Vol. 8, No. 1, 2008

Download this article
Download this article For screen
For printing
Recent Issues
Volume 18
Volume 16
Volume 15
Volume 14
Volume 13
Volume 12
Volume 11
Volume 10
Volume 9
Volume 8
Volume 6+7
Volume 5
Volume 4
Volume 3
Volume 2
Volume 1
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN 2640-7345 (online)
ISSN 2640-7337 (print)
Author Index
To Appear
 
Other MSP Journals
Collinear triples in permutations

Liangpan Li

Vol. 8 (2008), No. 1, 171–173
DOI: 10.2140/iig.2008.8.171
Abstract

Let α : Fq Fq be a permutation and Ψ(α) be the number of collinear triples in the graph of α, where Fq denotes a finite field of q elements. When q is odd, Cooper and Solymosi once proved Ψ(α) (q 1)4 and conjectured the sharp bound should be Ψ(α) (q 1)2. In this note we confirm this conjecture.

Keywords
collinear triple, permutation, Kakeya set
Mathematical Subject Classification 2000
Primary: 11T99
Milestones
Received: 21 May 2008
Accepted: 2 September 2008
Authors
Liangpan Li