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Abstract

Root group data provide the abstract combinatorial framework common

to all groups of Lie-type and of Kac–Moody-type. These notes intend to

serve as a friendly introduction to their basic theory. We also survey some

recent developments.
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Introduction

Historical overview

Lie theory has a long and fascinating history. One of its most enthralling aspects

is the gain in unity which has been acquired over the years through the contri-

butions of many eminent figures. We try to roughly sum this up in the following

paragraphs.

One of the foundational works of the theory has been the classification of

simple Lie groups completed by W. Killing and É. Cartan in the first half of the

20th century: up to isomorphism, (center-free) complex simple Lie groups are

in one-to-one correspondence with complex simple Lie algebras, which them-

selves are in one-to-one correspondence with the irreducible finite root systems.

In particular, the Killing–Cartan classification highlighted five exceptional types

of simple Lie groups besides the classical ones. Classical groups were then thor-

oughly studied and fairly well understood, mainly through case-by-case analysis

[98]. Still, some nice uniform constructions of them deserve to be mentioned:
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e.g., by means of algebras with involutions [99], or constructions by means

of automorphism groups of some linear structures defined over an arbitrary

ground field [38]. In this respect, the simple Lie groups of exceptional type

were much more mysterious; analogues of them had been defined over finite

fields by L. Dickson for types E6 and G2. A wider range of concrete realizations

of exceptional groups is provided by H. Freudenthal’s work [42].

From the 1950’s on, the way was paved towards a theory which would even-

tually embody all these groups, regardless of their type or of the underlying

ground field. Two foundational papers were those of C. Chevalley [28], who

constructed analogues of simple Lie groups over arbitrary fields, and of A. Borel

[9], who began a systematic study of linear algebraic groups. For the sake of

completeness and for the prehistory of buildings, see also [82] for an approach

from the geometer’s viewpoint — where “geometer” has to be understood as in

J. Tits’ preface to [52]. A spectacular achievement consisted in the extension by

C. Chevalley of É. Cartan’s classification to all simple algebraic groups over ar-

bitrary algebraically closed fields [29]. Remarkably surprising was the fact that,

once the (algebraically closed) ground field is fixed, the classification is the

same as for complex Lie groups: simple algebraic groups over the given field

are again in one-to-one correspondence with irreducible finite root systems.

In order to extend this correspondence to all split reductive groups over arbi-

trary fields, M. Demazure [36, Exp. XXI] introduced the notion of a root datum

(in French: donnée radicielle), which is a refinement of the notion of root sys-

tems. These developments were especially exciting in view of the fact that most

of the abstract simple groups known in the first half of the 20th century were

actually related in some way to simple Lie groups.

Another further step in the unification was made by J. Tits in his seminal

paper [83], where he proposed an axiomatic setting which allowed him to ob-

tain a uniform proof of (projective) simplicity for all of these groups, as well as

isotropic groups over arbitrary fields, at once. While reviewing the latter article,

J. Dieudonné wrote:

“This paper goes a long way towards the realization of the hope ex-

pressed by the reviewer in 1951 that some general method be found

which would give the structure of all “isotropic” classical groups with-

out having to examine separately each type of group. It is well-known

that the first breakthrough in that direction was made in the famous

paper of Chevalley in 1955 [28], which bridged in a spectacular way

the gap between Lie algebras and finite groups. The originality of the

author has been to realize that the gist of Chevalley’s arguments could

be expressed in a purely group-theoretical way, namely, the existence in
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a group G of two subgroups B,N generating G, such that H = B ∩N

is normal in N , and that W = N/H (the “Weyl group”) is gener-

ated by a set S of involutory elements satisfying two simple conditions

(and corresponding to the “roots” in Chevalley’s case). This he calls a

(BN)-pair (. . . ).”

This notion of a BN-pair was inspired to J. Tits by the decompositions in

double cosets discovered by F. Bruhat [16], which had then been extended

and extensively used by C. Chevalley. What J. Dieudonné called “purely group-

theoretical” in his review turned out to be the group-theoretic side of a unified

geometrical approach to the whole theory, that J. Tits developed by creating

the notion of buildings [14, IV §2 Exercice 15]. Exploiting beautifully the com-

binatorial and geometrical aspects of these objects, J. Tits was able to classify

completely the irreducible buildings of rank > 3 with finite Weyl group [85]. A

key property of these buildings is that they happen to be all highly symmetric:

they enjoy the so-called Moufang property. J. Tits’ classification shows further-

more that they are all related to simple algebraic groups or to classical groups in

some way. J. Tits also shows that a generalization of the fundamental theorem

of projective geometry holds for buildings (seen as incidence structures). This

result was used by G.D. Mostow to prove his famous strong rigidity theorem

for finite volume locally symmetric spaces of rank > 2 [62]; in this way the

combinatorial aspects of Lie structures found a beautiful, deep and surprising

application to differential geometry.

A few decades later, jointly with R. Weiss, J. Tits completed the extension of

this classification to all irreducible Moufang buildings of rank > 2 with a finite

Weyl group [97]. This result, combined with [12], yields a classification of all

groups with an irreducible split BN-pair of rank > 2 with finite Weyl group.

The condition that the BN-pair splits is the group-theoretic translation of the

Moufang property (and has nothing to do with splitness in the sense of algebraic

groups). Thus, every irreducible BN-pair of rank > 3 with a finite Weyl group

splits. Concerning BN-pairs with finite Weyl groups, we finally note that what

this group combinatorics does not cover in the theory of algebraic semisimple

groups is the case of anisotropic groups. The structure of these groups is still

mysterious and for more information about this, we refer to [86], [56, VIII.2.17]

and [66].

A remarkable feature of the abstract notion of a BN-pair is that it does not

require the Weyl group to be finite, even though J. Tits originally used them

to study groups with a finite Weyl group in [83] (the BN-pairs in these groups

had been constructed in his joint work with A. Borel [11]). The possibility

for the Weyl group to be infinite was called to play a crucial role in another
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breakthrough, initiated by the discovery of affine BN-pairs in p-adic semisimple

groups by N. Iwahori and H. Mastumoto [49]. This was taken up by F. Bruhat

and J. Tits in their celebrated theory of reductive groups over local fields [17].

In the latter, a refinement of the notion of split BN-pairs was introduced, namely

valuated root data (in French: données radicielles valuées). These combine the

information encoded in root data with extra information on the corresponding

BN-pairs coming from the valuation of the ground field. Valuated root data

turned out to be classifying data for Bruhat–Tits buildings, namely the buildings

constructed from the aforementioned affine BN-pairs [90].

We note that in the case of Bruhat–Tits theory, the BN-pair structure (in fact

the refined structure of valuated root datum) was not a way to encode a poste-

riori some previously known structure results proved by algebraic group tools

(as in the case of Borel–Tits theory with spherical BN-pairs and buildings). In-

deed, the structure of valuated root datum, and its counterpart: the geometry of

Euclidean buildings, is both the main tool and the goal of the structure theory.

The existence of a valuated root datum structure on the group of rational points

is proved by a very hard two-step descent argument, whose starting point is a

split group. The argument involves both (singular) non-positive curvature argu-

ments and the use of integral structures for the algebraic group under consider-

ation. The final outcome can be nicely summed by the fact that the Bruhat–Tits

building of the valuated root datum for the rational points is often the fixed

point set of the natural Galois action in the building of the split group [18]. In

fact, F. Bruhat and J. Tits formulate their results at such a level of generality

(in particular with fields endowed with a possibly dense or even surjective val-

uation) that the structure of valuated root datum still makes sense while that

of BN-pair doesn’t in general (when the valuation is not discrete). At last, this

study became complete after J. Tits’ classification of affine buildings, regardless

of any group action a priori [90]; roughly speaking, this classification reduces

to the previous classification of spherical buildings after considering a suitably

defined building at infinity. We refer to [101] for a detailed exposition of the

classification in the discrete case.

At about the same time as Bruhat–Tits theory was developed, the first ex-

amples of groups with BN-pairs with infinite but non-affine Weyl groups were

constructed by R. Moody and K. Teo [61] in the realm of Kac–Moody theory.

The latter theory had been initiated by R. Moody and V. Kac independently a

few years before in the context of classifying simple Lie algebras with growth

conditions with respect to a grading. The corresponding groups (which were

not so easily constructed) became known as Kac–Moody groups and were re-

garded as infinite-dimensional versions of the semisimple complex Lie groups.

Several works in the 1980’s, notably by V. Kac and D. Peterson, highlighted in-
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triguing similarities between the finite-dimensional theory and the more recent

Kac–Moody objects. Again, the notion of a BN-pair and its refinements played a

crucial role in understanding these similarities, see e.g. [51]. We note that the

present day situation is that there exist several versions of Kac–Moody groups,

as explained for instance in [92]. The biggest versions are often more relevant

to representation theory (see [57] or [54]) than to group theory (see however

[58]). The relation between the complete and the minimal versions of these

groups still needs to be elucidated precisely. As far as group theory and com-

binatorics are concerned, the theory gained once more in depth when J. Tits

defined analogues of complex Kac–Moody groups over arbitrary fields in [91],

as C. Chevalley had done it for Lie groups some 30 years earlier. In [loc. cit.],

some further refinements of the notion of BN-pairs had to be considered, the

definitive formulation of which was settled in [95] by the concept of root group

data. This is the starting point of the present notes.

Content overview

The purpose of these notes is to highlight a series of structure properties shared

by all groups endowed with a root group datum. One should view them as a

guide through a collection of results spread over a number of different sources

in the literature, which we have tried to present in a reasonably logical order.

The proofs included here are often reduced to quotations of accurate references;

however, we have chosen to develop more detailed arguments when we found

it useful in grasping the flavour of the theory. The emphasis is placed on results

of algebraic nature on the class of groups under consideration. Consequently,

detailed discussions of the numerous aspects of the deep and beautiful theory of

buildings are almost systematically avoided. Inevitably, the text is overlapping

some parts of the second author’s book [72], but the point of view adopted here

is different and several themes discussed here (especially from Section 6 to 8)

are absent from [loc. cit.].

The structure of the paper, divided into two parts, is the following.

Part I: survey of the theory and examples. Section 1 collects some prelimi-

naries on (usually infinite) root systems; it is the technical preparation required

to state the definition of a root group datum. Section 2 is devoted to the latter

definition and to some examples. The aim of Section 3 is to show that com-

plex adjoint Kac–Moody groups provide a large family of groups endowed with

a root group datum (with infinite Weyl group); the proof relies only on the

very basics of the theory of Kac–Moody algebras (which are outlined as well).

In Section 4, we first mention that any root group datum yields two BN-pairs,
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which in turn yield a pair of buildings acted upon by the ambient group G; this

interplay between buildings and BN-pairs is then further described.

Part II: group actions on buildings and associated structure results. The

second part is devoted to the algebraic results that can be derived from the exis-

tence of a sufficiently transitive group action on a building. In Section 5, we first

introduce a very important tool designed by J. Tits, namely the combinatorial

analogue of techniques from algebraic topology for partially ordered sets; this

is very useful for some amalgamation and intersection results. Subsequently we

deduce a number of basic results on the structure of groups endowed with a

root group datum. In Section 6, we explain that since the automorphism group

of any building carries a canonical topology, these buildings may be used to

endow G (admitting a root group datum) with two distinguished group topolo-

gies, with respect to which one may take metric completions; these yield two

larger groups G+ and G− containing both G as a dense subgroup, and the di-

agonal embedding of G makes it a discrete subgroup in G+ ×G−. In Section 7,

some simplicity results for G± and G are discussed. In Section 8 we show that,

under some conditions, the group G admits certain nice presentations which

can be used to describe classification results for root group data.

Notation

If G is a group, the order of an element g ∈ G is denoted by o(g). If moreover

H is a subgroup of G, then gH denotes the conjugate gHg−1.

What this article does not cover

The main aim of these notes is to highlight some algebraic properties common

to all groups with a root group datum, with a special emphasis in those with

an infinite Weyl group. However, root group data were initially designed to

describe and study the combinatorial structure of rational points of isotropic

simple algebraic groups, and it is far beyond the scope of this paper to describe

the theory of algebraic groups. For a recent account of advanced problems in

that area, we refer to [43]. Another excellent reference on root group data with

finite Weyl groups is the comprehensive book by J. Tits and R. Weiss [97], which

is targeted at the classification in the rank two case. The case of rank one root

group data, i.e. Moufang sets, is a subject in its own right: see [33] in the same

volume.
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Part I

Survey of the theory and examples

1. Root data

Root data were first introduced by M. Demazure [36, Exp. XXI] as data which

classify, up to isomorphism, reductive group schemes over Z or split reductive

algebraic groups over a given field [79, Chapters 9–10]. Demazure’s original

definition can be viewed as a refinement of the notion of finite root systems, tak-

ing into account the possibility to have a non-trivial (connected) central torus.

However, root systems encountered in Kac–Moody theory are mostly infinite,

hence the definition of a root datum we give is not Demazure’s (although it is

closely related). The way towards a general theory of infinite root systems has

been paved by R. Moody and A. Pianzola [59] (see also [60, Chapter 5] for a

more comprehensive and self-contained treatment). However, this approach has

two drawbacks that we want to avoid: it implicitly excludes non-reduced root

systems and it requires a certain integrality condition. The axioms we propose

here follow rather closely J.-Y. Hée’s approach developed in [46] (for a further

comment on the comparison between these references, see Remark 1.1.1 be-

low). We note that in another vein of generalization, N. Bardy has developed

an abstract theory of root systems covering R. Borcherds’ work using Lie alge-

bras for number theory [7]; this topic will not be covered here.

The content of this section is very simple: we first define root bases, which

are designed to generate root systems, which themselves are the index sets of

the combinatorics of root group data.

1.1. Root bases

1.1.1. Axioms of a root basis

Let V be a real vector space. A root basis for V is a pair B =
(
Π,Π∨ = {α∨}α∈Π

)

where Π is a (nonempty) subset of V and Π∨ is a set consisting of an element

α∨ ∈ V ∗ associated to each element α ∈ Π, submitted to the following condi-

tions:

(RB1) For each α ∈ Π, we have 〈α, α∨〉 = 2.

(RB2) For all α, β ∈ Π with α 6= β, we have either 〈α, β∨〉 = 〈β, α∨〉 = 0 or

〈α, β∨〉 < 0, 〈β, α∨〉 < 0 and 〈α, β∨〉〈β, α∨〉 ∈
{
4 cos2(π

k
) | k ∈ Z

}
∪ R>4.
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(RB3) There exists f ∈ V ∗ such that 〈α, f〉 > 0 for all α ∈ Π.

Given a root basis B =
(
Π,Π∨ = {α∨}α∈Π

)
as above, we make the following

definitions:

• The matrix A(B) = (Aα,β)α,β∈Π defined by Aα,β = 〈α, β∨〉 is called the

Cartan matrix of B.

• The cardinality of Π is called the rank of B.

• To each α ∈ Π, we associate the involution rα : V → V : v 7→ v−〈v, α∨〉α,

which we call the reflection with respect to α.

• We set S = S(B) = {rα | α ∈ Π}.

• We define W = W (B) to be the subgroup of GL(V ) generated by S(B); it

is called the Weyl group of B.

• We set

Φ(B) = {w.α | α ∈ Π, w ∈W} , Φ(B)+ = Φ ∩ (
∑
α∈Π R+α)

and Φ(B)− = −Φ(B)+ ,

and call Φ(B) the root system of B.

• Given a subset J ⊂ Π, we set BJ =
(
J, J∨ = {α∨}α∈J

)
, SJ = {rα | α ∈ J}

and WJ = 〈SJ〉. The tuple BJ is a root basis for V with Weyl group WJ .

• We say that B is integral if each entry of the Cartan matrix is an integer.

• We say that B is free if Π is linearly independent in V .

Remarks 1.1. (1) The article [59] deals only with integral root bases, while

[46] considers only free root bases (note that under this assumption, ax-

iom (RB3) is automatically satisfied).

(2) The integrality condition is not appropriate when one wishes to study

(non-algebraic) twisted forms of Chevalley groups or of Kac–Moody groups:

the simplest illustration of this fact is provided by groups of type 2F4.

(3) The freeness condition is not appropriate to study root subbases and re-

flection subgroups of the Weyl group, see [59, Example 1]. Axiom (RB3),

which was proposed by D. Krammer [53], allows to combine naturally the

approaches of both [46] and [59]. In particular, most results from both

[46] (in the case K = R) and [59] remain valid in the present context;

the necessary modifications of arguments are mild and straightforward.
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In the rest of this section, we collect only a few basic facts for later references.

Concerning the comparison of the different notions of root bases, let us simply

mention one useful construction adapted from [59]. Given a root basis B =

(Π,Π∨) with Cartan matrix A, a free root basis B̃ may be constructed as follows.

Define Ṽ =
⊕

α∈Π Rα̃. Moreover, for each β ∈ Π, define β̃∨ ∈ Ṽ ∗ by the

assignment 〈α̃, β̃∨〉 = Aα,β for all α ∈ Π. Then B̃ =
(
Ṽ , {α̃}α∈Π, {α̃

∨}α∈Π

)
is

a free root basis. Its Cartan matrix coincides with A. Furthermore, there is a

canonical linear map π : Ṽ → V induced by α̃ 7→ α which maps Φ(B̃) to Φ(B).

This restricted map turns out to be a bijection. Moreover π induces a canonical

isomorphism W (B̃) → W (B): this follows from Theorem 1.1.4 below. Now

all results of [46] apply to the free root basis B̃ and then descend to B via π.

In the rest of this section, we will often refer to [46] to establish properties of

B; if we make no further comment on the lack of freeness of B, it means that

the desired property of B follows from the corresponding property of B̃ by the

general principle we have just outlined.

1.1.2. Products and irreducibility

There is an obvious notion of a direct product of root bases: given root bases

Bi = (Vi,Πi,Π
∨
i ) for i = 1, 2, define V = V1 ⊕ V2 and identify V1 and V2 with

subspaces of V . We set Π = Π1 ∪ Π2 and Π∨ = Π∨
1 ∪ Π∨

2 . It is straightforward

to check that (Π,Π∨) is a root basis, which is called the direct product of B1

and B2. Its Weyl group is the product W (B1)×W (B2). A root basis which does

not split as a product is called irreducible.

1.1.3. Example: the standard root basis of a Coxeter system

The standard reference is [14, IV]. Let S be a set and M = (mst)s,t∈S be a

Coxeter matrix over S. This means that

mst ∈ Z ∪ {∞}, mss = 1 and mst = mts > 2

for all s, t ∈ S. The group W which is defined by the following presentation:

W =
〈
S | {(st)mst = 1 | s, t ∈ S, mst <∞}

〉

is called the Coxeter group of type M . The ordered pair (W,S) is called the

Coxeter system of type M .

Given a Coxeter system (W,S) of type M , we set V =
⊕

s∈S Res. Next we

define a symmetric bilinear form (·, ·) on V by the formula

(es, et) = − cos
( π

mst

)
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for all s, t ∈ S. We also set fs = 2(·, es) ∈ V ∗ for each s ∈ S. Then B(W,S) =(
{es}s∈S , {fs}s∈S

)
is a free root basis. Note that (RB3) obviously holds here

because the es’s are linearly independent. This is called the standard root basis

associated with (W,S).

Remark 1.2. It is well-known that the mapW → GL(V ) attaching to each s ∈ S

the reflection σs : v 7→ v − 2(es, v)es is an injective group homomorphism [14,

V.4].

1.1.4. The Weyl group is a Coxeter group

A basic result on root bases is the following:

Theorem 1.3. Let B = (Π,Π∨) be a root basis. We have the following:

(i) The ordered pair (W,S) is a Coxeter system. Furthermore, for all distinct

α, β ∈ Π, the order o(rαrβ) of rαrβ is equal to k (resp. ∞) if Aα,βAβ,α =

4 cos2(π
k
) (resp. if Aα,βAβ,α > 4).

(ii) We have Φ(B) = Φ(B)+ ∪ Φ(B)− .

Proof. The axioms (RB1)–(RB3) imply that any pair {α, β} of elements of Π

is linearly independent. In other words B{α,β} is a free root basis. By [46,

(2.11)], it is thus a root basis in the sense of [loc. cit.]. Now the arguments

of [46, (2.10)] show that (ii) holds and allow moreover to apply verbatim the

proof of [14, Ch. 5, §4, Th. 1], which yields (i). Finally, the rule that computes

the order of rαrβ is established in [46, Prop. 1.23]. �

Remark 1.4. The result [14, Ch. 5, §4, Th. 1] quoted above is due to J. Tits; a

more general version as the one in [loc. cit.] is stated in [96, Lemme 1].

1.1.5. The set Φ(B)w

Let B =
(
Π,Π∨ = {α∨}α∈Π

)
and let W = W (B) be its Weyl group. For each

w ∈W , we set

Φ(B)w = {α ∈ Φ(B)+ | w.α ∈ Φ(B)−}.

Lemma 1.5. Let ℓ denote the word length in W with respect to S, i.e., for any

w ∈W we set: ℓ(w) = min{m ∈ N : w = s1s2 · · · sm with each si in S}.

(i) For all w ∈W and α ∈ Π, we have

ℓ(rαw) > ℓ(w) if and only if w−1.α ∈ Φ(B)+ , and

ℓ(rαw) < ℓ(w) if and only if w−1.α ∈ Φ(B)− .
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(ii) For each α ∈ Π, we have Φ(B)rα
= Φ(B) ∩ R+α.

(iii) For each w = rα1
. . . rαn

∈W with αi ∈ Π for each i and ℓ(w) = n, we have

Φ(B)w = Φ(B)αn
∪ rαn

Φ(B)αn−1
∪ · · · ∪ rαn

· · · rα2
Φ(B)α1

.

Proof. For (i), see [46, (2.10)]. For (ii) and (iii), see [46, (2.23)]. �

1.1.6. Reflections and root subbases

By [46, (2.13)(d)], for all α, β ∈ Π and w ∈ W , we have w.α = β if and only

if wrαw
−1 = rβ . Therefore, given β ∈ Φ(B), we may write β = w.α for some

α ∈ Π and w ∈ W , and the reflection wrαw
−1 depends only on β, but not on

the specific choice of α and w. We denote this reflection by rβ . Note that for all

λ ∈ R such that λβ ∈ Φ(B) we have rλβ = rβ . In fact, it is convenient to define

rλβ = rβ for all nonzero λ ∈ R; in this way, we attach a reflection in W to every

nonzero vector in V which is proportional to an element of Φ. Furthermore,

given a nonzero vector u ∈ V such that u = λβ with β ∈ Φ and λ ∈ R, we set

u∨ = λ−1β∨. In this way, we have ru = rλβ : v 7→ v − 〈v, u∨〉u.

The preceding discussion shows that the assignments α 7→ α∨ with α ∈ Π

extend uniquely to a map Φ(B) → V ∗ : β 7→ β∨ which is W -equivariant (V ∗ is

endowed with the dual action of W ). Indeed, since rβ is a reflection, it is of the

form rβ : v 7→ v − 〈v, β∨〉β for a unique β∨ ∈ V ∗. Now, writing again β = w.α

with α ∈ Π and w ∈ W , we have rβ = wrαw
−1 and it is straightforward to

deduce that β∨ = w.α∨.

Let now Ψ be a subset of Φ(B). We set

WΨ = 〈rβ | β ∈ Ψ〉 and 〈Ψ〉 = {w.β | β ∈ Ψ, w ∈WΨ} .

Note that W〈Ψ〉 = WΨ and that 〈Ψ〉 is WΨ-invariant. We set also:

C(Ψ) = {f ∈ V ∗ | 〈α, f〉 > 0 for all α ∈ 〈Ψ〉 ∩ Φ(B)+}

and

ΠΨ =
⋂

∆{∆ ⊂ 〈Ψ〉 | C(∆) = C(Ψ)} .

We have the following:

Proposition 1.6. The couple BΨ =
(
ΠΨ,ΠΨ

∨ = {α∨}α∈ΠΨ

)
is a root basis which

satisfies Φ(BΨ) = 〈Ψ〉 and W (BΨ) = WΨ.

Proof. Follows by arguments as in the proof of [59, Theorem 6]. �

The couple BΨ is called the root subbasis generated by Ψ. We say that BΨ is

parabolic if ΠΨ ⊂ Π = ΠΦ(B). This is the case whenever Ψ ⊂ Π. In that special

case, we recover the root subbase which was considered in Section 1.1.1.
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1.2. Root systems

1.2.1. Root systems with respect to a root basis

Given a root basis B =
(
Π,Π∨ = {α∨}α∈Π

)
, a B-root system is a subset Φ of

V \{0} which is W (B)-invariant, contained in {λα | α ∈ Φ(B), λ ∈ R} and such

that for each α ∈ Π, the set Φ ∩ Rα is finite and non-empty. The set

ΠΦ = {β ∈ Φ | β = λα for some α ∈ Π and λ ∈ R+}

is called the basis of Φ. The B-root system Φ is called reduced if Φ ∩ Rα has

cardinality 2 for each α ∈ Π, i.e., if Φ ∩ Rα = {±α}. Given a B-root system Φ,

we set Φ+ = Φ∩R+Φ(B)+ and Φ− = Φ∩R+Φ(B)−. By Theorem 1.1.4(ii), we

have Φ = Φ+ ∪ Φ−.

Note that by Section 1.1.6, there is a reflection rβ ∈W associated with every

root β of a B-root system Φ. A subset Ψ of Φ is called a B-root subsystem if Ψ

is rβ-invariant for each β ∈ Ψ. Note that a root subsystem is a root system in a

root subbase of B, whose Weyl group is WΨ. We say that the B-root subsystem

Ψ is parabolic if WΨ is a parabolic subgroup of W , namely it is the Weyl group

of a parabolic root subbasis.

Given any Ψ ⊂ Φ, the set 〈Ψ〉 = {w.α | α ∈ Ψ, w ∈ WΨ}, where WΨ = 〈rβ |

β ∈ Ψ〉, is a root subsystem. It is called the root subsystem generated by Ψ.

For each w ∈W (B), we let

Φw = {α ∈ Φ+ | w.α ∈ Φ−} .

Note that a decomposition similar to that of Lemma 1.5(iii) holds for Φw. In

particular, this shows that the set Φw is finite.

Lemma 1.7. Let B = (Π,Π∨) be a root basis. We have the following:

(i) Φ(B) is a reduced B-root system if and only if for all α, β ∈ Π such that the

order o(rαrβ) is odd, one has Aα,β = Aβ,α.

(ii) If there exists a B-root system, then Φ(B) is a B-root system.

Proof. (i) By [46, (2.17)], the set Φ(B) is a reduced root system if and only

if Φ(B{α,β}) is a reduced root system for all distinct α, β ∈ Π. Clearly, the

subspace Vαβ of V spanned by α and β is W{α,β}-invariant. Moreover, the

W{α,β}-action on Vαβ preserves the symmetric bilinear form (·, ·) defined

by:

(α, α) = −Aα,β , (β, β) = −Aβ,α, (α, β) = −
Aα,βAβ,α

2
.
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Therefore, in view of [46, (2.16)], it follows that Φ(B{α,β}) is not a re-

duced root system if and only if o(rαrβ) is finite and odd, and if moreover

Aα,β 6= Aβ,α.

(ii) Follows from the definitions. �

1.2.2. Prenilpotent sets of roots

Let B = (Π,Π∨) be a root basis and Φ be B-root system. Given a set of roots

Ψ ⊂ Φ, we set

Wε(Ψ) = {w ∈W | w.α ∈ Φε for each α ∈ Ψ}

for each sign ε ∈ {+,−}. Moreover, we set

Ψ = {α ∈ Φ |W+(Ψ) ⊂W+(α) and W−(Ψ) ⊂W−(α)}.

A subset Ψ ⊂ Φ is called prenilpotent if W+(Ψ) and W−(Ψ) are both nonempty.

A prenilpotent set Ψ is called nilpotent if Ψ = Ψ. Clearly for every set Ψ, the set

Ψ is nilpotent.

Note that if Ψ is prenilpotent, there exist v, w ∈ W such that v.Ψ ⊂ Φw.

Therefore, any prenilpotent set is finite (see Section 1.2.1). Furthermore, it is

easy to verify that for each w ∈W , the set Φw is nilpotent. Thus a set of positive

roots is prenilpotent if and only if it is contained in Φw for some w ∈W .

Given a pair {α, β} ⊂ Φ, we set

[α, β] = {α, β}, ]α, β[= [α, β]\{λα, µβ | λ, µ ∈ R+}

and

[α, β]lin = Φ ∩ (R+α+ R+β), ]α, β[lin= [α, β]lin\{λα, µβ | λ, µ ∈ R+}.

Note that the set [α, β]lin is contained in [α, β]. However, the inclusion is proper

in general, see [71, §5.4.2].

We record the following result for later references:

Lemma 1.8. Let α, β ∈ Φ.

(i) If {α, β} generates a finite root subsystem, then {α, β} is prenilpotent if and

only if −β 6∈ R+α.

(ii) If {α, β} generates an infinite root subsystem, then {α, β} is prenilpotent if

and only if 〈α, β∨〉 > 0.
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(iii) If {α, β} is not prenilpotent, then {−α, β} is prenilpotent.

(iv) If {α, β} is prenilpotent with α ∈ ΠΦ and β ∈ Φ+, then ]α, β[⊂ Φ+\Φrα
.

(v) If {α, β} is prenilpotent, then for all γ, γ′ ∈ [α, β], the pair {γ, γ′} is pre-

nilpotent and furthermore, we have [γ, γ′] ⊂ [α, β].

Proof. (i) By Theorem 1.1.4(i), the Weyl group of a finite root system is a

finite Coxeter group. The (unique) element of maximal length maps every

positive root of this system to a negative one. The desired assertion follows

easily.

(ii) By [60, Ch. 5, Prop. 8], we have 〈α, β∨〉 > 0 (resp. < 0) if and only if

〈β, α∨〉 > 0. Now if 〈α, β∨〉 < 0, then the set [α, β]lin is infinite since the

group 〈rα, rβ〉 is infinite. Therefore, the pair {α, β} cannot be prenilpotent,

since the set [α, β], which contains [α, β]lin, is prenilpotent, hence finite.

For the converse statement, see [23, Lemma 2.3]

(iii) Follows from (i) and (ii).

(iv) Follows from Lemma 1.5(iii).

(v) We have mentioned above that a nilpotent set of roots is prenilpotent.

Moreover, it is clear from the definition that any subset of a prenilpotent

set of roots is prenilpotent. Thus {γ, γ′} is prenilpotent. The inclusion

[γ, γ′] ⊂ [α, β] follows from the definitions. �

1.3. Root data

A root datum consists in a root basis B = (Π,Π∨) such that Aα,β = Aβ,α for all

α, β ∈ Π such that o(rαrβ) is finite and odd, together with a B-root system Φ.

All the vocabulary used to qualify root bases (e.g. free, integral, irreducible,

etc.) will be used for root data as well, according as the property in question

holds for the underlying root basis.

2. Root group data

2.1. Axioms of a root group datum

We are now ready to introduce the main object of study. Let G be a group and

E = (B,Φ) be a root datum. Thus B = (Π,Π∨) is a root basis in a real vector

space V which will be held fixed throughout, and Φ is a B-root system.
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A root group datum of type E for G (formerly called a twin root datum) is a

tuple {Uα}α∈Φ of subgroups of G which, setting

U+ = 〈Uα | α ∈ Φ+〉 and U− = 〈Uα | α ∈ Φ−〉,

satisfies the following axioms.

(RGD0) For all α ∈ Φ, we have Uα 6= {1} and moreover G = 〈Uα | α ∈ Φ〉.

(RGD1) For each β ∈ ΠΦ, we have Uβ 6⊂ U−.

(RGD2) For each β ∈ ΠΦ and each u ∈ Uβ\{1}, there exists an element µ(u) ∈

U−β .u.U−β such that µ(u)Uα µ(u)−1 = Urβ .α for all α ∈ Φ.

(RGD3) For each prenilpotent pair {α, β} ⊂ Φ, we have

[Uα, Uβ ] ⊂
〈
Uγ | γ ∈]α, β[

〉
.

(RGD4) For each β ∈ ΠΦ there exists β′ ∈ Φrβ
such that Uα ⊂ Uβ′ for each

α ∈ Φrβ
.

The subgroups Uα of G are called root subgroups.

2.2. Comments on the axioms of a root group datum

Remarks 2.1. (1) Combining (RGD0) with (RGD2), it follows that G is gen-

erated by the set

{Uβ | β ∈ ΠΦ} ∪ {U−β | β ∈ ΠΦ}.

(2) As it is the case for root bases, one obtains new systems of root subgroups

from existing ones by taking products. We leave it to the reader to per-

form these constructions in details. In particular, if the root datum E is

not irreducible, then G is a commuting product of subgroups, each one

endowed with a root group datum indexed by a root subsystem of E.

(3) We will establish in Corollary 5.3(iii) below that U−β 6⊂ U+ for each

β ∈ ΠΦ. Thus, the whole theory is ‘symmetric in + and −’, although

(RGD1) seems to break the symmetry at a first glance. In other words,

if {Uα}α∈Φ is a root group datum for G, then so is {U−α}α∈Φ.

(4) A strengthened version of axiom (RGD3) is the following:
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(RGD3)lin For each prenilpotent pair {α, β} ⊂ Φ, we have

[Uα, Uβ ] ⊂
〈
Uγ | γ ∈]α, β[lin

〉
.

This is indeed stronger than (RGD3), see Remark 1 of Section 1.2.2,

and useful to prove Levi decompositions for parabolic subgroups.

However, big parts of the theory can be developed using (RGD3)

only.

(5) If G̃ is an extension of G of the form G̃ = T.G, with G as above and T

normalizing every root subgroup of G, then G is normal in G̃ and it is

common to view {Uα}α∈Φ as a (non-generating) root group datum for G̃.

This is in fact the case in J. Tits’ original definition [95]. In particular,

the group G̃ could be the direct product of G with any group. Thus most

structure results on groups with a root group datum concern actually the

subgroup G̃† = G generated by all root groups. That is why we have found

natural to take the more restrictive condition that G = 〈Uα | α ∈ Φ〉 as

an axiom. It yields some technical simplifications and avoid to introduce

a group T normalizing each root subgroup as part of the datum.

(6) Note that axiom (RGD4) is an empty condition if the B-root system Φ is

reduced. In fact, this axiom does not appear in [95], but it does appear

in the Bruhat–Tits’ earlier definition of root group data [17, §6.1, (DR3)].

In fact, we will see in Lemma 2.4 that (RGD4) allows one to define a

reduction of an arbitrary root group datum, which is a root group datum

indexed by a reduced root system.

2.3. Root group data for root subsystems

Let E = (B,Φ) be a root datum. Given a B-root subsystem Ψ ⊂ Φ and a root

group datum {Uα}α∈Φ for a group G, we say that Ψ is quasi-closed if for each

prenilpotent pair {α, β} ⊂ Ψ, the group [Uα, Uβ ] is contained in the subgroup

generated by root groups Uγ with γ ∈]α, β[∩Ψ. The proof of the following

statement is a straightforward verification:

Lemma 2.2. Let G be a group endowed with a root group datum (Uα)α∈Φ of

type E. Given a B-root subsystem Ψ ⊂ Φ which is quasi-closed, we define GΨ =

〈Uψ | ψ ∈ Ψ〉. Then {Uψ}ψ∈Ψ is a root group datum for GΨ. �

Remark 2.3. An obvious sufficient condition for Ψ to be quasi-closed is that it

is closed, that is to say: [α, β] ⊂ Φ for each prenilpotent pair {α, β} ⊂ Ψ. This is

for example the case if Φ is a parabolic root subsystem. If the root group datum

of G satisfies moreover the axiom (RGD3)lin, then Ψ is quasi-closed whenever

it is linearly closed, namely [α, β]lin ⊂ Ψ for each prenilpotent pair {α, β} ⊂ Ψ.
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2.4. A reduction

Let E = (B,Φ) be a root datum. By definition of root data, Lemma 1.2.1(i)

shows that Φ(B) is a reduced B-root system. For each α ∈ Φ(B), we set

U(α) = 〈Uβ | β ∈ Φ, β = λα for some λ > 0〉 .

Lemma 2.4. The system {U(α)}α∈Φ(B) is a root group datum of type (B,Φ(B))

for G.

Proof. It is clear from the definition that (RGD0) and (RGD1) hold. By (RGD4)

for the original root group datum, we deduce that for each α ∈ Π there exists

β ∈ ΠΦ such that U(α) = Uβ . Therefore (RGD2) holds as well. The fact that

(RGD3) holds follows easily by combining (RGD3) for the original root group

datum with Lemma 1.2.2(v). Finally, since Φ(B) is reduced, the axiom (RGD4)

is clearly satisfied. �

The lemma shows that any root group datum for a group G yields a root

group datum for G indexed by a reduced root system. Most structure results

on groups endowed with a root group datum assume that the underlying root

system is reduced. In view of the reduction presented above, this assumption

causes no loss of generality.

2.5. Example: rank one groups

The purpose of the present subsection and the following ones is to describe a

first set of examples of groups admitting a root group datum.

A group G is called a rank one group if it admits a root group datum indexed

by a root system of rank one, which can be assumed to be reduced in view of

Section 2.4. Equivalently G possesses nontrivial subgroups U+ and U−, whose

union generates G and such that for each u ∈ U+\{1} there exists µ(u) ∈

U−.u.U− such that conjugation by µ(u) swaps U+ and U−. It is easy to see that

the latter condition is equivalent to the following, where A = U+ and B = U−:

for each a ∈ A\{1}, there exists b ∈ B such that bA = aB.

For instance, the group G = SL2(k), where k is any field, is a rank one group

with root subgroups

A =

{(
1 x

0 1

)
| x ∈ k

}
and B =

{ (
1 0

x 1

)
| x ∈ k

}
.

Indeed, given a =
(

1 x
0 1

)
with x ∈ k×, one has bA = aB with b =

(
1 0

−x−1 1

)
.
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It is common to consider a rank one group as a permutation group on the

conjugacy class of its root subgroups (note that there is such a unique conjugacy

class). This permutation action makes this conjugacy class a so called Moufang

set; we refer to [33] for a survey on this notion.

Finite rank one groups have been classified by C. Hering, W. Kantor and

G. Seitz [47] and this work is a fundamental step in the classification of finite

simple groups. More precisely:

Theorem 2.5. Let G be a finite 2-transitive group on a set Ω and suppose that,

for α ∈ Ω, the stabilizer Gα has a normal subgroup regular on Ω \ α. Then G

contains a normal subgroup M and M acts on Ω as one of the following groups

in their usual 2-transitive representation: a sharply 2-transitive group, PSL(2, q),

Sz(q), PSU(3, q) or a group of Ree type.

Thus a finite rank-one group is either a sharply-2-transitive group or a finite

group of Lie type and Lie rank one. No such classification is known in the

infinite case, but this is an active area of research. Let us mention that very little

is known about sharply-2-transitive infinite groups, and that the only known

examples of infinite rank one groups which are not sharply-2-transitive are all

of Lie type (in an appropriate sense). Furthermore, in these examples, the root

groups are nilpotent of class at most 3. The case of abelian root subgroups

seems to be intimately related to quadratic Jordan division algebras [35] which

paves the way towards a general theory of Moufang sets.

2.6. Example: (isotropic) reductive algebraic groups

Standard references are [10] and [79]. Let G be a reductive linear algebraic

group defined over a field k. Assume that G is isotropic over k, namely that

some proper parabolic subgroup of G is defined over k or, equivalently, that

G(k) seen as a matrix group contains an infinite abelian subgroup of diagonal

matrices. Let T be a maximal k-split k-torus. Borel–Tits theory [11] implies

the existence of a root group datum {Uα}α∈Φ, indexed by the relative root sys-

tem Φ of (G(k), T (k)), for the group G(k)† which is generated by the k-points

of unipotent radicals of parabolic k-subgroups of G. This root group datum

satisfies the extra condition (RGD3)lin.

A complementary fact is the following statement:

Theorem 2.6. Groups endowed with a root group datum of rank > 2 and finite

irreducible Weyl group are classified.

This follows from the work of J. Tits [85] for root data of rank > 3 and

Tits–Weiss [97] for rank 2, all combined with [12]. The result can be loosely



I I G

◭◭ ◮◮

◭ ◮

page 22 / 73

go back

full screen

close

quit

ACADEMIA

PRESS

summarized by saying that all groups with such a root group datum are ‘of

Lie type’ in an appropriate sense. In slightly more precise terms, these groups

are classical groups over skew fields or reductive algebraic groups over fields,

or twisted forms of them, which might not be algebraic in the strict sense

(e.g. the Suzuki groups 2B2, the Ree–Tits groups 2F4 [88] or the so-called

“mixed groups” of Tits). An important step in the classification is that, denot-

ing by {s, s′} the canonical generating set of the finite Weyl group of a root

group datum of rank 2, then o(ss′) ∈ {2, 3, 4, 6, 8}. Therefore, it follows from

Lemma 2.3 that for any root group datum indexed by a root system Φ, we have

o(rαrβ) ∈ {1, 2, 3, 4, 6, 8,∞} for all α, β ∈ Φ.

2.7. Example: some arithmetic groups

Let k be any field and consider the (S-)arithmetic group G = SLn(k[t, t
−1]). Let

T =

{ (
x 0

0 x−1

)
| x ∈ k×

}

and E = (B,Φ) be the classical root datum of SLn(k) with respect to T , whose

underlying vector space is V ≃ R
n−1 endowed with the Killing form (·, ·). Note

that Φ = Φ(B) in this case. The basis Π = ΠΦ corresponds to the Borel subgroup

of upper triangular matrices. Thus roots in Φ are in one-to-one correspondence

with pairs (i, j) such that i 6= j and i, j ∈ {1, . . . , n}. If the root α corresponds

to (i, j) one has a mapping (in fact: a morphism of functors)

uα : k → SLn(k) : x 7→ 1n×n + eij(x) ,

where eij(x) denotes the n×n-matrix with x as the (i, j)-entry and 0 elsewhere.

Furthermore, the tuple
{
{uα(x) | x ∈ k}

}
α∈Φ

is a root group datum for SLn(k).

Now we make the following definitions:

• V aff = V ⊕ Re;

• Φaff = {α+ n.e | α ∈ Φ, n ∈ Z};

• Πaff = Π ∪ {−α0 + e}, where α0 is the highest root of Φ;

• (·, ·) is the extension to V aff of the Killing form, defined by the assignments

(α, e) = (e, e) = 0

for all α ∈ Φ;

• ∨ : Φaff → (V aff)∗ : α→ α∨ = 2(·, α) .
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One verifies that Baff = (Πaff , {β∨}β∈Πaff ) is a root basis for V aff with canonical

root system Φaff . Its Weyl group is the so-called affine Weyl group of SLn. It is

isomorphic to the automorphism group of a tiling of Euclidean (n− 1)-space by

(hyper-)tetrahedra.

Note that a pair {α+m.e, β+n.e} of roots in Φaff , with α, β ∈ Φ andm,n ∈ Z,

is prenilpotent if and only if α 6= −β.

It is now an exercise to check that the system
{
{uα(xtn) | x ∈ k}

}
α+n.e∈Φaff

is a root group datum of type (Baff ,Φaff) for G.

2.8. Example: a “free” construction

Here we indicate how to construct a root group datum with infinite dihedral

Weyl group starting from any two rank one groups. We first describe the under-

lying root datum.

Let V = Re1 ⊕ Re2 and Π = {e1,−e1 + e2}. Let also (·, ·) by the symmetric

bilinear form on V whose Gram matrix in the canonical basis {e1, e2} is ( 1 0
0 0 )

and let ∨ : Φ → V ∗ : α 7→ 2(·, α). Then B = (Π, {α∨}α∈Π) is a root basis. Its

canonical root system is Φ(B) = Φ = {±e1 + n.e2 | n ∈ Z} and its Weyl group

W is infinite dihedral. We let S = {s1, s2} be its canonical generating set, where

s1 = re1 and s2 = re2−e1 .

Let Φ1 = {±e1}, Φ2 = {e1 − e2,−e1 + e2}, Π1 = {e1} and Π2 = {−e1 + e2}.

Thus Ei =
(
(Πi,Π

∨
i ),Φi

)
is a rank one root datum for i = 1, 2. Let Gi be a

group with a root datum {Uα}α∈Φi
of type Ei for i = 1, 2. Note that Gi may be

any rank one group. Let

Ti = 〈µ(u)µ(v) | u, v ∈ Uα\{1}, α ∈ Πi〉

where i = 1, 2 and set T = T1 × T2. We define

G̃ = (G1 × T2) ∗T (T1 ×G2)

and

N = T.
〈
µ(u) | u ∈ Uα\{1}, α ∈ Π1 ∪ Π2

〉
< G̃.

Note that T is normal in N . Furthermore, the unique homomorphism W →

N/T , defined by the assignments s1 7→ µ(u1).T and s2 7→ µ(u2).T where ui is

some fixed nontrivial element of Uα with α ∈ Πi, is in fact an isomorphism.

Thus the quotient N/T is infinite dihedral. Therefore, there is a well-defined

W -equivariant map Φ → {nUαn
−1 | n ∈ T, α ∈ Π1 ∪ Π2}. In particular, we

may use Φ as an index set for the family {nUαn
−1 | n ∈ T, α ∈ Π1 ∪ Π2}.
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Now, one verifies that the system {Uα}α∈Φ of subgroups of G̃ satisfies (RGD0)–

(RGD2). In order to make (RGD3) hold, one just add the necessary relations.

More precisely, let H be the normal closure in G̃ of the subset

{[Uα, Uβ ] | α 6= β and {α, β} ⊂ Φ is prenilpotent}.

We denote by G the quotient G̃/H. The projection in G of the subgroup Uα < G̃

is again denoted by Uα. It turns out that the system {Uα}α∈Φ is a root group

system of type E for G.

This construction is due to J. Tits [93, §9]. An alternative description, with

detailed computations, and a generalization to other types of root data (with

any right-angled Coxeter group as Weyl group), is carried out in [74].

3. Kac–Moody theory

The purpose of this section is to indicate that Kac–Moody theory provides a

wide variety of examples of groups endowed with a root group datum with

infinite Weyl groups. The origin of this theory lies in the classification of finite-

dimensional simple Lie algebras over C. A key tool in this classification is the

existence of a Cartan decomposition, namely a root space decomposition with

respect to a certain abelian subalgebra whose adjoint action is diagonalizable,

and called a Cartan subalgebra. A basic idea in Kac–Moody theory is to construct

a family of Lie algebras by generators and relations, where the relations impose

the existence of a Cartan decomposition. Carrying out this idea, V. Kac was able

to construct a continuous family of finitely generated simple Lie algebras. Our

first goal is to explain this construction.

3.1. Constructing Lie algebras with a Cartan decomposition

We start with a matrix A = (aij)
n
i,j=1 ∈ R

n×n of rank l and consider a triple

(hR,Π,Π
∨) where hR is a R-vector space of dimension 2n− l, Π = {α1, . . . , αn}

is a linearly independent subset of h∗
R, Π∨ = {α∨

1 , . . . , α
∨
n} is a linearly indepen-

dent subset of hR and the relation

〈αj , α
∨
i 〉 = aij

holds for all i, j ∈ {1, . . . , n}. Note that such a triple always exists and is

unique up to isomorphism. Next we consider a Lie algebra g̃(A) generated
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by {ei, fi | i = 1, . . . , n} and a basis of hR, submitted to the following relations:

[ei, fj ] = δijα
∨
i (i, j = 1, . . . n),

[h, h′] = 0 (h, h′ ∈ hR),

[h, ei] = 〈αi, h〉.ei (i = 1, . . . , n;h ∈ hR),

[h, fi] = −〈αi, h〉.fi (i = 1, . . . , n;h ∈ hR).

A fundamental result by V. Kac is the following:

Theorem 3.1. Let ñ+ (resp. ñ−) be the subalgebra generated by {ei | i = 1, . . . , n}

(resp. {fi | i = 1, . . . , n}). Let also h = hR ⊗ C, Q =
∑n
i=1 Zαi and Q+ =∑n

i=1 Z+αi. We have the following:

(i) g̃(A) = ñ− ⊕ h ⊕ ñ+.

(ii) ñ+ is freely generated by {ei | i = 1, . . . , n}, and ñ− is freely generated by

{fi | i = 1, . . . , n}.

(iii) With respect to the adjoint h-action, one has a decomposition

g̃(A) =
( ⊕

α∈Q+\{0}

g̃α
)
⊕ h ⊕

( ⊕

α∈Q+\{0}

g̃−α
)
,

where g̃α = {x ∈ g̃(A) | [h, x] = 〈α, h〉.x for all h ∈ h}.

(iv) The assignments ei 7→ −fi, fi 7→ −ei (i = 1, . . . , n), h 7→ −h (h ∈ h) extend

to an involutory automorphism ω̃ ∈ Aut g̃(A).

(v) Amongst all ideals intersecting h trivially, there is a unique maximal one,

say r.

Proof. See [50, Theorem 1.2]. Here, we merely note that (v) follows rather

quickly from the root space decomposition (iii). Indeed, let U be any nontrivial

ideal of g̃(A) intersecting h trivially and let u ∈ U be a nonzero element. By

(iii), we have u =
∑k
i=1 ui, where ui ∈ g̃αi

and αi ∈ ±Q+ for each i = 1, . . . , k.

Since h is not a finite union of hyperplanes, there exists h ∈ h such that the

scalars αi(h) (i = 1, . . . , k) are all distinct. Now, for each j ∈ N we have

(ad h)j(u) =
k∑

i=1

〈αi, h〉
j .ui ∈ U.

Since the matrix (〈αi, h〉
j)ki,j=1 has nonzero determinant (it is a Vandermonde

matrix), it follows that ui ∈ U for each i = 1, . . . , k. In other words, the root

space decomposition (iii) induces a similar decomposition of U . This shows

that the sum of all ideals intersecting h trivially is itself an ideal intersecting h

trivially. This is nothing else than the clever use of a classical trick to show that

the restriction of a diagonalizable endomorphism is still diagonalizable. �
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We define a Lie algebra g(A) as the quotient g̃(A)/r, where r is the maximal

ideal of (v). As a consequence of the latter theorem, it is not difficult to establish

the following (see [50, Proposition 1.7]):

Corollary 3.2. The Lie algebra g(A) is simple if and only if detA is nonzero and

for each i, j ∈ {1, . . . , n} there exists a sequence of indices i = i0, i1, . . . , is = j

such that aij−1ij is nonzero for each j = 1, . . . , s.

Note that it is an open problem to determine whether the matrix A (up to

a permutation of the indices preserving A) is an invariant of the isomorphism

class of the Lie algebra g(A). This is only known for special classes of matrices,

all of which are generalized Cartan matrices (see Section 3.2 below).

The root space decomposition (iii) above induces a decomposition g(A) =⊕
α∈Q gα. Note that by the definition of g(A) we have g0 ≃ h and we will

in fact identify the latter two algebras. Thus the decomposition of g(A) is in

fact a root space decomposition for the adjoint action of h. We then define

Φ = {α ∈ Q\{0} | gα 6= 0}; elements of Φ are called roots. We also set

Φ± = Φ ∩Q±, where Q− = −Q+.

The rule

[gα, gβ ] ⊂ gα+β , (3.1)

valid for arbitrary α, β ∈ h∗, shows that for each root α ∈ Φ+, the root space gα
is the linear span of elements of the form

[. . . [[ei1 , ei2 ], ei3 ] . . . , eis ]

such that αi1 + · · · + αis = α. Consequently, we obtain the obvious bound

dim gα 6 nheightα (3.2)

for any α ∈ Φ+, where by definition

height
( n∑

i=1

λiαi

)
=

∣∣∣
n∑

i=1

λi

∣∣∣

for any α =
∑n
i=1 λiαi ∈ Q. The above description of gα also shows that

dim gαi
= 1 and dim gλαi

= 0 (3.3)

for any i = 1, . . . , n and λ ∈ Z, λ > 1. Similar statements hold for negative roots

and fi instead of ei. A quick way to establish this is by applying the involution ω

of g(A), induced by the involution ω̃ ∈ Aut(g̃(A)) mentioned in point (iv) of the

theorem.
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Finally, we remark that, in view of the root space decomposition of g(A), the

subalgebra xi generated by ei and fi is 3-dimensional. Now, if aii = 0, then xi is

isomorphic to a Heisenberg Lie algebra. If aii 6= 0, then xi is not solvable and,

hence, it must be isomorphic to sl2(C).

3.2. Kac–Moody algebras

3.2.1. The root basis and its canonical root system

The Lie algebra g(A) is called a Kac–Moody algebra if the matrix A is a gener-

alized Cartan matrix, namely if A ∈ Z
n×n and moreover aii = 2, aij 6 0 and

aij = 0 ⇔ aji = 0 for all i 6= j ∈ {1, . . . , n}. This is equivalent to the require-

ment that B(A) = (Π,Π∨) be an integral root basis. Note that B(A) is free by

assumption. Let S = S(B(A)) and W = W (B(A)) be the Weyl group of B(A).

By Theorem 1.1.4(i), for all distinct α, β ∈ Π we have o(rαrβ) = 2, 3, 4, 6 or ∞

according as Aα,βAβ,α = 0, 1, 2, 3 or > 4. In particular the set Φ(B(A)) is a

reduced root system by Lemma 1.2.1(i). We will see in the next subsection that

that the root system Φ(B(A)) has in fact a Lie-theoretic interpretation in the

present context.

3.2.2. Lifting the Weyl group

A basic fact on Kac–Moody algebras is that they satisfy Serre’s relations:

(ad ei)
1−aij ej = 0 and (ad fi)

1−aij fj = 0

for all i 6= j. This follows from basic computations in sl2(C)-modules, see [50,

§3.3]. An immediate consequence is the following:

Lemma 3.3. The operators ad ei and ad fi are locally nilpotent on g(A) for all

i = 1, . . . , n.

Proof. Recall that a linear operator A ∈ End(V ) of a vector space V is called

locally nilpotent if every vector v ∈ V is contained in a finite-dimensional A-sta-

ble subspace U such that the restriction of A to U is nilpotent. In view of the

definition of g̃(A) and g(A), we have (ad ei)
2h = 0 for any h ∈ h. In view of

Serre’s relations, it follows that for any generator x of the Lie algebra g(A) there

is an integer Nx such that (ad ei)
Nxx = 0. Now, using Leibniz’ rule (note that

ad ei is a derivation of g(A) by Jacobi’s identity), one deduces by a straightfor-

ward induction on iterated commutators of the generators of g(A) that ad ei is

locally nilpotent. Similar discussions apply to ad fi. �
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From the lemma it follows that

exp ad ei =
∞∑

m=0

1

m!
(ad ei)

m

is a well-defined automorphism of g(A).

Now, for each i ∈ {1, . . . , n}, we consider the automorphism

ri = exp ad ei · exp ad−fi · exp ad ei ∈ Aut(g(A)) .

Note that ri stabilizes the subalgebra xi ≃ sl2(C) and acts on it as the involution

ei 7→ −fi, fi 7→ −ei, α
∨
i 7→ −α∨

i . Furthermore, straightforward computations

show that

ri(h) = h− 〈αi, h〉α
∨
i

for all h ∈ h. In particular, the automorphism ri preserves h and, consequently,

preserves the corresponding root space decomposition of g(A). In other words,

ri induces a permutation of Φ, which we denote by r∨i . In fact, one can easily

compute the action of r∨i on Φ by transforming the equation [h, x] = 〈α, h〉.x

(satisfied by all h ∈ h, x ∈ gα and α ∈ Φ) by ri. Routine computations then

show that

r∨i (α) = α− 〈α, α∨
i 〉.αi.

This extends to a linear action of r∨i on h∗ which is nothing but the dual action

of ri. The following result sums up the preceding discussion:

Proposition 3.4. The canonical B(A)-root system Φ(B(A)) identifies in a canon-

ical way to a subset reΦ of the set of roots Φ of the Lie algebra g(A). �

Note that we recover the fact that Φ(B(A)) is reduced thanks to Equation (3.3).

A remarkable feature of Kac–Moody theory is that Φ is real, i.e. Φ = reΦ,

if and only if g(A) is finite-dimensional, in which case it is a well understood

semisimple Lie algebra, see [50, Th. 5.6]. The elements of imΦ = Φ\ reΦ are

called imaginary roots.

An important open problem of the theory is to compute the dimension of

the root space gα for α imaginary; recall that Equation (3.2) provides a rough

upper-bound. In view of (3.3), we have dim gα = 1 for any α ∈ reΦ. For such a

root α ∈ reΦ, we set

Uα = 〈exp adx | x ∈ gα〉

which is a well-defined one-parameter subgroup of Aut(g(A)) since adx is lo-

cally nilpotent by the lemma above.
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Note also that for each i, the reflection rαi
of the root basis B(A) coincides

with the restriction of r∨i to the R-form h∗
R of h∗. The Weyl group W < GL(h∗

R)

is thus isomorphic to the subgroup of GL(h) (resp. GL(h∗)) generated by the

corresponding restrictions of the ri’s (resp. r∨i ). Note however that the subgroup

of Aut(g(A)) generated by the ri’s is not isomorphic to W , but to an extension

of W by an elementary abelian 2-group of rank n. This extended Weyl group is

studied by J. Tits in [84].

3.3. Root group data for Kac–Moody groups

Maintain the notation of the previous subsection. We let moreover G be the

subgroup of Aut(g(A)) generated by the Uα’s. The group G is called the adjoint

Kac–Moody group of type A over C.

Theorem 3.5. The tuple {Uα}α∈ reΦ is a root group datum for G, satisfying also

(RGD3)lin.

Proof. Condition (RGD0) holds by construction. For (RGD1), note that U+ sta-

bilizes the subalgebra n+ generated by the ei’s. Moreover, the group U−αi
sta-

bilizes the subalgebra xi. It follows that U−αi
6⊂ U+, otherwise U−αi

would sta-

bilize xi ∩ n+ = gαi
, which is absurd. A similar argument shows that Uαi

6⊂ U−,

hence (RGD1) holds. Condition (RGD2) is satisfied as follows from the pre-

ceding discussion on the automorphisms ri ∈ Aut(g(A)). Moreover (RGD4)

is empty since Φ is reduced. It remains to establish (RGD3)lin. To this end,

for any prenilpotent pair {α, β} ⊂ reΦ we let g[α,β] be the vector space gen-

erated by all root spaces gγ with γ ∈ [α, β]lin = Φ ∩ (R+α + R+β). Thus we

have g[α,β] =
⊕

γ∈[α,β]lin
gγ and g[α,β] is finite-dimensional since nilpotent sets

of roots are necessarily finite by Section 1.2.2. Moreover, the rule (3.1) shows

that g[α,β] is in fact a nilpotent subalgebra.

Let now Ũ[α,β] be the simply connected complex Lie group with Lie algebra

g[α,β]. Thus Ũ[α,β] is nothing but the set g[α,β] endowed with a composition law

(u, v) 7→ u ∗ v given by the Baker–Campbell–Hausdorff formula. We also denote

by U[α,β] the subgroup of Aut(g(A)) generated by exp adx for x ∈ g[α,β]. Now,

it follows from the definitions that there is a canonical homomorphism

ϕ : Ũ[α,β] → U[α,β].

Furthermore, denoting by Ũγ the one-parameter subgroup of Ũ[α,β] with Lie

algebra gγ for each γ ∈ [α, β], we have ϕ(Ũγ) = Uγ and we obtain a product

decomposition

Ũ[α,β] =
∏

γ∈[α,β]lin

Ũγ
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induced by the decomposition of g[α,β]. Routine computations then show that

the Lie algebra of the commutator group [Ũα, Ũβ ] is contained in
∑
γ∈]α,β[lin

gγ ,

which yields [Ũα, Ũβ ] ⊂
∏
γ∈]α,β[lin

Ũγ . Transforming by ϕ, we deduce that

axiom (RGD3) is satisfied. �

3.4. Generalizations to arbitrary fields and non-split groups

In a similar way as complex semisimple Lie groups may be defined over arbitrary

fields following Chevalley’s construction, J. Tits [91] has shown that similar

constructions may be performed in the Kac–Moody context. A key point in this

construction is to show that the simply connected nilpotent Lie groups Ũ[α,β]

that appeared in the proof of Theorem 3.3 are in fact the groups of C-points of

nilpotent group schemes defined over Z [91, Prop. 1]. In somewhat less precise

terms, this means that the commutation relations in Ũ[α,β] may be written with

integral coefficients in a similar way as in the classical case [80, Lemma 15].

These integral coefficients may then be used to write down a Steinberg type

presentation for a group over an arbitrary ground field, see [91, §3.6].

In fact, Tits’ construction associates a group functor

GB : Rgs → Gps

on the category of commutative unitary rings to every integral root basis B =

(Π,Π∨) such that Π is finite. Given any field k, the group GB(k) is naturally

endowed with a family of subgroups {Uα}α∈Φ(B), all isomorphic to the additive

group of k, which is a root group datum for a subgroup GB(k)† of GB(k) [72,

Prop. 8.4.1]. This root group datum satisfies moreover (RGD3)lin. The functor

GB is called a Tits functor. The value of a Tits functor on a field k is called a split

Kac–Moody group over k.

An important feature of Tits functors is that their restriction to the category

of fields is completely characterized by a short list of axioms inspired by the

scheme-theoretic definition of linear algebraic groups [91, Theorem 1]. One of

these axioms is that the complex Kac–Moody group GB(C) has a natural adjoint

action on the Lie algebra gA, where A = A(B) is the Cartan matrix of the root

basis B.

The analogy with the theory of reductive algebraic groups can be pushed

one step further: Kac–Moody groups admit non-split forms which also possess

naturally root group data. The non-split forms may be obtained by an algebraic

process of Galois descent, which is defined and studied in [72, Chapters 11–

13], or by using other twisting methods which do not fit into the context of

Galois descent: see [45] for Steinberg–Ree type constructions and [63], [64]
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for some others. In all cases, one obtains groups endowed with root group

data; the Weyl group is generally infinite, and the underlying root basis might

be of infinite rank as well.

We will not give more details about these constructions here. We merely

mention that some of the groups they yield admit rather concise presentations,

which allow to recover them in more direct manner, see Section 8.2 below.

4. Root group data, buildings and BN-pairs

There are several equivalent definitions of buildings which are all of different

flavour and bring each a specific enlightenment to the theory. Here we present

two of them and sketch some of their most basic features. Detailed accounts

on the theory may be found in standard references: [85] classifies the spherical

buildings in connection with the theory of algebraic groups and their twisted

analogues, [100] takes into account simplifications made possible by the use

of the Moufang property (as suggested by the addenda in [loc. cit.]), [75] ex-

ploits the notion of a chamber system as introduced in [87]. Finally, the book

[3] presents all the main viewpoints on buildings and a careful study of the

relationships with combinatorial group theory, while [31] provides a thorough

treatment of the topological and metric viewpoints on Coxeter groups and build-

ings.

4.1. BN-pairs from root group data

Let us first introduce the definition and the basic properties of BN-pairs, another

(less precise but of course more general) structure in group combinatorics.

4.1.1. Axioms of a BN-pair

Let G be a group. A BN-pair (or Tits system) [14, IV.2] for G is a pair B,N

of subgroups of G, together with a set S of cosets of N modulo B ∩ N , which

satisfy the following axioms:

(BN1) G = 〈B ∪N〉 and B ∩N ⊳N .

(BN2) The elements of S have order 2 and generate the group W := N/B ∩N .

(BN3) For all s ∈ S and w ∈W , we have sBw ⊂ BwB ∪BswB.

(BN4) For each s ∈ S, we have sBs 6⊂ B.
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It follows from the axioms that the group W is a Coxeter group and that

(W,S) is a Coxeter system [14, Ch. IV, §2, Th. 2]. Another important conse-

quence is the following decomposition of G, called Bruhat decomposition [14,

Ch. IV, §2, Th. 1]:

G =
⊔

w∈W

BwB .

In other words, the double cosets of B in G are in one-to-one correspondence

with the elements of W .

An important concept associated with BN-pairs is that of a parabolic sub-

group. Given any subset J ⊂ S, it follows from the axiom (BN3) that the set

PJ =
⊔
w∈WJ

BwB is a subgroup of G containing B, which is called a standard

parabolic subgroup of type J . In fact, it follows from the Bruhat decomposition

that any subgroup of G containing B is obtained in this way [14, Ch. IV, §2,

Th. 3].

4.1.2. BN-pairs from root group data

As before, let now B = (Π,Π∨) be a root basis and E = (B,Φ) be a root datum.

Let also G be a group endowed with a root group datum {Uα}α∈Φ of type E. We

will also assume in this subsection that Φ = Φ(B) is the canonical root system

of B; in particular it is reduced. This assumption causes no loss of generality in

view of Lemma 2.4.

In order to construct BN-pairs for G, we introduce the following additional

notation:

T = 〈µ(u)µ(v) | u, v ∈ Uα\{1}, α ∈ Π〉 ,

N = 〈µ(u) | u ∈ Uα\{1}, α ∈ Π〉.T

and

B± = T.U± .

Clearly T normalizes each root group Uα, in particular B+ and B− are sub-

groups of G and we have U± ⊳B±. Given α ∈ Π and u ∈ Uα\{1}, we denote by

rα the coset µ(u).T ⊂ N/T . Note that this is indeed independent of the choice

of u ∈ Uα\{1}. Finally we set

S = {rα | α ∈ Π} .

The expected relation between root group data and BN-pairs is the following

statement:



I I G

◭◭ ◮◮

◭ ◮

page 33 / 73

go back

full screen

close

quit

ACADEMIA

PRESS

Theorem 4.1. The tuple (B±, N, S) is a BN-pair for G.

The proof of this theorem is surprisingly difficult. The tools are elementary,

but the proof sketched by J. Tits is a very clever and fairly indirect one. The full

details, which are involved and quite technical, are given for the first time in the

proof of Theorem 8.80 in [3]. The hardest point is to prove that for a root group

datum as above, we have: B+ ∩ U− = {1}. For this (and for other purposes

among which are amalgamation theorems), J. Tits introduced a combinatorial

theory of coverings of partially ordered sets [89], which we sketch very briefly

in 5.1. For a careful analysis of the proof, we recommend [3, 8.6], which in fact

contains the first detailed written treatment of this proof; see also [71, §3] for

a less detailed version, following a suggestion from [1].

Corollary 4.2. We have B− = NG(U−).

Proof. Since U− is normal in B− by definition, we have B− ⊂ NG(U−). In view

of the theorem, this implies that NG(U−) = P−
J for some J ⊂ S since every

subgroup containing B− is a parabolic subgroup. Now if J 6= ∅, then rα ∈ J

for some α ∈ Π and hence Uα ∈ P−
J = NG(U−). But we have just seen in the

proof of (BN4) that Uα 6⊂ NG(U−). Thus J = ∅ and NG(U−) = B−. �

4.2. Coset geometries

The purpose of the next sections is to show that a group G endowed with a

root group datum possesses two natural actions on two distinguished buildings,

which are associated to G via BN-pairs constructed from the root group datum.

Actions on buildings are very helpful in exploring the structure of the groups

acting, as it will become clear in the subsequent study of G.

As we will see below, the construction of the building associated to a group

with a BN-pair is a special example of a coset geometry associated to a group

endowed with an inductive system of subgroups, and it is appropriate to start

by defining the latter concept.

The coset geometry is obtained by the following construction. Let G be a

group and let {Ga}a∈F be a system of subgroups indexed by some set F (in

such a way that Ga 6= Gb for a 6= b). The index set F is partially ordered by the

inclusion of subgroups:

a 6 b ⇐⇒ Ga ⊂ Gb .

We view {Ga}a∈F as an inductive system, all of whose morphisms are inclusion

maps. The coset geometry of G with respect to {Ga}a∈F is the set

Y =
⋃

a∈F

G/Ga
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which is partially ordered by the reverse inclusion:

gGa 6 hGb ⇐⇒ gGa ⊃ hGb .

The poset (F op,6) = (F,>), which is the dual of (F,6), is thus isomorphic to

a sub-poset of (Y,6).

Recall that (F op,6) has the structure of an (abstract) simplicial complex if any

two elements of F op have an infimum and if any nonmaximal element a of F op

coincides with the infimum of the set of elements strictly greater than a. In

that case, the poset (Y,6) also inherits of the structure of a simplicial complex,

which is called the simplicial coset geometry associated with the system {Ga}a∈F ,

and whose simplices are all the elements of Y , so that the order 6 becomes the

inclusion of simplices. The vertices of this complex are the minimal (nonempty)

simplices, or equivalently, the cosets of the maximal subgroups in the system

{Ga}a∈F . The diagram of the poset Y (i.e. the graph with vertex set Y such that

the vertices x, y form an edge if and only if x 6 y or y 6 x) is nothing but the

1-skeleton of the first barycentric subdivision of the simplicial coset geometry.

A typical example is the case of an amalgam G = A ∗C B where C = A ∩B.

In that case, the (simplicial complex associated to the) coset geometry is easily

identified with the Bass–Serre tree associated to the amalgam.

Another example, important to us, is the standard Coxeter complex of a Cox-

eter system (W,S). This is defined as follows. Let F be the set of all proper

subsets of S ordered by inclusion and consider the inductive system {WJ}J∈F ,

where WJ = 〈J〉. We have WI ∩WJ = WI∩J for all I, J ∈ S, where WI = 〈I〉.

Moreover WJ =
⋂
I∈F,I)JWI for all nonmaximal J ∈ F . Thus (F,6) is an

abstract simplicial complex; in fact it is just a simplex. The standard Coxeter

complex is the simplicial coset geometry associated with {WJ}J∈F . Note that

the maximal simplices in this complex are the cosets of W∅ = 1, and are thus

naturally in one-to-one correspondence with W .

For example, ifW is infinite dihedral and S = {s1, s2} is a Coxeter generating

set, then the standard Coxeter complex is a simplicial line, which is simply the

Bass–Serre tree of the amalgam W = 〈s1〉 ∗ 〈s2〉.

4.3. Buildings as simplicial complexes

Given a Coxeter system (W,S), a building of type (W,S) is a simplicial complex

X together with a collection A of subcomplexes, all isomorphic to the standard

Coxeter complex of (W,S), such that the following conditions are satisfied:

(Bu1) Any two simplices are contained in some A ∈ A.
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(Bu2) Given any two A,B ∈ A, there is an isomorphism A → B fixing A ∩ B

pointwise.

The maximal simplices of X are called chambers; the set of all chambers is

denoted by Ch(X ). The subcomplexes in A are called apartments. The Coxeter

group W is called the Weyl group of X .

A first basic property of buildings is the existence of a type function typ: X →

P(S) associating a subset of S to each simplex in X in such a way that each

vertex is mapped to a maximal proper subset of S and for every simplex σ we

have typ(σ) =
⋂
v∈σ typ(v). It is clear by construction that the standard Coxeter

complex is endowed with such a type function: we can simply set wWJ 7→ J for

every w ∈ W and J ⊂ S. Now, transporting this type function to an apartment

of X , we can extend it in a coherent way to the whole of X using (Bu1) and

(Bu2). Moreover, the isomorphisms in (Bu2) may always be assumed to be

type-preserving [3, Prop. 4.6]. The type of a chamber is the empty set.

The star of a simplex σ ∈ X is called a residue. It is itself a building whose

apartments are the traces on St(σ) of apartments in A. The type of this building

is given by (WJ , J) where J = typ(σ).

4.4. The Weyl distance

An important feature about buildings is that the set of chambers is endowed

with a so-called Weyl distance. Given a Coxeter system (W,S) and a set C, a

map δ : C × C → W is called a Weyl distance if it satisfies the following condi-

tions, where x, y ∈ C and w = δ(x, y):

(WD1) w = 1 if and only if x = y.

(WD2) Given z ∈ C such that δ(y, z) = s ∈ S, we have δ(x, z) ∈ {w,ws};

furthermore, if ℓ(ws) > ℓ(w), then δ(x, z) = ws.

(WD3) Given s ∈ S, there exists z ∈ C such that δ(y, z) = s and δ(x, z) = ws.

As we have seen above, the set Ch(A) of chambers in any apartment of a

building X of type (W,S) can be identified with W . Consider the map

δW : W ×W →W : (x, y) 7→ x−1y.

It is immediate to check that δW is a Weyl distance. Note moreover that the

composite map ℓ◦δW : W×W →W is nothing but the (combinatorial) distance

in the Cayley graph of W with respect to S. Now one can transport the Weyl

distance δW on Ch(A) for each apartment A ∈ A of X . In view of the axioms
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(Bu1) and (Bu2), one verifies easily that this allows one to construct a well-

defined Weyl distance δ : Ch(X ) × Ch(X ) → W . One also checks that the

composed map d = ℓ ◦ δ is a discrete metric in the usual sense, which is called

the numerical distance on Ch(X ).

The existence of a Weyl distance is in fact a characterizing property of build-

ings: any set endowed with a Weyl distance may be identified with the set of

chambers of some building.

4.5. Buildings from BN-pairs

Given a group G with a BN-pair (B,N, S) and Weyl group W = N/B ∩ N ,

let F be the set of proper subsets of S ordered by inclusion and consider the

inductive system {PJ}J∈S consisting of the standard parabolic subgroups of G.

We have PI ∩ PJ = PI∩J and moreover PJ =
⋂
I∈F,I)J PI for all nonmaximal

J ∈ F . Thus, as before, F is a simplicial complex. Let X be the simplicial coset

geometry associated with {PJ}J∈S . Let also A0 be the simplicial coset geometry

associated with the inductive system {N ∩PJ}J∈F of subgroups of N . Then A0

is isomorphic to the Coxeter complex of type (W,S) and may be identified in a

canonical way with a subcomplex of X . Let A =
⋃
g∈G g.A0. It turns out that

(X ,A) is a building of type (W,S); property (Bu1) is not difficult to deduce

from the Bruhat decomposition.

The Weyl distance of X is also easy to identify: it is the map δ : Ch(X ) ×

Ch(X ) →W defined by

δ(gB, hB) = w ⇐⇒ Bh−1gB = BwB.

This definition makes sense again thanks to the Bruhat decomposition of G.
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Part II

Group actions on buildings and associated

structure results

5. First structure results from actions on buildings

It is an old matter in group theory to try to obtain a presentation for a group

that acts naturally on a space by preserving some structure, e.g. of topological

or geometric nature. For example, in the case of a group Γ acting by homeo-

morphisms on an arcwise connected and simply connected topological space X

possessing an arcwise connected open subset U such that Γ.U = X, a precise

presentation for Γ is given in [55]. An interesting special case is when the Γ-

action is proper and totally discontinuous and U is compact: in that case (under

some mild extra condition) the given presentation of Γ turns out to be finite.

This is especially relevant to algebraic topology: the fundamental group of a

topological space has a natural action on the universal cover, which is of course

simply connected. Thus this method provides a way of obtaining presentations

for fundamental groups.

This circle of ideas also lies behind Bass–Serre theory, which characterizes

group amalgams in terms of actions on trees. Very early on, Tits realized that

these ideas could be efficiently used in the context of buildings (recall that trees

are indeed special examples of buildings!). This is what we want to explain in

this section.

5.1. Covering theory for partially ordered sets

We now describe a very flexible method in the spirit of the ideas described

above, which applies in particular to all coset geometries. One of the goals is to

make sense of a notion of simple-connectedness for posets in such a way that,

under suitable hypotheses, the coset geometry (Y,6) is simply connected if and

only if G = lim
−→

Ga. We follow [89]; see also [71, Ch. 3].

We consider the category O whose objects are posets and whose morphisms

are non-decreasing maps which are descending bijections. In other words, a non-

decreasing map f : (A,6) → (B,6) is a morphism of O if and only if for any

a ∈ A, the appropriate restriction of f induces a one-to-one map

{x ∈ A | x 6 a} → {y ∈ B | y 6 f(a)}.
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In the case of posets of simplices in simplicial complexes, this condition requires

that the morphisms be simplicial maps.

A morphism f : (E,6) → (B,6) is called a covering if f is an ascending

bijection. In other words f is a covering if and only if for any a ∈ A, the

appropriate restriction of f induces a one-to-one map

{x ∈ A | x > a} → {y ∈ B | y > f(a)} .

Again, in the language of simplicial complexes, this means that f induces a

one-to-one map on the link of every simplex.

A covering f : (E,6) → (B,6) of a poset (B,6) is called a universal cover if

E is connected (i.e. the associated diagram is connected) and f factors through

every other covering of (B,6). A poset (A,6) is called simply connected if the

identity map defines a universal cover.

All basic properties of classical covering theory can be extended to the present

context without difficulty, such as:

• existence and uniqueness of path-liftings (with a base-point);

• surjectivity of coverings whenever the base is connected;

• existence and uniqueness of universal covers (for based posets);

• a covering f : (E,6) → (B,6) such that E is connected and B is simply

connected is automatically an isomorphism.

Let now (A,6) be a poset andG be a group acting on A by automorphisms. A

subset F of A is called a fundamental domain for the G-action on A if F contains

exactly one element of every G-orbit and if, moreover, one has a 6 b ∈ F ⇒

a ∈ F for every a ∈ A. Given a fundamental domain F , let us consider the

system {Ga}a∈F of stabilizers of points of F . By the definition of a fundamental

domain, it is readily seen that a 6 b⇒ Ga ⊃ Gb for all a, b ∈ F .

We now consider the group G̃ which is the direct limit of the system {Ga}a∈F
and the associated coset geometry (Ã,6). In order to avoid confusion, we de-

note by G̃a the canonical image of Ga in G̃. Let also π : G̃→ G be the canonical

map and define α : Ã→ A by

α(gG̃a) = π(g).a

for any a ∈ F . One verifies that α is a covering and that Ã is connected when-

ever F is connected. More importantly, we have the following [89, Prop. 1]:

Proposition 5.1. The map α : Ã → A is a universal cover whenever F is sim-

ply connected. In particular, if F is simply connected, then the poset Ã is simply

connected and G ≃ G̃ if and only if A is simply connected. �
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5.2. Buildings are simply connected

Let now (W,S) be a Coxeter system and (X ,A) be a building of type (W,S). Let

S2 be the set of all subsets J (possibly empty) of S of cardinality at most 2 and

such that WJ = 〈J〉 is finite. Let

|X |2 = {σ ∈ X | σ is a simplex of type J for some J ∈ S2},

ordered by inclusion.

Since by definition, the groupW is the inductive limit of the system {WJ}J∈S2
,

it follows from Proposition 5.1 that the poset realization |W |2 of an apartment

of type (W,S) is simply connected. Consequently, we obtain:

Proposition 5.2. The poset realization |X |2 is simply connected.

Proof. Let f : E → |X |2 be a covering. We must show that there exists a mor-

phism h : |X |2 → E such that f ∩ h = id. Let σ0 be a base chamber in |X |2 and

choose σ1 ∈ f−1(σ0). Given any τ ∈ |X |2, there exists by (Bu1) an apartment A

containing both σ and τ . Since |A|2 is simply connected, one deduces, by con-

sidering the restriction of f to the connected component of f−1(|A|2) contain-

ing σ1, that there exists a morphism hA : A→ f−1(A) such that f ◦ hA = id|A|2

and hA(σ0) = σ1. In view of (Bu2) and the uniqueness of path-liftings, it fol-

lows that for any other apartment B containing σ0, we have hA|A∩B = hB |A∩B .

In particular hA(τ) does not depend on the choice of the apartment A. Set

h(τ) = hA(τ). Now one verifies easily that the map h : |X |2 → E is a morphism

and the equality f ◦ h = id follows by construction. �

One immediately deduces a decomposition as amalgamated sum for groups

acting chamber-transitively on buildings. Indeed, a chamber is obvisouly simply

connected and if the action is type-preserving and chamber-transitive, then any

chamber is automatically a fundamental domain. Thus Propositions 5.1 and 5.2

apply. For example, if G is a group with a BN-pair (B,N, S), then G is the

amalgamated sum of the standard parabolic subgroups of type J for J ∈ S2.

5.3. Applications to root group data

Let us now come back to a group G endowed with a root group datum {Uα}α∈Φ

of type E = (B,Φ), whose Weyl group is denoted by W . We let (X−, δ−) be

the building associated with the negative BN-pair (B−, N, S) of G. Our present

goal is to apply the technology we have just described to study the U+-action

on X−.
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We first recall the existence of an order 6 on W defined as follows:

z 6 w ⇐⇒ ℓ(w) = ℓ(z) + ℓ(z−1w) .

This is called the Bruhat ordering of W . Using the solution of the word problem

in Coxeter groups, this is seen to be equivalent to the existence of a reduced

word s1 · · · sn representing w as a product of elements of S, such that z =

s1 · · · sj for some j 6 n (or z = 1).

Now, for each w ∈W , we consider the following subgroup of U+:

Uw = 〈Uγ | γ ∈ Φw−1〉.

Using Lemma 1.5, it is easily seen that if z 6 w, then Uz 6 Uw for all z, w ∈W .

In other words, the system {Uw}w∈W is an inductive system of subgroups. As

we will see in the sequel, the following result and its proof have many useful

consequences concerning the structure of G:

Theorem 5.3. The group U+ is isomorphic to lim
−→

Uw.

Proof. Let Ũ = lim
−→

Uw. Denote by Ũw the canonical image of Uw in Ũ and by

π : Ũ → U+ the canonical homomorphism. Consider the set X̃ consisting of all

ordered pairs (uŨw, wWJ) such that u ∈ Ũ , w ∈ W , and J ∈ S2 is such that w

is maximal in wWJ for the Bruhat ordering. Equivalently, the latter condition

means that w is of maximal length in wWJ ; it is a well known fact that there is

such a unique element [14, Ch. IV, §1, Exerc. 3].

We define a partial order 6 on X̃ as follows:

(uŨw, wWI) 6 (vŨz, zWJ) ⇐⇒ wWI ⊃ zWJ and v−1u ∈ Ũw .

The condition wWI ⊃ zWJ implies z ∈ wWI and hence z 6 w and Uz ⊂ Uw.

Thus the order 6 is well-defined. Obviously there is an order-preserving action

of Ũ on X̃ defined by g : (uŨw, wWI) 7→ (guŨw, wWI).

Let now X− be the negative building of G, namely the building associated

with the BN-pair (G,B−, S) as in Theorem 4.1. Consider the map

ν : X̃ → |X−|2 : (uŨw, wWI) 7→ π(u)wP−
I ,

where P−
I denotes the standard negative parabolic subgroup of type I.

The essential points are that X̃ is connected and ν is a covering map. The

verification of these points is slightly technical but straightforward; details may

be found in [71, Th. 3.5.2]. Then it follows from the covering theory of posets
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(see Section 5.1) that ν is an isomorphism. Moreover ν is clearly π-equivariant

by construction.

Let us now compare some point-stabilizers in X̃ and |X−|2. For w ∈ W , we

have clearly

StabeU
(Ũw, w) = Ũw.

On the other hand, we have ν(Ũw, w) = wB− and

StabU+
(wB−) = {u ∈ U+ | uwB− = wB−}

= {u ∈ U+ | w−1uwB− = B−}

= U+ ∩ wB−w
−1.

From these facts, it follows clearly that

π−1(U+ ∩ wB−w
−1) = Ũw . (5.1)

In particular, for w = 1 we get π−1(U+ ∩wB−w
−1) = {1} from which it follows

that π is injective. �

Corollary 5.4. We have the following:

(i) For each w ∈ W , we have U+ ∩ wB−w
−1 = Uw. In particular U+ ∩ B− =

{1}.

(ii) B+ ∩B− = T .

(iii) We have U−α 6⊂ U+ for each α ∈ Π. In particular, the system {U−α}α∈Φ is

a root group datum of type E for G and (B+, N, S) is a BN-pair.

(iv) We have T =
⋂
α∈ΦNG(Uα).

Proof. (i) The first assertion follows by transforming (5.1) under π. The sec-

ond assertion is the special case of the first one with w = 1.

(ii) Consider g = tu ∈ B+ = T.U+ and suppose that g ∈ B− = T.U−. Then

u ∈ t−1B− = B− hence u = 1 by (i), whence g ∈ T as desired.

(iii) The fact that U−α 6⊂ U+ follows from (i). The second assertion becomes

then clear. In particular, we may apply Theorem 4.1 and its corollary. This

shows that (B+, N, S) is indeed a BN-pair for G and that B+ = NG(U+).

(iv) Let T̃ =
⋂
α∈ΦNG(Uα). The inclusion T ⊂ T̃ follows from the definitions.

Note that T̃ ⊂ NG(U+) ∩ NG(U−). By Corollary 4.2 and (iii), we obtain

T̃ ⊂ B+ ∩B−. Thus T̃ ⊂ T by (ii). �
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5.4. Relationship between the positive and the negative BN-

pairs

The fact that the positive and negative BN-pairs of G have the subgroup N in

common is not coincidental. In fact there is a tight relationship between these

two BN-pairs, more precisely described by the following:

Proposition 5.5. The following assertions, as well as similar assertions with +

and − interchanged, hold:

(i) For all w ∈W and s ∈ S such that ℓ(ws) < ℓ(w), we have

B+wB−sB− = B+wsB− .

(ii) For each s ∈ S, we have B+s ∩B− = ∅.

(iii) One has a Birkhoff decomposition, namely the map

W → B+\G/B− : w 7→ B+wB−

is bijective.

Proof. (i) This is established by considerations similar to those used in the

proof of Theorem 4.1.

(ii) Assume that n = b.b′ for some b ∈ B+, b′ ∈ B− and n ∈ N such that

n.T = s ∈ S. Let α ∈ Π such that s = rα. We have Uα = nU−αn
−1 hence

Uα
b = b′U−α .

Since b ∈ B+ normalizes U+, the group Uα
b is contained in U+. Similarly,

we have b′U−α ⊂ U− and the equality above shows that Uα ⊂ b(U+ ∩U−).

By Corollary 5.3, we have U+ ∩ U− = {1}. This yields Uα = {1} which

violates (RGD0). Hence (ii) is proven.

(iii) This is deduced from (i) and (ii) in a similar way as the Bruhat decompo-

sition is obtained from the axioms of BN-pairs. Details may be found in

[1, Lemma 1]. �

Using this result, we may now answer the question: when are B+ and B−

conjugate in G?

Corollary 5.6. The groups B+ and B− are conjugate in G if and only if W is

finite.
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Proof. Assume that W is finite and let w0 be the longest element. It is well

known that Φw0
= Φ+, from which it follows that U+ = Uw0

, and hence

w0U+w
−1
0 = U−. Thus w0B+w

−1
0 = B− as desired.

Assume now that gB+g
−1 ⊂ B− for some g ∈ G. Using the Birkhoff de-

composition of G, it follows that wB+w
−1 ⊂ B− for some w ∈ W . Since

U+ ∩ B− = {1} by Corollary 5.3, it follows that w.Φ+ ⊂ Φ−, that is to say,

Φ+ = Φw. By Lemma 1.5, the set Φw is finite. Thus Φ+ is finite and so is

Φ = Φ+ ∪ −Φ+. Consequently W is finite. �

Remark 5.7. When the group G is a Kac–Moody group, then G admits an

(outer) automorphism which swaps B+ and B−. Such an automorphism can

be constructed as a lift of the Cartan–Chevalley involution of the corresponding

Lie algebra, see Theorem 3.1(iv). However, it is not clear that such an auto-

morphism exists for any group endowed with a root group datum, although the

whole theory is ‘symmetric’ under a sign change swapping + and −.

5.5. More on the subgroup Uw

We maintain the assumptions and notation of the preceding subsections (see

Section 4.1.2).

Lemma 5.8. Let w ∈ W and write w as a reduced expression w = rα1
· · · rαn

where αi ∈ Π for each i. Let moreover β1 = α1 and βi = rα1
· · · rαi−1

αi for each

i = 2, . . . , n. Then the product set Uβ1
Uβ2

· · ·Uβn
coincides with the subgroup Uw

and each element u ∈ Uw has a unique writing as a product u = u1 · · ·un with

ui ∈ Uβi
for each i = 1, . . . , n.

Furthermore, if Uα is nilpotent for each α ∈ Π, then so is Uw for each w ∈W .

Proof. Recall from Lemma 1.5(iii) that Φw−1 = {β1, . . . , βn}, so the equality

Uw = Uβ1
Uβ2

· · ·Uβn
follows by induction on ℓ(w) using (RGD3). Details may

be found in [72, Lemma 1.5.2(iii)].

Now suppose that some u ∈ Uw may be written in two different ways u =

u1 · · ·un = v1 · · · vn. Note that Uβ1
· · ·Uβn−1

= Uwrαn
is a subgroup of G. Thus,

arguing by induction on ℓ(w), it suffices to show that Uβn
∩Uwrαn

= {1}. Conju-

gating Uβn
∩ Uwrαn

by (an element of G representing) the Weyl group element

rαn
w−1, we obtain the subgroup Uαn

∩ V where V = rαn
w−1Uwrαn

wrαn
. By

definition of Uw we have V ⊂ U−, hence Uαn
∩V ⊂ U+ ∩U−, which is trivial in

view of Corollary 5.3(i). The desired uniqueness result follows.

We have seen that the set Uβ1
· · ·Uβn−1

is a subgroup of Uw which coin-

cides with Uwrαn
. In fact, using (RGD3) one sees that Uβ1

· · ·Uβn−1
is normal
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in Uw. Similarly Uβ2
· · ·Uβn

is a normal subgroup of Uw. Therefore, assuming

the nilpotency of each root group, the nilpotency of Uw follows by induction

on ℓ(w), using a standard criterion for nilpotency [44, Th. 10.3.2]. �

Remark 5.9. When G is a split Kac–Moody group over C with Lie algebra gA
(see Section 3.3), then Uw is a complex nilpotent Lie group of dimension ℓ(w).

Its Lie algebra is the subalgebra gw =
∑
α∈Φw

gα of gA. It turns out that in this

case, the nilpotency degree of Uw is bounded above by a constant depending

only on G (in fact: on the generalized Cartan matrix A), but not on w: this

is the main result of [23]. It implies that a similar bound exists for all split or

almost split Kac–Moody groups over arbitrary fields.

Here is another characterization of root group data (of finite rank) with finite

Weyl group:

Proposition 5.10. Assume that root groups are nilpotent and that the root basis B

is of finite rank. Then W is finite if and only if U+ is nilpotent.

Proof. We have seen in the proof of Corollary 5.4 that if W is finite, then U+

coincides with Uw for some w ∈W . Thus the ‘only if’ part is clear in view of the

proposition.

Suppose now that the Weyl group W is infinite. Let α be a simple root. Then,

since W is an infinite Coxeter group, there exists a positive root, say β, such that

the associated reflections rα and rβ generate an infinite dihedral group: this is

well known, a proof may be found e.g. in [65]. Up to replacing β by rα(β),

we may —and shall— assume that {α;β} is a non-prenilpotent pair of positive

roots. In order to prove that U+ is not nilpotent, it is enough to show that F is

isomorphic to the (center-free, hence non nilpotent) free product Uα ∗ Uβ . This

follows from the general fact, stated in [94, §4, Proposition 5], that if {γ; δ} is a

non-prenilpotent pair of roots, then the canonical map Uγ ∗Uδ → G is injective.

The proof follows closely the idea of the proof of Theorem 5.3: the group F

is analyzed by means of its (discrete) action on the negative building. More

precisely, as suggested by [loc. cit., comment after Lemme 3], it is not difficult

to construct an F -invariant subset of that building which features a treelike

structure. This tree is in fact isomorphic to the Bass–Serre tree of the amalgam

F , which shows the desired injectivity. �

5.6. The Weyl codistance

In the same way as positive and negative Bruhat decompositions of G allow

one to define the Weyl distance on Ch(X+) × Ch(X+) and Ch(X−) × Ch(X−)
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respectively, the Birkhoff decomposition allows one to define a map

δ∗ : Ch(X+) × Ch(X−) ∪ Ch(X−) × Ch(X+) →W

by

δ∗(gB+, hB−) = w ⇐⇒ B−h
−1gB+ = B−wB+

and similarly for + and − interchanged. Using Proposition 5.4, one sees that

the mapping δ∗ is a Weyl codistance, which means that it enjoys the following

properties, as well as similar properties obtained by swapping + and −, where

x ∈ Ch(X+) and y ∈ Ch(X−):

(WCod1) δ∗(x, y) = δ∗(y, x)−1.

(WCod2) If δ∗(x, y) = w and δ−(y, z) = s ∈ S with ℓ(ws) < ℓ(w) for some

z ∈ Ch(X−), then δ∗(x, z) = ws.

(WCod3) If δ∗(x, y) = w, then for each s ∈ S, there exists z ∈ Ch(X−) such

that δ−(y, z) = s and δ∗(x, z) = ws.

A Weyl codistance defined on a pair of buildings of the same type is also-

called a twinning between these buildings. Two chambers are called opposite

if their Weyl codistance is 1. More generally, simplices of the same type are

called opposite if they are contained in opposite chambers. Since the parabolic

subgroups of G (i.e. subgroups containing some conjugate of B+ or B−) are

the simplex-stabilizers, the opposition relation may also be defined between

parabolic subgroups of G. Roughly speaking, two parabolic subgroups are op-

posite if their intersection is as small as possible.

Here is an example of the usefulness of the Weyl codistance:

Proposition 5.11. We have
⋂
w∈W wB+w

−1 ⊂ B− .

Proof. By definition of δ∗, we have

δ∗(wB+, B−) = w for all w ∈W. (5.2)

We claim that the latter property characterizes the chamber B− ∈ Ch(X−).

Suppose indeed that an element g ∈ G is such that δ∗(wB+, gB−) = w for

all w ∈W . Let z = δ−(gB−, B−), where δ− is the Weyl distance of X−. Let

z = sn · · · s1 be a reduced decomposition of z in elements si of S. It follows from

(WD2), (WD3) that there exist elements g0, g1, . . . , gn ∈ G, with g0 = 1 and

gn = g, such that δ−(gi−1B−, gi) = si. By (5.2) we have δ∗(zB+, B−) = z and

a straightforward induction on i using (WCod2) shows that δ∗(zB+, giB−) =



I I G

◭◭ ◮◮

◭ ◮

page 46 / 73

go back

full screen

close

quit

ACADEMIA

PRESS

zs1 · · · si for each i = 1, . . . , n. In particular δ∗(zB+, gB−) = 1. By our assump-

tion on g, we have also δ∗(zB+, gB−) = z, whence z = 1. In view of (WD1) this

implies that g ∈ B− and the claim is proven.

Now, since H =
⋂
w∈W wB+w

−1 fixes the chamber wB− for each w ∈W and

since δ∗ is clearly G-invariant, it follows that H fixes B−. Equivalently, we get

H ⊂ B− as desired. �

Corollary 5.12. The kernel of the action of G on X+ (resp. X−) is the center of G

and we have Z(G) ∩ U+ = Z(G) ∩ U− = {1} and Z(G/Z(G)) = {1}.

Proof. Let K =
⋂
g∈G gB+g

−1 be the kernel of the action of G on X+ and let Z

be the center of G.

Clearly Z ⊂
⋂
α∈ΦNG(Uα), hence Z ⊂ T ⊂ B+ by Corollary 5.3(iv). Since

Z is normal in G we deduce Z ⊂ K.

Conversely, by the lemma we haveK ⊂ B− henceK ⊂ T by Corollary 5.3(ii).

In particular K normalizes Uα for each α ∈ Φ. Conversely, each Uα clearly nor-

malizes K, from which we deduce [K,Uα] ⊂ K∩Uα ⊂ T ∩Uα = {1}, where the

latter equality follows again from Corollary 5.3(i). Thus K ⊂
⋂
α∈Φ CG(Uα) =

Z by (RGD0).

Note that since K ⊂ T and T ∩U+ = T ∩U− = {1}, it follows that the canon-

ical projection π : G → G/Z maps the system {Uα}α∈Φ to a root group datum

for G/Z. By construction the buildings associated with G and G/Z coincide and

G/Z acts faithfully. Thus G/Z is center-free by the above. �

6. Group topology

6.1. Topological completions

The existence of BN-pairs and, hence, of building-actions, for a group G en-

dowed with a root group datum allows one to construct other groups obtained

by some simple process of topological completion. The idea behind this is the

following: the isometry group of a metric space is naturally endowed with a

structure of topological group, the topology being that of uniform convergence

on bounded subsets. Since buildings are in particular discrete metric spaces

(the metric is given by the numerical distance), this provides a topology for any

group acting on a building or, more precisely, for the quotient of the group by

the kernel of the action. Here, in order to avoid the necessity of replacing G by

a quotient, we proceed as follows.



I I G

◭◭ ◮◮

◭ ◮

page 47 / 73

go back

full screen

close

quit

ACADEMIA

PRESS

Let X+ be the building associated with the positive BN-pair (B+, N, S) of G.

Let c+ = B+ be the chamber fixed by B+. For each n ∈ N, we define

U+,n = {g ∈ U+ | g.c = c for each chamber c such that d+(c, c+) 6 n}.

Thus U+,n is the kernel of the action of U+ on the ball of radius n centered at

c+ in Ch(X+). Consider now the map dist+ : G×G→ R+ defined by

dist+(g, h) =

{
2 if h−1g 6∈ U+

2−n if h−1g ∈ U+ and n = max{k ∈ N | h−1g ∈ U+,k}.

By definition, for all g ∈ G we have dist+(1, g) = 0 only if g belongs to U+

and acts trivially on X+. By Corollary 5.6, this implies that g = 1. Moreover, it

is straightforward to check that dist+ satisfies the triangle inequality. Therefore

dist+ is a left-invariant metric on G. LetG+ denote the completion of the metric

space (G,dist+) and let ϕ+ : G → G+ be the inclusion map. The extension

of dist+ to G+ is again denoted by dist+. Clearly the space G+ is discrete

whenever X+ is of finite diameter, which happens if and only if W is finite.

As usual, the preceding discussion may be done with the sign − instead of +,

thereby providing a complete metric space (G−,dist−) and an inclusion map

ϕ− : G→ G−.

Proposition 6.1. Let ε ∈ {+,−}. The following assertions hold:

(i) The topology defined by the metric distε makes G into a topological group.

In particular Gε is a topological group which is totally disconnected.

(ii) Let B̂ε (resp. Ûε) be the closure of Bε (resp. Uε) in Gε. Then B̂ε ≃ T ⋉ Ûε.

(iii) The system (B̂ε, N, S) is a BN-pair of Gε. The corresponding building is

canonically isomorphic to Xε. The kernel of the action of Gε on Xε is the

center Z(Gε) and Z(Gε) = Z(G) is a discrete subgroup of Gε.

(iv) The homomorphism ϕε : Gε → Aut(Xε) is continuous and open, where

Aut(Xε) is endowed with the topology of uniform convergence on bounded

subsets (i.e. the bounded-open topology). Moreover ϕε is proper if and only

if Z(G) is finite.

(v) The subgroup U−ε is discrete in Gε.

(vi) The subgroup (ϕε × ϕ−ε)(G) is discrete in Gε ×G−ε.

Proof. (i) It is immediate to check that {Uε,n}n∈N satisfy the standard axioms

of a system of neighborhoods of the identity in G, see [48, Th. 4.5]. Thus
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G is indeed a topological group and so is Gε; moreover, the map ϕε is

obviously an injective homomorphism.

For n ∈ N, denote by Ûε,n the closure of Uε,n in Gε. It follows easily from

the definitions that

Ûε,n = {g ∈ Gε | distε(1, g) 6 n}

= {g ∈ Ûε | g.c = c for each chamber c such that dε(c, cε) 6 n}.

(6.1)

Since any open subgroup of a topological group contains the identity com-

ponent, we have (Gε)
◦ ⊂ Ûε,n for each n ∈ N. By (6.1), the subgroups

Ûε,n intersect trivially, whence (Gε)
◦ = {1}. Thus Gε is totally discon-

nected.

(ii) Since T normalizes Uε, it also normalizes Ûε. Moreover T is a discrete

subgroup of Gε by Corollary 5.3(i). Thus T.Ûε is a closed subgroup con-

taining Bε, whence B̂ε ⊂ T.Ûε. Since the reverse inclusion obviously

holds, we obtain B̂ε = T.Ûε. It remains to show that T ∩ Ûε = {1}. Note

that for any nontrivial t ∈ T , we have distε(1, t) = 2 by Corollary 5.3(i).

Hence the desired result follows from (6.1).

(iii) The subgroup of Gε generated by B̂ǫ ∪ N contains Ûǫ, hence it is open.

Therefore it is closed. But clearly it contains G, whence Gε = 〈B̂ε ∪ N〉.

Moreover, it follows from (ii) and (6.1) that G ∩ B̂ε = Bε. Therefore,

we have T ⊂ B̂ε ∩ N ⊂ Bε ∩ N ⊂ T . Thus (BN1) holds. Now axioms

(BN2) and (BN4) are immediate and (BN3) follows from the correspond-

ing property of G by taking closures.

Consider the map

fε : G/Bε → Gε/B̂ε : gBε 7→ gB̂ε .

Since G ∩ B̂ε = Bε, it follows that fε is injective. On the other hand, for

any g ∈ Gε, there exists g′ ∈ G such that g−1g′ ∈ Ûε by the definition

of Gε. This shows that fε is surjective. Since the BN-pairs of G and Gε
have the same Weyl group (more precisely: the same N and S), it follows

that fε is a canonical isomorphism between the corresponding buildings.

Let K =
⋂
g∈Gε

gB̂εg
−1 be the kernel of the action of Gε on Xε. Note that

Ûε acts faithfully on Xε by (6.1), hence K ∩ Ûε = {1}. Since K ⊂ B̂ε, it

follows that K normalizes Ûε. Conversely Ûε obviously normalizes K, so

we deduce [K, Ûε] ⊂ K ∩ Ûε = {1}. Since G is generated by conjugates

of Ûε as follows easily from (BN1) and (ii), we deduce that K ⊂ Z(Gε).
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Since Z(Gε) normalizes B̂ε we obtain Z(Gε) ⊂ B̂ε because (B̂,N, S) is a

BN-pair. Hence Z(Gε) ⊂ K.

Let now k ∈ K and write k = t.u according to (ii). Since Gε/K is nothing

but the completion of G/Z(G), we deduce by applying (ii) to Gε/K that

t and u both belong to K. We have seen above that K ∩ Ûε is trivial. This

shows that K ⊂ T ⊂ G. Therefore Corollary 5.6 yields K = Z(G).

(iv) It suffices to check the continuity of ϕε at 1. This property is an obvi-

ous consequence of the definition of the topology on Gε. The fact that

ϕε is open essentially follows because the restriction of ϕε to the open

subgroup Ûε is injective and maps it to an open subgroup of Aut(Xε).

Since Z(G) is a discrete subgroup of Gε by (iii), it is clear that ϕε can be

proper only if Z(G) is finite. Assume conversely that Z(G) is finite and let

C ⊂ Aut(Xε) be a compact subset. Let B = ϕ−1
ε (C) and let (xn)n>0 be

any sequence of points in B. Up to extracting, we may assume that the

sequence
(
ϕε(xn)

)
n>0

converges to some c ∈ C. Since ϕε has finite fibers,

there are finitely many points b1, . . . , bk such that ϕε(bi) = c. Now, it is

clear by the pigeonhole principle that (xn)n>0 has a subsequence converg-

ing to bi for some i ∈ {1, . . . , k}.

(v) We have U−ε ∩ Ûε ⊆ U−ε ∩ Uε = {1} by Corollary 5.3(i). Since Ûε is an

open subgroup of Gε, it follows that U−ε is discrete.

(vi) Similarly Ûε × Û−ε is an open subgroup of Gε × G−ε. On the other hand

we have

(ϕε × ϕ−ε)(G) ∩ (Ûε × Û−ε) ⊆ Uε ∩ U−ε = {1}.

The proof is complete. �

The example to keep in mind here is the group G = SLn

(
k[t, t−1]

)
, where

k is an arbitrary field, see Section 2.7. The completions G+ and G− are then

respectively SLn

(
k((t))

)
and SLn

(
k((t−1))

)
. Note also that if the Weyl group W is

finite, then the buildings X+ and X− have finite diameter, hence are bounded.

Therefore, in that case the topologies defined by dist+ and dist− are discrete

and we have G+ = G = G−. It is only for an infinite Weyl group that the

completions G+ and G− are potentially bigger than G.

Remark 6.2. It is known that the completed group SLn

(
k((t))

)
has the property

of being transitive on the complete system of apartments in the positive building

X+ associated to G = SLn

(
k[t, t−1]

)
. The complete system of apartments con-

sists of all subsets A of Ch(X+) such that the restriction of the Weyl distance

to A is Weyl-isometric to (W, δW ), where W is the Weyl group of X+. It is how-

ever not clear in general that the analogue of this property holds for the action
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of the completion G+ on the positive building X+ associated to any group G

endowed with a root group datum. Nevertheless, in the special case when G is a

split or almost split Kac–Moody group, it is indeed true that G+ acts transitively

on the complete system of apartments of X+: this property may be deduced

from [25, Prop. 4].

6.2. Levi decompositions

At this point, it is appropriate to make a digression concerning the structure of

parabolic subgroups of G and its topological completions. The decompositions

B+ = T ⋉ U+ and B̂+ = T ⋉ Û+ (see Corollary 5.3 and Proposition 6.1 re-

spectively) are special cases of semi-direct decompositions which apply to all

parabolic subgroups of spherical type of G and its completions.

Let J ⊂ S be such that WJ = 〈J〉 is finite. Let ΦJ = {α ∈ Φ | rα ∈ WJ} be

the associated finite root subsystem. We define

LJ = T.〈Uα | α ∈ ΦJ〉 ,

and, for ε ∈ {+,−},

Uε,J = Uε ∩ wJUεw
−1
J and Ûε,J = Ûε ∩ wJ Ûεw

−1
J ,

where wJ denotes the unique element of maximal length in WJ (which is an

involution). Let also Pε,J be the parabolic subgroup of type J and sign ε in G

and let P̂ε,J be the parabolic subgroup of type J in Gε.

Theorem 6.3. For any ε ∈ {+,−}, the following assertions hold:

(i) Parabolic subgroups of type J admit a Levi decomposition:

Pε,J = LJ ⋉ Uε,J and P̂ε,J = LJ ⋉ Ûε,J .

(ii) The group Ûε,J is the closure of Uε,J in Gε and P̂ε,J is the closure of Pε,J .

(iii) We have:

Uε,J =
⋂

g∈Pε,J

gUεg
−1 and Ûε,J =

⋂

g∈ bPε,J

gÛεg
−1.

Proof. We refer to [71, Th. 6.2.2] for the statements inG and [74, Lemma 1.C.2]

for the corresponding extensions to Gε. �

The group LJ is called a Levi subgroup of Pε,J (resp. P̂ε,J). The group Uε,J
(resp. Ûε,J) is called the unipotent radical of Pε,J (resp. P̂ε,J). Note that the

group LJ is discrete in Gε by (i), since Ûε,J is open by definition. Moreover,

assertion (iii) shows that Ûε,J acts trivially on ResJ(Bε).
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Remark 6.4. We emphasize the importance of the assumption that the type J

of the parabolic subgroups to which the Levi decomposition applies be such that

WJ is finite. It is to be expected that such a decomposition fails in general for

other types of parabolic subgroups. However, if the strengthened commutation

relation axiom (RGD3)lin holds (see Remark 4 in Section 2.1), then parabolic

subgroups of all types admit a Levi decomposition by [71, Th. 6.2.2].

6.3. The group Û+ and other projective limits

Given a collection V of groups (e.g. finite groups, nilpotent groups, solvable

groups), we say that a totally disconnected group G is pro-V if every continuous

discrete quotient of G is in V . We also define p-groups to be groups all of whose

elements have order a power of p; in particular, p-groups need not be finite.

Proposition 6.5. Suppose that for each α ∈ Π, the root group Uα is finite (resp.

solvable, a p-group). Then Û+ is profinite (resp. pro-solvable, pro-p).

Proof. We give only a sketch. Supplementary details may be found in [74,

Th. 1.C(ii)] and [25, Prop. 3]. The family {Û+,n}n>0, as defined in (6.1), is

a basis of open neighborhoods of the identity in Û+ consisting of normal sub-

groups. Furthermore, by definition of the topology, the quotient Û+/Û+,n is

isomorphic to U+/U+,n for each n. Hence it suffices to show that the succes-

sive quotients U+,n/U+,n+1 have the desired property (i.e. are finite, solvable,

p-groups). This is done by induction on n.

Let c ∈ Ch(X+) be a chamber at numerical distance n from B+ and let g ∈ G

be such that g.B+ = c. We have gB+g
−1 = StabG(c) ⊃ U+,n. Hence, for

each s ∈ S, the group U+,n is contained in the parabolic subgroup Ps(c) :=

gP+,{s}g
−1 of type {s}. The latter group admits a Levi decomposition, so we

get a homomorphism ϕs,c : U+,n → Ls(c), where Ls(c) is a Levi subgroup of

the parabolic subgroup Ps(c). An induction on n using Theorem 6.2 shows that

U+ ∩ StabG(c) is actually contained in the unipotent radical of StabG(c).

Under the canonical projection of Ps(c) onto Ls(c), the latter group is mapped

onto a “unipotent” subgroup Us(c) which turns out to coincide with gUs(B+)g−1,

where Us(B+) = g〈Uβ | β ∈ Φs〉g
−1. By (RGD3), the root groups Uβ for β ∈ Φs

are mutually centralizing. To summarize, we obtain a homomorphism:

ϕs,c : U+,n → Us(c) ,

where Us(c) is isomorphic to a quotient of the direct product
∏
β∈Φs

Uβ . In view

of Theorem 6.2(iii), the kernel of ϕs,c acts trivially on Res{s}(c). Therefore,
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the intersection
⋂
s∈S Ker(ϕs,c) acts trivially on the ball of numerical radius 1

centered at c. Therefore, it follows that

⋂

s,c

Ker(ϕs,c) = U+,n+1 ,

where the intersection is taken over all s ∈ S and all c ∈ Ch(X+) such that

d+(c,B+) = n. Hence the product homomorphism (defined componentwise)

∏

s,c

ϕs,c : U+,n →
∏

s,c

Us(c)

induces an injection of the quotient U+,n/U+,n+1 into the product
∏
s,c Us(c).

All the desired assertions follow, modulo the fact that if each Uα is finite, then

the ball of radius n centered at B+ is finite. The latter fact is clear since the

assumption implies that the ball of numerical radius 1 is finite and since G is

transitive on Ch(X+). �

The above proposition shows that, thanks to root group data with finite

root groups, we can obtain (most presumably) interesting families of profinite

groups. In the case when root groups are moreover p-groups, the corresponding

group Û+ is pro-p and a natural question is to compare such a group with well-

known examples, e.g., analytic groups over local fields. This is a subtle question

because the local fields for which the question is relevant are of positive char-

acteristic (the group U+, hence Û+, contains a lot of torsion elements). Here

is a first result showing that Kac–Moody theory shall provide new interesting

examples of pro-p groups.

Theorem 6.6. For any sufficiently large prime number p, there exist Kac–Moody

groups G over the field Z/pZ such that:

(i) each root group is isomorphic to the additive group (Z/pZ,+);

(ii) the group U+ enjoys Kazhdan’s property (T) — in particular, it is finitely

generated;

(iii) the full pro-p completion of U+ is a Golod–Shafarevich pro-p group.

Part (ii) is due to J. Dymara and T. Januszkiewicz [40]; Part (iii) is due to

M. Ershov [41, Theorem 1.6]. On the one hand, a finitely generated group Γ

which is Golod–Shafarevich at p has the property that its pro-p completion Γ̂p ad-

mits a presentation with remarkably few relations with respect to the number of

generators [loc. cit., Introduction]. The reason why it is connected to the previ-

ous discussion is that in this case the group Γ̂p contains a non-abelian free pro-p

group, which cannot be analytic. On the other hand, Kazhdan’s property (T) is a
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property with many equivalent characterizations (in terms of isometric actions

on separable Hilbert spaces, of unitary representations, etc.) [32]; it is satisfied

by most lattices in semisimple Lie groups and can be used to prove that for most

of these (center-free) lattices any proper quotient has to be finite. Therefore the

existence, observed by M. Ershov, of groups combining Kazhdan’s property (T)

and a Golod–Shafarevich presentation is rather surprising. We refer to [41, Sec-

tion 8] for a deeper discussion on the usefulness in discrete group theory of the

Kac–Moody groups in the above theorem.

To sum up, at this stage we already know that the completion procedure de-

scribed in 6.1 provides totally disconnected locally pro-p groups which look like

simple algebraic matrix groups over local fields (at least from a combinatorial

viewpoint), but are new in general since their pro-p Sylow subgroups, which

are their maximal compact subgroups up to finite index, are not analytic groups

over local fields.

6.4. Lattices

When the root groups Uα (α ∈ Π) are finite, the group Û+ is compact open by

Proposition 6.3 and, hence, G+ is locally compact. Therefore G+ admits a Haar

measure denoted Vol [13, Ch. VII, §1, Th. 1] and it makes sense to talk about

lattices, i.e. discrete subgroups Γ such that Vol(G+/Γ) is finite [13, Ch. VII, §2,

no.5].

We already know some discrete subgroups of G+ and G+ × G− by Proposi-

tion 6.1. In order to check whether the covolume of these is finite, the following

simple criterion is useful:

Proposition 6.7. Let G be a locally compact group acting continuously and prop-

erly by automorphisms on a locally finite building X with finitely many orbits

on Ch(X) (as before, the group Aut(X) is endowed with the bounded-open topol-

ogy). Let C be a set of representatives of the Γ-orbits in Ch(X). A discrete subgroup

Γ ⊂ G is a lattice in G if and only if the series

∑

c∈C

1

|StabΓ(c)|

converges.

Proof. We refer to [77, p. 116] and note that the idea to apply Serre’s argument

to automorphism groups of buildings already appeared in [15, Prop. 1.4.2]. �

The following result is due to the second author in [69]; similar results were

obtained by Carbone–Garland [27].
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Theorem 6.8. Let G be a group with finite center, endowed with a root group

datum {Uα}α∈Φ with Φ reduced such that Uα is finite for each α ∈ Π and that

∑

w∈W

(1/q)ℓ(w) <∞ ,

where q = minα∈Π |Uα| (a sufficient condition is: q > |S|). Then U+ is a lattice

in G− and G is a lattice in G+ ×G−.

Proof. Let us first consider the group U+. By the Birkhoff decomposition G is

the disjoint union of subsets of the form U+.w.B− where w runs over W . This

means that the set C = {w.B− | w ∈ W} is a set of representatives of the

U+-orbits in Ch(X−). By Corollary 5.3(i), we have

StabU+
(w.B−) = U+ ∩ wB−w

−1 = Uw .

By the proposition (see also Proposition 6.1(iv)), the group U+ is a lattice in G−

if and only if
∑
w∈W

1
|Uw| <∞.

Let us now consider the action of G on X = X+ × X−. The product X

is a building of type (W,S). Its chamber set Ch(X) is Ch(X+) × Ch(X−). The

G-action on X preserves the Weyl codistance. Moreover, by the Birkhoff decom-

position, it is Weyl co-transitive in the following sense: for any x, x′ ∈ Ch(X+)

and y, y′ ∈ Ch(X−) such that δ∗(x, y) = δ∗(x′, y′) there exists g ∈ G such that

(g.x, g.y) = (x′, y′). Therefore, it follows that the set {(B+, w.B−) | w ∈W} is

a set of representatives for the G-orbits in Ch(X). Moreover we have

StabG(B+, w.B−) = B+ ∩ wB−w
−1 = T.Uw

by Corollary 5.3. Combining Corollary 5.6 with [93, Th. 1], we see that the

quotient T/Z(G) is finite, hence so is T because Z(G) is finite by hypothesis. It

follows again from the proposition that G is a lattice in G+ ×G− if and only if∑
w∈W

1
|Uw| <∞.

It remains to evaluate the sum z =
∑
w∈W

1
|Uw| . In view of Lemma 5.5, we

have |Uw| > qℓ(w), where q = minα∈Π |Uα|. Therefore z 6
∑
w∈W (1/q)ℓ(w) as

desired.

Note that
∑
w∈W xℓ(w) =

∑
n>0 |W (n)|xn, where

W (n) = {w ∈W | ℓ(w) = n} .

Since we have |W (n)| 6 |S|n, the condition q > |S| is clearly sufficient for∑
w∈W (1/q)ℓ(w) to converge. �
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For the theory of lattices in Lie groups we refer to [67], and for the more ad-

vanced and specific theory of lattices in semisimple Lie groups we refer to [56].

These references are the guidelines for the study of lattices arising from the

theory of root data with finite root groups as below, at least for the part of the

study which relies on analogies with arithmetic groups [70].

7. Simplicity results

7.1. Tits’ transitivity lemma

It is an elementary fact on permutation groups that if a group G acts transitively

and primitively on a set X (e.g. G is 2-transitive), then any normal subgroup

of G acts either trivially or transitively. If a group G has a BN-pair, it is not quite

true that its action on the chambers of the corresponding building is primitive,

but it is indeed true that a chamber-stabilizer has very few over-groups: as

mentioned in Section 4.1.1, any subgroup containing B is a standard parabolic

subgroup. This should shed some light upon the following:

Lemma 7.1. (Tits’ transitivity lemma) Let G be a group with a BN-pair (B,N, S)

and X be the associated building and W be the Weyl group. If the Coxeter sys-

tem (W,S) is irreducible, then any normal subgroup of G acts either trivially or

transitively on Ch(X).

Proof. See [83, Prop. 2.5] or [14, Ch. IV, §2, Lemma 2]. �

In fact, this very useful result might be seen as a variant of a previously

known and quite classical theme, according to which groups admitting a suffi-

ciently transitive action on a set shall be submitted to strong restrictions con-

cerning their normal subgroups. To be more precise, we need to introduce

some further notions (they will be useful —and still relevant to simplicity—

when discussing some local actions on trees): the action of a group G on a set

X is called quasi-primitive if G, as well as any non-trivial normal subgroup of

G, acts transitively on X. This is the case if the action is primitive, namely if

the only equivalence relations on X which are compatible with the G-action are

the trivial ones; note that primitivity itself is implied by 2-transitivity. In fact,

denoting by G† the subgroup of G (acting on X) generated by the stabilizers of

the various elements x in X, we have the following implications:

G acts 2-transitively on X

=⇒ G acts primitively on X

=⇒ G acts quasi-primitively on X,
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which finally implies that G = G† or that G acts simply transitively on X. A

variant of this is the well-known Iwasawa’s lemma: let G act quasi-primitively

on X such that there exists a G-equivariant map

T : X → {abelian subgroups of G} : x 7→ Tx

with G = 〈Tx | x ∈ X〉. Then for any normal subgroup N ⊳ G acting non-

trivially on X, we have: N ⊇ [G,G]. This is a well-known elegant way to prove

the projective simplicity of linear groups (using unipotent subgroups).

In Tits’ specific lemma, some combinatorial structure (namely, the building

structure) is needed on the set on which the group acts, but the transitivity

condition is not as strong as it is for classical simplicity criteria.

As a final remark concerning 2-transitive (or slightly less transitive) group

actions, we note that one of J. Tits’ earliest works is the generalization of pro-

jective groups by means of multiple transitivity properties [81]. J. Tits proves in

this work that if a group G acts sharply n-transitively on an arbitrary set X, with

n > 4, then the set is finite and either the group is a symmetric or alternating

group with its standard action, or the set has at most 12 points and there are

very few examples, only with n = 4 or 5. The example of Moufang sets [33], as

defined by him in 1992, therefore provides a nice way to see that J. Tits’ latest

subjects of interest are in close connection with the very earliest ones.

7.2. Topological simplicity of topological completions

Tits’ original use of his transitivity lemma was to obtain a proof of abstract sim-

plicity applying uniformly to all isotropic simple algebraic groups. The notion of

a BN-pair (and later that of a root group datum) was created by him precisely

in order to obtain such a uniform theory. Recall that in the context of algebraic

groups, the Weyl group W is finite (see Section 2.6), the group U+ is nilpotent

(see Lemma 5.5) and G coincides with the completions G+ and G−. However,

letting Tits’ arguments work in the more general context of arbitrary root group

data, one obtains the following statement:

Theorem 7.2. Let G be a group endowed with a root group datum {Uα}α∈Φ

of irreducible type. Assume that the completion G+ is topologically perfect (i.e.

[G+, G+] is dense in G+) and that Uα is solvable for each α ∈ Π. Then G+/Z(G+)

is topologically simple (i.e. any closed normal subgroup is trivial).

Proof. Let H be a normal subgroup of G+ not contained in Z(G+). In view of

Proposition 6.1(iii) and Tits’ transitivity lemma, we have G+ = H.B̂+. Since

B̂+ normalizes Û+ it follows that every conjugate of Û+ in G+ is of the form
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hÛ+h
−1 for some h ∈ H. By Proposition 6.1(ii) and (iii), the groupG+ is clearly

generated by all these conjugates, hence we obtain G+ = H.Û+. It follows that

G+/H = H.Û+/H ≃ Û+/H ∩ Û+ . (7.1)

Assume now that H is closed. Since G+ is topologically perfect, so is the

continuous quotient G+/H. On the other hand, the group Û+ is pro-solvable by

Proposition 6.3, hence the derived series of Û+ penetrates every open neighbor-

hood of the identity in Û+. Clearly this property is inherited by any continuous

quotient. Therefore, the only continuous quotient of Û+ which is topologically

perfect is the trivial one. Now, it follows from (7.1) that H = G+. �

Remark 7.3. It is in good order to wonder when the condition that G+ be

topologically perfect is fulfilled. If G itself is abstractly perfect, then G+ is

clearly topologically perfect since G is dense in G+ by definition. Now for G

to be perfect, it suffices that each rank one group Xα = 〈Uα ∪ U−α〉 be perfect

since G is generated by those. This happens for example when G is any split

Kac–Moody group over a field k of order> 3, since thenXα ≃ SL2(k). However,

G+ turns out to be topologically perfect in many circumstances, even when G

is not abstractly perfect. We refer to [25, Section 2.2] for sufficient conditions

ensuring that G+ is topologically perfect. These conditions are fulfilled by all

split or almost split Kac–Moody groups over arbitrary fields (as long as the

Weyl group is infinite), as well as by most root group data obtained by exotic

constructions, such as those mentioned in Section 2.8, see [25, Section 2.1].

7.3. Abstract simplicity of topological completions

As demonstrated by L. Carbone, M. Ershov and G. Ritter [26], in the case when

Û+ is a profinite group, the arguments of the proof of Theorem 7.2 may be

pushed further in order to obtain abstract simplicity of the completion G+. In

fact, the latter reference deals primarily with the case when Û+ is pro-p. Using

some results of Dan Segal’s [76], this can be extended to the more general case

when Û+ is pro-solvable:

Theorem 7.4. Maintain the assumptions of Theorem 7.2 and assume moreover

that Uα is finite for each α ∈ Π and that Û+ is topologically finitely generated

(i.e. Û+ possesses a finitely generated dense subgroup). Then G+/Z(G+) is ab-

stractly simple.

Proof. By Proposition 6.3, the group Û+ is profinite. By [76, Corollary 1], the

group [Û+, Û+] is closed, hence Û+/[Û+, Û+] is a finitely generated abelian profi-

nite group. Moreover the group Û+ is topologically generated by U+, which is
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itself generated by {Uα | α ∈ Φ}. Since all root groups are finite and since there

is finitely many of them up to conjugacy, it follows that Û+/[Û+, Û+] is of finite

exponent. It must therefore be finite since it is finitely generated. Thus [Û+, Û+]

is of finite index in Û+, hence open by [76, Theorem 1], since Û+ is itself open

in G+. Now it follows that the derived group [G+, G+], which contains [Û+, Û+]

is open, hence closed. By assumption, this implies that G+ is abstractly perfect,

namely G+ = [G+, G+].

The arguments of the proof of Theorem 7.2 may now be repeated, thereby

establishing (7.1). In order to conclude, it remains to prove that a finitely gen-

erated pro-solvable (profinite) group has no nontrivial perfect quotient, which

is indeed true by the proposition below. �

Remark 7.5. Again, one should ask when it actually happens that Û+ is topo-

logically finitely generated. This is discussed in [26, Section 6 and 7], where

some sufficient conditions are given in the case when G is a split Kac–Moody

group over a field. Here we merely mention that the case when (W,S) is 2-spher-

ical (i.e. o(st) < ∞ for all s, t ∈ S) is especially favourable, because then the

group U+ is (mostly) abstractly finitely generated, see Theorem 8.1(i) below,

and hence its closure Û+ is of course topologically finitely generated.

The following statement is a consequence of Dan Segal’s results proven in

[76]. Since it is of independent interest but not explicitly stated in [loc. cit.],

we include it here:

Proposition 7.6. Let G be topologically finitely generated pro-solvable (profinite)

group. Then G has no nontrivial perfect quotient.

Proof. Let H be a normal subgroup of G such that G/H is perfect. Thus we

have G = H.[G,G]. Since G is topologically finitely generated, the derived

group [G,G] is closed by [76, Corollary 1] and, hence, the quotientG/[G,G] is a

topologically finitely generated abelian profinite group. Since it is generated by

the projection of H, it follows right away that there exist finitely many elements

h1, . . . , hd ∈ H such that G = 〈h1, . . . , hd〉.[G,G].

Let now N be an open normal subgroup of G. Thus G/N is a finite solvable

group generated by the projections of h1, . . . , hd. Using the last equation in [76,

p. 52], we obtain that

[G,G] =
( d∏

i=1

[hi, G]
)∗f(d)

.N

for some f(d) ∈ N, where the notation ∗f(d) is used to denote the image of the

f(d)th Cartesian power under the product map. Since the latter equation holds
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for any open normal subgroup N , we deduce from [39, Prop. 1.2(iii)] that

[G,G] =
( d∏

i=1

[hi, G]
)∗f(d)

.

Since the map G → G : g 7→ [hi, g] is continuous and G is compact, the set

[hi, G] is closed in G. Hence the big product in the right-hand side of the latter

equation is closed and we obtain

[G,G] =
( d∏

i=1

[hi, G]
)∗f(d)

.

SinceH is normal, we have [hi, G] ⊂ H for each i, from which we finally deduce

that [G,G] ⊂ H. Since we have G = H.[G,G] by assumption, it finally follows

that G = H as desired. �

At this stage, we note that Kac–Moody groups over finite fields provide,

through their geometric completions, intriguing topological groups. Indeed,

they are often abstractly simple, locally pro-p and share further (combinato-

rial) properties with adjoint simple algebraic groups over local fields of positive

characteristic. This is a probably non-exhaustive list of arguments supporting

the analogy with classical matrix groups, but we also saw that the maximal

compact subgroups of some of them contain finite index subgroups which are

Golod–Shafarevich and hence contain free pro-p subgroups. It would be inter-

esting to provide further arguments supporting and/or disproving this analogy,

from the point of view of representation theory for instance.

7.4. Weyl transitivity of normal subgroups

The previous simplicity results deal only with the topological completions. No

such general simplicity results should be expected for the uncomplete group G.

Indeed, recall from Section 2.7 that the group G = SLn(k[t, t
−1]) possesses a

root group datum, but it is far from simple in view of the existence of evaluation

homomorphisms. However, in the context of root group data, Theorem 7.2 may

be used to obtain a strengthening of Tits’ transitivity lemma.

Before stating it, we introduce the following definition: a group G, acting on

a building X with Weyl distance δ, is called Weyl transitive if for any elements

x, y, x′, y′ ∈ Ch(X) such that δ(x, y) = δ(x′, y′), there exists g ∈ G such that

(g.x, g.y) = (x′, y′). It is an immediate consequence of the Bruhat decomposi-

tion that if G has a BN-pair, then G is Weyl transitive on the associated building.

The following result is a straightforward consequence of Theorem 7.2:
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Corollary 7.7. Let G be a group endowed with a root group datum and assume

that the hypotheses of Theorem 7.2 hold. Then any normal subgroup of G is either

central or Weyl transitive on X+.

Proof. Let H be a normal subgroup of G which is not contained in Z(G). Let

H denote the closure of H in G+. By Proposition 6.1(iii) and Theorem 7.2, we

have H = G+, hence H is dense. The point-stabilizers of G+ for its diagonal

action on Ch(X+) × Ch(X+) are open in G+. Since H is dense, it follows

immediately that H and G+ have the same orbits in Ch(X+) × Ch(X+). The

result follows, since G+ is Weyl transitive on X+ by Proposition 6.1. �

Coming back again to the group SLn

(
Fq[t, t

−1]
)
, it follows from the corollary

that it contains Weyl transitive subgroups of arbitrarily large finite index, since

it is residually finite. More information on Weyl transitivity and other families

of examples may be found in [4] and [3, Section 6].

7.5. Simplicity of lattices

As mentioned in the previous section, the discrete group G should not be ex-

pected to be simple in general. It was shown in [25] that the existence of finite

quotients for G is related to the geometry of its Weyl group. In fact, building

upon earlier work of Y. Shalom [78], Bader–Shalom [6] and B. Rémy [73], the

following result was proven in [25, Theorem 19]:

Theorem 7.8. LetG be a group with a root group datum {Uα}α∈Φ with Φ reduced

of finite rank such that:

• Uα is finite and nilpotent for each α ∈ Π,

•
∑
w∈W (1/q)ℓ(w) <∞, where q = minα∈Π|Uα| ,

• (W,S) is irreducible,

• W is not virtually abelian (i.e. W is not of spherical or of affine type).

Then G/Z(G) is infinite, finitely generated and virtually simple. All of its finite

quotients are nilpotent and factor through (i.e. are quotients of) the direct product∏
α∈Π Uα. �

The fact thatG embeds as an irreducible lattice inG+×G− (see Theorem 6.4)

enables one to appeal to the results of Y. Shalom [78], Bader–Shalom [6] and

B. Rémy [73]. Combining them all, it follows that any noncentral normal sub-

group of G is of finite index. On the other hand, if W is not virtually abelian
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then the geometry of the associated Coxeter complex enjoys some form of com-

binatorial hyperbolicity which may be exploited to obtain strong obstructions to

the existence of finite quotients of G, see [25]. All together, these arguments

yield the theorem above.

It is the right place to mention that a construction of finitely presented tor-

sion free groups as lattices in product of buildings (in fact, trees), standing by

the (rich, but fortunately not complete!) analogy with irreducible lattices in

products of simple Lie groups, was first due to M. Burger and Sh. Mozes [20].

The groups they construct are fundamental groups of finite square complexes;

in fact, they are uniform lattices for products of two trees. An important tool

in the study of these simple lattices is the projections on factors. This amounts

to investigating the closures of the projections of these lattices in the full au-

tomorphism group of a single tree [19]. For this, a general structure theory is

developed for closed non-discrete groups acting on trees: if the local actions

(i.e. the actions of vertex stabilizers on the spheres around the vertices) are

sufficiently transitive on large enough spheres, then a strong dichotomy holds

for closed normal subgroups [loc. cit., lines 20-22 of the introduction]. This

is where transitivity properties for group action are back as one of the main

conditions: (quasi-)primitivity, 2-transitivity appear in the above theory at local

level, but also as a condition on the action on the asymptotic boundaries of the

trees under consideration [loc. cit., §3]. We finally note that these groups can-

not have property (T) since they act nontrivially on trees, as opposed to many

simple Kac–Moody lattices who often do enjoy property (T), and are finitely

presented.

For the general problem of constructing infinite finitely generated groups, we

recommend the concise but instructive historical note in [68].

8. Curtis–Tits type presentations and existence re-

sults

We have already encountered presentations of groups with BN-pairs as a corol-

lary of Proposition 5.2. It turns out that for groups with a root group datum,

there often exist much more economical presentations, called Curtis–Tits type

presentations.

For groups with a finite Weyl group, these were first obtained by C. W. Curtis

and J. Tits [30]. This was extended to the case of certain infinite Weyl groups

by P. Abramenko and B. Mühlherr [5]. When all root groups are finite, this

presentation happens to be finite. Homological finiteness properties of groups



I I G

◭◭ ◮◮

◭ ◮

page 62 / 73

go back

full screen

close

quit

ACADEMIA

PRESS

with a root group datum were extensively studied by P. Abramenko; we refer

to [2] for a survey of some known results. In this section we focus on the

Curtis–Tits type presentations. We mention in passing some facts on Steinberg-

type presentations for the universal central extensions, and conclude with some

remarks on existence of root group data for groups given by a Curtis–Tits type

presentation.

8.1. Curtis–Tits and Steinberg type presentations of the uni-

versal central extension

The set-up is the following. As before, we let G be a group with a root group

datum {Uα}α∈Φ of type E = (B,Φ) and assume that Φ = Φ(B) is the canonical

root system of B.

We will assume moreover that the Coxeter system (W,S) is 2-spherical, i.e.

o(st) <∞ for all s, t ∈ S. As a justification for this assumption, let us just men-

tion the fact that the group SL2

(
Fq[t, t

−1]
)

is finitely generated but not finitely

presented, see [8]. As we know from Section 2.7, this group is endowed with a

root group datum with infinite dihedral Weyl group.

Another condition that we will take as a hypothesis is the following:

Xα,β/Z(Xα,β) 6∈ {B2(2), G2(2), G2(3), 2F4(2)} for all α, β ∈ Π . (∗)

The importance of this condition comes from the following:

Lemma 8.1. Suppose that (W,S) is 2-spherical. Then Condition (∗) holds if and

only if for all α, β ∈ Π, α 6= β, we have

[Uα, Uβ ] =
〈
Uγ | γ ∈]α, β[

〉
.

Proof. See [1, Prop. 7]. �

Note that the inclusion ⊂ in the previous lemma is covered by axiom (RGD3);

the essential point is that (∗) allows to express root subgroups as commutators.

In order to simplify notation, we make the following convention: given a set

of roots Ψ ⊂ Φ, we denote by UΨ the group generated by all Uγ with γ ∈ Ψ.

Theorem 8.2. Suppose that (W,S) is 2-spherical, that S is finite and that (∗)

holds. Then we have the following:

(i) U+ = 〈Uα | α ∈ Π〉; in particular U+ is finitely generated if all root groups

are finite.
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(ii) If (W,S) is 3-spherical (i.e. any triple of elements of S generates a finite

subgroup of W ) and if |Uα| > 16 for each α ∈ ΠΦ then U+ is the direct

limit of the inductive system formed by the Uα and U[α,β], where α, β ∈ Π;

in particular U+ is finitely presented if all root groups are finite.

(iii) Let G̃ be the direct limit of the inductive system formed by the Xα and Xα,β

in G, where α, β ∈ Π. Then G̃ is endowed with a root group datum and the

kernel of the canonical homomorphism G̃→ G is central. In particular, G is

finitely presented if all root groups are finite.

(iv) Let St(G) be the direct limit of the inductive system formed by the Uα and

U[α,β], where {α, β} ⊂ Φ is a prenilpotent pair such that o(rαrβ) is finite.

If (W,S) is irreducible and |S| > 3 and if |Uα| > 5 for all α ∈ Π, then

St(G) → G is a universal central extension of G. In particular, the center

Z(St(G)) (and hence Z(G)) is finite if all root groups are finite.

Proof. For (i), one shows by induction on ℓ(w) that Uw.α ⊂ 〈Uβ | β ∈ Π〉 for

all α ∈ Π such that w.α > 0. The point is to view Uw.α as a subgroup of

a commutator of root subgroups which are already known to be contained in

〈Uβ | β ∈ Π〉 by induction. This uses the lemma and the 2-sphericity of (W,S).

For (ii), we refer to [37, Cor. 1.2]. A statement similar to (iii) was first obtained

in [5]. For a complete proof of the above, see [21, Theorem 3.7]. Statement (iv)

follows from a combination of [21, Theorem 3.11] and the results of [34]. �

Remarks 8.3. (1) P. Abramenko has proved that, provided (∗) holds, the

group U+ is finitely presented if and only if (W,S) is 3-spherical [2]. Thus

the presentation in (ii) should not be expected to hold when (W,S) is not

3-spherical. More information on the (homological) finiteness properties

of G may be found in Abramenko’s book [1] or in the survey paper [2].

(2) We emphasize that the relations which present the Steinberg group are

not all commutation relations of G but only those commutation relations

which appear in rank two Levi subgroups of spherical type (i.e. with finite

Weyl group).

8.2. Existence and classification results

One way of interpreting Theorem 8.1(iii) is by saying that the group G is com-

pletely determined by triple the (E,X ,K) consisting of the root datum E, the

inductive system X = {Xα, Xα,β | α, β ∈ Π} and the (central) kernel K of the

homomorphism G̃→ G. This motivates the following definition.

A local datum is a triple D = (E,X ,K) consisting of the following data:
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• a root datum E = (B,Φ) of 2-spherical type and of finite rank;

• an inductive system X of groups parameterized as follows: for each γ ∈⋃
α,β∈Π Φ{α,β}, a group Uγ and for all distinct α, β ∈ Π, a group Xα,β

such that {Uγ}γ∈Φ{α,β}
is a root group datum of type E{α,β} for Xα,β; all

morphisms of the inductive system X are inclusions;

• a subgroup K of the center Z(G̃), where G̃ is defined as the direct limit of

the inductive system X .

Given a local datum D , the inductive limit G̃ = G̃(D) is called its universal

enveloping group and the quotient G(D) = G̃/K is called the enveloping group.

The subgroup K = K(D) is called the kernel of D .

Thus local data provide excellent candidates for being classifying data of all

groups G with a twin root datum with 2-spherical Weyl group satisfying the

condition (∗). In order to make this correspondence a genuine classification

of the isomorphism classes of groups endowed with such a root group datum,

there are two questions to answer:

Question 8.4. Given a local datum, is its enveloping group endowed with a

root group datum?

Question 8.5. Given two non-isomorphic local data, are their respective en-

veloping groups non-isomorphic?

Both problems are still incompletely solved. In order to make a precise state-

ment of some of the known information, let us make some additional defini-

tions. The local datum D is called locally finite if Uγ is finite for each γ ∈ Π. It

is called locally split if Xα,β is a split Chevalley group of rank 2 for all distinct

α, β ∈ Π. Furthermore, we let LS be the collection of all local data which are

locally finite or locally split and which satisfy condition (∗).

Theorem 8.6. We have the following:

(i) For each D ∈ LS, the enveloping group G(D) is endowed with a twin root

datum of type E such that the associated local datum coincides with D .

(ii) Let D1,D2 ∈ LS be such that G(D1) is infinite and the root datum of D1 is

of irreducible type. Let also ϕ : G(D1) → G(D2) be an isomorphism. Then

there exists a bijection σ : Π1 → Π2, a sign ε ∈ {+,−}, an inner automor-

phism Ad g of G(D2), and for each root α with ±α ∈ Π, an isomorphism



I I G

◭◭ ◮◮

◭ ◮

page 65 / 73

go back

full screen

close

quit

ACADEMIA

PRESS

ϕα : Uα → Uεσ(α) such that the diagram

Uα
ϕα

//

��

Uεσ(α)

��

G(D1)
Ad g◦ϕ

// G(D2)

commutes for each root α with ±α ∈ Π, where the vertical arrows are the

canonical inclusions. In particular, for all distinct α, β ∈ Π, the restriction of

Ad g ◦ϕ to Xα,β is an isomorphism onto Xεσ(α),εσ(β). Moreover, the isomor-

phism Ad g ◦ ϕ induces an isomorphism between the universal enveloping

groups of D1 and D2 which maps the kernel K(D1) to the kernel K(D2).

Proof. Statement (i) is a reformulation of the main result of [63]. Once (i) is

known to hold, part (ii) follows from the results of [24] and [22] and the fact

that G(D2) can be embedded in a Kac–Moody group by [63]. More precisely,

the statement above is obtained by an argument which goes along the following

lines.

First, it follows from (i) that the group G(D) is finitely generated if and only

if D is locally finite. Therefore, we may assume that D1 and D2 are either both

locally finite or both locally split (and infinite). The case of locally finite ones is

covered by [24, Theorem 5.1 and Corollary 3.8]. In fact, technically speaking

the latter reference requires all root groups to be of order at least 4, but this

assumption can be bypassed by taking advantage of the fact that Weyl groups

are assumed to be 2-spherical in the present context.

Now, for locally split D , it essentially follows from (i) (see [63]) that the

group G(D)/Z(G(D)) is in fact a split adjoint Kac–Moody group. The desired

statement then follows from [22, Theorem A]. �

Remarks 8.7. (1) The results of B. Mühlherr [63] quoted above are originally

stated in the setting of twin buildings, but they can be easily reformulated

in the setting of root group data. We refer to [95] for details on the trans-

lation from one context to the other. B. Mühlherr has designed a program

to extend the results of [63] to all local data satisfying (∗) and has success-

fully carried out large parts of this program, see [64]. Let us mention here

that, in order to check that the enveloping group G(D) is endowed with

a root group datum, the main difficulty is to prove that axiom (RGD1)

is fulfilled. Indeed (RGD0) trivially holds, (RGD2) is satisfied by con-

struction, and arguments similar to those of the proof of Theorem 8.1(iii)

show that (RGD3) holds as well. Now, in order to prove that (RGD1) is

also satisfied, it suffices to show the subgroup U+ of G(D) is residually
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nilpotent. This is because the rank one group Xα = 〈Uα ∪ U−α〉 is never

nilpotent (see Corollary 5.6); in fact Xα is quasisimple unless it is finite

of very small order. However, the residual nilpotency of U+ is delicate

to establish. The way it is done in [63] is by realizing the inductive sys-

tem of rank two groups of D in a certain large group which is known to

possess a root group datum (mostly the latter group is a split Kac–Moody

group). This allows to embed U+ in some unipotent radical of this larger

group. Now the latter group is residually nilpotent as a consequence of

Proposition 6.3, hence so is U+.

(2) The article [24] quoted above is concerned with the isomorphism problem

for groups endowed with locally finite root group data, while [22] deals

with the case of split Kac–Moody groups. None of these references makes

the assumption that the Weyl group is 2-spherical.

(3) The only reason for the assumption that G(D1) is infinite and D1 of irre-

ducible type in Theorem 8.2(ii) is to avoid the exceptional isomorphisms

between small finite Chevalley groups. Of course, the conclusions of

that theorem are known to hold for all sufficiently large finite Chevalley

groups: this is all classical, see [80].
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résumé de cours.
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