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Abstract

Let (W, S) be a Coxeter system. We give necessary and sufficient con-

ditions on the Coxeter diagram of (W, S) for W to be relatively hyperbolic

with respect to a collection of finitely generated subgroups. The periph-

eral subgroups are necessarily parabolic subgroups (in the sense of Coxeter

group theory). As an application, we present a criterion for the maximal

flats of the Davis complex of (W, S) to be isolated. If this is the case, then

the maximal affine sub-buildings of any building of type (W, S) are isolated.
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1 Introduction

Let X be a complete CAT(0) space. A k-flat in X is a subset which is isometric

to the k-dimensional Euclidean space. Since we will mainly be interested in

isolated flats, it is convenient to define a flat as a k-flat for some k ≥ 2. In

particular, geodesic lines are not considered to be flats. Let F be a collection of

closed convex subsets of X. We say that the elements of F are isolated in X if

the following conditions hold:

(A) There is a constant D < ∞ such that each flat F of X lies in a tubular

D-neighbourhood of some C ∈ F .
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(B) For each positive r < ∞ there is a constant ρ = ρ(r) < ∞ so that for any

two distinct elements C,C ′ ∈ F we have

diam
(

Nr(C) ∩Nr(C
′)

)

< ρ ,

where Nr(C) denotes the tubular r-neighbourhood of C.

We say that X has isolated flats if F consists of flats.

Let now (W,S) be a Coxeter system with S finite. Given a subset J ⊂ S,

we set WJ = 〈J〉; the group WJ as well as any of its W -conjugate, is called a

parabolic subgroup of W . We also set J⊥ = (S \ J) ∩ ZW (WJ ). The set J is

called spherical (resp. irreducible affine, affine, Euclidean) if WJ is finite (resp. an

irreducible affine Coxeter group, a direct product of irreducible affine Coxeter

groups, a direct product of finite and affine Coxeter groups). We say that J is

minimal hyperbolic if it is non-spherical and non-affine but every proper subset

is spherical or irreducible affine. Let X(W,S) be the Davis complex of (W,S).

Thus X(W,S) is a proper CAT(0) space [Dav98] and its isometry group contains

W as a cocompact lattice.

According to a theorem of G. Moussong [Mou88], the group W is Gromov

hyperbolic if and only if S has no irreducible affine subset of cardinality ≥ 3

and if for each non-spherical J ⊂ S, the set J⊥ is spherical. Our main result

gives necessary and sufficient conditions for W to be relatively hyperbolic with

respect to a collection of parabolic subgroups:

Theorem A. Let (W,S) be a Coxeter system with S finite, let P be a collection of

parabolic subgroups of W and let T be the set of types of elements of P. Then the

following conditions are equivalent:

(i) T satisfies the following conditions:

(RH1) For each irreducible affine subset J ⊂ S, there exists K ∈ T such

that J ⊂ K. Similarly, for each pair of irreducible non-spherical subsets

J1, J2 ⊂ S with [J1, J2] = 1, there exists K ∈ T such that J1∪J2 ⊂ K.

(RH2) For all K1,K2 ∈ T with K1 6= K2, the intersection K1 ∩ K2 is

spherical.

(ii) W is relatively hyperbolic with respect to P.

(iii) In the Davis complex X(W,S), the residues whose type belongs to T are

isolated.

(iv) In any building of type (W,S), the residues whose type belongs to T are

isolated.
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Basic definitions and properties of relatively hyperbolic groups may be con-

sulted in the standard references [Bow99] or [Far98].

Remark 1.1. Throughout this paper, the term ‘parabolic subgroup’ will be used

only in the sense which was defined above; this agrees with the standard con-

ventions in the theory of Coxeter groups. Given a group G which is relatively

hyperbolic with respect to subgroups H1, . . . ,Hn, it is customary to call any

conjugate of some Hi a parabolic subgroup of G. In order to avoid any confu-

sion in the present paper, we shall instead call these the peripheral subgroups

of G. Thus the term ‘parabolic’ will be exclusively used in its Coxeter group

acceptation.

Notice that we do not assume the buildings to be locally compact in (iv). Con-

ditions (RH1) and (RH2) can be checked concretely on the Coxeter diagram of

(W,S). Combining Theorem A with the following, one obtains in particular a

complete characterization of those Coxeter groups which are relatively hyper-

bolic with respect to any family of finitely generated subgroups:

Theorem B. Let (W,S) be a Coxeter system with S finite. If W is relatively

hyperbolic with respect to finitely generated subgroups H1, . . . ,Hm, then each Hi

is a parabolic subgroup of W .

It should be noted that there exist non-affine Coxeter groups which are not

relatively hyperbolic with respect to any family of parabolic subgroups. Con-

sider, for example, the Coxeter group W with Coxeter generating set S =

{s1, . . . , sn} defined by the following relations: [si, sj ] = 1 for |i − j| ≥ 2 and

o(sisj) = 4 for |i − j| = 1. It is easily verified, using Theorem A, that for n > 7,

the group W is not relatively hyperbolic with respect to any collection of proper

parabolic subgroups. For n = 7, one checks that the set

T =
{

{1, 2, 3, 5, 6, 7}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}
}

satisfies (RH1) and (RH2).

It happens however quite often that a Coxeter group is relatively hyperbolic

with respect to a maximal proper parabolic subgroup:

Corollary C. Suppose that there exists an element s0 ∈ S such that {s0}
⊥ is

spherical. Then W is relatively hyperbolic with respect to the parabolic subgroups

whose type belongs to the set

T =
{

S \ {s0}
}

∪
{

J ⊂ S | J is affine and contains s0

}

.

Of particular interest is the special case when the peripheral subgroups of a

relatively hyperbolic group are virtually nilpotent (or more generally amenable).
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As for any discrete group acting properly and cocompactly on a CAT(0) space,

any amenable subgroup of a Coxeter group is virtually abelian. Theorem A

yields the following characterization:

Corollary D. The following assertions are equivalent:

(i) For all non-spherical J1, J2 ⊂ S such that [J1, J2] = 1, the group 〈J1 ∪ J2〉
is virtually abelian.

(ii) For each minimal hyperbolic J ⊂ S, the set J⊥ is spherical.

(iii) The Davis complex X(W,S) has isolated flats.

(iv) The group W is relatively hyperbolic with respect to a collection of virtually

abelian subgroups of rank at least 2.

(v) In any building of type (W,S), the maximal residues of (non-spherical) Eu-

clidean type (i.e. the maximal non-spherical Euclidean sub-buildings) are

isolated.

The list of all minimal hyperbolic Coxeter systems is known (see [Bou68,

Ch. V, pp.133–134] or [Hum90, II.6.9]); in fact, it is not difficult to see that

a minimal hyperbolic subset of S has cardinality at most 10. Many Coxeter

systems (W,S) such that W is not Gromov hyperbolic do satisfy condition (ii).

In particular S may contain affine subsets.

Theorem A is deduced from the detailed study of flats in buildings and Cox-

eter groups which is made in [CH06]. The equivalence between (ii) and (iii) is

a consequence of [HK05, Appendix]. In fact, the theorem above allows one to

apply varied algebraic and geometric consequences of the isolation of subspaces

established in [loc. cit.] and [DS05]. We collect a few of them in the special

case of virtually abelian peripheral subgroups:

Corollary E. Assume that (W,S) satisfies the equivalent conditions of Corollary D.

Let Y be a building of type (W,S), F be the collection of maximal residues of

non-spherical Euclidean type and Γ < Isom(Y ) be a subgroup acting properly

discontinuously and cocompactly. Then:

(i) Γ is relatively hyperbolic with respect to the family of stabilizers of elements

of F ; each of these stabilizers is a cocompact lattice of a Euclidean building.

(ii) W and Γ are biautomatic.

(iii) Every connected component of ∂T X(W,S) (resp. Y ) is either an isolated

point or a Euclidean sphere (resp. a spherical building).

(iv) Every asymptotic cone of X(W,S) (resp. Y ) is tree-graded with respect to a

family of closed convex subsets which are flats (resp. Euclidean buildings);

furthermore any quasi-isometry of X(W,S) (resp. Y ) permutes these pieces.
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We refer to [DS05] for more information on asymptotic cones and tree-

graded spaces. It is known that all Coxeter groups are automatic [BH93], but

the problem of determining which Coxeter groups are biautomatic is still incom-

pletely solved: it follows from [CM05] that W is biautomatic whenever S has

no irreducible affine subset of cardinality ≥ 3. Corollary E shows biautomaticity

in many other cases.

Let us finally mention that the construction of cocompact lattices in Isom(Y )

is a delicate problem, unless the Coxeter system (W,S) is right-angled (i.e.

o(st) ∈ {1, 2,∞} for all s, t ∈ S). This question seems especially interesting

when (W,S) is 2-spherical, namely o(st) < ∞ for all s, t ∈ S. Besides the classi-

cal case of Euclidean buildings, some known constructions provide examples of

lattices when W is 2-spherical and Gromov hyperbolic [KV06]. However, I don’t

know any example of a cocompact lattice in Isom(Y ) in the case when W is a

2-spherical Coxeter group which is neither Euclidean nor Gromov-hyperbolic.

The situation is completely different when (W,S) is right-angled. In that case

indeed, graphs of groups provide a large family of examples of cocompact lat-

tices to which Corollary E may be applied.

In order to state this properly, let A be a finite simple graph with vertex set

I and for each i ∈ I, let Pi be a group. Let Γ = Γ(A, (Pi)i∈I) be the group

which is the quotient of the free product of the (Pi)i∈I by the normal subgroup

generated by all commutators of the form [gi, gj ] with gi ∈ Pi, gj ∈ Pj and

{i, j} spanning an edge of A. Let also (W, {si}i∈I) be the Coxeter system such

that o(sisj) = 2 (resp. o(sisj) = ∞) for each edge (resp. non-edge) {i, j} of A.

Then Γ acts simply transitively on the chambers of a building Y (A, (Pi)i∈I) of

type (W, {si}i∈I) by [Dav98, Theorem 5.1 and Corollary 11.7]. If each Pi is

finite, then this building is locally compact and, hence, Γ is a cocompact lattice

in its automorphism group. For example, if the graph A is a n-cycle with n ≥ 5,

then this building is a Bourdon building and Γ is a Bourdon lattice (these are

the Fuchsian buildings and their lattices defined and studied by M. Bourdon in

[Bou97]). Moreover, if each Pi is infinite cyclic, then Γ is a right-angled Artin

group.

For the Coxeter system (W, {si}i∈I), condition (ii) of Corollary D may be

expressed as follows: for each 3-subset J ⊂ I which is not a triangle, the subgraph

induced on J⊥ = {i ∈ I | {i, j} is an edge for each j ∈ J} is a complete graph.

Let now Saff be the set of all subsets of J of the form {i1, j1, . . . , in, jn} where

{ik, jk} is a non-edge for each k but all other pairs of elements are edges. Note

that for J = {i1, j1, . . . , in, jn}, the subgroup ΓJ of Γ generated by all Pi’s with

i ∈ J has the following structure:

ΓJ ≃ (Pi1 ∗ Pj1) × · · · × (Pin
∗ Pjn

) .
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Then Corollary E implies that, under the assumption (ii), the group Γ is rela-

tively hyperbolic with respect to the family of all conjugates of subgroups of the

form ΓJ with J ∈ Saff .

2 On parabolic subgroups of Coxeter groups

Recall that a subgroup of W of the form WJ for some J ⊂ S is called a standard

parabolic subgroup. Any of its conjugates is called a parabolic subgroup of W .

A basic fact on Coxeter groups is that any intersection of parabolic subgroups is

itself a parabolic subgroup. This allows to define the parabolic closure Pc(R) of

a subset R ⊂ W : it is the smallest parabolic subgroup of W containing R.

Lemma 2.1. Let G be a reflection subgroup of W (i.e. a subgroup of W generated

by reflections). Then there is a set of reflections R ⊂ G such that (G,R) is a Coxeter

system. Furthermore, if (G,R) is irreducible (resp. spherical, affine of rank ≥ 3),

then so is Pc(G).

Proof. For the first assertion, see [Deo89]. Any two reflections in R which do

not commute lie in the same irreducible component of Pc(R). Therefore, if

(G,R) is irreducible, then all elements of R are in the same irreducible com-

ponent of Pc(R). Since G = 〈R〉 and Pc(R) is the minimal parabolic subgroup

containing G, we deduce that Pc(R) is irreducible. If G is finite, then it is con-

tained in a finite parabolic subgroup (see [Bou68]), hence Pc(G) is spherical.

Finally, if (G,R) is affine of rank ≥ 3, then so is Pc(G) by [Cap06, Proposi-

tion 16]. �

Lemma 2.2. Let P ⊂ W be an infinite irreducible parabolic subgroup. Then the

normalizer of P in W splits as a direct product: NW (P ) = P × ZW (P ) and

ZW (P ) is also a parabolic subgroup of W .

Proof. See [Deo82, Proposition 5.5]. �

Lemma 2.3. Let G1, G2 be finitely generated reflection subgroups of W which are

irreducible, i.e. (Gi, Ri) is irreducible for Ri ⊂ Gi as in Lemma 2.1, and assume

that G1 is infinite and that [G1, G2] = {1}. Then either

Pc(〈G1 ∪ G2〉) ≃ Pc(G1) × Pc(G2)

or Pc(G1) = Pc(G2) is an irreducible affine Coxeter group of rank ≥ 3.
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Proof. By Lemma 2.1, the parabolic closure Pc(G1) is infinite and irreducible.

Given a reflection r ∈ G2, then r centralizes G1 by hypothesis, hence it nor-

malizes Pc(G1). Thus either r ∈ Pc(G1) or r centralizes Pc(G1) by Lemma 2.2.

Therefore, either G2 ⊂ Pc(G1) or G2 centralizes Pc(G1) and G2∩Pc(G1) = {1}.

If G2 centralizes Pc(G1) and G2 ∩ Pc(G1) = {1}, then Pc(G2) centralizes

Pc(G1) and Pc(G1) ∩ Pc(G2) = {1} by Lemma 2.2. Hence we are done in this

case.

Assume now that G2 ⊂ Pc(G1). Then, since G1 normalizes Pc(G2), we

deduce from Lemma 2.2 that Pc(G1) = Pc(G2). It is not difficult to see that G1

contains an element of infinite order w1 such that Pc(w1) = Pc(G1) (take for

example w1 to be the Coxeter element in the Coxeter system (G1, R1) provided

by Lemma 2.1). Similarly, let w2 ∈ G2 be such that Pc(w2) = Pc(G2) = Pc(G1).

Thus w1 and w2 are mutually centralizing. Moreover, we have 〈w1〉 ∩ 〈w2〉 <

G1 ∩ G2 = {1}: indeed, any infinite irreducible Coxeter group is center-free

by Lemma 2.2. Thus 〈w1, w2〉 ≃ Z × Z. By [Kra09, Corollary 6.3.10], this

implies that Pc(G1) = Pc(G2) is affine, and clearly of rank ≥ 3 since it contains

Z × Z. �

Let X = X(W,S) denote the Davis complex.

Lemma 2.4. Let r, r′, s, t be reflections. Assume that the wall Xt separates Xr

from Xr′

and that s commutes with both r and r′. Then either s also commutes

with t or s belongs to the parabolic closure of 〈r, r′〉.

Proof. Let H < W be the infinite dihedral subgroup generated by r and r′.

By assumption s centralizes H, whence s normalizes the parabolic Pc(H). By

Lemma 2.1, the parabolic subgroup Pc(H) is irreducible and non-spherical.

Since s is a reflection, we deduce from Lemma 2.2 that either s belongs to Pc(H)

or s centralizes Pc(H). This finishes the proof because, by [Cap06, Lemma 17],

the reflection t belongs to Pc(H). �

3 On Euclidean flats in the CAT(0) realization of

Tits buildings

Let now F be a flat in X = X(W,S); we remind the reader that dim(F ) ≥ 2

according to the convention adopted in this paper. We use the notation and ter-

minology of [CH06]. In particular, we denote by M (F ) the set of all walls which

separate points of F . Furthermore, for any set of walls M , we denote by W (M)

the subgroup of W generated by all reflections through walls in M . For any

m ∈ M (F ), the set m ∩ F is a Euclidean hyperplane of F [CH06, Lemma 4.1].
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Two elements m,m′ of M (F ) are called F -parallel if the hyperplanes m∩F and

m′ ∩ F are parallel in F . The following result collects some key facts on flats in

X established in [CH06]:

Proposition 3.1. Let F be a flat in X = X(W,S). Then the F -parallelism in

M (F ) induces a finite partition

M (F ) = M0 ∪ M1 ∪ · · · ∪ Mk

such that

Pc(W (M (F ))) ≃ Pc(W (M0)) × · · · × Pc(W (Mk)) ,

where each W (Mi) is a direct product of infinite irreducible Coxeter groups and

W (M0) is a direct product of irreducible affine Coxeter groups. Moreover, the set

Mi is non-empty for each i ≥ 1 and if M0 = ∅, then k ≥ dimF .

Proof. Let M (F ) = M1 ∪ · · · ∪ Ml be the partition of M (F ) into F -parallelism

classes. Since the dimension of F is at least 2, we have l ≥ 2. By Lemma 2.1

and [CH06, Lemma 4.3], the reflection subgroup W (Mi) is a direct product

of infinite irreducible Coxeter groups. In particular W (Mi) is center-free by

Lemma 2.2.

Let M0 = MEucl(F ) ⊂ M (F ) be the subset defined after Remark 4.4 in

[CH06]. The group W (M0) is a direct product of finitely many irreducible affine

Coxeter groups of rank ≥ 3 by [CH06, Proposition 4.7]. Moreover, by [CH06,

Lemma 4.6(ii)], we have either Mi ∩MEucl(F ) = ∅ or Mi ∩MEucl(F ) = Mi for

each i ∈ {1, . . . , l}. Thus, without loss of generality, we may and shall assume

that M0 = MEucl(F ) = Mk+1 ∪ Mk+2 ∪ · · · ∪ Ml for some k ≥ 0 (with k = l if

MEucl(F ) = ∅).

Let now i ≤ k. By [CH06, Lemma 4.6(iii)], for each j 6= i, the subgroups

W (Mi) and W (Mj) centralize each other. Since moreover, both of them are

center-free, we obtain

W (M (F )) ≃ W (M0) × · · · × W (Mk) .

The fact that this decomposition passes to the parabolic closure follows easily

from Lemma 2.3 and the fact that finitely generated infinite irreducible Coxeter

groups have trivial center.

Finally, if M0 = MEucl(F ) is empty, then the fact that k ≥ dimF follows from

the proof of [CH06, Theorem 5.2], but only the fact that k ≥ 2 is relevant to

our later purposes. �

An immediate consequence is the following:
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Corollary 3.2. Assume that condition (i) of Corollary D holds. Then, for each flat

F in X(W,S), the group Pc(W (M (F ))) is a direct product of irreducible affine

Coxeter groups. �

For the sake of future references, we also record the following important fact:

Proposition 3.3. Let F be a flat in X and let P denote the parabolic closure of

W (M (F )). Then:

(i) Given any residue R whose stabilizer is P and any wall m which separates

some point of F to its projection to R, the wall m separates F from R and

the reflection rm centralizes P .

(ii) The flat F is contained in some residue whose stabilizer is P .

Proof. We denote by πR the nearest point projection onto R (one may use ei-

ther the combinatorial projection as defined in [Tit74, §3.19], or the CAT(0)

orthogonal projection; both play an equivalent role for our present purposes).

Let x ∈ F be any point. Since walls and half-spaces in X are closed and convex

and since R is P -invariant, it follows that the set M (x, πR(x)) of all walls which

separate x from πR(x) intersects M (R) trivially. In other words, the geodesic

segment joining x to πR(x) does not cross any wall of M (R). Therefore, since

M (F ) ⊂ M (R), any wall in M (x, πR(x)) separates F from R and, hence, meets

every element of M (F ).

Pick an element m ∈ M (x, πR(x)) and let µ ∈ M (F ) be any wall. If the

reflections rm and rµ do not commute, then the wall rm(µ) is distinct from m.

Furthermore rm(µ) also separates a point of F to its projection to R since other-

wise, we would have rm(µ) ∈ M (R) and hence Pc(rµ, rmrµrm) ⊂ P , which in

turn yields the absurd conclusion that rm belongs to P . By the above, this walls

therefore separates F from R and hence, it belongs to M (x, πR(x)). Since the

latter set of walls is finite, this shows that the subset of M (F ) consisting of all

those walls µ such that rm does not commute with rµ is finite.

By [CH06, Lemma 4.3], given any wall µ0 ∈ M (F ), there exist infinitely

many pairs of (pairwise distinct) walls {µ, µ′} ⊂ M (F ) such that µ0 separates

µ from µ′. The preceding paragraph therefore shows that, given µ0, we may

choose µ and µ′ in such a way that rm commutes with both rµ and rµ′ . No-

tice that rm does not belong to the parabolic subgroup P which, by definition,

contains the parabolic closure of 〈rµ, rµ′〉. Therefore Lemma 2.4 implies that

rm commutes with rµ0
. This implies that rm centralizes W (M (F )) and, hence,

normalizes P . Once again, since rm does not belong to P , it follows from

Lemma 2.2 that rm centralizes P , thereby establishing (i).
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For assertion (ii), choose R amongst the residues whose stabilizer is P in

such a way that it minimizes the distance to F . If some point of F does not

belong to R, there exists a wall which separates that point from its projection

to R. By (i) this walls separates F from R and is perpendicular to every wall

of R. Transforming R by the reflection through that wall, we obtain another

residue whose stabilizer is P , but closer to F . This contradicts the minimality

assumption made on R. �

4 Relative hyperbolicity

4.1 Peripheral subgroups are parabolic

The purpose of this section is to prove Theorem B. We will need a subsidiary

result on Coxeter groups. In order to state it properly, we make use of some

additional terminology which we now introduce.

Given an element w ∈ W and a half-space H of the Cayley graph Cay(W,S)

(or of the Davis complex X(W,S)), we say that H is w-essential if w.H ( H or

w−1.H ( H. Notice that an element w ∈ W admits a w-essential half-space if

and only if it has infinite order.

The reflection of W associated to H is denoted by rH.

Lemma 4.1. Let H < W be a finitely generated subgroup. Suppose that for any

w ∈ H and any w-essential half-space H, the reflection rH belongs to H. Then H

contains a parabolic subgroup of W as a normal subgroup of finite index.

Proof. Let P < H be the subgroup of H generated by all reflections rH asso-

ciated to a w-essential half-space H for some element w ∈ H. Thus P is a

reflection subgroup of W contained in H. In particular P is itself a Coxeter

group, see Lemma 2.1.

A crucial point, which follows from [Kra09, Th. 5.8.1] and [CH06, Lem. 5.3],

is that W admits a finite index torsion-free subgroup W ′ such that for all w ∈
W ′, we have

Pc(w) = 〈rH | H is a w-essential half-space〉.

In particular W ′ ∩ H is contained in P and hence P has finite index in H.

We now choose w ∈ P in such a way that in the Coxeter group P , the

parabolic closure PcP (w) of w relative to P is the whole P . Such an element w

always exists, see [CF, Cor. 3.3]. Let also P ′ denote the parabolic subgroup of W

generated by all those reflections rH such that H is a w-essential half-space. By

the definition of P , we have P ′ ⊂ P . By the property recalled in the preceding
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paragraph, the group P ′ has finite index in PcP (w) = P . If follows that P ′ is a

parabolic subgroup of W which is contained as a finite index subgroup in P . In

particular P ′ is a parabolic subgroup of W which is contained as a finite index

subgroup in H. Since any intersection of parabolic subgroups is parabolic, and

since P ′ has finitely many conjugates in H, the desired result follows. �

Proof of Theorem B. Consider the graph K with vertex set V = W∪(
⋃m

i=1
W/Hi)

and edge set defined as follows. Two elements of W are joined by an edge

if their quotient is an element of S; an element w ∈ W is joined to a coset

v ∈ W/Hi if and only if w ∈ v. Then K is a connected graph on which W acts

by automorphisms, and containing the Cayley graph of (W,S) as an induced

subgraph. By relative hyperbolicity, this graph is hyperbolic. Furthermore for

any n and any two vertices x, y, the collection of arcs of length n joining x to y is

finite. In other words, the graph K is fine in the terminology of [Bow99]. Upon

adding an edge between any two vertices at distance 2 in the Cayley graph of

(W,S), we may assume that the graph K has no cut-vertex.

We now apply Bowditch’s construction of a hyperbolic 2-complex X(K) start-

ing from K, see Theorem 3.8 (and also Lemmas 2.5 and 3.3) in [Bow99]. As

explained in loc. cit. the action of W on the boundary of the space X(K) is a ge-

ometrically finite convergence action, and the peripheral subgroups (namely the

W -conjugates of the Hi’s) are the stabilizers of the parabolic points in ∂X(K).

In particular any infinite order element h ∈ Hi acts as a parabolic element on

X(K); it has a unique fixed point ξi ∈ ∂X(K) and the limit set of 〈h〉 is precisely

{ξi}.

Let now r ∈ W be a reflection. Then r acts on the Cayley graph Cay(W,S)

as a reflection. Clearly r also acts as a reflection on K, in the sense that is

interchanges two non-empty convex subgraphs whose union is the whole K. It

follows from the construction of X(K) that r acts on X(K) as a quasi-reflection:

the two half-spaces H,H′ of K which are interchanged by r correspond in X(K)

to two subcomplexes X(H),X(H′) interchanged by r. It follows immediately

that these two subcomplexes are quasi-convex; the fixed point set of r at infinity

thus coincides with ∂X(H) ∩ ∂X(H′).

Let now w ∈ Hi be an infinite order element and let ξi ∈ ∂X(K) be the

parabolic point fixed by Hi. Let also H be a half-space of K such that w(H) (

H and denote by H′ the complementary half-space. Then, for n > 0 large

enough we have w(X(H)) ⊂ X(H). Since wn.x tends to ξi with w → ∞ for

each x ∈ X(K), we deduce that ξi belongs to ∂X(H). Applying the same

argument to h−1, we deduce on the other hand that ξi belongs to ∂X(H′). Thus

ξi ∈ ∂X(H) ∩ ∂X(H′). It follows that the reflection rH fixes ξi and, hence, that

rH belongs to Hi.
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By Lemma 4.1, each peripheral subgroup Hi contains a parabolic subgroup Pi

as a finite index normal subgroup. Since Pi has finite index in Hi it follows that

ξi is the unique fixed point of Pi in ∂X(K). In particular the normalizer of Pi

in W fixes ξi. It follows that Hi = NW (Pi). Upon replacing Pi by a finite index

subgroup, we may assume that each irreducible component of Pi is infinite. It

then follows from Lemma 2.2 that NW (Pi) = Hi is itself parabolic. �

4.2 Relatively hyperbolic Coxeter groups

The aim of this section is the proof of Theorem A. We treat the different impli-

cations successively.

(ii) ⇒ (iii).

Follows from [HK05, Theorems A.0.1 and A.0.3].

(ii) ⇒ (i).

If (RH1) fails, then W contains a free abelian subgroup which is not con-

tained in any element of P. If (RH2) fails, then some infinite order element

of W is contained in two distinct elements of P. Therefore, relative hyperbol-

icity of W with respect to P implies that (RH1) and (RH2) both hold.

(i) ⇒ (iii).

We start with a trivial observation. By condition (RH2), for each irreducible

affine subset J ⊂ S, there is a unique J0 ∈ T containing J . Similarly for each

irreducible non-spherical subset J ⊂ S such that J⊥ is non-spherical, there is a

unique J0 ∈ T containing J .

For each J ∈ T , we choose a residue of type J in X, which we denote by RJ .

We define F to be the set of all residues of the form w.RJ with J ∈ T and w

runs over a set of coset representatives of NW (WJ ) in W . Note that T , and

hence F , is non-empty unless W is Gromov hyperbolic; of course, we may and

shall assume without loss of generality that W is not Gromov hyperbolic.

Let now F be a flat in X. Up to replacing it by a conjugate, we may assume

without loss of generality that Pc(W (M (F ))) is standard. Let I ⊂ S be such

that Pc(W (M (F ))) = WI and I0 be the unique element of T containing I.

Let F0 ∈ F be the WI0
-invariant residue belonging to F . By Proposition 3.3,

any wall m separating a point of F from its projection to F0 actually separates

F from F0; furthermore the reflection rm through m centralizes WI0
. Let M

denote the set consisting of all these walls.

Recall that W (M (F )) = WI is a parabolic subgroup which is a direct product

of irreducible non-spherical subgroups. By (i) and Lemma 2.2, and since I0 is



Relatively hyperbolic buildings and Coxeter groups 27

the unique element of T containing I, it follows that the centralizer of WI is

contained in the centralizer of WI0
. Furthermore, by the definition of T , the

latter centralizer is a finite extension of WI0
= W (M (F0)). Since the walls in M

may not belong to M (F0), it finally follows that W (M) centralizes W (M (F0)).

Hence W (M) is finite, and so is Pc(W (M)) by Lemma 2.1. In particular, the

cardinality of M is bounded above by the maximal number of reflections in a

finite standard parabolic subgroup. This shows that the combinatorial distance

from any point x ∈ F to F0 is uniformly bounded. Therefore, condition (A) is

satisfied.

Now we prove (B). Let F, F ′ ∈ F be residues such that Nr(F ) ∩ Nr(F
′) is

unbounded for some r > 0. Then the visual boundaries ∂∞(F ) and ∂∞(F ′)

have a common point. In other words, there exists a geodesic ray ρ ⊂ F and

ρ′ ⊂ F ′ such that ρ and ρ′ are at bounded Hausdorff distance. Let M (ρ) be the

set of walls which separate two points of ρ. Since M (ρ) is infinite whereas for

any x ∈ ρ, the set of walls which separate x from ρ′ is uniformly bounded, it

follows that M (ρ) ∩ M (ρ′) is infinite. Therefore M (ρ) ∩ M (ρ′) contains two

walls m,m′ which do not meet [Cap06, Lemma 13].

Denote by P, P ′ the respective stabilizers of F, F ′ in W . Notice that P and P ′

are parabolic subgroups whose reflections consist of the sets M (F ) and M (F ′)

respectively. The preceding paragraph shows that P and P ′ share a common

infinite dihedral subgroup. By (RH2), this implies that P and P ′ coincide. In

view of the definition of F , we deduce that F and F ′ must coincide.

This shows that for any two distinct F, F ′ ∈ F and each r > 0, the set

Nr(F ) ∩ Nr(F
′) is bounded. The fact that its diameter depends only on r, but

not on the specific choice of F and F ′, follows from the cocompactness of the

W -action on X. Hence (B) holds.

(iv) ⇒ (iii).

Clear since the Davis complex X(W,S) is a (thin) building of type (W,S).

(iii) ⇒ (iv).

Let Y be a building of type (W,S) and F be the set of all J-residues of Y

with J ∈ T . Furthermore, given an apartment A in Y , we set

FA = {A ∩ F | F ∈ F , A ∩ F 6= ∅}.

Since (iii) holds and since an apartment in Y is nothing but an isometrically

embedded copy of the Davis complex X(W,S), it follows that the elements of

FA are isolated in A. Moreover, the constant D which appears in condition (A)

depends only on (W,S).

Let F be a flat in Y . Then F is contained in an apartment A by [CH06,
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Theorem 6.3]. Therefore condition (A) holds for Y since the elements of FA

are isolated in A.

Let now J, J ′ ∈ T and F, F ′ ∈ F be residues of type J and J ′ respectively.

Assume that Nr(F ) ∩ Nr(F
′) is unbounded for some r > 0. Let A be an apart-

ment contained a chamber c of F and let c′ be the combinatorial projection of c

onto F ′ (see [Tit74, §3.19] ). We denote by ρc,A the combinatorial retraction of

Y onto A centered at c. Recall that this maps any chamber x of Y to the unique

chamber x′ of A such that δY (c, x′) = δY (c, x), where δY : Ch(Y )×Ch(Y ) → W

denotes the Weyl distance.

By assumption, there exists an unbounded sequence c′ = c′0, c
′
1, . . . of cham-

bers of F ′ such that c′n lies at uniformly bounded distance from F . Since com-

binatorial retractions do not increase distances and since ρc,A maps any cham-

ber in F to a chamber in A ∩ F , it follows that the sequence (x′
n) defined by

x′
n = ρc,A(c′n) lies at uniformly bounded distance from A ∩ F . Furthermore,

by a standard property of the combinatorial projection, namely the gate prop-

erty (see [Tit74, Ch. 3]), for each chamber x′ ∈ F ′ there exists a minimal

gallery joining c to x′ via c′. Therefore, it follows that for each n, the chamber

x′
n lies in the J ′-residue containing x′

0, say F ′′. This shows in particular that

Nr(A ∩ F ) ∩ Nr(A ∩ F ′′) is unbounded. Since F ′′ is a residue of type J ′ and

since the residues whose type belong to T are isolated in A by assumption, it

follows that A ∩ F = A ∩ F ′′ and hence F = F ′′ and J = J ′. In particular

we obtain x′
0 ∈ F because c ∈ F and x′

0 ∈ F ′′. Since δY (c, x′
0) = δY (c, c′), we

deduce that c′ ∈ F , whence F = F ′ since J = J ′.

This shows that for any two distinct F, F ′ ∈ F and each r > 0, the set

Nr(F ) ∩ Nr(F
′) is bounded. The fact that its diameter depends only on r, but

not on the specific choice of F and F ′, follows from the corresponding fact for

apartments in Y . Hence (B) holds. �

Proof of Corollary C. It is immediate to check that the set T satisfies (RH1) and

(RH2). �

4.3 Isolated flats

Lemma 4.2. The following conditions are equivalent:

(i) The collection T of maximal Euclidean subsets of S satisfies (RH1) and

(RH2).

(ii) For all non-spherical J1, J2 ⊂ S such that [J1, J2] = 1, the group 〈J1 ∪ J2〉
is virtually abelian.
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(iii) For each minimal hyperbolic J ⊂ S, the set J⊥ is spherical.

Proof. The main point is that, given a Coxeter system (W,S), it is well known

the group W is virtually abelian if and only if it is a direct product of finite and

affine Coxeter groups, i.e. if S is Euclidean (see e.g. [MV00]).

(i) ⇒ (iii).

Let T be a collection of subsets of S satisfying (RH1) and (RH2). If (iii) fails,

then there exist a minimal hyperbolic subset J and a non-spherical irreducible

subset I ⊂ J⊥. By (RH1) there exists K ∈ T such that I ∪ J ⊂ K. Then 〈K〉 is

not virtually abelian since it contains 〈J〉, hence (i) fails as well.

(iii) ⇔ (ii).

If (ii) fails then there exists a non-spherical and non-affine subset J ⊂ S such

that J⊥ is non-spherical. Now any minimal non-spherical and non-affine subset

I of J is minimal hyperbolic, and since I ⊂ J we have I⊥ ⊃ J⊥. Thus (iii) fails

as well.

(ii) ⇒ (i).

The condition (ii) clearly implies that for each irreducible non-spherical sub-

set J , either J is affine and J ∪ J⊥ is Euclidean or J is non-affine and J⊥ is

spherical. In particular, every irreducible affine subset is contained in a unique

maximal Euclidean subset. In other words the collection T of maximal Eu-

clidean subsets of S satisfies (RH2). Moreover (RH1) clearly holds as well. �

Proof of Corollary D. In view of Theorem A, Lemma 4.2 and [HK05, Th. 1.2.1],

it is enough to prove that W is relatively hyperbolic with respect to its maximal

virtually abelian subgroups if and only if it is relatively hyperbolic with respect

to its maximal parabolic subgroups of Euclidean type. Since any parabolic sub-

group of Euclidean type is virtually abelian, the ‘if’ part is clear. Conversely, as-

sume that W is relatively hyperbolic with respect to its maximal virtually abelian

subgroups. Then conditions (i) and (ii) hold. In view of [CM05, Prop. 3.2], this

implies that the parabolic closure of any virtually abelian subgroup of rank ≥ 2

is of Euclidean type. In particular, if A < W is a maximal virtually abelian

subgroup, then A = Pc(A). �

Proof of Corollary E. Assertions (i) and (iii) follow from [HK05, Theorem A.0.1].

For (iv), one applies [DS05, Proposition 5.4]; one needs the fact that any asymp-

totic cone of a Euclidean building is itself a Euclidean building: this is estab-

lished in [KL97, Theorem 1.2.1]. The fact that W is biautomatic follows from
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[HK05, Theorem 1.2.2(5)]. The biautomaticity of Γ can then be deduced ei-

ther directly from [Swi06] or from (i) together with [Reb01] and the fact that

cocompact lattices of Euclidean buildings are biautomatic by [Swi06]. �
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