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Line-transitive, point-imprimitive linear

spaces: the grid case

Anton Betten∗ Gregory Cresp Cheryl E. Praeger

Abstract

For a fixed integer k, all but a finite number of line-transitive linear

spaces with lines of size k are point-primitive. In this paper, we study the

finite class of examples where a line-transitive group is point-imprimitive,

that is, preserves a non-trivial partition of the point set. We restrict to the

case where (i) the number of unordered point-pairs, on a given line, con-

tained in the same class of the partition is at most eight, and (ii) some non-

identity group element fixes setwise each class of the partition, and also

fixes a point. This family of linear spaces was studied by Ngo Dac Tuan and

the third author in 2003, leaving several problems unresolved. We prove

that all examples in this family are known, namely Desarguesian projective

planes of appropriate orders, and an additional example on 91 points. The

result is obtained by a combination of theoretical analysis, and exhaustive

computer search.

Keywords: linear space, block design, finite projective plane, line-transitive, point-

imprimitive

MSC 2000: 05B05, 05B25, 20B25

1. Introduction

A finite linear space S = (P,L) consists of a finite set P of points, and a set

L = {λ1, . . . , λb} of subsets of P, called lines, such that each pair of points lies

in a unique line, and each line contains at least two points. The automorphism
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group Aut(S) of S consists of all permutations of P that leave L invariant, and

S is called line-transitive if Aut(S) is transitive on L. More generally, we say

that a linear space S has a group theoretic property if some subgroup of Aut(S)

has the property. In particular, for a line-transitive linear space S, all lines have

the same size k say, and hence S is a 2-(v, k, 1) design with v = |P| the number

of points of the linear space.

The major result that inspired this investigation is due to Delandtsheer and

Doyen [8] (see Theorem 1.1) and shows that, in a sense, line-transitive lin-

ear spaces are almost always point-primitive. That is, for a given line-size,

there is only a finite number of linear spaces which are line-transitive but not

point-primitive. Put in a different way, linear spaces with these properties are

counterexamples to the (wrong) assertion that line-transitivity implies point-

primitivity. The result of Delandtsheer and Doyen shows that these examples

are exceptional and hence deserve attention. In this paper, we study these ex-

ceptional examples of line-transitive point-imprimitive linear spaces.

Let us describe the history of the study of these counterexamples briefly. The

theorem of Delandtsheer and Doyen shows that if a line-transitive group of

automorphisms of a linear space S = (P,L) with line-size k leaves invariant a

non-trivial partition of P, then |P| ≤
((

k
2

)

− 1
)2

. It was shown in [3, 12] that

this upper bound could not be sharp if k 6= 8, and in [11] that there are exactly

467 pairwise non-isomorphic linear spaces that attain the bound when k = 8.

Line-transitive, point-imprimitive linear spaces were investigated further in

[13] in the special case where (i) the number of inner pairs of a given line,

that is, the number of unordered point-pairs of the line that lie together in the

same class of an invariant partition, is at most eight, and (ii) some non-identity

automorphism fixes setwise each class of the partition, and also fixes a point. In

this situation, Praeger and Tuan [13, Theorem 1.6] showed that there is only a

small number of feasible parameter sets.

Our aim in this paper is to complete this classification by dealing with a

rather difficult case, namely case (c) of [13, Theorem 1.6], about which not

much could be said until now. In Theorem 1.2 below, we show that this case

does indeed lead to examples, but that all these examples are known.

We remark that parallel to this study, a massive investigation of the general

case for line-transitive, point-imprimitive linear spaces has been undertaken. It

is general in the sense that the number of inner pairs on a line is no longer re-

stricted to be small, and there are no restrictions on the classwise stabiliser. That

study is reported in [2], and is independent of this work. It relies only on [13,

Theorem 1.6], not on Theorem 1.2 below. Similarly, the classification achieved

in this paper does not follow from the classification in [2] as our classification

assumes no bound on k/ gcd(k, v).
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1.1. Line-transitive, point-imprimitive linear spaces

A partition C of a finite set P is a set of pairwise disjoint subsets whose union

equals the set P. The subsets C ∈ C are called parts or classes of C. The partition

C is called trivial if either C consists of only one class or C contains only one-

element classes, otherwise C is said to be non-trivial. A C-inner pair (or simply

an inner pair, if the partition C is clear from the context) is an unordered pair

of points α, β ∈ P which belong to the same class of C. Otherwise, if the points

belong to two different classes of C, we say that they form a C-outer pair.

Let G be a group that acts on a set P. Then G is said to leave a partition C

invariant if, for all g ∈ G and all C ∈ C, the image Cg is also a class of C. In

particular, C-inner pairs are mapped to C-inner pairs under elements of G. Let

G be transitive on P. If there exists a non-trivial G-invariant partition of P then

G is said to be imprimitive on P. Otherwise, G is primitive on P.

We remark that in studying a group G of automorphisms of a linear space

S = (P,L), the group may not coincide with Aut(S), the full automorphism

group of S. Also, a linear space is said to be trivial if it has only one line, or

if all its lines have only two points; otherwise it is called non-trivial. Thus S is

non-trivial if 2 < k < |P|.

The result from [8] mentioned above, and stated as Theorem 1.1 below,

shows among other things that, for a linear space admitting a line-transitive,

point-imprimitive automorphism group, the number of points is bounded above

by a function of the line size. This means that for a given line size k there is

only a finite number of line-transitive, point-imprimitive linear spaces.

Theorem 1.1 (Delandtsheer-Doyen parameters [8]). Let S = (P,L) be a non-

trivial linear space admitting a line-transitive automorphism group G that leaves

invariant a non-trivial partition C of P with d classes of size c. Let x be the

number of C-inner pairs of a line, and let k be the line size. Then there exists

another positive integer y such that

c =

(

k
2

)

− x

y
and d =

(

k
2

)

− y

x
. (1)

We call the pair (x, y) the Delandtsheer-Doyen parameters corresponding to C.

By [13, Theorem 1.1(a)],

x =

(

k
2

)

(c − 1)

cd − 1
and y =

(

k
2

)

(d − 1)

cd − 1
, (2)

and hence the integer triples (c, d, k) and (x, y, k) mutually determine each

other. Moreover, if (c, d, k) corresponds to (x, y, k) then (d, c, k) has (y, x, k) as
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its mate, though in general there will not exist a G-invariant partition of P with

c classes of size d. Recent attempts, for example in [4], have aimed at classifying

line-transitive, point-imprimitive linear spaces for small values of k. This article

is a step towards a classification in the case where the number x of inner pairs

on a line is small. We remark further that while the first of the Delandtsheer-

Doyen parameters x has a combinatorial interpretation as the number of inner

pairs on a line, no similar meaning is known for the second parameter y in gen-

eral. However, there is an interpretation for y when G preserves a grid structure

on P. We will explore this in section 3.

1.2. The main result

For a transitive group G on a set P and a G-invariant partition C = {C1, . . . , Cd}

of P, the kernel of G on C is the subgroup G(C) of elements g ∈ G with Cg
i = Ci

for i = 1, . . . , d. We say that C is G-normal if G(C) is transitive on each of the

C-classes.

In [13], Praeger and Tuan examined line-transitive point-imprimitive linear

spaces where the first Delandtsheer-Doyen parameter is small and the partition

is normal. The current work aims at resolving the open cases in part (c) of their

Theorem 1.6, thereby proving the result promised in the remarks following the

statement of [13, Theorem 1.6]. Part (a) of [13, Theorem 1.6] addresses the

situation where the only group element fixing a point, and fixing each class of

the partition setwise, is the identity element. Parts (b) and (c) (which contain

the unresolved cases) address the opposite situation, namely where there is a

non-identity element that fixes a point and fixes each class setwise. Note that

we do not include as an assumption that the partition is normal. Instead we

prove this as a consequence of the existence of this element. Our result is as

follows. Its proof will be presented in section 4.

Theorem 1.2. Let S = (P,L) be a non-trivial linear space admitting a line-

transitive group G that leaves invariant a non-trivial point-partition C. Assume

further that the number of C-inner pairs on a line is at most 8, and that some

non-trivial element of G fixes each C-class setwise and also fixes at least one point.

Then either

(i) S is a Desarguesian projective plane of order 4, 9 or 16, or

(ii) S is the Colbourn-McCalla design constructed in [6] with 91 points and line

size 6.

Moreover, each of these linear spaces has a line-transitive, point-imprimitive sub-

group of automorphisms satisfying the hypotheses above.
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2. Some parameters for line-transitive, point-im-

primitive linear spaces

2.1. Base lines

Let G act on a set of points P. For a nonnegative integer s, we denote the set

of s-subsets of P by P{s}. For S ⊆ P, let SG denote the G-orbit of S, that

is, the set of images Sg for all elements g in G, and let GS denote the setwise

stabiliser of S in G. Under certain conditions, the G-orbit of a k-subset λ ⊆ P

can be taken as the set of lines of a linear space admitting G as a line-transitive

automorphism group. In this case, we say that λ is a base line for the G-line-

transitive linear space (P, λG). We will characterize base lines shortly. First, we

examine some properties of G-orbits on pairs. In a linear space the unique line

containing two points α and β is denoted by λ(α, β). Recall that the number

of lines of a linear space is generally denoted by b and equals
(

v
2

)

/
(

k
2

)

, where

v = |P| and k is the line size.

Lemma 2.1. Let G be a line-transitive automorphism group of a linear space

S = (P,L) with line size k and |L| = b. Then the length of every G-orbit O

on P{2} is divisible by b. In particular, the number of orbits of G on P{2} is at

most
(

k
2

)

.

Proof. For every pair of points {α, β}, G{α,β} fixes λ(α, β), and hence G{α,β} ≤

Gλ(α,β). Thus b = |λ(α, β)G| = |G : Gλ(α,β)| divides |G : G{α,β}| =
∣

∣{α, β}G
∣

∣.

In particular |O|/b is a positive integer, where O := {α, β}G. Counting all

pairs of points yields the upper bound on the number of those orbits:
(

v
2

)

=

b ·
∑

O |O|/b ≥
(

(

v
2

)

/
(

k
2

)

)

·
∑

O 1, and hence
(

k
2

)

≥
∑

O 1. �

We call a transitive permutation group G on P feasible (for a particular lin-

ear space parameter set) if the length of every orbit on P{2} is divisible by b.

Lemma 2.2 gives a criterion for testing whether a k-subset λ is a base line for

a G-line-transitive linear space. The criterion involves the integers µ(O, S) de-

fined in (3), for G-orbits O on P{2} and k-subsets S of P.

µ(O, S) =
∣

∣

∣O ∩ S{2}
∣

∣

∣ =
∣

∣

∣

{

{γ, δ} ∈ O : {γ, δ} ⊆ S
}∣

∣

∣. (3)

Note that µ(O, S) does not depend on the choice of S within its G-orbit SG =

{Sg | g ∈ G}.

Lemma 2.2 (Orbit Lemma). Let G be a group acting on a set P of v points. Let

k be a positive integer greater than 2 such that b =
(

v
2

)

/
(

k
2

)

is an integer. Then

λ ∈ P{k} is a base line of a linear space with point set P if and only if both
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(i)
∣

∣λG
∣

∣ = b and

(ii) µ(O, λ) = |O|/b for each G-orbit O on P{2}.

A proof can be found, for example, in [3, Proposition 1.3]: one shows that

µ(O, λ)/|O| is a constant, say a, independent of the G-orbit O in P{2}, if and

only if each pair of points lies in a constant number of the k-subsets in λG. An

easy counting argument then shows that this number is a|λG|. Thus λ is a base

line for a linear space if and only if the constant a is 1/b where b = |λG|, that is,

if and only if (i) and (ii) both hold.

We mention some elementary facts about automorphisms of linear spaces.

Lemma 2.3. Let G be a group of automorphisms of a linear space S = (P,L),

and let λ ∈ L, A ⊂ P, and g ∈ G.

(a) If A ⊆ λ and |A| ≥ 2, then GA ≤ Gλ.

(b) The image λg = λ if and only if λ is a union of 〈g〉-orbits.

(c) If the order |g| of g is 2 then g fixes some line setwise.

Proof. For part (a), let α, β be distinct points of A. Since λ is the unique line

containing {α, β} it follows that λ is the unique line containing A. Therefore

GA ≤ Gλ. Part (b) is obvious. For part (c), let |g| = 2 and let α, β be distinct

points interchanged by g. Then g fixes {α, β} setwise and hence by part (a), g

fixes setwise the line λ(α, β). �

2.2. Intersection numbers

Let S = (P,L) be a line-transitive point-imprimitive linear space with respect

to a group G of automorphisms and a non-trivial partition C with d classes of

size c, and let λ ∈ L. Then the intersection numbers defined as

di =
∣

∣

∣

{

C ∈ C : |C ∩ λ| = i
}

∣

∣

∣
, (4)

for 0 ≤ i ≤ k are independent of the choice of the line λ and satisfy

k
∑

i=1

di

(

i

2

)

= x . (5)

The intersection type is the vector (1d1 , . . . , kdk), where we usually omit compo-

nents idi if di = 0. The spectrum is the set of non-zero intersection numbers

specS := {i > 0 | di 6= 0} .

We sometimes write specC S if we need to specify the partition C.
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3. Grid structures on points

Throughout this section, S = (P,L) denotes a linear space that admits a line-

transitive group G leaving invariant a non-trivial partition C = {C1, . . . , Cd}

of the point set P with d classes of size c. Sometimes G leaves invariant a

second partition D such that |C ∩ D| = 1 for all C ∈ C and D ∈ D. In this case

D = {D1, . . . , Dc} with each |Dj | = d and every point α of P may be labelled

by the unique ordered pair of integers (i, j) such that {α} = Ci ∩ Dj . We write

α = αi,j . Thus we can parametrize the points by the Cartesian product

{1, . . . , d} × {1, . . . , c}

such that

P = {αi,j | 1 ≤ i ≤ d, 1 ≤ j ≤ c} .

The classes of the partitions C and D can then be thought of as the rows and

columns respectively of the matrix











α1,1 α1,2 · · · α1,c

α2,1 α2,2 · · · α2,c

...
...

αd,1 αd,2 · · · αd,c











, (6)

that is,

Ci = {αi,j | 1 ≤ j ≤ c} , 1 ≤ i ≤ d

and

Dj = {αi,j | 1 ≤ i ≤ d} , 1 ≤ j ≤ c .

We call such a set P together with a distinguished ordered pair of partitions

(C,D) as above a grid of type d × c and write P = G
(C,D)
d×c . We call C the row-

partition and D the column-partition of the grid. Furthermore, the intersection

types of a line with respect to the partitions C and D are called the row intersec-

tion type and column intersection type, respectively.

Desarguesian projective planes for which the number v of points is not a

prime power provide line-transitive examples: write v = d · c with d and c

coprime, and take G to be a Singer group, that is, a cyclic group 〈g〉 of automor-

phisms that is regular on points (and hence also on lines). Then the orbit sets

of 〈gd〉 and 〈gc〉 on points are G-invariant point-partitions C and D that form a

grid G
(C,D)
d×c .

A grid is said to be trivial if at least one of the numbers c or d is 1, that

is, if C and D are trivial partitions. We also say that G preserves a grid if G

preserves a pair of non-trivial partitions that forms a grid. In fact if G preserves
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G
(C,D)
d×c , then G may be identified with a subgroup of Symd ×Symc in such a way

that, for g = (g1, g2) ∈ G, the image of a point αij is αi′j′ , where Ci′ = Cg1

i

and Dj′ = Dg2

j . The permutations g1, g2 are the permutations induced by g

on C and D, and they act as row and column permutations respectively on the

array (6). Thus we write grows := g1 and gcols := g2. (This is the natural product

action of Symd ×Symc, where Symn denotes the symmetric group of degree n.)

We formalise this, and the obvious converse, below.

Lemma 3.1. A permutation group G ≤ Symdc preserves a grid structure G
(C,D)
d×c if

and only if G is isomorphic to a subgroup of Symd ×Symc in its product action. In

this case every element g of G can be written as an ordered pair g = (grows, gcols) ∈

Symd × Symc where grows ∈ Symd and gcols ∈ Symc act as row and as column

permutations, respectively.

If an automorphism group G of a linear space S = (P,L) leaves invariant

a non-trivial grid structure G
(C,D)
d×c on points, then P can be identified with the

points of G
(C,D)
d×c , and we simply write S =

(

G
(C,D)
d×c ,L

)

and identify G with a

subgroup of Symd × Symc.

Bearing in mind the arrangement of the point set in (6), we say that a pair of

distinct points

{αi,j , αu,v}

is horizontal if i = u, vertical if j = v, and skew if i 6= u, j 6= v. If G preserves the

grid (6), then G also preserves the properties on point-pairs of being horizontal,

vertical, or skew. This means that a G-orbit on point-pairs consists of pairs of

one kind only. We say that an orbit on point-pairs is horizontal (or vertical or

skew, respectively) if the pairs in that orbit all have that property.

Apart from the product action of the group Symd × Symc referred to in

Lemma 3.1, there is a second action of this group relevant to our study of linear

spaces and grids. An action of Symd × Symc on the set Md×c of {0, 1}-matrices

of size d × c is defined as follows: if A = (ai,j) ∈ Md×c and g = (grows, gcols) ∈

Symd × Symc, then

Ag =
(

a
ig

−1
rows , j

g
−1

cols

)

.

For two (d × c)-matrices A and B we write A ≡ B if there is an element

g ∈ Symd × Symc with Ag = B. The equivalence classes of {0, 1}-matrices un-

der this relation are known as isomorphism types of incidence structures. The

relation to linear spaces is as follows:

Assume that a line-transitive group G on a linear space S = (P,L) preserves

a grid structure G
(C,D)
d×c on the point set P. Then each subset S ⊆ P corresponds

to a matrix in Md×c, the characteristic matrix of S,

χ(S) = (ai,j) ,
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where ai,j = 1 if αi,j ∈ S and ai,j = 0 otherwise. The map χ is a one-to-one

correspondence between the powerset of P (the set of subsets of P) and the

set Md×c. Moreover, the actions of Symd × Symc on the powerset of P and on

Md×c are equivalent, that is,

χ(Sg) = χ(S)g, for all S ⊆ P, g ∈ G .

For a line λ ∈ L, the equivalence class of χ(λ) is called the mask of S relative

to (C,D). The mask determines both the row and the column intersection types.

However, in a search for line-transitive linear spaces preserving a grid structure,

we may find none, one, or several different masks corresponding to a given pair

of row and column intersection types, see [7, Chapter 5] for an example. Thus,

since the mask is an invariant of the linear space under automorphisms which

preserve the grid structure, the mask provides an additional tool to assist in the

search. Such a search might proceed as follows.

Suppose we are searching for all linear spaces S = (P,L) (if any exist) with

line size k admitting a given line-transitive group G that preserves a grid struc-

ture P = G
(C,D)
d×c . The values c, d, k are known and determine the Delandtsheer-

Doyen parameters (x, y) for the G-invariant partition C by (2), and (y, x) are

the Delandtsheer-Doyen parameters for the G-invariant partition D. From the

values of x and y we first determine a list INTTYPES of feasible pairs of row

and column intersection types. We then determine, for each pair in INTTYPES,

a list of all masks that correspond to the pair. Then we search for linear spaces

corresponding to each of the masks in turn (or prove that none exist).

Note that it is possible to have several non-isomorphic linear spaces corre-

sponding to the same group and mask, as demonstrated by the line-transitive

linear spaces on 729 points with line size 8 classified in [11]. In the next sub-

section we give an example of this type of analysis.

3.1. An example: masks corresponding to given intersection

types

Grids arise in the second case of [13, Theorem 1.4], and we restate part of this

result below in the language of grids. A permutation group H on a set P is said

to be semiregular if only the identity element of H fixes a point of P, and H

is regular if it is semiregular and transitive. The point-partition C is minimal if

|Ci| > 1 and the only G-invariant refinement of C is the trivial partition with all

parts of size 1. Our notation with regard to groups is as follows: for two groups

A and B, A : B denotes a semidirect product of A by B. Also D2n will denote

the dihedral group of order 2n.
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Lemma 3.2. Let S, G and C be as above with Delandtsheer-Doyen parameters

(x, y), k ≥ 2x and specC S = {1, 2}. Assume further that C is minimal and G-

normal and that G(C) is not semiregular on P. Then

(i) there is a G-invariant partition D of P such that P = G
(C,D)
d×c is a grid of type

d × c ;

(ii) c = pa for some odd prime p, and G(C) = Zpa : Z2 ; moreover, G(C) con-

tains c involutions and the c classes of D are the sets of fixed points of these

involutions;

(iii) the row intersection type is (1k−2x, 2x) with k − 2x ≥ 2, and the column

intersection type is (12x, (k − 2x)1) ;

(iv) y =
(

k−2x
2

)

and D has Delandtsheer-Doyen parameters (y, x) .

We make a few comments about our re-statement of the result. A crucial ob-

servation that underlies our translation of [13, Theorem 1.4] into the language

of grids is that, for a normal subgroup N of a transitive permutation group G,

the set F of fixed points of a point stabiliser Nα generates a G-invariant point-

partition {F g | g ∈ G}. (The proof is straightforward and elementary.) We

applied this with N = G(C), Nα
∼= Z2. The assertion about the Delandtsheer-

Doyen parameters with respect to D follows from (2). The result [13, Theo-

rem 1.4] obtained y =
(

k−2x
2

)

, and the fact that each line meets some column in

exactly k − 2x points. Since y is the number of D-inner pairs, this information

implies that the column intersection type is
(

12x, (k − 2x)1
)

.

We shall analyse possibilities for the characteristic matrix of a line in the

situation of Lemma 3.2, showing that they all belong to the same mask. For

a matrix M ∈ Md×c , the weight of a row or column is the number of 1’s it

contains; two rows (or columns) are disjoint if their sets of non-zero entries

correspond to disjoint sets of columns (or rows, respectively), or equivalently, if

their dot product is zero. Recall that each matrix in the mask is the characteristic

matrix χ(λ) of a line λ. By Lemma 3.2(ii), each involution u ∈ G(C) fixes a class

of D pointwise, and hence fixes some line setwise. Since G is line-transitive,

each line is fixed setwise by an involution of G.

Lemma 3.3. Let S, G, C, D, x and y be as in Lemma 3.2, let λ ∈ L, and let u be

an involution in G that fixes λ setwise. Then χ(λ) has the following shape:

(i) there are x pairwise disjoint rows of weight 2 corresponding to 2x columns

of weight 1;

(ii) the non-zero entries in the rows of weight 2 lie in columns corresponding to

pairs of classes of D which are interchanged by u ;
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(iii) there are k − 2x rows of weight 1 whose unique non-zero entries all lie in

the same column, namely the column corresponding to the unique class of D

fixed by u .

In particular there is a unique mask corresponding to S, C, D.

Proof. By Lemma 3.2, P = G
(C,D)
d×c , and for an involution u ∈ G(C) there is a

class D0 ∈ D such that D0 is the set of fixed points of u. Moreover, since u fixes

each C-class setwise, D0 must be the unique class of D fixed setwise by u. Since

u fixes λ setwise, by Lemma 2.3, λ is a union of 〈u〉-orbits. We shall describe

χ(λ). By Lemma 3.2, the row intersection type is (1k−2x, 2x) and the column

intersection type is (12x, k − 2x).

Since u fixes setwise the unique D-class containing k − 2x points of λ, this

class must be D0. Then, since λ meets each C-class in at most 2 points, it follows

that, for each C-class C such that C ∩ D0 ⊂ λ, we must have C ∩ λ = C ∩ D0.

This proves (iii), and we note that each of the y =
(

k−2x
2

)

D-inner pairs of λ is

therefore a pair of points of D0 ∩ λ.

The rows of weight 2 can only be formed by choosing the non-zero entries in

columns corresponding to pairs of D-classes interchanged by u. Moreover, since

these non-zero entries can contribute no D-inner pairs, these rows are pairwise

disjoint, giving us 2x columns of weight 1.

Finally, all matrices in Md×c with these properties are equivalent under the

action of Symd×Symc, and hence the mask corresponding to S, C, D is uniquely

determined. �

4. Proof of Theorem 1.2

Let S, G, C be as in Theorem 1.2, and let G(C) denote the kernel of the action

of G on C. By assumption, the number x of C-inner pairs is at most 8, and

G(C) contains a non-identity element, g say, such that g fixes some point α. In

particular, G(C) 6= 1 and the G(C)-orbits in P form a G-invariant partition C′ that

refines C. Moreover the partition C′ is G-normal with G(C) contained in G(C′).

Also, since each C′-inner pair is also a C-inner pair, the number x′ of C′-inner

pairs is at most x, which by assumption is at most 8.

Thus the hypotheses of [13, Theorem 1.6] hold relative to the partition C′,

and in addition we have that G(C′) is not semiregular on P. We review and ex-

tend the information given in [13, Theorem 1.6]. Let |C′| = d′, let the classes of

C′ have size c′, let the Delandtsheer-Doyen parameters relative to C′ be (x′, y′),

and the C′-intersection type be (1d′

1 , . . . , kd′

k). Also set b(r) := b/ gcd(b, v), where

b = |L|. Notice that gcd(v, b(r)) = 1 since v − 1 = r(k − 1).
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Lemma 4.1. If S is PG2(4) or the Colbourn-McCalla design then Aut(S) contains

a subgroup with the required properties. If S is not one of these two linear spaces,

then all of the following hold.

(a) k, c′, d′, x′, y′, d′1, d
′
2, b

(r) are as in one of lines 1–7 of Table 1 ;

(b) specC′ S = {1, 2}, and the C′-intersection type is (1k−2x′

, 2x′

) ;

(c) G(C′) = N : Z2 ≃ D2c′ with N ≃ Zc′ , and G = X × G(C′) ;

(d) moreover in lines 1–6, C′ = C, X = M : Zh where M ≃ Zd′ and b(r) | h |

(d′ − 1) ; and in line 7, GC′

= XC′

is imprimitive.

We remark that in line 7, the partition C may equal C′ or it may be properly

refined by C′.

Proof. As discussed above, the assumptions of [13, Theorem 1.6] hold relative

to C′. The first paragraph of the proof [13, pp. 57–58] shows that C′ is minimal

and c′ is odd. Next we consider two examples. If S = PG2(4) then |P| = 21,

a product of two primes, and so C = C′. In the automorphism group PΓL(3, 4)

of PG2(4) the normaliser of a Singer Cycle has the form Z21 : Z6 and contains

subgroups Z7 × D6 and F21 × D6 that satisfy the conditions with c = 3, d = 7,

and the subgroup F21 × D6 also satisfies the conditions with c = 7, d = 3. For

the Colbourn-McCalla linear space, again |P| = 91 is a product of two primes

and so C′ = C. It was shown in [9] that there is a subgroup of automorphisms of

the form Z7 × D26 satisfying the conditions with c = 13, d = 7. These examples

were given in [13, Theorem 1.6 (b)].

Thus we may assume that S is not one of these two linear spaces. Then by

[13, Theorem 1.6], setting K := G(C′), all of the following hold.

(i) specC′ S = {1, 2}, and hence the C′-intersection type is (1k−2x′

, 2x′

) ;

(ii) K = N : Z2 ≃ D2c′ with N ≃ Zc′ , G has a normal subgroup X ×K where

X := CG(K), and either

(a) X = M : Zh where M ∼= Zd′ , for some h dividing d′ − 1, and one of

lines 1–6 of Table 1 holds; or

(b) GC′

is imprimitive, and line 7 of Table 1 holds.

In lines 1–6, the integer d′ is prime, and since d divides d′ it follows that d′ = d

and hence C′ = C for these lines. Also for lines 1 and 7, b(r) = 1 and hence in

these lines S is a projective plane.

We take this analysis further. Lines 1–6 of Table 1 correspond to cases 6, 8,

9, 11, 17, 18, respectively analysed on page 59 of [13], and line 7 of Table 1
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line k c′ d′ x′ y′ d′1 d′2 b(r) comment

1 10 7 13 3 6 4 3 1 projective plane

2 10 41 11 4 1 2 4 5

3 11 17 13 4 3 3 4 2

4 12 61 13 5 1 2 5 6

5 16 113 17 7 1 2 7 8

6 17 43 19 7 3 3 7 3

7 17 13 21 6 10 5 6 1 projective plane

Table 1: Parameters for Lemma 4.1

corresponds to case 14 analysed on page 60 of [13]. It is proved there that

in all of these cases, K ≃ D2c′ , and X is defined as CG(K), the kernel of the

natural conjugation action of G on K. It is observed that X ∩ K = 1 and

G/X ≤ Aut(K). However it is wrongly asserted that Aut(K) ≃ Zc′ · Zc′−1.

In fact Aut(K) ≃ K ≃ D2c′ since c′ is odd. Now X ∩ K = 1 implies that

K ≃ XK/X ≤ G/X ≤ Aut(K) ≃ K, and hence G = XK ≃ X × K in all

these cases. Moreover, since an involution in K fixes a line of S, it follows that

b divides |G|/2. In lines 2–6, |G|/2 = c′d′h = vh, and hence b(r) divides h.

This divisibility condition also holds for line 1 since in that case b(r) = 1. This

completes the proof. �

From now on we will assume that S is neither PG2(4) nor the Colbourn-

McCalla design. Note that Lemmas 3.2 and 3.3 apply to all lines of Table 1,

proving in particular that G preserves a grid structure on the point set.

Corollary 4.2. In each of lines 1–7 of Table 1, G preserves a grid structure P =

G
(C′,D)
d′×c′ on points, where D is the set of X-orbits in P with X as in Lemma 4.1.

Moreover, the X-action on C′ is equivalent to its action on each of these orbits.

Proof. Suppose that one of the lines of Table 1 holds. Then all the conditions

of Lemma 3.2 hold relative to the partition C′, and hence G preserves a second

point-partition D such that P = G
(C′,D)
d′×c′ is a grid of type d′ × c′. Moreover, each

part D of D is the fixed point set of an involution u in K = G(C′). Now 〈u〉 is a

point stabiliser in G(C′), and its normaliser in G is X × 〈u〉. Therefore X × 〈u〉

acts transitively on the fixed point set D of 〈u〉, and thus D is an X-orbit. Hence

D is the set of X-orbits in P. Clearly the X-action on C′ is equivalent to its

action on each of these orbits. �

Our next step is to prove that lines 2–6 do not lead to any examples.

Lemma 4.3. There are no examples for lines 2–6 of Table 1. Moreover, in the case

of line 1, G = X × G(C), where X ≃ Z13 and G(C) = D14.
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Proof. By Corollary 4.2, G preserves a grid structure P = G
(C′,D)
d′×c′ , where D is

the set of X-orbits in P. This implies that the partition D is also G-normal, and

we have G(D) = X. Moreover, the number of D-inner pairs on a line is y′, and

for each of the lines 1–6, y′ < 8. Thus [13, Theorem 1.6] applies for these lines

with C′, K replaced by D, X, and we deduce that X is semiregular on P. Thus

the integer h in Lemma 4.1 is 1. Since, by Lemma 4.1, h is divisible by b(r), it

follows that lines 2–6 lead to no examples, and in the case of line 1, we have

X ≃ Z13. �

Now we show that, in the case of line 7 of Table 1, the group G must contain

at least one of only two types of line-regular subgroups. Here F21 = Z7 : Z3

denotes the Frobenius group of order 21.

Lemma 4.4. If line 7 of Table 1 holds, then G has a line-transitive subgroup

Y × G(C′), where Y ≤ X with X as in Lemma 4.1, Y ≃ F21 or Z21, and G(C′) ≃

D26.

Proof. By Lemma 4.1, GC′

= XC′

≃ X is imprimitive, and by Corollary 4.2, the

set D of X-orbits in P forms a G-invariant partition, and the X-action on C′ is

equivalent to its action on each of these orbits. Thus it is sufficient to find a

subgroup Y of X such that Y ≃ F21 or Z21, with Y regular on an X-orbit D. By

Lemma 3.2, D is the fixed point set of an involution u in G(C′), and hence the

group GD induced by GD = X × 〈u〉 on D is equal to XD ≃ X.

Suppose first that XC′

is quasiprimitive, that is, all non-trivial normal sub-

groups of X are transitive on C′. Since XC′

is imprimitive, this means that

there is a non-trivial X-invariant partition C′′ of C′ on which X acts faithfully.

This implies that |C′′| = 7 and X ≤ S7. Since a minimal normal subgroup S

of X is transitive on C′ of degree 21, it follows that S 6= Z7 or A7, and hence

S = X = PSL(2, 7). In this case a Frobenius subgroup Y of X of order 21 must

act regularly on C′ and D, since Xα ≃ D8.

Thus we may assume that X has a non-trivial normal subgroup M that is

intransitive on D. Then X permutes the M -orbits in D transitively, so M has

equal length orbits in D of length 3 or 7, and we may assume that M is equal to

the kernel of this action. Since G(C′) centralises M , the subgroup M is normal

in G and the set D′ of M -orbits in P is a G-invariant partition that refines D. By

[5, Theorem 1], M is faithful on each of its orbits in P.

Suppose that M has orbits of length 3 in P. Then M = Z3 or S3, and so

X/CX(M) ≤ 2. Hence CX(M) is transitive on the seven M -orbits in D, and

CX(M) ∩ M ≤ Z3. Thus if a ∈ M has order 3, and z ∈ CX(M) has order 7,

then 〈az〉 ≃ Z21 and is regular on D.
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We may therefore assume that each non-trivial, intransitive normal subgroup

of X has 3 orbits of length 7 in D. In this case M acts faithfully on each orbit

of degree 7. Suppose that M 6= Z7. Then, for all possibilities, M has trivial

centre and Aut(M)/M ≤ Z2. Thus |X/(MCX(M))| is not divisible by 3, and

so CX(M) permutes transitively the three M -orbits in D and CX(M) ∩ M = 1.

This time, if a ∈ M has order 7, and z ∈ CX(M) has order 3, then 〈az〉 ≃ Z21

and is regular on D. Finally suppose that M = Z7. If CX(M) is transitive on D

then we obtain a subgroup Z21 of CX(M) acting regularly as required, while if

CX(M) is intransitive on D then CX(M) = M and X ≤ AGL(1, 7). In this last

case we have a subgroup F21 of X acting regularly on D. �

We complete consideration of lines 1 and 7 in the following section.

4.1. The projective plane cases

Lemma 4.5. The only projective plane of order 9 admitting a line-transitive action

of the cyclic group Z91 is the Desarguesian plane PG2(9). Moreover PG2(9) admits

a line-transitive group G ∼= Z13 × D14 corresponding to line 1 of Table 1.

Proof. Suppose that S = (P,L) is a projective plane of order 9 admitting a

line-transitive cyclic subgroup G = 〈a〉 ∼= Z91 of automorphisms. Note that

the point set P can be identified with the set G in such a way that G acts by

multiplication. The G-action is line-transitive and point imprimitive, preserv-

ing the point partition C = {Ci | 0 ≤ i < 13}, where Ci = {a13j+i | 0 ≤ j < 7}.

Thus the algorithm in [1] may be used to find all such projective planes up to

isomorphism. A computer search using this algorithm led to 12 base lines of

(possibly isomorphic) projective planes. The search for the designs took 20 sec-

onds on a Macintosh PowerBook G4, during which around 3 million backtrack

nodes were examined by the program. Using the software package nauty [10]

(version 2.2), the 12 designs from the search were all identified as the Desar-

guesian projective plane PG2(9). This proves the first assertion.

Finally we consider S = PG2(9). The normaliser of a Singer cycle in PΓL(3, 9)

is Z91 : Z6 and contains a unique subgroup of the form Z91 : Z2. This subgroup

may be identified with a subgroup Z91 of the multiplicative group of a field

of order 36, extended by a field automorphism of order 2 that fixes pointwise

a subfield of order 33. Thus this subgroup is isomorphic to Z13 × D14 (as in

Lemma 4.3) and so PG2(9) is the unique linear space corresponding to line 1

of Table 1. �

Lemma 4.6. Up to isomorphism, there is a unique linear space corresponding to

line 7 of Table 1, namely the Desarguesian projective plane PG2(16).
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Proof. By Lemma 4.3, we may identify the point set with P = G
(C′,D)
d′×c′ ; we use

the notation of (6) for points. By Lemma 4.4, we may assume that the line

transitive group is G = G(D) × G(C′) with G(D) = Z21 or F21, and G(C′) = D26.

We may take G(C′) = Z13 : Z2, with Z13 = 〈t0,1〉 the additive group of integers

modulo 13, and Z2 = 〈s〉, where ts0,i = t0,−i for each integer i modulo 13.

Also either G(D) = Z21 = 〈t1,0〉, the additive group of integers modulo 21, or

G(D) = F21 = 〈t1,0, s
′〉, where 〈t1,0〉, the additive group of integers modulo 7,

and ts
′

i,0 = t2i,0 for each integer i modulo 7.

First we prove that the Desarguesian projective plane PG2(16) provides an

example for the first type of group, but not the second type. For S = PG2(16),

the group G is a subgroup of PΓL(3, 16), and G is contained in the normaliser

of a cyclic subgroup of order 13. Thus G must be contained in the normaliser Y

of a Singer cycle in PΓL(3, 16). Now Y := Z273 : Z12, where the cyclic normal

subgroup 〈y〉 ≃ Z273 may be identified with the multiplicative group of a field

of order 212 modulo the multiplicative group of its subfield of order 24, and the

cyclic subgroup Z12 is generated by the Frobenius automorphism σ : y → y2.

This means that the subgroup of G of order 13 is 〈y21〉. There is an element

of G of order 3 that centralises this subgroup, and the only such elements in Y

are y91 and its inverse. Also the only subgroup of Y of order 7 is 〈y39〉. Hence

G contains 〈y21, y91, y39〉 = 〈y〉 ≃ Z273. Since |G| = 273 × 2, it follows that G

contains no subgroup F21 × D26. On the other hand the subgroup

〈y, σ6〉 = 〈y13〉 × 〈y21, σ6〉 ≃ Z21 × D26

acts on S as required, giving an example.

Now we describe our analysis that proves that S must be PG2(16).

It is not difficult to prove that each of the two groups G above has the fol-

lowing orbit types on horizontal, vertical and skew pairs of points: 6 orbits of

length 273 on horizontal pairs, 10 orbits of length 273 on vertical pairs, and 60

orbits of length 546 on skew pairs. In particular, by Lemma 2.2, µ(O, λ) = 1 for

each horizontal orbit O.

Let λ be a line containing an orbit of 〈s〉 of length 2. Then λ is fixed by s,

and 〈s〉 = Gλ. By Lemma 3.3, the characteristic matrix of λ has one column

of weight 5, namely the unique column fixed by s, and 6 pairwise disjoint rows

of weight 2 corresponding to 12 columns of weight 1; each pair of columns

corresponding to the two non-zero entries in one of these rows is interchanged

by s. The C-inner pairs which arise from the 6 rows of weight 2 represent the 6

different horizontal orbits (see Lemma 2.2).

A computer search using a partial implementation of the algorithm described

in [1] was conducted for each group G. Since each pair of points lies in a unique

line, we decided to search for the line λ containing the points α1 = α0,0 and
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α2 = α0,1. Thus we began with the set A = {α1, α2} (a horizontal pair), and

we used the fact that Gλ contains the involution s that fixes this pair. During

the search we made sure that we chose whole orbits under 〈s〉 for addition to

the current set. We did not re-compute the setwise stabiliser GA during the

procedure when A was enlarged. This was because we did not have a fast

algorithm for computing set stabilisers. The extra information that might have

been gained from a possibly larger group, was offset by the time that would

have been used for this computation.

For the first group with G(D) = Z21, the search on a Macintosh PowerBook

G4 quickly yielded 12 base lines. The computing time was less than 2 minutes.

A total number of around 8.3 million backtrack nodes were examined by the al-

gorithm. It turned out that all linear spaces generated by the 12 base lines were

isomorphic to the Desarguesian projective plane PG2(16). This was verified by

computing for each design the canonical form of its incidence matrix using the

software package nauty [10]. Here, a canonical form of the incidence matrix of

a design is simply a unique representative of all incidence matrices of designs

isomorphic to the given design. Once the canonical form has been computed,

isomorph checking is equivalent to equality testing of the corresponding canon-

ical incidence matrices. In order to prove that the designs were isomorphic to

PG(2, 16), the latter design was constructed separately and its canonical inci-

dence matrix was computed as well. It turned out that the canonical incidence

matrices of the 12 designs and the canonical incidence matrix of PG(2, 16) were

all identical. This proves that the designs are all isomorphic to PG(2, 16). In or-

der to treat incidence matrices of designs with nauty, a graph had to be created

which encodes the design. This graph is a bipartite graph, with vertices corre-

sponding to points and blocks of the design. The edges in the graph correspond

to incident point/line pairs. The isomorphism types of projective planes corre-

spond to the isomorphism classes of this type of graph, where the isomorphisms

are required to preserve the bipartition. In order to have nauty compute the

canonical form with respect to this class of isomorphisms, the bipartition was

handed to nauty in the form of an initial partition of the vertices of the graph.

The details of how to specify such a partition are described in the nauty User

Guide [10].

For the second group with G(D) = F21, the computer found no solutions at

all. The search took less than one minute time. A total number of around 3.6

million backtrack nodes were examined by the algorithm. The best that could

be found were 4620 partial baselines of size 13. This completes the proof. �
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