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Abstract

If φ is a nontrivial automorphism of a thick building ∆ of purely infinite

type, we prove that there is no bound on the distance that φ moves a cham-

ber. This has the following group-theoretic consequence: If G is a group of

automorphisms of ∆ with bounded quotient, then the center of G is trivial.
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Introduction

A well-known folklore result says that a nontrivial automorphism φ of a thick

Euclidean building X has unbounded displacement. Here we are thinking of X

as a metric space, and the assertion is that there is no bound on the distance that

φ moves a point. [For the proof, consider the action of φ on the boundary X∞ at

infinity. If φ had bounded displacement, then φ would act as the identity on X∞,

and one would easily conclude that φ = id.] In this note we generalize this

result to buildings that are not necessarily Euclidean. We work with buildings ∆

as combinatorial objects, whose set C of chambers has a discrete metric (“gallery

distance”). We say that ∆ is of purely infinite type if every irreducible factor of

its Weyl group is infinite.

Theorem. Let φ be a nontrivial automorphism of a thick building ∆ of purely in-

finite type. Then φ, viewed as an isometry of the set C of chambers, has unbounded

displacement.

It is possible to prove the theorem by using the Davis realization of ∆ as

a CAT(0) metric space [3] and arguing as in the Euclidean case. (But more
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work is required in the non-Euclidean case.) We instead give an elementary

combinatorial proof based on a result about Coxeter groups (Lemma 2.2) that

may be of independent interest. We prove the lemma in Section 2, after a review

of the Tits cone in Section 1. We then prove the theorem in Section 3, and we

obtain the following (almost immediate) corollary: If G is a subgroup of Aut(∆)

such that there is a bounded set of representatives for the G-orbits in C, then

the center of G is trivial.

We conclude the paper by giving a brief discussion in Section 4 of displace-

ment in the spherical case. We are grateful to Hendrik Van Maldeghem for

providing us with some counterexamples in this connection (see Example 4.1

and Remark 4.5).

1 Preliminaries on the Tits cone

In this section we review some facts about the Tits cone associated to a Coxeter

group [1, 2, 5, 11, 15]. We will use [1] as our basic reference, but much of what

we say can also be found in one or more of the other cited references.

Let (W,S) be a Coxeter system with S finite. Then W admits a canonical

representation, which turns out to be faithful (see Lemma 1.2 below), as a

linear reflection group acting on a real vector space V with a basis {es | s ∈ S}.

There is an induced action of W on the dual space V ∗. We denote by C0 the

simplicial cone in V ∗ defined by

C0 := {x ∈ V ∗ | 〈x, es〉 > 0 for all s ∈ S} ;

here 〈−,−〉 denotes the canonical evaluation pairing between V ∗ and V . We

call C0 the fundamental chamber. For each subset J ⊆ S, we set

AJ := {x ∈ V ∗ | 〈x, es〉 = 0 for s ∈ J and 〈x, es〉 > 0 for s ∈ S r J} .

The sets AJ are the (relatively open) faces of C in the standard terminology of

polyhedral geometry. They form a partition of the closure C0 of C0 in V ∗.

For each s ∈ S, we denote by Hs the hyperplane in V ∗ defined by the linear

equation 〈−, es〉 = 0. If follows from the explicit definition of the canonical

representation of W (which we have not given) that Hs is the fixed hyperplane

of s acting on V ∗. The complement of Hs in V ∗ is the union of two open

halfspaces U±(s) that are interchanged by s. Here

U+(s) := {x ∈ V ∗ | 〈x, es〉 > 0} ,

and

U−(s) := {x ∈ V ∗ | 〈x, es〉 < 0} .
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The hyperplanes Hs are called the walls of C0. We denote by H0 the set of walls

of C0.

The support of the face A = AJ , denoted suppA, is defined to be the inter-

section of the walls of C0 containing A, i.e., suppA =
⋂

s∈J
Hs. Note that A is

open in suppA and that suppA is the linear span of A.

Although our definitions above made use of the basis {es | s ∈ S} of V , there

are also intrinsic geometric characterizations of walls and faces. Namely, the

walls of C0 are the hyperplanes H in V ∗ such that H does not meet C0 and

H ∩ C0 has nonempty interior in H. And the faces of C0 correspond to subsets

H1 ⊆ H0. Given such a subset, let L :=
⋂

H∈H1
H; the corresponding face A is

then the relative interior (in L) of the intersection L ∩ C0.

We now make everything W -equivariant. We call a subset C of V ∗ a chamber

if it is of the form C = wC0 for some w ∈ W , and we call a subset A of V ∗ a

cell if it is of the form A = wAJ for some w ∈ W and J ⊆ S. Each chamber C

is a simplicial cone and hence has well-defined walls and faces, which can be

characterized intrinsically as above. If C = wC0 with w ∈ W , the walls of C

are the transforms wHs (s ∈ S), and the faces of C are the cells wAJ (J ⊆ S).

Finally, we call a hyperplane H in V ∗ a wall if it is a wall of some chamber, and

we denote by H the set of all walls; thus

H = {wHs | w ∈ W, s ∈ S} .

The set of all faces of all chambers is equal to the set of all cells. The union

of these cells is called the Tits cone and will be denoted by X in the following.

Equivalently,

X =
⋃

w∈W

wC0 .

We now record, for ease of reference, some standard facts about the Tits

cone. The first fact is Lemma 2.58 in [1, Section 2.5]. See also the proof of

Theorem 1 in [2, Section V.4.4].

Lemma 1.1. For any w ∈ W and s ∈ S, we have

wC0 ⊆ U+(s) ⇐⇒ l(sw) > l(w)

and

wC0 ⊆ U−(s) ⇐⇒ l(sw) < l(w) .

Here l(−) is the length function on W with respect to S. �

This immediately implies:

Lemma 1.2. W acts simply transitively on the set of chambers. �
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The next result allows one to talk about separation of cells by walls. It is

part of Theorem 2.80 in [1, Section 2.6], and it can also be deduced from

Proposition 5 in [2, Section V.4.6].

Lemma 1.3. If H is a wall and A is a cell, then either A is contained in H or A is

contained in one of the two open halfspaces determined by H. �

We turn now to reflections. The following lemma is an easy consequence of

the stabilizer calculation in [1, Theorem 2.80] or [2, Section V.4.6].

Lemma 1.4. For each wall H ∈ H, there is a unique nontrivial element sH ∈ W

that fixes H pointwise. �

We call sH the reflection with respect to H. In view of a fact stated above, we

have sHs
= s for all s ∈ S. Thus S is the set of reflections with respect to the

walls in H0. It follows immediately from Lemma 1.4 that

swH = wsHw−1 (1)

for all H ∈ H and w ∈ W . Hence wSw−1 is the set of reflections with respect

to the walls of wC0.

Corollary 1.5. For s ∈ S and w ∈ W , Hs is a wall of wC0 if and only if w−1sw

is in S.

Proof. Hs is a wall of wC0 if and only if s is the reflection with respect to a

wall of wC0. In view of the observations above, this is equivalent to saying

s ∈ wSw−1, i.e., w−1sw ∈ S. �

Finally, we record some special features of the infinite case.

Lemma 1.6. Assume that (W,S) is irreducible and W is infinite.

(1) If two chambers C,D have the same walls, then C = D.

(2) The Tits cone X does not contain any pair ±x of opposite nonzero vectors.

Proof. (1) We may assume that C = C0 and D = wC0 for some w ∈ W .

Then Corollary 1.5 implies that C and D have the same walls if and only

if w normalizes S. So the content of (1) is that the normalizer of S in W

is trivial. This is a well known fact. See [2, Section V.4, Exercise 3],

[4, Proposition 4.1], or [1, Section 2.5.6]. Alternatively, there is a direct

geometric proof of (1); see [1, Exercises 3.121 and 3.122].

(2) This is a result of Vinberg [15, p. 1112, Lemma 15]. See also [1, Sec-

tion 2.6.3] and [6, Theorem 2.1.6] for alternate proofs. �
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2 A lemma about Coxeter groups

We begin with a geometric version of our lemma, and then we translate it into

algebraic language.

Lemma 2.1. Let (W,S) be an infinite irreducible Coxeter system with S finite. If

C and D are distinct chambers in the Tits cone, then C has a wall H with the

following two properties:

(a) H is not a wall of D.

(b) H does not separate C from D.

Proof. For convenience (and without loss of generality), we assume that C is

the fundamental chamber C0. Define J ⊆ S by

J := {s ∈ S | Hs is a wall of D},

and set L :=
⋂

s∈J
Hs. Thus L is the support of the face A = AJ of C.

By Lemma 1.6(1), J 6= S, hence L 6= {0}. Since L is an intersection of walls

of D, it is also the support of a face B of D. Note that A and B are contained

in precisely the same walls, since they have the same span L. In particular, B is

not contained in any of the walls Hs with s ∈ S r J , so, by Lemma 1.3, B is

contained in either U+(s) or U−(s) for each such s.

Suppose that B ⊆ U−(s) for each s ∈ S r J . Then, in view of the definition

of A = AJ by linear equalities and inequalities, B ⊆ −A. But B contains a

nonzero vector x (since B spans L), so we have contradicted Lemma 1.6(2).

Thus there must exist s ∈ S r J with B ⊆ U+(s). This implies that D ⊆ U+(s),

and the wall H = Hs then has the desired properties (a) and (b). �

We now prove the algebraic version of the lemma, for which we relax the

hypotheses slightly. We do not even have to assume that S is finite. Recall that

(W,S) is said to be purely infinite if each of its irreducible factors is infinite.

Lemma 2.2. Let (W,S) be a purely infinite Coxeter system. If w 6= 1 in W , then

there exists s ∈ S such that:

(a) w−1sw /∈ S.

(b) l(sw) > l(w).

Proof. Let (Wi, Si) be the irreducible factors of (W,S), which are all infinite.

Suppose the lemma is true for each factor (Wi, Si), and consider any w 6= 1

in W . Then w has components wi ∈ Wi, at least one of which (say w1) is
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nontrivial. So we can find s ∈ S1 with w−1

1 sw1 /∈ S1 and l(sw1) > l(w1). One

easily deduces (a) and (b). We are now reduced to the case where (W,S) is

irreducible.

If S is finite, we apply Lemma 2.1 with C equal to the fundamental cham-

ber C0 and D = wC0. Then H = Hs for some s ∈ S. Property (a) of that lemma

translates to (a) of the present lemma by Corollary 1.5, and property (b) of that

lemma translates to (b) of the present lemma by Lemma 1.1.

If S is infinite, we use a completely different method. The result in this case

follows from Lemma 2.3 below. �

Recall that for any Coxeter system (W,S) and any w ∈ W , there is a (finite)

subset S(w) ⊆ S such that every reduced decomposition of w involves precisely

the generators in S(w). This follows, for example, from Tits’s solution to the

word problem [12]. (See also [1, Section 2.3.3]).

Lemma 2.3. Let (W,S) be an irreducible Coxeter system, and let w ∈ W be

nontrivial. If S(w) 6= S, then there exists s ∈ S satisfying conditions (a) and (b)

of Lemma 2.2.

Proof. By irreducibility, there exists an element s ∈ S r S(w) that does not

commute with all elements of S(w). Condition (b) then follows from the fact

that s /∈ S(w) and standard properties of Coxeter groups; see [1, Lemma 2.15].

To prove (a), suppose sw = wt with t ∈ S. We have s /∈ S(w) but s ∈ S(sw)

(since l(sw) > l(w)), so necessarily t = s. Using induction on l(w), one now

deduces from Tits’s solution to the word problem that s commutes with every

element of S(w) (see [1, Section 2.3.3]), contradicting the choice of s. �

Finally, we consider what happens if W is finite. Here the conclusion of

Lemma 2.2 is false in general. For example, if w is the longest element w0 ∈ W ,

then one cannot even achieve condition (b) of the lemma. Nevertheless, there

is still something useful that one can say in cases where the lemma fails. We

need some notation: For any subset J ⊆ S, we denote by WJ the subgroup

generated by J , and we denote by w0(J) its longest element. We continue to

write w0 = w0(S) for the longest element of W .

Lemma 2.4. Let (W,S) be a Coxeter system with W finite. Fix w ∈ W , let

J := {s ∈ S | l(sw) > l(w)}, and suppose w−1sw ∈ S for all s ∈ J . Set K :=

w−1Jw ⊆ S. Then w0 = ww0(K). Consequently, w−1

0 Jw0 = K, and the coset

wWK contains w0.
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Proof. The second assertion follows at once from the first. To prove the first, set

σ(s) := w−1sw ∈ K for s ∈ J , so that

sw = wσ(s)

for all s ∈ J . This equation and the definition of J imply that w is right K-re-

duced and hence that

l(wv) = l(w) + l(v)

for all v ∈ WK . In particular, the (unique) longest element of the coset wWK is

u := ww0(K). To show that u = w0, we need to show that l(su) < l(u) for all

s ∈ S. If s ∈ J , we have su = wσ(s)w0(K) ∈ wWK , so l(su) < l(u) because u is

the longest element of wWK . And if s /∈ J , then

l(su) = l(sww0(K)) < l(w) + l(w0(K)) = l(u)

because l(sw) < l(w). �

3 Proof of the theorem

In this section we assume familiarity with basic concepts from the theory of

buildings [1, 8, 9, 13, 16].

Let ∆ be a building with Weyl group (W,S), let C be the set of chambers

of ∆, and let δ : C × C → W be the Weyl distance function. (See [1, Section

4.8 or 5.1] for the definition and standard properties of δ.) Recall that C has a

natural gallery metric d(−,−) and that

d(C,D) = l
(

δ(C,D)
)

for C,D ∈ C. Let φ : ∆ → ∆ be an automorphism of ∆ that is not necessarily

type-preserving. Recall that φ induces an automorphism σ of (W,S). From the

simplicial point of view, we can think of σ (restricted to S) as describing the

effect of φ on types of vertices. From the point of view of Weyl distance, σ is

characterized by the equation

δ(φ(C), φ(D)) = σ(δ(C,D))

for C,D ∈ C.

Our main theorem will be obtained from the following technical lemma:

Lemma 3.1. Assume that ∆ is thick. Fix a chamber C ∈ C, and set w :=

δ(C, φ(C)). Suppose there exists s ∈ S such that l(sw) > l(w) and w−1sw 6= σ(s).

Then there is a chamber D s-adjacent to C such that d(D,φ(D)) > d(C, φ(C)).
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Proof. Given a chamber D s-adjacent to C, set v := δ(D,φ(D)). We then have

the situation illustrated in the following schematic diagram, where t := σ(s):

C
w

s

φ(C)

t

D v φ(D)

Our task is to choose D so that l(v) > l(w).

Case 1. l(wt) > l(w). Then l(swt) > l(wt) because the conditions l(swt) <

l(wt), l(wt) > l(w), and l(sw) > l(w) would imply (e.g., by the deletion condi-

tion for Coxeter groups) swt = w, and the latter is excluded by assumption. In

this case we choose D s-adjacent to C arbitrarily. We then have δ(C, φ(D)) = wt

and δ(D,φ(D)) = swt:

C
w

s
wt

φ(C)

t

D
swt

φ(D)

Thus v = swt and l(v) = l(w) + 2.

Case 2. l(wt) < l(w). Then there is a unique chamber E0 t-adjacent to φ(C)

such that δ(C,E0) = wt. For all other E that are t-adjacent to φ(C), we have

δ(C,E) = w. Using thickness, we may choose D so that φ(D) 6= E0, and then

δ(C, φ(D)) = w and δ(D,φ(D)) = sw:

C
w

s
w

φ(C)

t

D sw φ(D)

Thus v = sw and l(v) = l(w) + 1. �

Suppose now that (W,S) is purely infinite and φ is nontrivial. Then we can

start with any chamber C such that φ(C) 6= C, and Lemma 2.2 shows that the

hypothesis of Lemma 3.1 is satisfied. We therefore obtain a chamber D such

that d(D,φ(D)) > d(C, φ(C)). Our main theorem as stated in the introduction

follows at once. We restate it here for ease of reference:
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Theorem 3.2. Let φ be a nontrivial automorphism of a thick building ∆ of purely

infinite type. Then φ, viewed as an isometry of the set C of chambers, has un-

bounded displacement, i.e., the set {d(C, φ(C)) | C ∈ C} is unbounded. �

Remark 3.3. Note that, in view of the generality under which we proved Lemma

2.2, the building ∆ is allowed to have infinite rank.

Remark 3.4. In view of the existence of translations in Euclidean Coxeter com-

plexes, the thickness assumption in the theorem cannot be dropped.

Corollary 3.5. Let ∆ and C be as in the theorem, and let G be a group of auto-

morphisms of ∆. If there is a bounded set of representatives for the G-orbits in C,

then G has trivial center.

Proof. Let M be a bounded set of representatives for the G-orbits in C, and let

z ∈ G be central. Then there is an upper bound M on the distances d(C, zC)

for C ∈ M; we can take M to be the diameter of the bounded set M∪ zM, for

instance. Now every chamber D ∈ C has the form D = gC for some g ∈ G and

C ∈ M, hence

d(D, zD) = d(gC, zgC) = d(gC, gzC) = d(C, zC) ≤ M.

Thus z has bounded displacement and therefore z = 1 by the theorem. �

Remark 3.6. Although Corollary 3.5 is stated for faithful group actions, we can

also apply it to actions that are not necessarily faithful and conclude (under the

hypothesis of the corollary) that the center of G acts trivially.

Remark 3.7. Note that the hypothesis of the corollary is satisfied if the action

of G is chamber transitive. In particular, it is satisfied if the action is strongly

transitive and hence corresponds to a BN-pair in G. In this case, however, the

result is trivial (and does not require the building to be of purely infinite type).

Indeed, the stabilizer of every chamber is a parabolic subgroup and hence is

self-normalizing, so it automatically contains the center of G. To obtain other

examples, consider a cocompact action of a group on a locally finite thick Eu-

clidean building (e.g., a thick tree). The corollary then implies that the center

of the group must act trivially.

4 Spherical buildings

The conclusion of Theorem 3.2 is obviously false for spherical buildings, since

the metric space C is bounded in this case. But one can ask instead whether or

not

dispφ = diam ∆ , (2)
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where diam ∆ denotes the diameter of the metric space C, and dispφ is the

displacement of φ; the latter is defined by

dispφ := sup{d(C, φ(C)) | C ∈ C}.

Note that, in the spherical case, equation (2) holds if and only if there is a

chamber C such that φ(C) and C are opposite. This turns out to be false in

general. The following counterexample was pointed out to us by Hendrik Van

Maldeghem.

Example 4.1. Let k be a field and n an integer ≥ 2. Let ∆ be the building

associated to the vector space V = k2n. Thus the vertices of ∆ are the subspaces

U of V such that 0 < U < V , and the simplices are the chains of such subspaces.

A chamber is a chain

U1 < U2 < · · · < U2n−1

with dim Ui = i for all i, and two such chambers (Ui) and (U ′
i
) are opposite if

and only if Ui + U ′
2n−i

= V for all i. Now choose a non-degenerate alternating

bilinear form B on V , and let φ be the (type-reversing) involution of ∆ that

sends each vertex U to its orthogonal subspace U⊥ with respect to B. For any

chamber (Ui) as above, its image under φ is the chamber (U ′
i
) with U ′

2n−i
= U⊥

i

for all i. Since U1 ≤ U⊥
1 = U ′

2n−1, these two chambers are not opposite.

Even though (2) is false in general, one can still use Lemma 3.1 to obtain

lower bounds on dispφ. Recall first the notion of opposite residue in a spherical

building [1, Section 5.7.1]. Let (W,S) be a Coxeter system with W finite. The

longest element w0 of W has order 2 and normalizes S. We therefore have an

involution σ0 of S, given by s 7→ w0sw0 for s ∈ S. We call two subsets J and

K of S opposite if K = σ0(J). And we say that a J-residue R and a K-residue

S of a spherical building ∆ are opposite if their types J and K are opposite and

there are chambers C ∈ R and D ∈ S such that C and D are opposite. This is

equivalent to saying that the simplices corresponding to R and S are opposite

in some (or every) apartment containing them.

Proposition 4.2. Let φ be a nontrivial automorphism of a thick spherical build-

ing ∆. Then ∆ contains a proper residue R such that φ(R) and R are opposite.

Equivalently, ∆ contains a nonempty simplex A such that φ(A) and A are opposite.

Proof. As before let σ be the automorphism of (W,S) induced by φ. We again

start with an arbitrary chamber that is moved by φ, and we repeatedly apply

Lemma 3.1 as long as possible. When the process stops, we have a cham-

ber C such that w := δ(C, φ(C)) is nontrivial and satisfies w−1sw = σ(s) for

all s ∈ J := {s ∈ S | l(sw) > l(w)}. In particular, w satisfies the hypotheses

of Lemma 2.4. Letting R be the J-residue containing C, its image φ(R) is a
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K-residue with K = σ(J) = w−1Jw. Lemma 2.4 therefore implies that φ(R)

and R are opposite residues. Moreover, they are proper residues (and therefore

correspond to nonempty simplices) because w 6= 1 and hence J 6= S. �

Remark 4.3. Proposition 4.2 was originally proved by Leeb [7, Sublemma 5.22],

who stated the conclusion in the following equivalent form: The geometric re-

alization X of ∆ contains a point x such that φ(x) and x are opposite. His proof

used spherical geometry in the apartments of X.

As an illustration of the proposition, consider the rank 2 case. Then ∆ is a

generalized m-gon for some m, and its diameter is m. Proposition 4.2 in this

case yields the following result.

Corollary 4.4. Let φ be a nontrivial automorphism of a thick generalized m-gon.

Then the following hold:

(a) dispφ ≥ m − 1.

(b) If φ is type preserving and m is odd, or if φ is type reversing and m is even,

then dispφ = m.

Proof. (a) Choose A as in the proposition. It is either a vertex or an edge. If

it is an edge, then dispφ = m. Otherwise, it is a vertex, and then any

edge C having A as one of its vertices is mapped to an edge φ(C) with

d(C, φ(C)) ≥ m − 1.

(b) Recall that opposite vertices have the same type if m is even and different

types if m is odd. So the hypotheses of (b) imply that no vertex of ∆ can

be mapped to an opposite vertex. The simplex A in the proof of (a) must

therefore be an edge, implying dispφ = m. �

(See also Tent [10] for a direct proof of the corollary.)

For spherical buildings of higher rank, Leeb’s result (Proposition 4.2) yields

the following less satisfying lower bound on displacement:

dispφ ≥ diam ∆ − r ,

where r is the maximal diameter of a proper residue of ∆. Note that r depends

only on the type of ∆ and is 1 in the rank 2 case.

We conclude by mentioning another family of examples, again pointed out

to us by Van Maldeghem.
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Remark 4.5. For even m = 2n, type-preserving automorphisms φ of generalized

m-gons with dispφ = m − 1 arise as follows. Assume that there exists a vertex

x in the generalized m-gon ∆ such that the ball B(x, n) is fixed pointwise by φ.

Here B(x, n) is the set of vertices with d(x, y) ≤ n, where d(−,−) now denotes

the usual graph metric, obtained by minimizing lengths of paths. Recall that

there are two types of vertices in ∆ and that opposite vertices always have the

same type since m is even. Let y be any vertex that does not have the same

type as x. Then y is at distance at most n − 1 from some vertex in B(x, n).

Since φ fixes B(x, n) pointwise, d(y, φ(y)) ≤ 2n − 2. So C and φ(C) are not

opposite for any chamber C having y as a vertex. Since this is true for any

vertex y that does not have the same type as x, dispφ 6= m and hence, by

Corollary 4.4(a), dispφ = m − 1 if φ 6= id. Now it is a well-known fact (see for

instance [14, Corollary 5.4.7]) that every Moufang m-gon possesses nontrivial

type-preserving automorphisms φ fixing some ball B(x, n) pointwise. (In the

language of incidence geometry, these automorphisms are called central or axial

collineations, depending on whether x is a point or a line in the corresponding

rank 2 geometry.) So for m = 4, 6, or 8, all Moufang m-gons admit type-

preserving automorphisms φ with dispφ = m − 1.
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