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In this paper we consider the subquadrangles of order s for all known

classes of generalized quadrangles of order (s, s2).
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1. Introduction

We survey results on subquadrangles of order s for all known classes of general-

ized quadrangles of order (s, s2). An interesting application of this theory goes

as follows. If S is a generalized quadrangle of order (s, s2), if S ′ is a subquad-

rangle of order s of S, and if p is a point of S not in S ′, then all points of S ′

collinear with p form an ovoid of S ′, that is, a set O of s2+1 points of S ′ such that

each line of S ′ contains exactly one point of O. If S ′ is the classical generalized

quadrangle Q(4, s) arising from a nonsingular quadric in PG(4, s), then, by a

standard argument, O defines a projective plane of order s2. In such a way new

projective planes were discovered; see e.g. Thas and Payne [19]. Also, several

theorems of this survey will provide interesting and strong characterizations of

the classical generalized quadrangle Q(5, s) arising from a nonsingular elliptic

quadric in PG(5, s), respectively of the Kantor-Knuth generalized quadrangles.

As a byproduct a nice characterization of a class of translation generalized quad-

rangles of order (s, s2), with s odd, will be given.

∗The second author is a Postdoctoral Fellow of the Research Foundation – Flanders (FWO),

Belgium.
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2. Definitions

A (finite) generalized quadrangle (GQ) is an incidence structure S = (P,B, I) in

which P and B are disjoint (non-empty) sets of objects called points and lines

respectively, and for which I ⊆ (P × B) ∪ (B × P ) is a symmetric point-line

incidence relation satisfying the following axioms:

(i) each point is incident with t + 1 lines, t ≥ 1, and two distinct points are

incident with at most one line;

(ii) each line is incident with s + 1 points, s ≥ 1, and two distinct lines are

incident with at most one point;

(iii) if x is a point and L is a line not incident with x, then there is a unique

pair (y,M) ∈ P × B for which x IM I y IL.

The integers s and t are the parameters of the GQ and S is said to have order

(s, t). If s = t, then S is said to have order s.

A subquadrangle (or also subGQ) S ′ = (P ′, B′, I′) of S is a GQ such that

P ′ ⊆ P , B′ ⊆ B and I
′ is the restriction of I to (P ′ × B′) ∪ (B′ × P ′); see

[13, Chapter 2].

If S = (P,B, I) is a GQ of order (s, t), then the GQ SD = (B,P, I) of order

(t, s) is called the (point-line) dual of S. As there is a point-line duality for

GQs of order (s, t), we assume without further notice that the dual of a given

theorem or definition has also been given.

For background on GQs we refer to the monograph by Payne and Thas [13].

3. The classical examples

We give a brief description of three families of examples known as the classical

GQs, all of which are associated with classical groups and were first recognized

as GQs by Tits; see Dembowski [6].

(i) Consider a nonsingular quadric Q of projective index 1, that is, of Witt

index 2, of the projective space PG(d, q), with d = 3, 4 of 5. Then the points

of Q together with the lines of Q (which are the subspaces of maximal

dimension on Q) form a GQ Q(d, q) with parameters

s = q, t = 1, when d = 3,

s = t = q, when d = 4,

s = q, t = q2, when d = 5.
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(ii) Let H be a nonsingular Hermitian variety of the projective space PG(d, q2),

d = 3 or d = 4. Then the points of H together with the lines on H form a

GQ H(d, q2) with parameters

s = q2, t = q, when d = 3,

s = q2, t = q3, when d = 4.

(iii) The points of PG(3, q), together with the totally isotropic lines with respect

to a symplectic polarity, form a GQ W (q) with parameters

s = t = q.

The GQ Q(5, q) is isomorphic to the dual of H(3, q2), the GQ Q(4, q) is iso-

morphic to the dual of W (q), and Q(4, q) (and then also W (q)) is self-dual if

and only if q is even; see [13, Section 3.2].

All subquadrangles of order q of Q(5, q) are the Q(4, q) subGQs on it.

4. Translation and flock generalized quadrangles

Let S = (P,B, I) be a GQ of order (s, t), with s 6= 1 6= t. A collineation θ of

S is an elation about the point p if θ = id or if θ fixes all lines incident with p

and no point of P \ p⊥ (p⊥ is the set of all points collinear with p). If there

is a group G of elations about p acting regularly on P \ p⊥, then we say that

S is an elation generalized quadrangle (EGQ) with elation group G and elation

point or base point or center p. Briefly, we write that (S(p), G) or S(p) is an EGQ.

If the group G is abelian, then we say that the EGQ (S(p), G) is a translation

generalized quadrangle (TGQ) with translation group G and translation point or

base point or center p.

For any TGQ S(p) each line incident with p is an axis of symmetry, that is,

there is a (maximal) group of s collineations of S fixing L⊥ elementwise (see

[13, Chapter 8]).

In PG(2n + m− 1, q) consider a set O(n,m, q) of qm + 1 (n− 1)-dimensional

subspaces π0, π1, . . . , πqm , every three of which generate a PG(3n−1, q) and such

that each element πi of O(n,m, q) is contained in an (n + m − 1)-dimensional

subspace τi having no point in common with any πj for j 6= i. It is easy to check

that τi is uniquely determined, with i = 0, 1, . . . , qm. The space τi is called the

tangent space of O(n,m, q) at πi. For n = m = 1 such a set O(1, 1, q) is an oval in

PG(2, q) and more generally, for n = m, such a set O(n, n, q) is called a pseudo-

oval or a generalized oval or an [n − 1]-oval of PG(3n − 1, q). For m = 2n = 2

such a set O(1, 2, q) is an ovoid of PG(3, q) and more generally, for n 6= m such
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a set O(n,m, q) is called a pseudo-ovoid or a generalized ovoid or an [n−1]-ovoid

or an egg of PG(2n + m − 1, q).

Now embed PG(2n + m − 1, q) as a hyperplane in a PG(2n + m, q), and

construct a point-line geometry T (n,m, q) as follows.

• POINTS are of three types:

(i) the points of PG(2n + m, q) \ PG(2n + m − 1, q);

(ii) the (n + m)-dimensional subspaces of PG(2n + m, q) which contain

a tangent space τi but are not contained in PG(2n + m − 1, q);

(iii) a symbol (∞).

• LINES are of two types:

(a) the n-dimensional subspaces of PG(2n + m, q) which contain an ele-

ment πi but are not contained in PG(2n + m − 1, q);

(b) the elements of O(n,m, q).

• INCIDENCE is defined as follows. A point of type (i) is incident only with

lines of type (a); here the incidence is that of PG(2n + m, q). A point of

type (ii) is incident with all lines of type (a) contained in it and with the

unique element of O(n,m, q) contained in it. The point (∞) is incident

with all the lines of type (b) and with no lines of type (a).

Payne and Thas [13] prove that T (n,m, q) is a TGQ of order (qn, qm) with

center (∞), and that conversely every TGQ is isomorphic to a T (n,m, q).

In the case where n = m = 1, so O(1, 1, q) = O is an oval of PG(2, q), the GQ

T (1, 1, q) is the Tits GQ T2(O). When m = 2n = 2, so O(1, 2, q) = O is an ovoid

of PG(3, q), the GQ T (1, 2, q) is the Tits GQ T3(O). Note that T2(O) ∼= Q(4, q)

if and only if O is a conic, while T3(O) ∼= Q(5, q) if and only if O is an elliptic

quadric (see [13, Chapter 3]).

In the extension PG(2n+m−1, qn) of PG(2n+m−1, q), with m ∈ {n, 2n}, we

consider n (m
n

+1)-dimensional spaces PG
(i)(m

n
+1, qn) = ξi, with i = 1, 2, . . . , n,

which are conjugate with respect to the extension GF(qn) of GF(q), that is, which

form an orbit of the Galois group corresponding to this extension, and which

span PG(2n+m−1, qn). In ξ1 we consider an oval O1 for m = n and an ovoid O1

for m = 2n. Let O1 = {x
(1)
0 , x

(1)
1 , . . . , x

(1)
qm}. Further, let x

(1)
i , x

(2)
i , . . . , x

(n)
i , with

i = 0, 1, . . . , qm, be conjugate with respect to the extension GF(qn) of GF(q).

The points x
(1)
i , x

(2)
i , . . . , x

(n)
i generate an (n − 1)-dimensional space πi over

GF(q), with i = 0, 1, . . . , qm. Then O = {π0, π1, . . . , πqm} is a generalized oval

of PG(3n−1, q) for m = n, and a generalized ovoid of PG(4n−1, q) for m = 2n.
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Here, we speak of a regular or elementary pseudo-oval, respectively a regular or

elementary pseudo-ovoid. In such a case the corresponding GQ is isomorphic to a

GQ of Tits (T2(O1), respectively T3(O1)). If O1 is a conic or an elliptic quadric,

then T (n,m, q) is isomorphic to a classical GQ (Q(4, qn), respectively Q(5, qn))

and O(n,m, q) is called classical, see [13, Chapter 3]; for n = m the classical

O(n, n, q) is called a pseudo-conic and for m = 2n a pseudo-quadric.

For m = n, any known [n − 1]-oval is regular, for m = 2n and q even any

known [n−1]-ovoid is regular, but for m = 2n and q odd there are [n−1]-ovoids

which are not regular; see Thas [16].

One can prove that n ≤ m ≤ 2n, and that for q even m ∈ {n, 2n}; see [13,

Chapter 8].

Let either n = m with q odd, or let n 6= m. Then by [13, Section 8.7] the

qm + 1 tangent spaces of an O(n,m, q) = O form an O∗ = O∗(n,m, q) in the

dual space of PG(2n + m − 1, q). So in addition to T (n,m, q) = T (O) there

arises a TGQ T (O∗) with the same parameters. The TGQ T (O∗) is called the

translation dual of T (O), and O∗ is called the translation dual of O. For m = 2n

and q odd there are examples for which T (O) 6∼= T (O∗); see Payne [11].

Let O(n, 2n, q) be an egg of PG(4n − 1, q). We say that O(n, 2n, q) is good at

the element πi of O(n, 2n, q) if any PG(3n− 1, q) containing πi and at least two

other elements of O(n, 2n, q) contains exactly qn + 1 elements of O(n, 2n, q).

In such a case the corresponding TGQ T (n, 2n, q) contains at least q3n + q2n

subquadrangles of order qn; for q odd the q3n + q2n subquadrangles of order

qn defined by the element πi at which O(n, 2n, q) is good are isomorphic to the

classical GQ Q(4, qn), see Thas [16]. The TGQ T (n, 2n, q) is isomorphic to a GQ

of Tits of order (qn, q2n) if and only if the corresponding egg O(n, 2n, q) is good

at each of its elements; see Payne and Thas [13]. If q is even and O(n, 2n, q)

is good at π ∈ O(n, 2n, q), then the translation dual O∗(n, 2n, q) is good at

the tangent space τ of O(n, 2n, q) at π; see Thas [16]. For each known egg

O(n, 2n, q), either O(n, 2n, q) or O∗(n, 2n, q) is good at one of its elements.

Let K be the quadratic cone with vertex x in PG(3, q). A partition F of K\{x}

into q disjoint conics is called a flock of K. Then with F there corresponds a GQ

S(F) of order (q2, q); see Thas [15]. The GQ S(F) is isomorphic to the classical

GQ H(3, q2) if and only if the flock is linear, that is, if and only if all planes of

the conics of the flock contain a common line; see Payne and Thas [13] and

Payne [12]. The GQ S(F) is an EGQ with center (∞). By Payne and Thas [14]

the center (∞) is uniquely determined if S(F) is not classical.

If the point-line dual of S(F) is a TGQ T (O) with center L (then (∞) IL),

where O = O(n, 2n, q), then the translation dual O∗ of O is good at the tangent

space τi of O at πi = L ∈ O; see Thas [16]. Conversely, by Thas [17], if the

translation dual O∗ of an egg O = O(n, 2n, q), with q odd, is good at one of its
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elements, then T (O) is the point-line dual of a flock GQ S(F). If q is even and

if the TGQ T (O) is the point-line dual of a flock GQ (then O and O∗ are good),

then, by Johnson [7], the GQ T (O) is classical.

Finally, we remark that every known GQ of order (s, s2) is either a TGQ T (O)

or the point-line dual of a flock GQ S(F).

5. Subquadrangles of translation generalized quad-

rangles T (O), with O good

In this section we consider the subquadrangles of order qn of translation gener-

alized quadrangles T (O) of order (qn, q2n), with O = O(n, 2n, q) and O good at

some element π.

Theorem 5.1 (Brown and Thas [4, 5]). Let S = T (O), with O = O(n, 2n, q),

be a TGQ. If O is good at some element π and if S has a subquadrangle of order

s = qn which does not contain the point (∞), then S ∼= Q(5, s).

Theorem 5.2 (Brown and Thas [5]). Let S = (P,B, I) be a TGQ of order (s, s2),

s odd, with S = T (O) and O = O(n, 2n, q) good at some element π. If S ′ is a

subquadrangle of order s = qn of S containing the point (∞), then S ′ ∼= Q(4, s)

and either S ∼= Q(5, s) or S ′ is one of the s3 + s2 subquadrangles of order s

(isomorphic to Q(4, s)) containing the line π of S.

Theorem 5.3 (Brown and Thas [5]). Let O = O(n, 2n, q), with q odd, be an

egg in PG(4n − 1, q) which is good at π. If there is a subspace PG(3n − 1, q)

of PG(4n − 1, q) which contains at least four elements of O, but which does not

contain π, then O is a Kantor-Knuth egg (see Section 7). If there is a subspace

PG(3n−1, q) which contains at least five elements of O, but which does not contain

π, then O is classical.

Remark 5.4. Independently and in a completely different way, Lavrauw [8]

also proved the second part of Theorem 5.3.

Theorem 5.5 (Thas [21], see also [22, 23]). Let S = (P,B, I) be a TGQ of order

(s, s2), s > 1, with S = T (O) and O = O(n, 2n, q). If S ′ is a subquadrangle

of order s of S containing the point (∞), then S ′ is a TGQ T (O′) with O′ =

O′(n, n, q) a pseudo-oval on O.

Open problem 5.6. If in Theorem 5.5, s is even, does the existence of S ′ imply

that S is isomorphic to a T3(O) of Tits?

We mention several recent results on this problem in the next section.
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Let us end this section with the following results on good TGQs with a large

automorphism group, followed by an application to group actions on subGQs.

Let S = T (O) be a TGQ of order (qn, q2n), where q is odd, and where O is

good at some element PG(n − 1, q). Let K be the kernel [13, Chapter 8] of S.

Then by Thas [24], (qn + 1)(qn − 1)q6n(|K| − 1) is a divisor of |Aut(S)|. If S is

classical, then for an arbitrary line L of S, |Aut(S)L| = (qn +1)2(qn − 1)2q6n2h,

where qn = ph for the prime p.

Theorem 5.7 (Thas [27]). Let S = T (O) be a TGQ of order (qn, q2n), where q is

an odd prime power, with O the generalized ovoid in PG(4n − 1, q) corresponding

to S. Suppose that O is good at some element PG(n − 1, q), and let L be the line

PG(n − 1, q) of S. If

(qn + 1)2(qn − 1)q6n divides |Aut(S)L| ,

then S is isomorphic to the classical GQ Q(5, qn).

Corollary 5.8 (Thas [27]). Let F be a semifield flock of PG(3, qn), q odd. If qn+1

divides the size of Aut(F)Π, where Π is any flock plane, or, equivalently, if qn + 1

divides
|Aut(F)|

qn
, then F is linear.

From Theorem 5.7, Thas deduced the following theorem on subGQs:

Theorem 5.9 (Thas [27]). Let S = T (O) be a TGQ of order (s, s2), s odd, so that

the generalized ovoid O is good at some element. If Aut(S) acts transitively on its

subGQs of order s, then S ∼= Q(5, s).

6. Subquadrangles of translation generalized quad-

rangles T (O) in even characteristic

Brown and Lavrauw [2] generalized the following result of Brown on ovoids of

PG(3, q), q even, by obtaining a similar result for generalized ovoids.

Theorem 6.1 (Brown [1]). If an ovoid of PG(3, q), q even, has a conic plane

section, the ovoid must be an elliptic quadric. Equivalently, if a T3(O) of order

(q, q2), where O is an ovoid of PG(3, q), q even, has a classical subGQ of order q

containing the point (∞), then T3(O) ∼= Q(5, q).

In terms of translation generalized quadrangles, Brown and Lavrauw prove

the following.

Theorem 6.2 (Brown and Lavrauw [2]). If a T (O) of order (qn, q2n), where O

is a generalized ovoid of PG(4n − 1, q), q even, has a classical subGQ of order q

containing the point (∞), then T (O) ∼= Q(5, qn).
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In [26], Thas then generalized the latter result to elation generalized quad-

rangles.

Theorem 6.3 (Thas [26]). Let S(x) be an EGQ of order (q, q2), q even, having a

classical subGQ S ′ of order q containing x. Then S(x) ∼= Q(5, q).

Let O be a generalized oval in PG(3n − 1, q) = 〈O〉, q even. Then the qn + 1

tangent spaces to the elements of O meet in an (n − 1)-dimensional subspace

N of PG(3n − 1, q), called the nucleus of O (cf. [13, Chapter 8]). It is easily

seen that for any π ∈ O, O′ = (O \ {π}) ∪ {N} is again a generalized oval. If

O is a generalized conic, that is, if T (O) ∼= Q(4, qn), then O′ is called a pointed

generalized conic or a generalized pointed conic.

The following result generalizes another recent result of Brown and Lavrauw

[3] from TGQs to EGQs.

Theorem 6.4 (Thas [26]). Let S(x) be an EGQ of order (qn, q2n), q even, con-

taining a subGQ T (O), where O is a pointed generalized conic in PG(3n − 1, q),

having x as translation point. Then either qn = 4 and S(x) ∼= Q(5, 4), or qn = 8

and S(x) ∼= T3(O
′) with O′ the Suzuki-Tits ovoid of PG(3, 8).

Both Theorem 6.3 and Theorem 6.4 rely on the following observation, which

works in any characteristic (part (ii) being a direct corollary of part (i)).

Theorem 6.5 (Thas [26]). (i) Let S(x) be an EGQ of order (s, s2), s > 1, con-

taining a subGQ S ′ of order s which has at least one axis of symmetry L

incident with x. Then S(x) is a TGQ for the translation point x

(ii) Let S(x) be an EGQ of order (s, s2), s > 1, containing a subGQ S ′ of order s

which is a TGQ with translation point x. Then S(x) is a TGQ with translation

point x.

7. Subquadrangles of flock GQs S(F)

Let F = {C1, C2, . . . , Cq} be a flock of the quadratic cone K of PG(3, q), with

q even. If the planes ξ1, ξ2, . . . , ξq of the respective conics C1, C2, . . . , Cq all con-

tain a common point, then the flock is linear; see Thas [15].

Let F = {C1, C2, . . . , Cq} be a flock of the quadratic cone K of PG(3, q), with

q odd. If the planes ξ1, ξ2, . . . , ξq of the respective conics C1, C2, . . . , Cq all contain

a common interior point of K, then the flock is linear; see Thas [15].

Let F = {C1, C2, . . . , Cq} be a flock of the quadratic cone K of PG(3, q), with

q odd, and suppose that the planes ξ1, ξ2, . . . , ξq, with Ci ⊆ ξi, all contain a com-

mon exterior point of K. If m is any given non-square of GF(q), then coordinates
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can be chosen in such a way that K has equation X0X1 = X2
2 and the planes ξi

have equation

aiX0 − maσ
i X1 + X3 = 0 , (1)

with {a1, a2, . . . , aq} = GF(q) and σ an automorphism of GF(q). Conversely,

given any non-square m of GF(q), the planes ξi with equation (1), where {a1, a2,

. . . , aq} = GF(q) and where σ is any automorphism of GF(q), define a flock

F of the cone K with equation X0X1 = X2
2 . Also, the planes ξi all contain

the exterior point (0, 0, 1, 0) of K. This flock F is linear if and only if σ = 1.

The flocks F are called Kantor-Knuth flocks. For proofs we refer to Thas [15].

The point-line dual of the GQ which corresponds to a Kantor-Knuth flock is a

TGQ T (O), with O isomorphic to its translation dual O∗, with O good at some

element π, and with O∗ good at the tangent space τ of O at π; see Payne [11].

Such an egg is called a Kantor-Knuth egg.

In the next theorems all subquadrangles of order s of flock GQs S(F) of order

(s2, s) are determined.

Theorem 7.1 (O’Keefe and Penttila [9]). If S(F) is a flock GQ of order (s2, s),

s even, with center (∞), then S(F) contains exactly s3 + s2 subquadrangles of

order s containing the point (∞).

An easy way to see this goes as follows. Payne proved in [11] that for all

sets {L,M,N} of two by two nonconcurrent lines for which there is a line

U I(∞) IL so that {L,M,N} ⊆ U⊥, we have that |{L,M,N}⊥⊥| = s + 1.

That is, the set {L,M,N} is 3-regular. Now let {L,M,N} be such a set of lines.

If B′ is the set of lines of S(F) incident with points of the form X ∩ Y , with

X ∈ {L,M,N}⊥ and Y ∈ {L,M,N}⊥⊥, and P ′ is the set of points which are

incident with at least two distinct lines of B′, then endowed with the induced

incidence I
′, S ′ = (P ′, B′, I′) is a subGQ of order s of S(F), see Payne and Thas

[13, §2.6.2]. Now a standard counting argument yields s3 + s2 of such subGQs

(notice that any point of a GQ of order (s2, s) is contained in at most s3 + s2

subGQs of order s, see e.g. [4]).

Remark 7.2. Payne [10] proves that each of these s3 + s2 subquadrangles is a

T2(O) of Tits, for some oval O of PG(2, q).

Theorem 7.3 (Brown and Thas [5]). Let S(F) be a flock GQ of order (s2, s),

s odd, with center (∞). If S ′ is a subquadrangle of order s of S(F) containing the

point (∞), then F is a Kantor-Knuth flock. Hence either S ∼= H(3, s2) or S ′ is

one of the s3 + s2 subquadrangles of order s containing the point (∞). In all cases

S ′ ∼= W (s).

An application of Theorem 7.3 is the next theorem.
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Theorem 7.4 (Thas [27]). Let O = O(n, 2n, q) be a good egg in PG(4n − 1, q),

q odd. If T (O) contains a subGQ of order qn that is fixed pointwise by some

nontrivial automorphism of T (O), then T (O) ∼= S(F)D with F a Kantor-Knuth

flock.

For q even, one can use Theorem 6.2 and [25, Chapter 7] to show that if

O = O(n, 2n, q) is an egg in PG(4n−1, q) and T (O) contains a subGQ of order qn

that is fixed pointwise by some nontrivial automorphism of T (O), then T (O) ∼=
Q(5, qn), see [27].

Theorem 7.5 (Brown and Thas [4], Thas and Thas [20]). Let S(F) be a flock GQ

of order (s2, s), with center (∞). If S(F) contains a subquadrangle of order s

which does not contain (∞), then S ∼= H(3, s2) and S ′ ∼= W (s).

Remark 7.6. The even case of Theorem 7.5 is due to Brown and Thas, the odd

case to Thas and Thas.

8. Subquadrangles of translation generalized quad-

rangles T (O), with O∗ good

As for q even the egg O(n, 2n, q) is good if and only if O∗(n, 2n, q) is good, we

may assume that q is odd.

If O∗(n, 2n, q), with q odd, is good, then by Thas [17] the TGQ T (O) with

O = O(n, 2n, q) is isomorphic to the point-line dual of a flock GQ S(F). If

O∗(n, 2n, q) is good at the tangent space τ of O(n, 2n, q) at π, then π corre-

sponds to the point (∞) of S(F). So by Theorems 7.3 and 7.5 we have the

following result.

Theorem 8.1 (Brown and Thas [4, 5], Thas and Thas [20]). Let S = T (O),

with O = O(n, 2n, q) and q odd, be a TGQ such that the translation dual O∗

of O is good at the tangent space τ of O at π. If S contains a subquadrangle

S ′ of order q′
n
, then either S ∼= Q(5, qn) (and then S ′ ∼= Q(4, qn)) or O is a

nonclassical Kantor-Knuth egg and S ′ is one of the q3n + q2n subquadrangles of

order qn (isomorphic to Q(4, qn)) containing the line π of T (O).

9. Byproduct: A characterization of TGQs

Part of the proof of Theorem 7.5 (odd case) was also used by Thas and Thas [20]

to prove the following characterization theorem of TGQs whose point-line duals

arise from flocks.
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Theorem 9.1 (Thas and Thas [20]). If S = (P,B, I) is a flock GQ of order (s2, s),

with s odd, then the point-line dual of S is a TGQ if and only if S has a regular

point x, with (∞) 6= x ∼ (∞), where (∞) is the elation point of S.

Remark 9.2. Thas [18] proved the following result for q even. Let S be a

flock GQ of order (s2, s), with s even. Then the point-line dual of S is isomorphic

to the classical GQ H(3, s2) if and only if S has a regular point x, with (∞) 6=

x ∼ (∞), where (∞) is the elation point of S.
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