

Subquadrangles of order s of generalized quadrangles of order (s,s^2)

Joseph A. Thas

Koen Thas*

Abstract

In this paper we consider the subquadrangles of order s for all known classes of generalized quadrangles of order (s, s^2) .

Keywords: generalized quadrangle, subquadrangle, flock quadrangle, translation quadrangle MSC 2000: 51E12, 05B25

1. Introduction

We survey results on subquadrangles of order s for all known classes of generalized quadrangles of order (s, s^2) . An interesting application of this theory goes as follows. If S is a generalized quadrangle of order (s, s^2) , if S' is a subquadrangle of order s of S, and if p is a point of S not in S', then all points of S'collinear with p form an *ovoid* of S', that is, a set O of s^2+1 points of S' such that each line of S' contains exactly one point of O. If S' is the classical generalized quadrangle Q(4, s) arising from a nonsingular quadric in PG(4, s), then, by a standard argument, O defines a projective plane of order s^2 . In such a way new projective planes were discovered; see e.g. Thas and Payne [19]. Also, several theorems of this survey will provide interesting and strong characterizations of the classical generalized quadrangle Q(5, s) arising from a nonsingular elliptic quadric in PG(5, s), respectively of the Kantor-Knuth generalized quadrangles. As a byproduct a nice characterization of a class of translation generalized quadrangles of order (s, s^2) , with s odd, will be given.

^{*}The second author is a Postdoctoral Fellow of the Research Foundation – Flanders (FWO), Belgium.

2. Definitions

A (finite) generalized quadrangle (GQ) is an incidence structure S = (P, B, I) in which P and B are disjoint (non-empty) sets of objects called *points* and *lines* respectively, and for which $I \subseteq (P \times B) \cup (B \times P)$ is a symmetric point-line incidence relation satisfying the following axioms:

- (i) each point is incident with t + 1 lines, $t \ge 1$, and two distinct points are incident with at most one line;
- (ii) each line is incident with s + 1 points, $s \ge 1$, and two distinct lines are incident with at most one point;
- (iii) if x is a point and L is a line not incident with x, then there is a unique pair $(y, M) \in P \times B$ for which x I M I y I L.

The integers s and t are the *parameters* of the GQ and S is said to have *order* (s, t). If s = t, then S is said to have *order* s.

A subquadrangle (or also subGQ) S' = (P', B', I') of S is a GQ such that $P' \subseteq P, B' \subseteq B$ and I' is the restriction of I to $(P' \times B') \cup (B' \times P')$; see [13, Chapter 2].

If S = (P, B, I) is a GQ of order (s, t), then the GQ $S^D = (B, P, I)$ of order (t, s) is called the *(point-line) dual* of S. As there is a point-line duality for GQs of order (s, t), we assume without further notice that the dual of a given theorem or definition has also been given.

For background on GQs we refer to the monograph by Payne and Thas [13].

3. The classical examples

We give a brief description of three families of examples known as the *classical* GQs, all of which are associated with classical groups and were first recognized as GQs by Tits; see Dembowski [6].

(i) Consider a nonsingular quadric Q of projective index 1, that is, of Witt index 2, of the projective space PG(d, q), with d = 3, 4 of 5. Then the points of Q together with the lines of Q (which are the subspaces of maximal dimension on Q) form a GQ Q(d, q) with parameters

$$s = q, t = 1$$
, when $d = 3$,
 $s = t = q$, when $d = 4$,
 $s = q, t = q^2$, when $d = 5$.

(ii) Let *H* be a nonsingular Hermitian variety of the projective space $PG(d, q^2)$, d = 3 or d = 4. Then the points of *H* together with the lines on *H* form a GQ $H(d, q^2)$ with parameters

$$s = q^2, t = q$$
, when $d = 3$,
 $s = q^2, t = q^3$, when $d = 4$.

(iii) The points of PG(3, q), together with the totally isotropic lines with respect to a symplectic polarity, form a GQ W(q) with parameters

$$s = t = q.$$

The GQ $\mathcal{Q}(5,q)$ is isomorphic to the dual of $H(3,q^2)$, the GQ $\mathcal{Q}(4,q)$ is isomorphic to the dual of W(q), and $\mathcal{Q}(4,q)$ (and then also W(q)) is self-dual if and only if q is even; see [13, Section 3.2].

All subquadrangles of order q of $\mathcal{Q}(5,q)$ are the $\mathcal{Q}(4,q)$ subGQs on it.

4. Translation and flock generalized quadrangles

Let S = (P, B, I) be a GQ of order (s, t), with $s \neq 1 \neq t$. A collineation θ of S is an *elation* about the point p if $\theta = id$ or if θ fixes all lines incident with p and no point of $P \setminus p^{\perp}$ (p^{\perp} is the set of all points collinear with p). If there is a group G of elations about p acting regularly on $P \setminus p^{\perp}$, then we say that S is an *elation generalized quadrangle* (EGQ) with *elation group* G and *elation point* or *base point* or *center* p. Briefly, we write that ($S^{(p)}, G$) or $S^{(p)}$ is an EGQ. If the group G is abelian, then we say that the EGQ ($S^{(p)}, G$) is a *translation generalized quadrangle* (TGQ) with *translation group* G and *translation point* or *base point* or *center* p.

For any TGQ $S^{(p)}$ each line incident with p is an *axis of symmetry*, that is, there is a (maximal) group of s collineations of S fixing L^{\perp} elementwise (see [13, Chapter 8]).

In PG(2n + m - 1, q) consider a set $\mathcal{O}(n, m, q)$ of $q^m + 1$ (n - 1)-dimensional subspaces $\pi_0, \pi_1, \ldots, \pi_{q^m}$, every three of which generate a PG(3n-1, q) and such that each element π_i of $\mathcal{O}(n, m, q)$ is contained in an (n + m - 1)-dimensional subspace τ_i having no point in common with any π_j for $j \neq i$. It is easy to check that τ_i is uniquely determined, with $i = 0, 1, \ldots, q^m$. The space τ_i is called the *tangent space* of $\mathcal{O}(n, m, q)$ at π_i . For n = m = 1 such a set $\mathcal{O}(1, 1, q)$ is an oval in PG(2, q) and more generally, for n = m, such a set $\mathcal{O}(n, n, q)$ is called a *pseudooval* or a *generalized oval* or an [n - 1]-*oval* of PG(3n - 1, q). For m = 2n = 2such a set $\mathcal{O}(1, 2, q)$ is an ovoid of PG(3, q) and more generally, for $n \neq m$ such

Now embed PG(2n + m - 1, q) as a hyperplane in a PG(2n + m, q), and construct a point-line geometry T(n, m, q) as follows.

- POINTS are of three types:
 - (i) the points of $PG(2n+m,q) \setminus PG(2n+m-1,q)$;
 - (ii) the (n + m)-dimensional subspaces of PG(2n + m, q) which contain a tangent space τ_i but are not contained in PG(2n + m - 1, q);
 - (iii) a symbol (∞) .
- LINES are of two types:
 - (a) the *n*-dimensional subspaces of PG(2n + m, q) which contain an element π_i but are not contained in PG(2n + m 1, q);
 - (b) the elements of $\mathcal{O}(n, m, q)$.
- INCIDENCE is defined as follows. A point of type (i) is incident only with lines of type (a); here the incidence is that of PG(2n + m, q). A point of type (ii) is incident with all lines of type (a) contained in it and with the unique element of $\mathcal{O}(n, m, q)$ contained in it. The point (∞) is incident with all the lines of type (b) and with no lines of type (a).

Payne and Thas [13] prove that T(n, m, q) is a TGQ of order (q^n, q^m) with center (∞) , and that conversely every TGQ is isomorphic to a T(n, m, q).

In the case where n = m = 1, so $\mathcal{O}(1, 1, q) = \mathcal{O}$ is an oval of $\mathsf{PG}(2, q)$, the GQ T(1, 1, q) is the Tits GQ $T_2(\mathcal{O})$. When m = 2n = 2, so $\mathcal{O}(1, 2, q) = \mathcal{O}$ is an ovoid of $\mathsf{PG}(3, q)$, the GQ T(1, 2, q) is the Tits GQ $T_3(\mathcal{O})$. Note that $T_2(\mathcal{O}) \cong \mathcal{Q}(4, q)$ if and only if \mathcal{O} is a conic, while $T_3(\mathcal{O}) \cong \mathcal{Q}(5, q)$ if and only if \mathcal{O} is an elliptic quadric (see [13, Chapter 3]).

In the extension $\mathsf{PG}(2n+m-1,q^n)$ of $\mathsf{PG}(2n+m-1,q)$, with $m \in \{n,2n\}$, we consider $n \left(\frac{m}{n}+1\right)$ -dimensional spaces $\mathsf{PG}^{(i)}\left(\frac{m}{n}+1,q^n\right) = \xi_i$, with i = 1, 2, ..., n, which are conjugate with respect to the extension $\mathsf{GF}(q^n)$ of $\mathsf{GF}(q)$, that is, which form an orbit of the Galois group corresponding to this extension, and which span $\mathsf{PG}(2n+m-1,q^n)$. In ξ_1 we consider an oval \mathcal{O}_1 for m = n and an ovoid \mathcal{O}_1 for m = 2n. Let $\mathcal{O}_1 = \{x_0^{(1)}, x_1^{(1)}, \ldots, x_{q^m}^{(1)}\}$. Further, let $x_i^{(1)}, x_i^{(2)}, \ldots, x_i^{(n)}$, with $i = 0, 1, \ldots, q^m$, be conjugate with respect to the extension $\mathsf{GF}(q^n)$ of $\mathsf{GF}(q)$. The points $x_i^{(1)}, x_i^{(2)}, \ldots, x_i^{(n)}$ generate an (n - 1)-dimensional space π_i over $\mathsf{GF}(q)$, with $i = 0, 1, \ldots, q^m$. Then $\mathcal{O} = \{\pi_0, \pi_1, \ldots, \pi_{q^m}\}$ is a generalized oval of $\mathsf{PG}(3n-1,q)$ for m = n, and a generalized ovoid of $\mathsf{PG}(4n-1,q)$ for m = 2n.

Here, we speak of a *regular* or *elementary pseudo-oval*, respectively a *regular* or *elementary pseudo-ovoid*. In such a case the corresponding GQ is isomorphic to a GQ of Tits $(T_2(\mathcal{O}_1))$, respectively $T_3(\mathcal{O}_1)$). If \mathcal{O}_1 is a conic or an elliptic quadric, then T(n, m, q) is isomorphic to a classical GQ $(\mathcal{Q}(4, q^n))$, respectively $\mathcal{Q}(5, q^n)$) and $\mathcal{O}(n, m, q)$ is called *classical*, see [13, Chapter 3]; for n = m the classical $\mathcal{O}(n, n, q)$ is called a *pseudo-conic* and for m = 2n a *pseudo-quadric*.

For m = n, any known [n - 1]-oval is regular, for m = 2n and q even any known [n - 1]-ovoid is regular, but for m = 2n and q odd there are [n - 1]-ovoids which are not regular; see Thas [16].

One can prove that $n \le m \le 2n$, and that for q even $m \in \{n, 2n\}$; see [13, Chapter 8].

Let either n = m with q odd, or let $n \neq m$. Then by [13, Section 8.7] the $q^m + 1$ tangent spaces of an $\mathcal{O}(n, m, q) = \mathcal{O}$ form an $\mathcal{O}^* = \mathcal{O}^*(n, m, q)$ in the dual space of $\mathsf{PG}(2n + m - 1, q)$. So in addition to $T(n, m, q) = T(\mathcal{O})$ there arises a TGQ $T(\mathcal{O}^*)$ with the same parameters. The TGQ $T(\mathcal{O}^*)$ is called the *translation dual* of $T(\mathcal{O})$, and \mathcal{O}^* is called the *translation dual* of \mathcal{O} . For m = 2n and q odd there are examples for which $T(\mathcal{O}) \ncong T(\mathcal{O}^*)$; see Payne [11].

Let $\mathcal{O}(n, 2n, q)$ be an egg of $\mathsf{PG}(4n - 1, q)$. We say that $\mathcal{O}(n, 2n, q)$ is good at the element π_i of $\mathcal{O}(n, 2n, q)$ if any $\mathsf{PG}(3n - 1, q)$ containing π_i and at least two other elements of $\mathcal{O}(n, 2n, q)$ contains exactly $q^n + 1$ elements of $\mathcal{O}(n, 2n, q)$. In such a case the corresponding TGQ T(n, 2n, q) contains at least $q^{3n} + q^{2n}$ subquadrangles of order q^n ; for q odd the $q^{3n} + q^{2n}$ subquadrangles of order q^n defined by the element π_i at which $\mathcal{O}(n, 2n, q)$ is good are isomorphic to the classical GQ $\mathcal{Q}(4, q^n)$, see Thas [16]. The TGQ T(n, 2n, q) is isomorphic to a GQ of Tits of order (q^n, q^{2n}) if and only if the corresponding egg $\mathcal{O}(n, 2n, q)$ is good at each of its elements; see Payne and Thas [13]. If q is even and $\mathcal{O}(n, 2n, q)$ is good at $\pi \in \mathcal{O}(n, 2n, q)$, then the translation dual $\mathcal{O}^*(n, 2n, q)$ is good at the tangent space τ of $\mathcal{O}(n, 2n, q)$ at π ; see Thas [16]. For each known egg $\mathcal{O}(n, 2n, q)$, either $\mathcal{O}(n, 2n, q)$ or $\mathcal{O}^*(n, 2n, q)$ is good at one of its elements.

Let \mathcal{K} be the quadratic cone with vertex x in PG(3, q). A partition \mathcal{F} of $\mathcal{K} \setminus \{x\}$ into q disjoint conics is called a *flock* of \mathcal{K} . Then with \mathcal{F} there corresponds a GQ $\mathcal{S}(\mathcal{F})$ of order (q^2, q) ; see Thas [15]. The GQ $\mathcal{S}(\mathcal{F})$ is isomorphic to the classical GQ $H(3, q^2)$ if and only if the flock is *linear*, that is, if and only if all planes of the conics of the flock contain a common line; see Payne and Thas [13] and Payne [12]. The GQ $\mathcal{S}(\mathcal{F})$ is an EGQ with center (∞) . By Payne and Thas [14] the center (∞) is uniquely determined if $\mathcal{S}(\mathcal{F})$ is not classical.

If the point-line dual of $S(\mathcal{F})$ is a TGQ $T(\mathcal{O})$ with center L (then $(\infty) I L$), where $\mathcal{O} = \mathcal{O}(n, 2n, q)$, then the translation dual \mathcal{O}^* of \mathcal{O} is good at the tangent space τ_i of \mathcal{O} at $\pi_i = L \in \mathcal{O}$; see Thas [16]. Conversely, by Thas [17], if the translation dual \mathcal{O}^* of an egg $\mathcal{O} = \mathcal{O}(n, 2n, q)$, with q odd, is good at one of its

elements, then $T(\mathcal{O})$ is the point-line dual of a flock GQ $\mathcal{S}(\mathcal{F})$. If q is even and if the TGQ $T(\mathcal{O})$ is the point-line dual of a flock GQ (then \mathcal{O} and \mathcal{O}^* are good), then, by Johnson [7], the GQ $T(\mathcal{O})$ is classical.

Finally, we remark that every known GQ of order (s, s^2) is either a TGQ $T(\mathcal{O})$ or the point-line dual of a flock GQ $S(\mathcal{F})$.

5. Subquadrangles of translation generalized quadrangles $T(\mathcal{O})$, with \mathcal{O} good

In this section we consider the subquadrangles of order q^n of translation generalized quadrangles $T(\mathcal{O})$ of order (q^n, q^{2n}) , with $\mathcal{O} = \mathcal{O}(n, 2n, q)$ and \mathcal{O} good at some element π .

Theorem 5.1 (Brown and Thas [4, 5]). Let $S = T(\mathcal{O})$, with $\mathcal{O} = \mathcal{O}(n, 2n, q)$, be a TGQ. If \mathcal{O} is good at some element π and if S has a subquadrangle of order $s = q^n$ which does not contain the point (∞) , then $S \cong \mathcal{Q}(5, s)$.

Theorem 5.2 (Brown and Thas [5]). Let S = (P, B, I) be a TGQ of order (s, s^2) , s odd, with $S = T(\mathcal{O})$ and $\mathcal{O} = \mathcal{O}(n, 2n, q)$ good at some element π . If S' is a subquadrangle of order $s = q^n$ of S containing the point (∞) , then $S' \cong Q(4, s)$ and either $S \cong Q(5, s)$ or S' is one of the $s^3 + s^2$ subquadrangles of order s (isomorphic to Q(4, s)) containing the line π of S.

Theorem 5.3 (Brown and Thas [5]). Let $\mathcal{O} = \mathcal{O}(n, 2n, q)$, with q odd, be an egg in PG(4n - 1, q) which is good at π . If there is a subspace PG(3n - 1, q) of PG(4n - 1, q) which contains at least four elements of \mathcal{O} , but which does not contain π , then \mathcal{O} is a Kantor-Knuth egg (see Section 7). If there is a subspace PG(3n-1,q) which contains at least five elements of \mathcal{O} , but which does not contain π , then \mathcal{O} is classical.

Remark 5.4. Independently and in a completely different way, Lavrauw [8] also proved the second part of Theorem 5.3.

Theorem 5.5 (Thas [21], see also [22, 23]). Let S = (P, B, I) be a TGQ of order (s, s^2) , s > 1, with $S = T(\mathcal{O})$ and $\mathcal{O} = \mathcal{O}(n, 2n, q)$. If S' is a subquadrangle of order s of S containing the point (∞) , then S' is a TGQ $T(\mathcal{O}')$ with $\mathcal{O}' = \mathcal{O}'(n, n, q)$ a pseudo-oval on \mathcal{O} .

Open problem 5.6. If in Theorem 5.5, s is even, does the existence of S' imply that S is isomorphic to a $T_3(\overline{O})$ of Tits?

We mention several recent results on this problem in the next section.

Let us end this section with the following results on good TGQs with a large automorphism group, followed by an application to group actions on subGQs.

Let $S = T(\mathcal{O})$ be a TGQ of order (q^n, q^{2n}) , where q is odd, and where \mathcal{O} is good at some element PG(n - 1, q). Let \mathbb{K} be the kernel [13, Chapter 8] of S. Then by Thas [24], $(q^n + 1)(q^n - 1)q^{6n}(|\mathbb{K}| - 1)$ is a divisor of $|\operatorname{Aut}(S)|$. If S is classical, then for an arbitrary line L of S, $|\operatorname{Aut}(S)_L| = (q^n + 1)^2(q^n - 1)^2q^{6n}2h$, where $q^n = p^h$ for the prime p.

Theorem 5.7 (Thas [27]). Let $S = T(\mathcal{O})$ be a TGQ of order (q^n, q^{2n}) , where q is an odd prime power, with \mathcal{O} the generalized ovoid in $\mathsf{PG}(4n-1,q)$ corresponding to S. Suppose that \mathcal{O} is good at some element $\mathsf{PG}(n-1,q)$, and let L be the line $\mathsf{PG}(n-1,q)$ of S. If

 $(q^n+1)^2(q^n-1)q^{6n}$ divides $|\operatorname{Aut}(\mathcal{S})_L|$,

then S is isomorphic to the classical GQ $\mathcal{Q}(5, q^n)$.

Corollary 5.8 (Thas [27]). Let \mathcal{F} be a semifield flock of $PG(3, q^n)$, q odd. If $q^n + 1$ divides the size of $Aut(\mathcal{F})_{\Pi}$, where Π is any flock plane, or, equivalently, if $q^n + 1$ divides $\frac{|Aut(\mathcal{F})|}{q^n}$, then \mathcal{F} is linear.

From Theorem 5.7, Thas deduced the following theorem on subGQs:

Theorem 5.9 (Thas [27]). Let S = T(O) be a TGQ of order (s, s^2) , s odd, so that the generalized ovoid O is good at some element. If Aut(S) acts transitively on its subGQs of order s, then $S \cong Q(5, s)$.

6. Subquadrangles of translation generalized quadrangles $T(\mathcal{O})$ in even characteristic

Brown and Lavrauw [2] generalized the following result of Brown on ovoids of PG(3, q), q even, by obtaining a similar result for generalized ovoids.

Theorem 6.1 (Brown [1]). If an ovoid of PG(3,q), q even, has a conic plane section, the ovoid must be an elliptic quadric. Equivalently, if a $T_3(\mathcal{O})$ of order (q,q^2) , where \mathcal{O} is an ovoid of PG(3,q), q even, has a classical subGQ of order q containing the point (∞) , then $T_3(\mathcal{O}) \cong Q(5,q)$.

In terms of translation generalized quadrangles, Brown and Lavrauw prove the following.

Theorem 6.2 (Brown and Lavrauw [2]). If a $T(\mathcal{O})$ of order (q^n, q^{2n}) , where \mathcal{O} is a generalized ovoid of PG(4n - 1, q), q even, has a classical subGQ of order q containing the point (∞) , then $T(\mathcal{O}) \cong Q(5, q^n)$.

Theorem 6.3 (Thas [26]). Let $S^{(x)}$ be an EGQ of order (q, q^2) , q even, having a classical subGQ S' of order q containing x. Then $S^{(x)} \cong Q(5, q)$.

Let \mathcal{O} be a generalized oval in $\mathsf{PG}(3n-1,q) = \langle \mathcal{O} \rangle$, q even. Then the $q^n + 1$ tangent spaces to the elements of \mathcal{O} meet in an (n-1)-dimensional subspace \mathfrak{N} of $\mathsf{PG}(3n-1,q)$, called the *nucleus* of \mathcal{O} (cf. [13, Chapter 8]). It is easily seen that for any $\pi \in \mathcal{O}$, $\mathcal{O}' = (\mathcal{O} \setminus \{\pi\}) \cup \{\mathfrak{N}\}$ is again a generalized oval. If \mathcal{O} is a generalized conic, that is, if $T(\mathcal{O}) \cong \mathcal{Q}(4,q^n)$, then \mathcal{O}' is called a *pointed generalized conic* or a *generalized pointed conic*.

The following result generalizes another recent result of Brown and Lavrauw [3] from TGQs to EGQs.

Theorem 6.4 (Thas [26]). Let $S^{(x)}$ be an EGQ of order (q^n, q^{2n}) , q even, containing a subGQ $T(\mathcal{O})$, where \mathcal{O} is a pointed generalized conic in PG(3n - 1, q), having x as translation point. Then either $q^n = 4$ and $S^{(x)} \cong Q(5, 4)$, or $q^n = 8$ and $S^{(x)} \cong T_3(\mathcal{O}')$ with \mathcal{O}' the Suzuki-Tits ovoid of PG(3, 8).

Both Theorem 6.3 and Theorem 6.4 rely on the following observation, which works in any characteristic (part (ii) being a direct corollary of part (i)).

- **Theorem 6.5** (Thas [26]). (i) Let $S^{(x)}$ be an EGQ of order (s, s^2) , s > 1, containing a subGQ S' of order s which has at least one axis of symmetry L incident with x. Then $S^{(x)}$ is a TGQ for the translation point x
 - (ii) Let $S^{(x)}$ be an EGQ of order (s, s^2) , s > 1, containing a subGQ S' of order s which is a TGQ with translation point x. Then $S^{(x)}$ is a TGQ with translation point x.

7. Subquadrangles of flock GQs $\mathcal{S}(\mathcal{F})$

Let $\mathcal{F} = \{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_q\}$ be a flock of the quadratic cone \mathcal{K} of $\mathsf{PG}(3, q)$, with q even. If the planes $\xi_1, \xi_2, \dots, \xi_q$ of the respective conics $\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_q$ all contain a common point, then the flock is linear; see Thas [15].

Let $\mathcal{F} = \{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_q\}$ be a flock of the quadratic cone \mathcal{K} of $\mathsf{PG}(3, q)$, with q odd. If the planes $\xi_1, \xi_2, \dots, \xi_q$ of the respective conics $\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_q$ all contain a common interior point of \mathcal{K} , then the flock is linear; see Thas [15].

Let $\mathcal{F} = \{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_q\}$ be a flock of the quadratic cone \mathcal{K} of $\mathsf{PG}(3, q)$, with q odd, and suppose that the planes $\xi_1, \xi_2, \dots, \xi_q$, with $\mathcal{C}_i \subseteq \xi_i$, all contain a common exterior point of \mathcal{K} . If m is any given non-square of $\mathsf{GF}(q)$, then coordinates

UNIVERSITEIT GENT can be chosen in such a way that \mathcal{K} has equation $X_0X_1 = X_2^2$ and the planes ξ_i have equation

$$a_i X_0 - m a_i^{\sigma} X_1 + X_3 = 0, \qquad (1)$$

with $\{a_1, a_2, \ldots, a_q\} = \mathsf{GF}(q)$ and σ an automorphism of $\mathsf{GF}(q)$. Conversely, given any non-square *m* of $\mathsf{GF}(q)$, the planes ξ_i with equation (1), where $\{a_1, a_2, \ldots, a_q\} = \mathsf{GF}(q)$ and where σ is any automorphism of $\mathsf{GF}(q)$, define a flock \mathcal{F} of the cone \mathcal{K} with equation $X_0X_1 = X_2^2$. Also, the planes ξ_i all contain the exterior point (0, 0, 1, 0) of \mathcal{K} . This flock \mathcal{F} is linear if and only if $\sigma = 1$. The flocks \mathcal{F} are called *Kantor-Knuth flocks*. For proofs we refer to Thas [15]. The point-line dual of the GQ which corresponds to a Kantor-Knuth flock is a TGQ $T(\mathcal{O})$, with \mathcal{O} isomorphic to its translation dual \mathcal{O}^* , with \mathcal{O} good at some element π , and with \mathcal{O}^* good at the tangent space τ of \mathcal{O} at π ; see Payne [11]. Such an egg is called a *Kantor-Knuth egg*.

In the next theorems all subquadrangles of order s of flock GQs $\mathcal{S}(\mathcal{F})$ of order (s^2,s) are determined.

Theorem 7.1 (O'Keefe and Penttila [9]). If $S(\mathcal{F})$ is a flock GQ of order (s^2, s) , s even, with center (∞) , then $S(\mathcal{F})$ contains exactly $s^3 + s^2$ subquadrangles of order s containing the point (∞) .

An easy way to see this goes as follows. Payne proved in [11] that for all sets $\{L, M, N\}$ of two by two nonconcurrent lines for which there is a line $U I(\infty) I L$ so that $\{L, M, N\} \subseteq U^{\perp}$, we have that $|\{L, M, N\}^{\perp \perp}| = s + 1$. That is, the set $\{L, M, N\}$ is 3-regular. Now let $\{L, M, N\}$ be such a set of lines. If B' is the set of lines of $S(\mathcal{F})$ incident with points of the form $X \cap Y$, with $X \in \{L, M, N\}^{\perp}$ and $Y \in \{L, M, N\}^{\perp \perp}$, and P' is the set of points which are incident with at least two distinct lines of B', then endowed with the induced incidence I', S' = (P', B', I') is a subGQ of order s of $S(\mathcal{F})$, see Payne and Thas [13, §2.6.2]. Now a standard counting argument yields $s^3 + s^2$ of such subGQs (notice that any point of a GQ of order (s^2, s) is contained in at most $s^3 + s^2$ subGQs of order s, see e.g. [4]).

Remark 7.2. Payne [10] proves that each of these $s^3 + s^2$ subquadrangles is a $T_2(\mathcal{O})$ of Tits, for some oval \mathcal{O} of PG(2, q).

Theorem 7.3 (Brown and Thas [5]). Let $S(\mathcal{F})$ be a flock GQ of order (s^2, s) , s odd, with center (∞) . If S' is a subquadrangle of order s of $S(\mathcal{F})$ containing the point (∞) , then \mathcal{F} is a Kantor-Knuth flock. Hence either $S \cong H(3, s^2)$ or S' is one of the $s^3 + s^2$ subquadrangles of order s containing the point (∞) . In all cases $S' \cong W(s)$.

An application of Theorem 7.3 is the next theorem.

Theorem 7.4 (Thas [27]). Let $\mathcal{O} = \mathcal{O}(n, 2n, q)$ be a good egg in $\mathsf{PG}(4n - 1, q)$, q odd. If $T(\mathcal{O})$ contains a subGQ of order q^n that is fixed pointwise by some nontrivial automorphism of $T(\mathcal{O})$, then $T(\mathcal{O}) \cong S(\mathcal{F})^D$ with \mathcal{F} a Kantor-Knuth flock.

For q even, one can use Theorem 6.2 and [25, Chapter 7] to show that if $\mathcal{O} = \mathcal{O}(n, 2n, q)$ is an egg in PG(4n-1, q) and $T(\mathcal{O})$ contains a subGQ of order q^n that is fixed pointwise by some nontrivial automorphism of $T(\mathcal{O})$, then $T(\mathcal{O}) \cong \mathcal{Q}(5, q^n)$, see [27].

Theorem 7.5 (Brown and Thas [4], Thas and Thas [20]). Let $S(\mathcal{F})$ be a flock GQ of order (s^2, s) , with center (∞) . If $S(\mathcal{F})$ contains a subquadrangle of order s which does not contain (∞) , then $S \cong H(3, s^2)$ and $S' \cong W(s)$.

Remark 7.6. The even case of Theorem 7.5 is due to Brown and Thas, the odd case to Thas and Thas.

8. Subquadrangles of translation generalized quadrangles $T(\mathcal{O})$, with \mathcal{O}^* good

As for q even the egg $\mathcal{O}(n, 2n, q)$ is good if and only if $\mathcal{O}^*(n, 2n, q)$ is good, we may assume that q is odd.

If $\mathcal{O}^*(n, 2n, q)$, with q odd, is good, then by Thas [17] the TGQ $T(\mathcal{O})$ with $\mathcal{O} = \mathcal{O}(n, 2n, q)$ is isomorphic to the point-line dual of a flock GQ $\mathcal{S}(\mathcal{F})$. If $\mathcal{O}^*(n, 2n, q)$ is good at the tangent space τ of $\mathcal{O}(n, 2n, q)$ at π , then π corresponds to the point (∞) of $\mathcal{S}(\mathcal{F})$. So by Theorems 7.3 and 7.5 we have the following result.

Theorem 8.1 (Brown and Thas [4, 5], Thas and Thas [20]). Let $S = T(\mathcal{O})$, with $\mathcal{O} = \mathcal{O}(n, 2n, q)$ and q odd, be a TGQ such that the translation dual \mathcal{O}^* of \mathcal{O} is good at the tangent space τ of \mathcal{O} at π . If S contains a subquadrangle S' of order q'^n , then either $S \cong \mathcal{Q}(5, q^n)$ (and then $S' \cong \mathcal{Q}(4, q^n)$) or \mathcal{O} is a nonclassical Kantor-Knuth egg and S' is one of the $q^{3n} + q^{2n}$ subquadrangles of order q^n (isomorphic to $\mathcal{Q}(4, q^n)$) containing the line π of $T(\mathcal{O})$.

9. Byproduct: A characterization of TGQs

Part of the proof of Theorem 7.5 (odd case) was also used by Thas and Thas [20] to prove the following characterization theorem of TGQs whose point-line duals arise from flocks.

Theorem 9.1 (Thas and Thas [20]). If S = (P, B, I) is a flock GQ of order (s^2, s) , with s odd, then the point-line dual of S is a TGQ if and only if S has a regular point x, with $(\infty) \neq x \sim (\infty)$, where (∞) is the elation point of S.

Remark 9.2. Thas [18] proved the following result for q even. Let S be a flock GQ of order (s^2, s) , with s even. Then the point-line dual of S is isomorphic to the classical GQ $H(3, s^2)$ if and only if S has a regular point x, with $(\infty) \neq x \sim (\infty)$, where (∞) is the elation point of S.

References

- [1] M. R. Brown, Ovoids of PG(3, q), q even, with a conic section, J. London Math. Soc. 62 (2000), 569–582.
- [2] M. R. Brown and M. Lavrauw, Eggs in PG(4n 1, q), q even, containing a pseudo-conic, *Bull. London Math. Soc* **36** (2004), 633–639.
- [3] _____, Eggs in PG(4n 1, q), q even, containing a pseudo pointed conic, *European J. Combin.* **26** (2005), 117–128.
- [4] M. R. Brown and J. A. Thas, Subquadrangles of order s of generalized quadrangles of order (s, s^2) , I, J. Combin. Theory Ser. A **106** (2004), 15–32.
- [5] _____, Subquadrangles of order s of generalized quadrangles of order (s, s^2) , II, J. Combin. Theory Ser. A **106** (2004), 33–48.
- [6] **P. Dembowski**, *Finite Geometries*. Reprint of the 1968 original, Classics Math., Springer-Verlag, Berlin, 1997.
- [7] N. L. Johnson, Semifield flocks of quadratic cones, Simon Stevin 61 (1987), 313–326.
- [8] M. Lavrauw, Characterisations and properties of good eggs in PG(4n 1, q), q odd, *Discrete Math.* **301** (2005), 106–116.
- [9] C. M. O'Keefe and T. Penttila, Subquadrangles of generalized quadrangles of order (q, q^2) , q even, J. Combin. Theory Ser. A 94 (2001), 218–229.
- [10] S. E. Payne, A new infinite family of generalized quadrangles, Proceedings of the Sixteenth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, Fla., 1985), *Congr. Numer.* 49 (1985), 115–128.

••	••
•	F
page 12 / 13	
go back	
full screen	
close	
quit	

- [11] _____, An essay on skew translation generalized quadrangles, *Geom. Dedicata* **32** (1989), 93–118.
- [12] _____, The fundamental theorem of *q*-clan geometry, *Des. Codes Cryptogr.* **8** (1996), 181–202.
- [13] S. E. Payne and J. A. Thas, *Finite Generalized Quadrangles*, Research Notes Math. 110, Pitman Advanced Publishing Program, Boston/London/Melbourne, 1984.
- [14] _____, Generalized quadrangles, BLT-sets, and Fisher flocks, Proceedings of the Twenty-second Southeastern Conference on Combinatorics, Graph Theory, and Computing (Baton Rouge, LA, 1991), *Congr. Numer.* 84 (1991), 161–192.
- [15] J. A. Thas, Generalized quadrangles and flocks of cones, *European J. Combin.* 8 (1987), 441–452.
- [16] _____, Generalized quadrangles of order (s, s^2) , I, J. Combin. Theory Ser. A 67 (1994), 140–160.
- [17] _____, Generalized quadrangles of order (s, s^2) , III, J. Combin. Theory Ser. A 87 (1999), 247–272.
- [18] _____, Characterizations of translation generalized quadrangles, *Des. Codes Cryptogr.* **23** (2001), 249–257.
- [19] J. A. Thas and S. E. Payne, Spreads and ovoids in finite generalized quadrangles, *Geom. Dedicata* **52** (1994), 227–253.
- [20] J. A. Thas and K. Thas, Subquadrangles of order s of generalized quadrangles of order (s, s^2) , III, J. Combin. Theory Ser. A **113** (2006), 1791–1804.
- [21] K. Thas, Symmetrieën in Eindige Veralgemeende Vierhoeken (Symmetries in Finite Generalized Quadrangles), Master Thesis, Ghent University, Ghent (1999), 186 pp.
- [22] _____, Automorphisms and Combinatorics of Finite Generalized Quadrangles, Ph.D. Thesis, Ghent University, Ghent (2002), xxviii + 412 pp.
- [23] _____, On generalized quadrangles with some concurrent axes of symmetry, *Bull. Belg. Math. Soc. Simon Stevin* **9** (2002), 217–243.
- [24] _____, Translation generalized quadrangles for which the translation dual arises from a flock, *Glasgow Math. J.* **45** (2003), 457–474.

- [25] _____, Symmetry in Finite Generalized Quadrangles, Front. Math. 1, Birkhäuser Verlag, Basel—Boston—Berlin, 2004.
- [26] _____, Elation generalized quadrangles of order (q, q^2) , q even, with a classical subGQ of order q, Adv. *Geom.* **6** (2006), 265–273.
- [27] _____, A stabilizer lemma for translation generalized quadrangles, *European J. Combin.* **28** (2007), 1–16.

Joseph A. Thas

GHENT UNIVERSITY, DEPARTMENT OF PURE MATHEMATICS AND COMPUTER ALGEBRA, KRIJGSLAAN 281, S22, B-9000 GHENT, BELGIUM

e-mail: jat@cage.UGent.be

website: http://cage.ugent.be/~jat

Koen Thas

GHENT UNIVERSITY, DEPARTMENT OF PURE MATHEMATICS AND COMPUTER ALGEBRA, KRIJGSLAAN 281, S22, B-9000 GHENT, BELGIUM

e-mail: kthas@cage.UGent.be

website: http://cage.ugent.be/~kthas

