a homogeneous quadratic equation such that the set contains

no line. A Tits ovoid is the set of all absolute points of a polarity of the general-

ized quadrangle W (q) (see [12]).

If q is odd, then it is known that every ovoid of PG(3, q) is an elliptic quadric

[1, 11]. Furthermore, if q = 4 or 16, then every ovoid of PG(3, q) is an elliptic

quadric [6, 7, 8], while if q = 8 or 32 then every ovoid is either an elliptic

quadric or a Tits ovoid [4, 10, 14]. It is widely conjectured that these are the

only families of ovoids in PG(3, q), but the classification for even q has only been

achieved for q < 64.

In this note we provide a direct connection between elliptic quadrics and

Tits ovoids in the spaces in which they both exist. It is hoped that this connec-
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tion may be useful in shedding some light on the very difficult problem of the

classification of ovoids.

2 Background material

The construction we give in the next section uses two fundamental ideas which

we now review.

There is an equivalence between ovoids in PG(3, q) and special sets of ovals

in a PG(2, q). This equivalence is the subject of the Plane Equivalent Theorem

(below) independently discovered by Penttila [13] and Glynn [5].

An oval in a projective plane PG(2, q) is a set of q+1 points no three of which

are collinear. When q is even, there is a unique point (often called the nucleus

or knot of the oval) which when added to the oval gives a set of q + 2 points,

no three collinear. Such a set of q + 2 points is called the hyperoval containing

the given oval. Any line of the plane intersects a hyperoval in either 0 or 2

points and is called an exterior or secant line of the hyperoval respectively. Two

hyperovals, H1 and H2, meeting precisely in two points N and P are said to

be compatible at a point Q of the line ℓ = NP , other than N or P , if all lines

through Q other than ℓ which are secant lines of H1 are exterior lines of H2

(and consequently, the exterior lines to H1 are secant lines of H2.) Consider

a set of q hyperovals {Hs} indexed by the elements of GF(q) which mutually

intersect precisely at the points (0, 1, 0) and (1, 0, 0) and for which Ha and Hb

are compatible at (1, a+ b, 0) for all distinct a, b ∈ GF(q). Any set of hyperovals

that are projectively equivalent to these is called a fan of hyperovals. Note

that these definitions are usually given with respect to ovals, but that approach

introduces an unnecessary distinction between the two common points (the

carrier set) of the fan.

Theorem 2.1 (The Plane Equivalent Theorem [13, 5]). An ovoid of PG(3, q) is

equivalent to a fan of hyperovals in a plane PG(2, q). �

The proof is constructive. Starting with the secant planes of an ovoid passing

through a common tangent line of the ovoid and indexed by the elements of

the field, homographies dependent on the index map each section of the ovoid

into a single secant plane of this pencil. The resulting collection of ovals have

a common nucleus and form a fan of hyperovals. The process is reversible and

the ovoid can be recovered from the fan of hyperovals.

In a little more detail, in order to fix notation, we have that an ovoid Ω of

PG(3, q) consists of the points,

Ω = {(s, t, st+ fs(t), 1) : s, t ∈ GF(q)} ∪ {(0, 0, 1, 0)} , (1)
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where, for each s ∈ GF(q), fs(t) is an o-permutation (that is, fs(0) = 0 and

the set of points Hs = {(t, fs(t), 1) : t ∈ GF(q)} ∪ {(0, 1, 0)} ∪ {(1, 0, 0)} is a

hyperoval in PG(2, q). The fan of hyperovals corresponding to Ω is given by

(after suppressing the first coordinate in a PG(3, q) representation),

Fs = {(t, fs(t), 1) : t ∈ GF(q)} ∪ {(0, 1, 0)} ∪ {(1, 0, 0)} .

The second notion that we require is that of what we call translation oval

derivation. This is a special case of a construction of affine planes from other

affine planes by a method called derivation by net replacement by Ostrom. The

modern terminology of partial spread replacement does not suit our purposes so

we will describe the method in very basic geometric terms in order to make the

technique as transparent as possible.

The basic idea is to replace a set of parallel classes in an affine plane (a net)

by another net which is compatible with the parallel classes that have not

been replaced. For the affine plane AG(2, 2h) one way to do this is to re-

place all except two of the parallel classes of lines by a net which is con-

structed from translation hyperovals. If q = 2h, a translation hyperoval is a

hyperoval of PG(2, q) that is projectively equivalent to the hyperoval passing

through the points (1, 0, 0) and (0, 1, 0) and whose affine points satisfy the equa-

tion y = x2i

, where (i, h) = 1. For i = 1 and h − 1 the translation hyperovals

are hyperconics (a conic together with its nucleus, also known as a regular hy-

peroval), but other values of i give translation hyperovals which are not projec-

tively equivalent to hyperconics. Translation hyperovals were first investigated

by B. Segre [15].

For translation oval derivation the replacement net consists of the restriction

to the affine plane PG(2, 2h) \ {x2 = 0} of the set T of q2 − q translation hyper-

ovals (for a fixed i) given by {y = mx2i

+ k}, m(6= 0), k ∈ GF(q), (i, h) = 1, all

of which pass through (1, 0, 0) and (0, 1, 0). The result of performing translation

oval derivation on AG(2, 2h) is an isomorphic affine plane (see [2]). We shall

sketch the proof of this result.

Consider the affine plane π = PG(2, 2h) \ {x2 = 0}. We construct a new

affine plane π̃ whose points are the points of π and whose lines are the sets

Tm,k = {(x, y) : y = mx2i

+ k} for m, k ∈ GF(2h) and a fixed i with (i, h) = 1,

and the sets T∞,k = {(x, y) : x = k}, k ∈ GF(2h). Note that for any k the

sets T0,k and T∞,k are just lines of π, while for m 6= 0 the sets Tm,k are the

translation hyperovals of T restricted to the affine plane. Verifying that π̃ is an

affine plane is straightforward using the fact that a line meeting a hyperoval

(in the projective completion of the affine plane) meets the hyperoval in exactly

one further point and some simple algebraic calculations. The main case of

verifying that two points determine a unique line follows from the calculation
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that for affine points (u1, v1) and (u2, v2) with u1 6= u2 and v1 6= v2, the unique

Tm,k containing these points has

m =
v1 + v2

(u1 + u2)2
i

and

k =
u2i

1 v2 + u2i

2 v1

(u1 + u2)2
i
.

The observation that if m1 6= m2 and both are finite then

Tm1,k1 ∩ Tm2,k2 =

((
k1 + k2

m1 +m2

)2−i

,
m1k2 +m2k1

m1 +m2

)
,

leads to a quick verification of Playfair’s Axiom and nontriviality is obvious.

Thus, π̃ is an affine plane. Finally, the point map τ : π 7→ π̃ given by τ(x, y) =

(x2−i

, y) provides an isomorphism between π and π̃, which we note is not a

collineation of the affine plane for i 6= 0. With an obvious abuse of language

we see that τ permutes the sets T∞,k (lines), stabilizes the sets T0,k (lines) and

maps the lines given by y = mx+ k to the sets Tm,k. The main case of showing

that incidence is preserved is provided by the following calculation. Suppose

the point (u, v) is incident with the line given by y = mx+ k, then

τ(u, v) = τ(u,mu+ k) = (u2−i

,mu+ k) = (z,mz2i

+ k) ∈ Tm,k .

Algebraically, (translation) oval derivation is carried out by applying the

point map (x, y) 7→ (xψ, y) for any (maximal) automorphism ψ of GF(2h). From

this point of view the role that the (translation) hyperovals play is obfuscated.

3 Construction

As there is a single orbit of elliptic quadrics under PGL(4, q) we can take as our

starting point the quadric Ω (ovoid) whose point set is

Ω := {(s, t, t2 + st+ κs2, 1) : s, t ∈ GF(q)} ∪ {(0, 0, 1, 0)} ,

where κ ∈ GF(q) is a fixed element of absolute trace 1. The line ℓ∞ given by

x0 = x3 = 0 is tangent to Ω at the point Q∞ = (0, 0, 1, 0). The secant planes of

Ω through ℓ∞ will be denoted by πα : x0 = αx3 for α ∈ GF(q). Furthermore, we

define the conic sections Oα := πα ∩ Ω. By the Plane Equivalent Theorem we

obtain a fan of conics in π0 all passing through Q∞ and having common nucleus

(0, 1, 0, 0). The q conics of this fan are represented by

Fα = {(t, t2 + κα2, 1) : t ∈ GF(q)} ∪ (0, 1, 0) ,
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for α ∈ GF(q). Note that the o-permutations of (1) are given here by fα(t) =

t2 + κα2.

Let σ be the automorphism of GF(22e−1) given by x 7→ xσ = x2e

and note that

σ2 ≡ 2 mod (q − 1). We now perform translation oval derivation on the affine

plane π0 \ ℓ∞ using the transformation (x, y) 7→ (xσ, y). Denote the projective

completion of the derived plane by π′

0. Observe that the point (t, t2 + κα2, 1)

of π0 is transformed to (u, uσ + κα2, 1) of π′

0 since u = tσ. Because x 7→ xσ+2 is

a permutation of GF(q), to each α of GF(q) we can associate a β ∈ GF(q) such

that βσ+2 = κα2. We now see that this translation oval derivation transforms

Fα 7→ F ′

β = {(u, uσ + βσ+2, 1) : u ∈ GF(q)} ∪ (0, 1, 0). It is known that this

set of images is a fan associated to the Tits ovoid (see [9]), but for the sake

of completeness we shall provide the proof that this set is a fan of translation

ovals.

Proposition 3.1. The translation ovals F ′

c and F ′

d (c 6= d), where

F ′

β = {(u, uσ + βσ+2, 1) : u ∈ GF(q)} ∪ (0, 1, 0) ,

are compatible at the point (1, c+ d, 0).

Proof. A line other than ℓ∞ through (1, c+ d, 0) is a secant (resp. exterior) line

of F ′

β provided the equation

uσ + (c+ d)u+ k + βσ+2 = 0

has 2 (resp. 0) solutions with k ∈ GF(q). This equation has 2 (resp. 0) solutions

provided

tr

(
k + βσ+2

(c+ d)
σ

σ−1

)

is 0 (resp. 1), where tr is the absolute trace function of GF(q). For any k we

have

tr

(
k + cσ+2

(c+ d)
σ

σ−1

)
+ tr

(
k + dσ+2

(c+ d)
σ

σ−1

)
= tr

(
cσ+2 + dσ+2

(c+ d)
σ

σ−1

)

= tr

(
cσ+1 + dσ+1

(c+ d)σ+1

)
= 1.

The penultimate simplification uses the invariance of tr under an automorphism

(σ) and the relation 1
σ−1 ≡ σ+1 mod (q−1) and the last equation is well known

(see [3]). Therefore,

tr

(
k + cσ+2

(c+ d)
σ

σ−1

)
6= tr

(
k + dσ+2

(c+ d)
σ

σ−1

)
,

and each line other than ℓ∞ through (1, c+ d, 0) is a secant to one and exterior

to the other of F ′

c and F ′

d. �
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Using the Plane Equivalent Theorem applied to the fan {F ′

β}β∈GF(q) we ob-

tain the Tits ovoid, thus completing the construction.
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