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Moufang sets related to polarities in

exceptional Moufang quadrangles of type F4

Koen Struyve∗

Abstract

Departing from a Moufang set related to a polarity in an exceptional

Moufang quadrangle of type F4, we construct a rank three geometry. The

main property of this new geometry is that its automorphism group is iden-

tical to the one of the underlying Moufang set, providing a tool to study this

Moufang set in a geometrical way. As a corollary we obtain that every auto-

morphism of an exceptional Moufang quadrangle of type F4 stabilizing the

absolute points of a polarity, also centralizes the polarity. This handles the

final case of a similar result for all polarities of Moufang n-gons with n ≥ 3.
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MSC 2000: 51E05, 51E12, 20B22

1. Introduction

Moufang sets are rank 1 buildings satisfying the Moufang property. They are the

glue in constructions of buildings with a big automorphism group (see e.g. [5])

and they play a fundamental role in the classification of certain twin buildings

(see [2]). The study of these groups is made harder by the lack of a suitable

canonical geometry. In one of his last lectures at Collège de France, Jacques Tits

suggested to remedy this by defining a kind of 2-design using the nilpotent struc-

ture of the root groups. A general problem is then to determine the collineation

group of this geometry with the hope to obtain a Fundamental Theorem for

the Moufang sets, i.e., the canonical situation should be that the automorphism

group of the geometry is precisely the automorphism group of the Moufang

∗The author is supported by the Fund for Scientific Research – Flanders (FWO - Vlaanderen)
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set (which is that part of the automorphism group of the group that preserves

the root group structure; in many cases these just coincide). This had already

been done in many situations, and in the present paper we deal with the last

“Frobenius-twisted” case, i.e., the last case where the definition of the Moufang

set involves a square root of the Frobenius endomorphism. Such Moufang sets

all arise from polarities in Moufang generalized n-gons, with n even.

The well known examples of the situation in the previous paragraph are the

Suzuki groups and the Ree groups (which also exist in the finite case). The

corresponding fundamental theorems are proved in [8] and [1]. In the present

paper we deal with a much lesser known and more recent case. We consider

the Moufang sets that arise from a polarity of an exceptional Moufang quad-

rangle of type F4. These quadrangles have been discovered by Richard Weiss

in the course of the classification of Moufang quadrangles in 1997 using the

root groups and commutation relations (see [6]). In [3], it is proved that these

quadrangles arise from involutions in buildings of type F4 in much the same

way as the exceptional quadrangles of types En, n = 6, 7, 8 arise from buildings

of type En. But a building of type F4 has a symmetric diagram, and certain ones

even are symmetric themselves. Among these, there also exist examples that

allow an involutive symmetry! In some cases, these properties carry over to

the exceptional Moufang quadrangles (if the involution defining these quadran-

gles commutes with the given symmetry), and so we obtain polarities in some

exceptional Moufang quadrangles of type F4, which were only recently discov-

ered, see [4]. The root groups have nilpotency class 3, and so we can define

canonical 2-designs in several ways. In fact, we can define a canonical geometry

of rank 3 in the same way as was done for the Ree groups in [1]. In the present

paper, we construct these geometries and prove the corresponding fundamental

theorems. We also list some consequences in Section 3.

2. Definitions and concepts

2.1. Moufang sets and rank one buildings

Let X be a set, with for each x ∈ X a group Ux (we name these the root groups)

acting on X while fixing x. Then (X, (Ux)x∈X) will be a Moufang set if the

following two conditions are met:

• For every x ∈ X, Ux acts regularly on X\{x};

• The set of all root groups is normalized by the group G† generated by all

the root groups.
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The group G† is called the little projective group. The full projective group is the

group of all elements of Sym(X) that leave the set of root groups invariant.

Choose an x ∈ X, let Vx be an nontrivial subgroup of Ux such that Vx is a

normal subgroup of G†
x. Now we can define for each y ∈ X an unique subgroup

Vy of Uy as the conjugate of Vx by an arbitrary element g ∈ G† with xg = y.

The rank one Moufang building defined on X by (Ux)x∈X relative to (Vx)x∈X is

the geometry (X, ∆) where

∆ =
{

{x} ∪ {yv | v ∈ Vx} | x, y ∈ X ∧ x 6= y
}

;

we will call these objects blocks. The element x of a block {x} ∪ {yv | v ∈ Vx}

will be called the gnarl of that block.

2.2. Exceptional quadrangles of type F4

Suppose K is a field of characteristic 2 and let L be a separable quadratic ex-

tension of K. Denote by x 7→ x̄ the non-trivial involutory field automorphism

of L fixing K pointwise. Let K
′ be a subfield of K containing the field K

2 of all

squares of K and let L
′ be the subfield generated by both L

2 and K
′. We then

have that L
2 ⊆ L

′ ⊆ L and because the map x 7→ x̄ restricted to L
′ has the

fixed subfield K
′, L

′ will be a separable quadratic extension of K
′. Suppose we

have two given elements α ∈ K
′ and β ∈ K such that one of the following two

equivalent conditions hold:

• ∀u, v ∈ L, a ∈ K
′ : uū + αvv̄ + βa = 0 =⇒ u = v = a = 0 ;

• ∀x, y ∈ L
′, b ∈ K : xx̄ + β2yȳ + αb2 = 0 =⇒ x = y = b = 0 .

We now identify U1 and U3 with the (additive) group L
′×L

′×K, and U2 and U4

with L×L×K
′. The following relations now define the generalized quadrangle

Q(K, L, K′, α, β) also known as the exceptional quadrangle of type F4.

[U1, U2] = [U2, U3] = [U3, U4] (1)

and

[(x, y, b)1, (x
′, y′, b′)3] =

(

0, 0, α(xx̄′ + x′x̄ + β2(yȳ′ + y′ȳ))
)

2
(2)

[(u, v, a)2, (u
′, v′, a′)4] =

(

0, 0, β−1(uū′ + u′ū + α(vv̄′ + v′v̄))
)

2
(3)
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[(x, y, b)1, (u, v, a)4] =
(

bu + α(x̄v + βyv̄), bv + xu + βyū,

b2a + aα(xx̄ + β2yȳ)

+ α(u2xȳ + ū2x̄y + α(v̄2xy + v2x̄ȳ))
)

2

·
(

ax + ū2y + αv2ȳ, ay + β−2(u2x + αv2x̄),

ab + bβ−1(uū + αvv̄)

+ α(β−1(xuv̄ + x̄ūv) + yūv̄ + ȳuv)
)

3
.

(4)

These Moufang quadrangles were discovered by Richard Weiss in 1997 in prepa-

ration of [6]. In 1999 Bernhard Mühlherr and Hendrik Van Maldeghem gave

an algebraic interpretation to these quadrangles by constructing them out of an

involution of an F4 Moufang building [3], furthermore they showed in [4] that

these quadrangles have polarities if and only if there is a Tits endomorphism φ

of L (i.e., an endomorphism such that (xφ)φ = x2 for all x in L) with image L
′

such that the restriction of φ to K is also a Tits endomorphism with image K
′.

In this case βφ will be equal to α. We let θ be the inverse of φ (defined on L
′).

From now on, we will always suppose we have a polarity and we have chosen

our coordinate system in such a way that this polarity takes the easy form:

(x, y, b)1 7→ (βxθ, βyθ, b2θ)4 (5)

(u, v, a)2 7→ (α−1u2θ, α−1v2θ, aθ)3 (6)

(x, y, b)3 7→ (βxθ, βyθ, b2θ)2 (7)

(u, v, a)4 7→ (α−1u2θ, α−1v2θ, aθ)1 . (8)

If we restrict the root groups U1, U3 to {0}×{0}×K and U2, U4 to {0}×{0}×K
′,

then we obtain the Suzuki-Tits subquadrangle W(K, φ).

2.3. Moufang sets from exceptional quadrangles of type F4

The absolute flags of a polarity of a Moufang quadrangle always form a Mou-

fang set. So in the case that an exceptional quadrangle of type F4 has a po-

larity, we also have a Moufang set named M(L, K, α, φ). We name the flag

{(∞), [∞]} of the quadrangle the element (∞) of the Moufang set, and the

flag {((0, 0, 0), (0, 0, 0), (0, 0, 0)), [(0, 0, 0), (0, 0, 0), (0, 0, 0)]} will be denoted as

[(0, 0, 0), (0, 0, 0)].

The form of a generic element of the root group U∞ of the element (∞) is
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given by (see [4]):

(

x, y, a
)

1

(

u, v, b
)

2

(

α−1u2θ + a2θx + β2x̄2θy + αβ2y2θȳ,

α−1v2θ + a2θy + x2θx + αy2θx̄, bθ + aa2θ + αβ(xθx̄θ + αyθȳθ)

+ αβ(β(yx̄θȳθ + ȳxθyθ) + xxθȳθ + x̄x̄θyθ) + ux̄θ

+ ūxθ + α(vȳθ + v̄yθ)
)

3

(

βxθ, βyθ, a2θ
)

4
(9)

We will use a shorter notation for the above element and name it the ele-

ment [(x, y, a), (u, v, b)]∞. The image of the flag [(0, 0, 0), (0, 0, 0)] under the

element [(x, y, a), (u, v, b)]∞ will be referred to as [(x, y, a), (u, v, b)]. In this

way, we have labeled all the absolute flags. This Moufang set has a sub Mou-

fang set related to the Suzuki-Tits subquadrangle (by taking the restriction to

{(∞)} ∪ {[(0, 0, a), (0, 0, b)] | a ∈ K, b ∈ K
′}).

2.4. Rank 1 Moufang buildings constructed from M(L, K, α, φ)

As U∞ has nilpotency class 3, we have two obvious candidates for choosing V∞,

namely

[U∞, U∞] = {[(0, 0, 0), (k, l,m)]∞ | k, l ∈ L,m ∈ K
′}

(subsets constructed this way we name spheres) and

[U∞, [U∞, U∞]] = {[(0, 0, 0), (0, 0,m)]∞ | m ∈ K
′}

(we name these circles). We obtain a rank 3 geometry Ω = (X,Y, Z, I) of the

points in the Moufang set (X), the spheres (Z), circles (Y ) and as incidence

relation I containment. The circles that are completely in the restriction to

{(∞)} ∪ {[(0, 0, a), (0, 0, b)] | a ∈ K, b ∈ K
′} form the blocks of a similar geome-

try constructed from the Moufang set related to the Suzuki-Tits quadrangle, of

which a similar study has been done by Hendrik Van Maldeghem in [8]. We will

reuse several techniques used in the latter paper here.

3. Statement of main results

In the previous section we have constructed the geometry Ω; our question is

now: what is the automorphism group of this geometry? We obtained a stronger

result, in the form that both the automorphism group of Ω and the truncated

geometry (X,Z, I), which consists of only the points and the spheres, are canon-

ically isomorphic to the subgroup of the automorphism group of the exceptional

quadrangle of type F4 centralizing the polarity and the full projective group of

the Moufang set M(L, K, α, φ).
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Theorem 3.1. The automorphism group of (X,Z, I) is isomorphic with the sub-

group of the automorphism group of the exceptional quadrangle of type F4 central-

izing the polarity and the full projective group of the Moufang set M(L, K, α, φ).

Corollary 3.2. The automorphism group of Ω is isomorphic with the subgroup of

the automorphism group of the exceptional quadrangle of type F4 centralizing the

polarity and the full projective group of the Moufang set M(L, K, α, φ).

This knowledge about the automorphisms centralizing the polarity has the

following interesting corollary:

Corollary 3.3. Each automorphism of an exceptional quadrangle of type F4 sta-

bilizing the set of absolute points of a certain polarity of the quadrangle, also

stabilizes the set of absolute lines and will centralize that polarity.

As the other cases have been handled before (the case of the Suzuki-Tits

quadrangle in [7], and the Ree hexagon in [1]), a more general result is now

immediate.

Corollary 3.4. Each automorphism of a Moufang n-gon with a polarity stabilizing

the set of absolute points of that polarity, also stabilizes the set of absolute lines

and centralizes that polarity, except if either n = 3, the projective plane is Pappian,

the characteristic of the underlying field is 2, and the polarity is not Hermitian

(i.e., there is no twisting field automorphism); or if n = 4 and the generalized

quadrangle is the smallest symplectic quadrangle W(2).

The polarities of the exceptions when n = 3 are sometimes called ‘pseudo-

polarities’. The set of absolute points of such a pseudo-polarity is the set of

points on a line L, and one additionally needs to fix the unique point (not

on L) through which every line is an absolute line (and this point can be chosen

arbitrarily).

4. Proof of main results

4.1. Automorphism group of (X, Z, I)

We denote this geometry with Ω′ to make the notations easier. It is easy to

see that each automorphism of the quadrangle centralizing the polarity, induces

canonically an element of the full projective group, which in turn induces an

automorphism of Ω′. The aim of the proof is to show that we can return from

an automorphism of Ω′ to an automorphism of the quadrangle centralizing the
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polarity, in such a way that applying these three consecutive group morphisms

brings us back to the original element.

The sphere with gnarl (∞) containing [(0, 0, 0), (0, 0, 0)] is given by the union

of the element {(∞)} with the orbit of [U∞, U∞] on [(0, 0, 0), (0, 0, 0)], which will

be {[(0, 0, 0), (k, l,m)] | k, l ∈ L,m ∈ K
′}. The first lemma gives us a geometric

interpretation of the spheres.

Lemma 4.1. The collection of absolute flags in the quadrangle forming the sphere

with gnarl {p, L} and containing {q,M} are those absolute flags of which the point

is collinear with the projection of q onto L.

Proof. If we look at the specific case of the flags {p, L} = (∞) and {q,M} =

[(0, 0, 0), (0, 0, 0)], we can see this is true by using coordinates within the quad-

rangle. Because the little projective group of the Moufang set, which also acts

on Ω, is constructed as a subgroup of the automorphism group of the quad-

rangle which is 2-transitive on the absolute flags and preserves collinearity this

property will be true for all choices of points in X. �

This lemma allows us to calculate several spheres, the ones we need are listed

in Appendix A. The derived geometry Ω′
(∞) is the geometry formed by the points

in X\(∞) and the intersections of the spheres through (∞) with X\(∞) (called

lines). The lines of Ω′
(∞) which have (∞) as gnarl will be called the vertical lines,

the others the non-vertical lines. The group U∞ acts transitively on both the set

of the vertical lines and the non-vertical ones (U∞ does not map vertical lines

to non-vertical lines or vice versa). The main question is if the stabilizer of (∞)

in Ω has one or two orbits on all the spheres through (∞). We will start under

the assumption that there is only one orbit (this will be denoted by [T ] and try

to examine the structure of Ω′
(∞) in more detail.

We first need an additional definition. A net is a geometry (P,B, I) con-

sistings of points (P ), lines (B) and an incidence relation (I) such that the

following two conditions are met:

• Two lines have at most one point in common;

• For each line L ∈ B and point x ∈ P not incident with L, there is exactly

one line incident with x not intersecting L.

These properties imply that B is partitioned in parallel classes, which are sets

of mutually non-intersecting lines such that each point is incident with exactly

one line of the parallel class.
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Lemma 4.2. If condition [T ] holds then Ω′
(∞) will be a net.

Proof. By condition [T ] one can always choose one line to be a vertical line

when checking these properties. We first compute in how many points two such

lines will intersect:

• Two vertical lines will never intersect as they form differents orbits of

[U∞, U∞];

• One vertical line and one non-vertical line: by using transitivity of U∞

on the non-vertical lines, we can suppose that the non-vertical line is

B[(0,0,0),(0,0,0)]. The intersection point with a generic vertical block B(x,y,a)

is [(x, y, a), (0, 0, 0)], so these always intersect in exactly one point.

This also proves that the vertical lines form a parallel class for which the second

axiom of nets holds, by transitivity we obtain that Ω′
(∞) is a net. �

We remark that under assumption of [T ], the parallel class of B[(k,l,m),(u,v,b)]

is given by all blocks of the form B[(k,l,m),(u′,v′,b′)] (this is easily verified as

the exact form in the appendix implies that they do not intersect if (u, v, b) 6=

(u′, v′, b′)).

The non-identity elements of [U∞, U∞] will fix (∞) and all the vertical lines

of Ω′
(∞) and acts freely on the points on these lines. If [T ] holds then there

would be similar automorphisms of Ω for other parallel classes than the vertical

lines. The following lemma excludes this possibility.

Lemma 4.3. If Ω′
(∞) is a net, then no automorphism of Ω fixes the point (∞) and

all lines of Ω′
(∞) parallel with B[(0,0,0),(0,0,0)], acts freely on the points of these lines

and maps [(0, 0, 0), (0, 0, 0)] to [(0, 0, 1), (0, 0, 0)].

Proof. Suppose it does exists and let τ be such an automorphism.

If a line L of Ω′
(∞) would be mapped to a line Lτ of another parallel class

then the intersection point L ∩ Lτ would be fixed because all the lines parallel

to B[(0,0,0),(0,0,0)] are fixed. But we want τ to act freely on the points of these

lines so we have that all parallel classes are stabilized.

Because parallel classes are stabilized we have that Bτ
(0,0,0) = B(0,0,1). As a

consequence of this we have that the point [(0, 0, 0), (u, v, b)] will be mapped to

[(0, 0, 1), (u, v, b)] (as both points have to be on the same block B[(0,0,0),(u,v,b)]

parallel to B[(0,0,0),(0,0,0)]). This implies that the block B[(0,0,1),(u,v,b+1)] through

the point [(0, 0, 0), (u, v, b)] will be mapped to the block B[(0,0,1),(u,v,b)]. Consid-

ering the intersections of these two lines with the fixed line B[(0,0,0),(0,0,0)], we
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have that

[(α−1u2θ, α−1v2θ, bθ), (0, 0, 0)]τ = [(α−1u2θ, α−1v2θ, bθ + 1), (0, 0, 0)] ,

or if we rename the variables:

[(x, y, a), (0, 0, 0)]τ = [(x, y, a + 1), (0, 0, 0)] .

The generic point [(x, y, a), (u, v, b)] lies on the lines B[(0,0,0),(u,v,b)] and B(x,y,a),

these lines are mapped to B[(0,0,0),(u,v,b)] and B(x,y,a+1), so we have that

[(x, y, a), (u, v, b)]τ = [(x, y, a + 1), (u, v, b)] .

If we first apply the automorphism [(0, 0, 1), (0, 0, 0)](∞) followed by τ , we

obtain an automorphism τ ′ which maps the point [(x, y, a), (u, v, b)] to the point

[(x, y, a), (u + βxθ, v + xθ, b + a2θ)].

All that is left to show is that the image under τ ′ of the sphere S with gnarl

[(0, 0, 0), (0, 0, 0)] through [(0, 0, 1), (0, 0, 0)] isn’t a sphere, giving us a contradic-

tion. The sphere S will contain the circle C with gnarl [(0, 0, 0), (0, 0, 0)] through

[(0, 0, 1), (0, 0, 0)], which in turn contains the point [(0, 0, 1), (0, 0, 1)] (see Ap-

pendix B). Hence Sτ ′

will contain the points [(0, 0, 0), (0, 0, 0)], [(0, 0, 1), (0, 0, 0)]

and [(0, 0, 0), (0, 0, 1)]. As Ω′
(∞) is a net two different spheres of Ω′ will have

at most two points in common. This implies Sτ ′

will be the sphere through

[(0, 0, 1), (0, 0, 0)] with gnarl [(0, 0, 0), (0, 0, 1)] (because these three points points

lay on the circle containing [(0, 0, 1), (0, 0, 0)] with gnarl [(0, 0, 0), (0, 0, 1)], which

is contained in the sphere). Moreover, τ ′ stabilizes the set {[(0, 0, a), (0, 0, b)] |

a ∈ K, b ∈ K
′} so that the circle C will be mapped to the circle with gnarl

[(0, 0, 1), (0, 0, 0)] through [(0, 0, 0), (0, 0, 1)]. That this is impossible is shown by

Hendrik Van Maldeghem in [8, Lemma 4]. �

All this has proved that the condition [T ] is false, implying that the gnarls

of the spheres are uniquely defined, and that the gnarl of a given sphere can

be recognized solely by looking at the properties of the geometry Ω′. The last

step of our proof is to show that we can reconstruct the exceptional Moufang

quadrangle of type F4 out of Ω′ and see that the automorphisms of Ω′ lift to the

desired automorphisms of the quadrangle. The construction of the quadrangle

goes as follows:

• Points:

– points x of Ω′, notation as point of the quadrangle: xp ,

– spheres B of Ω′, notation as point of the quadrangle: Bp .
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• Lines:

– points x of Ω′, notation as line of the quadrangle: xl ,

– spheres B of Ω′, notation as line of the quadrangle: Bl .

• Incidence:

– xp I yl ⇐⇒ x = y ,

– xp IAl ⇐⇒ Ap Ixl ⇐⇒ the gnarl of A is x ,

– Ap IBl ⇐⇒ the gnarl of A is contained in B, the gnarl of B is

contained in A and these two gnarls are different.

That this construction gives back the exceptional Moufang quadrangle of type F4

follows from Lemma 4.1. The polarity of the quadrangle in this construction

comes down to interchanging the subscripts p and l. It is also easily seen that

an automorphism of Ω′ lifts naturally to an automorphism of the exceptional

quadrangle of type F4 centralizing the polarity in the same way that an au-

tomorphism of the exceptional quadrangle of type F4 centralizing the polarity

implies an automorphism of Ω′. This proves Theorem 3.1.

4.2. Proof of the corollaries

Corollary 3.2 follows from Theorem 3.1 because an automorphism of the ex-

ceptional quadrangle of type F4 centralizing the polarity will also act in a well-

defined way on the sets of the absolute flags forming the circles and thus induces

an automorphism of Ω.

The second corollary follows from the fact that due to Lemma 4.1 an au-

tomorphism η of the quadrangle which stabilizes the absolute points (well-

defined action on X) and preserves collinearity (the lemma tells us that if this

is preserved blocks will be mapped to blocks) also induces an automorphism of

(X,Z, I). But we have proven that such an automorphism of (X,Z, I) comes

from an automorphism of the quadrangle centralizing the polarity. So η stabi-

lizes the set of absolute lines and will centralize the polarity, which proves the

second corollary.
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Appendices

A. Coordinates of points of certain spheres

⋆ Spheres going through (∞) :

• spheres with gnarl (∞) going through the point [(x, y, a), (u, v, b)] :

B(x,y,a) =
{

(∞)
}

∪
{

[(x, y, a), (k, l,m)] | k, l ∈ L,m ∈ K
′
}

(10)

• spheres with gnarl [(x, y, a), (u, v, b)] (denoted by B[(x,y,a),(u,v,b)]) :

B[(0,0,0),(u,v,b)] =
{

(∞)
}

∪
{

[(k, l,m), (u, v, b)] | k, l ∈ L
′,m ∈ K

}

(11)

B[(0,0,1),(u,v,b)] =
{

(∞)
}

∪
{

[(k, l,m + 1),

(u + βkθ, v + βlθ, b + m2θ)] | k, l ∈ L
′,m ∈ K

} (12)

B. Coordinates of points of certain circles

⋆ Circles through (∞) :

• circles with gnarl (∞) going through the point [(x, y, a), (u, v, b)] :

{

(∞)
}

∪
{

[(x, y, a), (u, v, k)] | k ∈ K
′
}

(13)

• circles with gnarl [(x, y, a), (u, v, b)] :

{

(∞)
}

∪
{

[(x, y, a+k), (u, v, b+a2k2θ +k2θα(xx̄+β2yȳ))] | k ∈ K
′
}

(14)

⋆ The circle with gnarl [(0, 0, 0), (0, 0, 0)] through [(0, 0, 1), (0, 0, 0)] :

{

[(0, 0, 0), (0, 0, 0)]
}

∪
{[(

0, 0,
x

1 + x + x2θ

)

,
(

0, 0,
1

1 + x2θ + x2

)]

| x ∈ K

}

(15)

⋆ The circle through [(0, 0, 1), (0, 0, 0)] with gnarl [(0, 0, 0), (0, 0, 1)] :

{

[(0, 0, 0), (0, 0, 0)]
}

∪
{[(

0, 0,
1

1 + x + x2+2θ

)

,
(

0, 0,
x2θ

1 + x2θ + x2+4θ

)]

| x ∈ K

}

(16)
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