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1. Introduction

Geometric methods in the theory of Chevalley groups and their generalisations

have made tremendous advances during the last few decades. Among the most

noteworthy and influential of these advances are the systematic application of

the concept of amalgams based on [49, 59, 117], the local-to-global approach

[136], ingenious applications of combinatorial topology and geometric group

theory (as in [2, 91, 92, 102, 137]), the theory of abstract root groups [127,

129, 130], and the interaction of Kac-Moody groups and twin buildings [34,

35, 36, 39, 38, 138, 140]. These methods have proven fruitful over and over

again in proving, simplifying and generalising several results in group theory

and have had their impact in other areas of mathematics.

The present survey attempts to give a report on the results and on the devel-

opments in recent years and to serve as a guide to the literature for the project

called Curtis-Phan-Tits Theory (or, short, Phan Theory). This project has been

initiated in [19] with the goal to revise Phan’s results [106, 107] on presen-

tations of twisted forms of finite Chevalley groups via rank one and rank two

groups in order to make them accessible for the ongoing revision of the classifi-

cation of the finite simple groups [60, 61, 62, 63, 64, 65].

The main impact of Phan’s results [106, 107] in the classification can be

seen in [14] side by side with the famous Curtis-Tits Theorem established in

[45, 134], [135, Theorem 13.32]; see also [62, Section 2.9] and Section 4 of

this survey. As in this survey my main concern is the revision of Phan’s results,
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I refer to [17] regarding the current overall state of the classification of the finite

simple groups.

Phan Theory enters the stage in what is called Step 2 in [17], the identi-

fication of the minimal counterexample G as one of the known simple groups.

By Step 1, the local analysis, inside the minimal counterexample G one recon-

structs one or more of the proper subgroups using the inductive assumption and

available techniques. Thus, the initial point of the identification, Step 2, is a set

of subgroups of G that resemble the subgroups of a central extension Ĝ of some

known simple group, referred to as the target group; the output of the identi-

fication step is the statement that G is isomorphic to a central quotient of Ĝ.

Two of the most widely used identification tools in this step are the Curtis-Tits

Theorem and Phan’s theorems. I have already mentioned [14] as one of the

main occurrences of these tools in the classification of the finite simple groups

and refer the reader to [65, Section 7.5] for an occurrence of Phan’s revised

results in the revision of the classification. In Section 7, I describe a possible

setup for an application of Phan Theory in the revision of the classification via

centralisers of involutions.

The Curtis-Tits Theorem allows the identification of G with a quotient of a

universal Chevalley group Ĝ of twisted or untwisted type provided that G con-

tains a generating system of subgroups identical to the system of appropriately

chosen rank two Levi factors of Ĝ. For instance, in the case of the Dynkin dia-

gram An, the system in question consists of all the groups SL2(F), SL3(F), and

SL2(F)×SL2(F) lying block-diagonally in Ĝ ∼= SLn+1(F), considered as a matrix

group with respect to a suitable basis of its natural module. Phan’s first theorem

[106] on the other hand deals with the case Ĝ ∼= SUn+1(q
2), considered as a

matrix group with respect to an orthonormal basis of its natural module, and the

system of block-diagonal subgroups SU2(q
2), SU3(q

2), and SU2(q
2) × SU2(q

2).

In this survey I will describe how a systematic geometric approach making se-

rious use of buildings and twin buildings yields a Phan-type theorem for Cheval-

ley groups of each irreducible spherical type of rank at least three. The complete

result is stated in Section 6.
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2. Geometries and amalgams

In this section I give a quick overview over the basic geometric notions and re-

sults used in the present survey. Most of these notions are due to Tits [136]. I

refer the reader to [136] and also to [30, 31, 103] for a well-founded introduc-

tion to synthetic geometry including proofs and many helpful examples.

2.1. Geometries

2.1.1. Pregeometries and geometries

A pregeometry G = (X, ∗, typ) over a finite set I is a set of elements X together

with a type function typ: X → I and a reflexive and symmetric incidence relation

∗ ⊆ X×X such that for any two elements x, y ∈ G with x∗y and typ(x) = typ(y)

we have x = y. The rank of a pregeometry G is the cardinality of its type set I.

A flag in G is a set of pairwise incident elements. Hence the type function injects

any flag into the type set, this image is called the type of the flag. A geometry

is a pregeometry with the property that typ induces a bijection between any

maximal flag of G and I. Flags of type I are called chambers.

2.1.2. Residues

The residue GF of a flag F in a pregeometry G consists of the set of elements

from G \ F that are incident to all elements of F with the restricted incidence

and type functions, the latter co-restricted to I\ typ(F ), turning the residue GF

into a pregeometry over I \ typ(F ). If G is a geometry over I, then any of its

residues GF is a geometry over I\ typ(F ). The rank of the residue of a flag F

is called the co-rank of F . A non-empty pregeometry G is said to be connected,

if the graph (X, ∗) is connected. Following [136, Section 1.2], a pregeometry G
is residually connected, if the residue in G of any flag of co-rank at least two is
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connected and the residue of any flag of co-rank one is non-empty. A residually

connected pregeometry is automatically a geometry.

2.1.3. Automorphisms

An automorphism of a pregeometry G over I is a permutation of its elements that

preserves type and incidence and whose inverse permutation also preserves in-

cidence. The group of all automorphisms of G will be denoted by AutG. A sub-

group G ≤ AutG acts flag-transitively on G if, for each J ⊆ I, it is transitive

on the set of all flags of type J . A group G of automorphisms of a geometry G
over I is flag-transitive if and only if G is transitive on the set of maximal flags

of G, because each flag of G can be extended to a flag of type I of G. A pregeom-

etry that admits a flag-transitive automorphism group is called flag-transitive.

A parabolic subgroup (or simply a parabolic) of G is the stabiliser in G of a

non-empty flag F of G. The rank of the parabolic is defined as the co-rank of F .

The term parabolic subgroup is inspired by the parabolic subgroups of alge-

braic groups which occur as stabilisers of residues of buildings.

2.2. Simplicial complexes

There exist very many good books dealing with the theory of simplicial com-

plexes, many of them with very different flavours, ranging from combinatorics

and graph theory [80] to differential geometry [26] and to topology [120].

Other classical references are [116, 142].

2.2.1. Complexes

A simplicial complex S is a pair (X,∆) where X is a set and ∆ is a collection

of non-empty finite subsets of X containing each subset of X of cardinality one

such that A ∈ ∆ and ∅ 6= B ⊆ A implies B ∈ ∆. The elements of ∆ are called

simplices. A simplicial complex in which each chain of simplices is finite is called

pure, if all of its maximal simplices have the same cardinality.

A morphism from a complex S = (X,∆) to a complex S ′ = (X ′,∆′) is a map

between X and X ′ which takes simplices to simplices. The star of a simplex

A ∈ ∆ is the set of subsets B ∈ ∆ such that A ⊆ B. A covering is a surjective

morphism φ from S to S ′ such that for every A ∈ ∆, the function φ maps the

star of A bijectively onto the star of φ(A). A path on a complex S is a finite

sequence x0, x1, . . . , xn of elements of X such that xi−1 and xi are contained in

a simplex for all i = 1, . . . , n. The complex S is connected, if every two elements

of X can be connected by a path.
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2.2.2. Homotopy

The following three operations are called elementary homotopies of paths: sub-

stituting a subsequence x, x (a repetition) by x, or vice versa, substituting a

subsequence x, y, x (a return) by x, or vice versa, or substituting a subsequence

x, y, z, x (a triangle) by x or vice versa, provided that x, y, z form a simplex. Two

paths are homotopically equivalent if they can be obtained from one another in a

finite sequence of elementary homotopies. A cycle, that is, a path with x0 = xn,

is called null-homotopic, if it is homotopically equivalent to the trivial path x0.

The fundamental group π1(S, x), where x ∈ X, is the set of homotopy classes

of cycles based at x where the product is defined to be concatenation of cycles.

The fundamental group is independent of the choice of the base vertex x inside

a fixed connected component, while it may vary for base vertices in distinct

connected components. When considering connected complexes only, the cov-

erings of S, taken up to a certain natural equivalence, correspond bijectively

to the subgroups of π1(S, x), cf. [116, §55]. A connected complex S is called

simply connected, if each covering S ′ → S with connected S ′ is an isomorphism,

or equivalently ([116, §56], [120, Section 2.5]), if π1(S, x) = 1.

2.2.3. Flag complexes and realisations

With every pregeometry G = (X, typ, ∗) one can associate its flag complex which

is a simplicial complex defined on the set X whose simplices are the flags of G.

The flag complex of a pregeometry G is pure if and only if G is a geometry. A

pregeometry G is simply connected, if such is its flag complex.

For a simplicial complex S = (X,∆) denote by |S| the set of all functions α

from X to the real unit interval I satisfying that the set {v ∈ X | α(v) 6= 0}
is contained in ∆ and that

∑
v∈X α(v) = 1, i.e., |S| is obtained from S via

barycentric coordinates. In this survey I consider the weak (coherent) topol-

ogy on |S|, cf. [120, 3.1.14], and call it the realisation of S. With respect to

this topology, the fundamental group π1(S, x) defined combinatorially in Sec-

tion 2.2.2 coincides with the usual fundamental group defined topologically, see

[120, 3.6.17].

2.2.4. Wedges of spheres

Let X and Y be pointed spaces, i.e., topological spaces with distinguished base

points x0 and y0. Then the wedge sum X ∨ Y of X and Y is the quotient of the

disjoint union X ⊔ Y by the identification x0 ∼ y0, i.e.,

X ∨ Y := (X ⊔ Y )/{x0 ∼ y0}.
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In general, if (Xi)i∈I is a family of pointed spaces with base points (xi)i∈I ,

then the wedge sum of this family is given by

∨

i∈I

Xi :=
⊔

i∈I

Xi/{xi ∼ xj | i, j ∈ I}.

The wedge sum of a family of spheres of the same dimension n is called a wedge

of spheres or, if one wants to specify the dimension, a wedge of n-spheres.

2.3. Chamber systems

Chamber systems and their interaction with pregeometries and simplicial com-

plexes as introduced in [136] play a crucial role in this survey. Details on cham-

ber systems can also be found in [3, 29, 31, 103, 111, 146]. In this section I

sketch the most fundamental information and try to highlight some interaction

with the objects introduced before.

2.3.1. Chambers

A chamber system C = (C, (∼i)i∈I) over a type set I is a set C, called the set of

chambers, together with equivalence relations ∼i, i ∈ I. For i ∈ I and chambers

c, d ∈ C, the chambers c and d are called i-adjacent if c ∼i d. The chambers c, d

are adjacent if they are i-adjacent for some i ∈ I.

A chamber system C is called thick if for every i ∈ I and every chamber c ∈ C,

there are at least three chambers (c and two other chambers) i-adjacent to c; it

is called thin if for every i ∈ I and every chamber c ∈ C, there are exactly two

chambers (c and one other chamber) i-adjacent to c.

A gallery in C is a finite sequence (c0, c1, . . . , ct) such that ck ∈ C for all

0 ≤ k ≤ t and such that ck−1 is adjacent to ck for all 1 ≤ k ≤ t. The number t is

called the length of the gallery. The chamber system C is said to be connected, if

for any two chambers there exists a gallery joining them.

For J ⊆ I, the J -residue of a chamber c is the chamber system RJ(c) =

(RJ(c), (∼j)j∈J) consisting of those chambers of C that can be connected to c via

a gallery using j-adjacencies (j ∈ J) only; such galleries are called J -galleries.

A J -residue with |J | = 1 is called a panel.

2.3.2. Chamber systems and pregeometries

If G is a pregeometry with type set I, then one can construct a chamber system

C = C(G) over I as follows. The chambers are the flags of G of type I and two
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such flags are i-adjacent if and only if they contain the same element of type j

for all j ∈ I \ {i}. A chamber system is called geometric, if it can be obtained in

this way.

Conversely, if C is a chamber system over I, the pregeometry of C (denoted

by G(C)) is the pregeometry over I whose elements of type i are the pairs (x, i)

with x an I\{i}-residue of C in which two elements (x, k), (y, l) of G(C) are

incident if and only if x ∩ y 6= ∅ in C, cf. [136]. If ψC(c), for c ∈ C, denotes the

set of all I\{i}-residues, i ∈ I, containing c, then the map

C → C(G(C)) : c 7→ ψC(c)

is a homomorphism of chamber systems, by [31, Proposition 3.5.6].

In general, G 6∼= G(C(G)) and C 6∼= C(G(C)), see [136, Section 2.2]. However, if

G is residually connected, then G ∼= G(C(G)), cf. [31, Section 3.5], [136, Section

2.2]. Moreover, by [31, Theorem 3.5.7], the homomorphism

C → C(G(C)) : c 7→ ψC(c)

is an isomorphism if and only if for any set {(xi, i) | i ∈ I} (where xi is an

I\{i}-residue of C) such that xi ∩ xj 6= ∅ for all i, j ∈ I, the intersection
⋂

i∈I xi

is non-empty, and for distinct chambers c, d of C there is some I\{i}-residue

of C containing c but not d.

2.3.3. Homotopy

The concept of homotopy introduced for simplicial complexes, cf. Section 2.2,

can also be defined for chamber systems. Excellent sources are [103, 136].

Let m ≥ 1 be an integer and let (C, (∼i)i∈I) be a chamber system over a set I.

Two galleries G = (c0, . . . , ck) and H = (c′0, . . . , c
′
k′) are called elementarily

m-homotopic, if there exist two galleries X,Y and two J -galleries G0, H0 for

some J ⊂ I of cardinality at most m such that G = XG0Y , H = XH0Y .

Two galleries G, H are said to be m-homotopic if there exists a finite sequence

G0, G1, . . . , Gl of galleries such that G0 = G, Gl = H and such that Gk−1 is

elementarily m-homotopic to Gk for all 1 ≤ k ≤ l. A closed gallery G is called

null-m-homotopic if it is m-homotopic to the gallery consisting of the initial

chamber of G.

The chamber system C is called simply m-connected, if it is connected and if

each closed gallery is null-m-homotopic. Given a gallery G, then GG−1 is null-

m-homotopic. Furthermore, two galleries H, G are m-homotopic if and only if

the gallery GH−1 is null-m-homotopic.

If C is a chamber system over a finite set I such that the map C → C(G(C)) : c 7→
ψC(c) from Section 2.3.2 is an isomorphism, then C is simply (|I|−1)-connected
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if and only if G(C) is simply connected. For m < |I| − 1 it is unknown to me

what it means for a geometry, if its chamber system is simplym-connected. Note

that there exists a rank four geometry (cf. [125]) for McLaughlin’s sporadic sim-

ple group McL whose chamber system is simply 2-connected and which admits

residues of rank three which are not simply connected.

2.4. Coset pregeometries and reconstruction

2.4.1. Coset pregeometries

Let I be a set, let G be a group and let (Gi)i∈I be a family of subgroups of G.

Then (⊔

i∈I

G/Gi, ∗, typ
)

with typ(gGi) = i and gGi ∗ hGj if and only if gGi ∩ hGj 6= ∅ is a pregeometry

of type I, the coset pregeometry of G with respect to (Gi)i∈I . The groups Gi

are called the maximal parabolic subgroups of the coset pregeometry. Since

the type function is completely determined by the indices, we denote the coset

pregeometry of G with respect to (Gi)i∈I by ((G/Gi)i∈I , ∗). The family (Gi)i∈I

forms a chamber of the coset pregeometry, called the base chamber. For J ⊆ I

define GJ :=
⋂

j∈J Gj .

2.4.2. Reconstruction

Certainly any coset pregeometry is incidence-transitive, i.e., for any two flags c

and d with |typ(c)| = 2 = |typ(d)| and typ(c) = typ(d) there exists an element

g ∈ G that maps c onto d. Indeed, if gGi ∩hGj 6= ∅, then choose a ∈ gGi ∩hGj .

It follows aGi = gGi and aGj = hGj and therefore the automorphism a−1

maps the incident pair gGi, hGj onto the incident pair Gi, Gj . Conversely, any

incidence-transitive pregeometry can be described as a coset pregeometry via

its parabolic subgroups.

If G = (X, ∗, typ) is a pregeometry over I with an incidence-transitive group

G of automorphisms of G and a maximal flag F = (xi)i∈I of G, then the bijection

(
(G/Gxi

)i∈I , ∗
′
)
→ G : gGxi

7→ gxi

is an isomorphism between pregeometries and between G-sets. (Recall here

that two actions φ : G → Sym M and φ′ : G → Sym M ′ are called isomorphic,

if there is a bijection ψ : M → M ′ such that ψ ◦ φ(g) ◦ ψ−1 = φ′(g) for each

g ∈ G or, equivalently, ψ ◦ φ(g) = φ′(g) ◦ ψ for all g ∈ G; in this case, we also

say that M and M ′ are isomorphic G-sets.) The observation of this isomorphism



I I G

◭◭ ◮◮

◭ ◮

page 10 / 53

go back

full screen

close

quit

ACADEMIA

PRESS

(
(G/Gxi

)i∈I , ∗
′
)
→ G : gGxi

7→ gxi goes back to [93] and has been proved

formally in [56, 57].

It happens quite frequently that interesting geometries are not incidence-

transitive. This is also the case in Phan theory, see e.g. Section 5.1.4, so that

often a more general definition of a coset pregeometry is necessary. I refer

the reader to [76, 78, 123, 124, 147] for details. The most general concept of

reconstruction in this context known to me are complexes of groups as treated

in [27, Chapter III.C].

2.5. Geometric covering theory and Tits’ Lemma

2.5.1. Amalgams

An amalgam A of groups is a set with a partial operation of multiplication and

a collection of subsets {Gi}i∈I , for some index set I, such that (i) A =
⋃

i∈I Gi,

(ii) for each i ∈ I, the restriction of the multiplication to Gi turns Gi into a

group, (iii) the product ab is defined if and only if a, b ∈ Gi for some i ∈ I, and

(iv) Gi ∩Gj is a subgroup of Gi and Gj for all i, j ∈ I.

An enveloping group of an amalgam A is a group G together with a mapping

φ from A to G such that the restriction of φ to every Gi is a homomorphism

and φ(A) generates G. The universal enveloping group of A is isomorphic to the

group U(A) with generators {ts | s ∈ A} and relations txty = txy whenever

x, y ∈ Gi for some i; the corresponding mapping is given by x 7→ tx, see [118,

Chapter I, Section 1.1, Proposition 1]. Every enveloping group is isomorphic to

a quotient of the universal enveloping group U(A). For more details we refer

the reader to [117, 118]. Intransitive geometries may lead to fused amalgams

as defined and studied in [76]. Again, I also refer to the concept of complexes

of groups [27, Chapter III.C].

In some references an enveloping group of an amalgam is called a completion

of this amalgam.

2.5.2. The fundamental theorem of geometric covering theory

Many identification problems in group theory amount to finding the universal

enveloping groups of certain amalgams arising inside some abstract group, for

instance as stabilisers of some group action on some simplicial complex with

a fundamental domain. The result that connects such amalgams and their en-

veloping groups with combinatorial-topological properties of the set acted on is

a lemma proved in [102, 137], cf. Section 2.5.3 known as Tits’ lemma. It can
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be obtained as a corollary of the Fundamental Theorem of geometric covering

theory discussed in this section.

Suppose G is a geometry and G ≤ AutG is an incidence-transitive group of

automorphisms. Corresponding to G and G and some maximal flag F , there

is an amalgam A = A(G, G, F ), the amalgam of parabolics with respect to G,

G, F , defined as the family (GE)∅6=E⊆F , where GE denotes the stabiliser of

∅ 6= E ⊆ F in G.

In case G is flag-transitive, the amalgam A is independent up to conjugation

of the choice of F . If G is connected, then A generates G ([91, Lemma 1.4.2]),

so that G is an enveloping group of A. One of the main tools for geometric

proofs of group-theoretic identification theorems is the Fundamental Theorem

of geometric covering theory, see [92].

Fundamental Theorem of geometric covering theory ([92, Theorem 1.4.5]).

Let G = (X, ∗, typ) be a connected geometry over I of rank at least three, and let

G be a flag-transitive group of automorphisms of G. Moreover, let F be a maximal

flag and let A = A(G, G, F ) be the corresponding amalgam of parabolics. Then

the coset pregeometry Ĝ = ((U(A)/Gx)x∈F , ∗) is a simply connected geometry

that admits a covering π : Ĝ → G induced by the natural epimorphism U(A) → G.

Moreover, U(A) is of the form π1(G).G, i.e., U(A)/π1(G) ∼= G.

2.5.3. Tits’ Lemma

An immediate consequence of the Fundamental Theorem is Tits’ Lemma, cf. [92,

Corollary 1.4.6], [102, Lemma 5], [103, Theorem 12.28], [137, Corollary 1].

Tits’ Lemma ([92, Corollary 1.4.6]). Let G = (X, ∗, typ) be a connected ge-

ometry over I with a flag-transitive group G of automorphisms of G, let F be a

maximal flag G, and let A(G, G, F ) be the corresponding amalgam of parabolics.

Then the geometry G is simply connected if and only if the canonical epimorphism

U(A(G, G,W )) → G is an isomorphism.

This result reduces the problem of identifying the universal enveloping group

of a certain amalgam to proving that the corresponding geometry is simply con-

nected, i.e., proving that the fundamental group of its flag complex is trivial.

Geometric covering theory has been extended to certain classes of intransi-

tive geometries, leading to more general concepts of amalgams and different

versions of the Fundamental Theorem and Tits’ Lemma. I refer the reader to

[76, 78] for details. Again also the concept of complexes of groups [27, Chap-

ter III.C] should be mentioned.
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2.5.4. Shapes

For a maximal flag F a shape is a subset W of 2F such that 2F ∋ U ′ ⊃ U ∈ W
implies U ′ ∈ W, i.e., W is a subset of the power set of F that is closed under

passing to supersets. The amalgam of shape W with respect to G, G, F is the

family (GU )U∈W , where GU is the stabiliser of U ∈ W in G. It is denoted by

AW(G, G, F ). Shapes allow for a neat explanation why many presentations of

groups based on amalgams of parabolics are redundant.

Redundancy Theorem ([78, Theorem 3.3]). Let G = (X, ∗, typ) be a geometry

over some finite set I, let G be a flag-transitive group of automorphisms of G, and

let F be a maximal flag of G. Moreover, let W ⊆ 2F be a shape, assume that for

each flag U ∈ 2F \W the residue GU is simply connected, and let A(G, G, F ) and

AW(G, G, F ) be the amalgam of maximal parabolics, resp. the amalgam of shape

W of G with respect to G and F . Then G = U(AW(G, G, F )) and, if ∅ 6∈ W,

furthermore G = U(A(G, G, F )) = U(AW(G, G, F )).

3. Phan’s Theorems

3.1. Phan’s first theorem

The first of the group-theoretic identification theorems I discuss in this survey is

Phan’s first theorem. In 1977 Kok-Wee Phan [106] —the namesake of the theory

reported on in this survey— described a method of identification of a group G

as a quotient of the unitary group SUn+1(q
2) via a generating configuration

consisting of subgroups SU2(q
2) and SU3(q

2) and SU2(q
2) × SU2(q

2) in G.

3.1.1. Phan systems

It is helpful to begin by looking at this configuration of subgroups inside the

group SUn+1(q
2) in order to motivate the forthcoming definitions. For n ≥ 2 and

q a prime power, consider G = SUn+1(q
2) acting as a matrix group with respect

to an orthonormal basis on a unitary (n+1)-dimensional vector space over Fq2 ,

and let Ui
∼= SU2(q

2), i = 1, 2, . . . , n, be the subgroups of G corresponding to

the (2 × 2)-blocks along the main diagonal represented as matrix groups with

respect to the chosen orthonormal basis. Let Ti be the diagonal subgroup in Ui

with respect to this basis, which is a maximal torus of Ui of size q+ 1. For q ≥ 3

and 1 ≤ i, j ≤ n the subgroups Ui and Ti satisfy the following axioms:

(P1) if |i− j| > 1, then [x, y] = 1 for all x ∈ Ui and y ∈ Uj ,



I I G

◭◭ ◮◮

◭ ◮

page 13 / 53

go back

full screen

close

quit

ACADEMIA

PRESS

(P2) if |i − j| = 1, then 〈Ui, Uj〉 is isomorphic to SU3(q
2); moreover [x, y] = 1

for all x ∈ Ti and y ∈ Tj , and

(P3) G = 〈Ui | 1 ≤ i ≤ n〉.

3.1.2. Phan’s Theorem

If G is an arbitrary group containing a system of subgroups Ui
∼= SU2(q

2) with

a particular maximal torus Ti of size q + 1 chosen in each Ui such that the

conditions (P1), (P2), (P3) hold for G, then one says that G admits a Phan

system of type An over Fq2 . In [14] this configuration is called a generating

system of type I, the groups Ui are called fundamental subgroups. In that paper

the following theorem, Phan’s Theorem, is applied to obtain a characterisation

of Chevalley groups over finite fields of odd order; note the additions made in

[13] and [15].

Phan’s Theorem 1 (Phan [106]). Let q ≥ 5, let n ≥ 3, and let G be a group

admitting a Phan system of type An over Fq2 . Then G is isomorphic to a quotient

of SUn+1(q
2).

My favourite way of proving a result like Phan’s Theorem 1 is to translate

the statement into an amalgamation problem. This means that one first con-

structs an abstract amalgam from the Phan system and proves that up to central

extensions and isomorphisms any such amalgam is unique. Second one proves

that the group admitting the Phan system is a central quotient of the universal

enveloping group of the constructed unique amalgam. The first step has been

well understood by now, cf. [21, 54], also [100]. Therefore in this survey I will

only concern myself with the second step.

3.2. Aschbacher’s geometry and its simple connectedness

3.2.1. Weak Phan systems of type An

I will describe the proof of a slightly more general statement than Phan’s Theo-

rem 1. Following [21], a groupG admits a weak Phan system of typeAn over Fq2 ,

if G contains subgroups Ui
∼= SU2(q

2), i = 1, 2, . . . , n, and Ui,j , 1 ≤ i < j ≤ n,

so that the following hold:

(wP1) if |i− j| > 1, then [x, y] = 1 for all x ∈ Ui and y ∈ Uj ,

(wP2) if |i − j| = 1, the groups Ui and Uj are contained in Ui,j , which is

isomorphic to a central quotient of SU3(q
2); moreover, Ui and Uj form a

standard pair (see below) in Ui,j , and
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(wP3) G = 〈Ui,j | 1 ≤ i < j ≤ n〉.

Here a standard pair in the matrix group SU3(q
2) is a pair of subgroups isomor-

phic to SU2(q
2) conjugate as a pair to the two block-diagonal groups isomorphic

to SU2(q
2), i.e., these two groups centralise a pair of orthonormal vectors of the

natural module of SU3(q
2). Standard pairs in central quotients of SU3(q

2) are

defined as the images under the canonical homomorphism of standard pairs of

SU3(q
2).

3.2.2. Non-degenerate unitary space

Consider G ∼= SUn+1(q
2) as a matrix group with respect to an orthonormal

basis of its natural module and let A be the amalgam consisting of the block-

diagonal subgroups SU2(q
2) and SU3(q

2) and SU2(q
2) × SU2(q

2). One has to

prove that the universal enveloping group of the amalgam A coincides with G.

A natural way to show this is via Tits’ Lemma, cf. Section 2.5.3, once one knows

a geometry with G as a sufficiently transitive group of automorphisms such that

A is related to the amalgam of maximal parabolics induced by the action of G.

Such a geometry GAn
has been identified in [13, 16, 47] to be an (n+ 1)-di-

mensional non-degenerate unitary space V over Fq2 . The elements of GAn
are

the non-trivial proper non-degenerate subspaces U of V , the type of a space U

being its dimension, incidence being defined by symmetrised containment. Us-

ing standard terminology from incidence geometry, one-dimensional elements

of GAn
are called points, two-dimensional elements lines. Fixing an orthonormal

basis e1, . . . , en+1 of V , we consider the action of G as a matrix group on GAn

with respect to that basis. By Witt’s Theorem, see [115], this action is flag-

transitive, so that we can choose an arbitrary flag F in order to describe the

amalgam of parabolics.

This amalgam A(GAn
, G, F ) of parabolics, cf. Section 2.5.2, turns out to have

the same universal enveloping group as the amalgam A consisting of the block-

diagonal subgroups SU2(q
2) and SU3(q

2) and SU2(q
2) × SU2(q

2) of G by the

Redundancy Theorem from Section 2.5.4 and by [61, Lemma 29.3].

3.2.3. Decomposing cycles

The crucial observation for applying Tits’ Lemma (Section 2.5.3) and the Redun-

dancy Theorem (Section 2.5.4) is that GAn
is almost always simply connected

and has many simply connected residues. In [21] this simple connectedness is

shown by proving that every cycle of the flag complex of GAn
is null-homotopic,

while in [47] it is proved in odd characteristic by studying certain subgroup

complexes of SUn+1(q
2).
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In this survey I will sketch the proof given in [21]. Fixing the base element x

to be a point, a standard technique based on residual connectedness allows to

reduce every cycle of GAn
to a cycle in the point-line incidence graph, i.e., the

graph on the elements of dimension one and two with incidence as adjacency.

Furthermore, every cycle in the point-line incidence graph can be understood

as a cycle in the collinearity graph Γ of GAn
, i.e., the graph consisting of the

points of GAn
as vertices in which two vertices are adjacent if and only if they

lie on a common line of GAn
. A cycle in Γ that is contained entirely within the

residue of an element of GAn
is called geometric and, being contained in a cone,

is null-homotopic. Thus, simple connectedness of GAn
follows, if one can prove

that every cycle in Γ can be decomposed into a product of geometric cycles.

A key fact exploited in [21] is that up to a few exceptions Γ has diameter

two. This implies that every cycle in Γ is a product of cycles of length up to

five and, thus, it suffices to show that every cycle of length three, four, and five

is null-homotopic. When the dimension is large, one can always find a point

that is perpendicular to all points on a fixed cycle, producing a decomposition

of that cycle into geometric triangles. Hence proving simple connectedness is

more or less trivial for large dimension. The difficulty of the proof lies in the

case of small dimension, where [21] resorts to a case-by-case analysis.

To give the precise statement, let n ≥ 3 and let q be any prime power. Then

the geometry GAn
is simply connected, if (n, q) is not one of (3, 2) and (3, 3).

Since neither of these exceptions is simply connected, cf. Section 3.2.5, the

result in [21] is optimal.

3.2.4. Phan-type theorem of type An

Altogether the Phan-type theorem of type An follows:

Phan-type Theorem 1 (Bennett, Shpectorov [21]). Let q be a prime power, let

n ≥ 3, and let G be a group admitting a weak Phan system of type An over Fq2 .

(i) If q ≥ 4, then G is isomorphic to a central quotient of SUn+1(q
2).

(ii) If q = 2, 3 and n ≥ 4 and if, furthermore,

(a) for any triple i, j, k of nodes of the Dynkin diagram An that form a

subdiagram
i
◦

j
◦

k
◦

of type A3, the subgroup 〈Ui,j , Uj,k〉 is isomorphic to a central quotient

of SU4(q
2);

(b) in case q = 2
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• for any triple i, j, k of nodes of the Dynkin diagram An that form

a subdiagram
i
◦

j
◦

k
◦

of type A1 ⊕A2 the groups Ui and Uj,k commute elementwise; and

• for any quadruple i, j, k, l of nodes of the Dynkin diagram ∆ that

form a subdiagram

i
◦

j
◦

k
◦

l
◦

of type A2 ⊕A2 the groups Ui,j and Uk,l commute elementwise;

then G is isomorphic to a central quotient of SUn+1(q
2).

3.2.5. The group SU4(3
2)

The extra conditions in Phan-type Theorem 1 (ii) are due to the fact that for

small q and n the geometry GAn
is not simply connected. For example, [86]

describes a group H admitting a weak Phan system of type A3 over F32 that is

isomorphic to a non-split central extension of SU4(3
2) by a group K ∼= (Z/3Z)2,

i.e. the sequence 1 → K → H → SU4(3
2) → 1 is exact and non-split; in fact,

H is isomorphic to the Schur cover of SU4(3
2). From there it is deduced in [86]

that the geometry GA3
admits a 9-fold universal cover in case q = 3.

4. The Curtis-Tits Theorem

Phan’s theorems can be considered as a twisted version of the Curtis-Tits The-

orem. Therefore by explaining the general setup of Phan-type theorems one

naturally also describes a setup of the Curtis-Tits Theorem. In this section I will

give many different (sometimes inequivalent) ways how to state the Curtis-Tits

Theorem. Some versions deal with determining a Chevalley group (or even

a Kac-Moody group) as the universal enveloping group of a certain amalgam,

others with characterisations of these groups from purely local data. One ver-

sion is merely concerned with the simple connectedness of a suitable chamber

system. Each version has its advantages and disadvantages. While it may be

easier for the geometric group theorist to prove the simple connectedness of

some complex, a local group theorist may prefer to apply a version requiring

only knowledge about local data. The transition from the former point of view

to the latter requires a certain amount of rigidity of the complex on which the
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group of interest acts. This can be exploited to obtain a classification of amal-

gams as achieved in [21, 54] or, more ambitiously, to obtain a classification of

groups generated by a class of abstract root groups as sketched in Section 4.4.

4.1. The result

4.1.1. Chevalley groups and the Steinberg presentation

Chevalley groups can be defined by their Steinberg presentation, cf. [122, Theo-

rem 8], the approach I decided to take in this survey. For additional background

information and terminology see [25, 62, 121, 122].

Let Σ be an indecomposable root system of rank at least two and let F be a

field. Consider the group G generated by the collection of elements

{xr(t) | r ∈ Σ, t ∈ F}

subject to the following relations:

(i) xr(t) is additive in t.

(ii) If r and s are roots and r + s 6= 0, then

[xr(t), xs(u)] =
∏

h,k>0

xhr+ks(Chkrst
huk)

where the product is taken over all h, k > 0 such that hr+ks ∈ Σ (if there

are no such numbers, then [xr(t), xs(u)] = 1), and with certain structure

constants Chkrs ∈ {±1,±2,±3}.

(iii) hr(t) is multiplicative in t, where hr(t) equals wr(t)wr(−1) and wr(t)

equals xr(t)x−r(−t
−1)xr(t) for t ∈ F∗.

With the correct choice of the structure constants Chkrs (see for example [62,

Theorem 1.12.1], [122]) the group G is called the universal Steinberg-Chevalley

group constructed from Σ and F. For r ∈ Σ the group

Xr = {xr(t) | t ∈ F} = (F,+) ,

and any conjugate of Xr in G, is called a root (sub)group. By [122, Theorem 9],

if Σ is an indecomposable root system of rank at least two and F an algebraic

extension of a finite field, then the above relations (i) and (ii) suffice to define

the corresponding universal Chevalley group, i.e., they imply the relations (iii).
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4.1.2. Redundancy of the Steinberg presentation

The Curtis-Tits Theorem states that Steinberg’s presentation of Chevalley groups

in Section 4.1.1 is highly redundant and that the amalgam consisting of rank

one and rank two subgroups with respect to a system of fundamental roots of a

maximal torus of a Chevalley group suffices to present this Chevalley group, cf.

[45, 134], [135, Theorem 13.32].

The following version of the Curtis-Tits Theorem refers directly to the Stein-

berg presentation.

Curtis-Tits Theorem Version 1 (Curtis [45, Corollary 1.8]). Let Σ be an in-

decomposable root system of rank at least two, let Π be a fundamental system

of Σ, and let F be an arbitrary field with five distinct elements. Define G to be the

abstract group with generators {xr(t) | r ∈ Σ, t ∈ F} and defining relations

xr(t)xr(u) = xr(t+ u), r ∈ Σ, t, u ∈ F , (4.1)

and for independent roots r, s,

[xr(t), xs(u)] =
∏

h,k

xhr+ks(Chkrst
huk) , (4.2)

with h, k > 0, hr+ ks ∈ Σ (if there are no such numbers, then [xr(t), xs(u)] = 1),

and structure constants Chkrs ∈ {±1,±2,±3}.

Let A =
⋃
Aij , where Aij is the set of all roots which are linear combinations

of the fundamental roots ri, rj ∈ Π. Let G∗ be the abstract group with genera-

tors {xr(t) | r ∈ Σ, t ∈ F} and defining relations (4.1), for r ∈ A, and (4.2) for

independent roots r, s belonging to some Aij .

Then the natural epimorphism G∗ → G is an isomorphism.

A more compact formulation (albeit without a concrete presentation) can be

found in [62, 134], [135, Theorem 13.32]. Generalisations and variations on

the theme are contained in [33, 132].

Curtis-Tits Theorem Version 2 (Gorenstein, Lyons, Solomon [62], Tits [135]).

Let G be the universal version of a Chevalley group of (twisted) rank at least three

with root system Σ, fundamental system Π, and root groups Xα, α ∈ Σ. For each

J ⊆ Π let GJ be the subgroup of G generated by all root subgroups Xα, ±α ∈ J .

Let D be the set of all subsets of Π with at most two elements. Then G is the

universal enveloping group of the amalgam (GJ)J∈D.

To look at a concrete example, consider the case of the universal Steinberg-

Chevalley group of type An, which is G = SLn+1(F). With the usual choices of
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the root subgroups inG and of a basis of the natural module ofG, the subgroups

Gα,β generated by the fundamental rank one subgroups Gα := 〈Xα, X−α〉 and

Gβ := 〈Xβ , X−β〉 are the block-diagonal subgroups SL3(F) and SL2(F)×SL2(F).

4.1.3. The Curtis-Tits Theorem, Phan-style

The Curtis-Tits Theorem has been extended to a result including a classification

of amalgams by Phan [105] (for SLn+1(q)), by Humphreys [88] (for every fi-

nite Chevalley group with a simply laced diagram), and by Dunlap [54] (for

every Chevalley group). Phan constructs a BN-pair, cf. Section 4.2.4, from the

amalgam he is starting with and consequently recognises his target group as

a group with a BN-pair of type An. Humphreys [88] gives another proof of

the main result of [105] whose central idea is identical to Bennett and Shpec-

torov’s [21] proof of uniqueness of Phan amalgams. After obtaining uniqueness

Humphreys [88] simply invokes the Curtis-Tits Theorem. He mentions in pass-

ing that Curtis-Tits amalgams can be classified for the non-simply laced spherical

diagrams of rank at least three, if one can control the behaviour of the root sub-

groups of Sp4(q). Similarly, Shpectorov mentioned to me that a classification of

Phan amalgams can be accomplished as soon as one can control the behaviour

of the Phan amalgam in Sp6(q). Both observations have been worked out in

detail by now, see [54, 69].

I point out here that Timmesfeld has also obtained proofs of the Curtis-Tits

Theorem. One approach is also based on the construction of BN-pairs, see

[132], while an alternative approach (see [128, 131, 133]) is based on his

theory of abstract root subgroups [127, 129, 130]; see Section 4.4.

Curtis-Tits Theorem Version 3 (Phan [105], Humphreys [88], Timmesfeld

[132], Dunlap [54]). Let ∆ be a spherical Dynkin diagram of rank at least three,

let F be a field, and let G be a group generated by subgroups Gα and Gα,β , for

all α, β ∈ ∆, isomorphic to Chevalley groups over F as indicated by the induced

Dynkin diagram on the nodes α, β, with the property that in each Gα,β the sub-

groups Gα and Gβ correspond to the choice of a fundamental system of roots with

respect to a maximal torus of Gα,β . Then G is a central quotient of the universal

Chevalley group of type ∆ over F.

Note that a theorem like the Curtis-Tits Theorem Version 3 is much easier to

apply in local group theory than the Curtis-Tits Theorem Versions 1 and 2.
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4.2. Buildings and twin buildings

4.2.1. Towards a Curtis-Tits geometry

One purpose of this survey is to point out similarities between the Curtis-Tits

Theorem on one hand and Phan’s theorems on the other hand by describing

suitable geometries whose simple connectedness yields the respective group-

theoretic identification result via Tits’ Lemma [137] (Section 2.5.3). These ge-

ometries can be constructed using the opposition relation of a building or a twin

building, cf. [4, 98, 139]. I start with a description of the ideas of proof of the

Curtis-Tits Theorem given in [4, 98], whose generality actually implies that re-

sult for any two-spherical diagram (i.e., each sub-diagram of cardinality at most

two is spherical), except that one has to exclude some small cases covered by

the original Curtis-Tits Theorem. These exceptions arise from exactly those rank

two diagrams and fields for which the geometry opposite a chamber inside the

corresponding Moufang polygon is not connected, see [6, 28]. Before I am able

to properly explain this geometric approach to the Curtis-Tits Theorem, I need

to introduce the concepts of a building, a twin building, and of the opposite

geometry.

A Chevalley groupG acts on its natural geometry, called a building. Buildings

have been developed by Tits in numerous articles since the mid-1950’s. The

standard reference are Tits’ lecture notes [135]. Other references are [3, 29,

81, 111, 115, 146]. For Coxeter groups and root systems see [25, 48, 90].

4.2.2. Coxeter systems

For a Coxeter matrix M = (mij)i,j∈I over some finite set I, i.e., a symmetric

|I| × |I|-matrix over N ∪ {∞} whose diagonal entries equal to one and whose

off-diagonal entries are greater than or equal to two, the Coxeter diagram of M

is the complete labelled graph with vertex set I and labels mij on the edge

{i, j}. The cardinality |I| is called the rank of the Coxeter diagram. Usually the

edges with label 2 are erased, so that it is meaningful to talk about connected

or disconnected Coxeter diagrams.

Let (W,S) be the Coxeter system of type M , i.e., S = {si | i ∈ I} is a set and

W = 〈S | (sisj)
mij = 1〉 is the quotient of the free group generated by S and

subject to the relations given by the Coxeter matrix M . The Coxeter system

is spherical, if |W | < ∞, and irreducible, if the Coxeter diagram is connected.

Irreducible spherical Coxeter diagrams have been classified, cf. [44].

Using the Bourbaki notation, the irreducible spherical Coxeter systems of

rank at least three fall into the families An, Bn, Cn, Dn plus the exceptional

diagrams E6, E7, E8, F4, H3, H4. If ∆ is a Coxeter diagram of typeM , a Coxeter



I I G

◭◭ ◮◮

◭ ◮

page 21 / 53

go back

full screen

close

quit

ACADEMIA

PRESS

system (W,S) of type M is also called a Coxeter system of type ∆. For J ⊆ I,

the pair (WJ , SJ) consisting of SJ = {si ∈ S | i ∈ J} and WJ = 〈SJ〉 is also

a Coxeter system satisfying WJ = 〈SJ | (sisj)
mij = 1〉 by [25, Section IV.1.8,

Theorem 2]. The group W of a Coxter system (W,S) is called a Coxeter group.

It is in general not possible to reconstruct the Coxeter system from the abstract

group W , see [18, 37, 40].

4.2.3. Buildings

A building of type (W,S) (where (W,S) is a Coxeter system) is a pair B = (C, δ)
where C is a set and the distance function δ : C × C → W satisfies the following

axioms for x, y ∈ C and w = δ(x, y).

(B1) w = 1 if and only if x = y,

(B2) if z ∈ C is such that δ(y, z) = s ∈ S, then δ(x, z) = w or ws; furthermore

if l(ws) = l(w) + 1, then δ(x, z) = ws, and

(B3) if s ∈ S, there exists z ∈ C such that δ(y, z) = s and δ(x, z) = ws.

The group W is called the Weyl group of the building B. The building B is called

spherical, if its Weyl group W is finite. Given a building B = (C, δ) one can

define a chamber system on C in which two chambers c and d are i-adjacent,

in symbols c ∼i d, if and only if δ(c, d) = si or δ(c, d) = 1. The chamber

system (C, (∼i)i∈I) uniquely determines B, i.e., the i-adjacency relations on C
determine the distance function δ; cf. [136].

In this survey we only consider buildings B for which the chamber system

C is thick. All thick spherical buildings with a connected Coxeter diagram ∆

of rank at least three (|∆| is also called the rank of the building) are known,

e.g., by a local to global approach using the classification of Moufang buildings

of rank two, see [141, Chapter 40], also [146]. This local to global approach

is possible, because all thick spherical buildings of rank at least three with a

connected Coxeter diagram are Moufang (see [135, Addendum]), whence their

rank two residues are Moufang. Buildings of rank two are called generalised

polygons, and are studied —Moufang or not— in [87, 104, 108, 143].

If B is a building, its chamber system contains a class of thin sub-chamber

systems called apartments, each of which forms a building of the same type as B.

In an apartment Σ, for any c ∈ Σ and w ∈ W , there is a unique chamber d ∈ Σ

such that δ(c, d) = w. Every pair of chambers of C is contained in an apartment,

cf. [146, Corollary 8.6]. The chamber system C defined by a building is always

geometric; indeed buildings have the property, cf. Section 2.3.2, that for any

set {(xi, i) | i ∈ I}, with xi an I\{i}-residue of C, such that xi ∩ xj 6= ∅ for all
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i, j ∈ I, the intersection
⋂

i∈I xi is non-empty, and that for distinct chambers

c, d of C there is some I\{i}-residue of C containing c but not d, see [136,

Section 1.6]. The geometry G(B) = G(C) is called the building geometry.

In the language of algebraic groups the following examples for buildings can

be given, see [135, Theorem 5.2], also [22, Section 6.8] and [58, Section 2].

Starting with a reductive algebraic group G defined over a field F, the Tits

building G(G,F) of G over F consists of the simplicial complex whose simplices

are indexed by the parabolic F-subgroups of G ordered by the reversed inclu-

sion relation on the parabolic subgroups. The Steinberg functor and Chevalley-

Demazure group schemes, see [41, 50, 138], allow to construct a vast amount

of groups yielding a rich supply of buildings.

A key property of buildings is the gate property, see [97, 111], and [146]: For

a chamber c ∈ C and a J -residue

RJ(d) := {z ∈ C | δ(d, z) ∈WJ} ⊂ C (cf. Section 2.3.1)

there exists a unique chamber x ∈ RJ(d) such that for all y ∈ RJ(d) one has

δ(c, y) = δ(c, x)δ(x, y) and, in particular, l(c, y) = l(c, x) + l(x, y), where l de-

notes the length function of W with respect to the generating system S. This

chamber x is called the projection of c onto RJ(d) and is denoted by projRJ (d) c.

Any building B (and hence its geometry G(B)) of rank at least three is simply

connected. In fact, more is known about the homotopy type of a building.

Solomon-Tits Theorem (Solomon, Tits [119]). A spherical Tits building of rank n

is homotopy equivalent to a wedge of spheres of dimension n− 1. A spherical Tits

building of rank n over a field of q elements is homotopy equivalent to a wedge of

qm spheres of dimension n− 1, where m is the number of positive roots.

The Solomon-Tits Theorem has numerous applications in representation the-

ory. I refer the interested reader to [89] for an excellent survey and guide to the

literature.

4.2.4. Tits systems

Let G be a group and B, N be subgroups of G. The tuple (G,B,N, S) is called

a Tits system, if the following conditions are satisfied:

(i) G is generated by B and N ;

(ii) H = B ∩N is normal in N ;

(iii) W = N/H admits a finite system S = {wi | i ∈ I} of generators making

(W,S) a Coxeter system;
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(iv) For any wi ∈ S we have wiBw
−1
i 6= B;

(v) For any wi ∈ S and all w ∈W we have wiBw ⊆ (BwB) ∪ (BwiwB).

The pair of subgroups B, N of G is also called a BN-pair of G, see [25, 135].

A group G admitting a BN-pair satisfies

G =
⊔

w∈W

BwB.

For each i ∈ I the set Pi := B ∪ BwiB is a subgroup of G. A Tits system

(G,B,N, S) leads to a building whose set of chambers equals G/B and whose

distance function

δ : G/B ×G/B →W

is given by δ(gB, hB) = w if and only if Bg−1hB = BwB. In the corresponding

chamber system gB and hB are i-adjacent if and only if Bg−1hB ⊆ B ∪BwiB.

4.2.5. Twin buildings

The simple connectedness of a building does not imply the Curtis-Tits Theorem,

since the action of a Chevalley group on its building does not yield the cor-

rect amalgam. A class of geometries that yields the correct amalgams is best

described using twin buildings. Twin buildings are obtained by relating two

Tits buildings via a co-distance function, see [2, 3, 101, 113, 114, 140]. Given

two buildings B+ = (C+, δ+) and B− = (C−, δ−) of the same type (W,S), a

co-distance, also called twinning, is a map

δ∗ : (C+ × C−) ∪ (C− × C+) →W

such that the following axioms hold where ǫ = ±, x ∈ Cǫ, y ∈ C−ǫ, w = δ∗(x, y):

(T1) δ∗(y, x) = w−1,

(T2) if z ∈ C−ǫ with δ−ǫ(y, z) = s ∈ S and l(ws) = l(w)−1, then δ∗(x, z) = ws,

and

(T3) if s ∈ S, there exists z ∈ C−ǫ such that δ−ǫ(y, z) = s ∈ S and δ∗(x, z) = ws.

A twin building of type (W,S) is a triple (B+,B−, δ∗), where B+ and B− are

buildings of type (W,S) and δ∗ is a twinning between B+ and B−.

Every spherical twin building can be obtained in a unique way from some

building B = (C, δ) of the same type (W,S), cf. [140, Proposition 1]. Let B+ =

(C+, δ+) be a copy of B, let B− = (C−, δ−) be (C, w0δw0), and let δ∗ be w0δ
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on C+ × C− and δw0 on C− × C+, where w0 is the longest element of the Weyl

group W .

If R is an arbitrary spherical residue of type J in a twin building, then by

[112, 4.1] there is a unique chamber z ∈ R with (δ∗(c, z))WJ
= δ∗(c, z) in

analogy to the gate property of a building. Moreover, by [112, 4.3], for all y ∈ R

we have δ∗(c, y) = δ∗(c, z)δ−(z, y) and in particular l∗(c, y) = l∗(c, z)−l(z, y). As

for buildings, this chamber z is called the projection of c onto R and is denoted

by projR c. Furthermore, if J is a spherical subset of S, then any two J -residues

of Bǫ are isomorphic for each ǫ ∈ {+,−}. Additionally, there exists a twin

version of the main result in [53], as observed in [52], stating that, if R, Q

are spherical residues of a twin building, then projRQ := {projR x | x ∈ Q}
is a spherical residue contained in R. Moreover, for R′ := projRQ and Q′ :=

projQR, the maps projQ
′

R′ := projR′ |Q′ from Q′ to R′ and projR
′

Q′ := projQ′

|R′

from R′ to Q′ are adjacency-preserving bijections inverse to each other.

4.3. The opposite geometry and its simple connectedness

4.3.1. Opposition

The concept of the opposite geometry can be traced to Tits [139]. The oppo-

sition relation is an important concept in the theory of buildings and plays a

crucial role in [2, 5, 6, 7, 8, 9, 98, 99]. Given a twin building T = (B+,B−, δ∗),

one can define the chamber system Opp(T ) on the set

{(c+, c−) ∈ C+ × C− | δ∗(c+, c−) = 1}

in which (c+, c−) ∼i (d+, d−) if and only if c+ ∼i d+ and c− ∼i d−. Chambers

x ∈ C+ and y ∈ C− with δ∗(x, y) = 1 are called opposite, hence the notation.

Denote the corresponding pregeometry by Gop. For G+ and G− the building

geometries that correspond to B+ and B−, elements x+ ∈ G+ and x− ∈ G−

of the same type i ∈ I are called opposite, if they are contained in opposite

chambers. The elements of the pregeometry Gop of type i are the pairs (x+, x−)

of opposite elements of type i. Two pairs (x+, x−) and (x′+, x
′
−) are incident in

Gop, if x+ and x′+ are incident in G+ and x− and x′− are incident in G−. Clearly,

a pair (c+, c−) ∈ Opp(T ) produces a maximal flag in Gop, and it can be shown

that every maximal flag is obtained in this way. Hence the pregeometry Gop is a

geometry, called the opposite geometry. Moreover, the chamber system Opp(T )

is geometric which follows by a building-theoretic argument proving that the

map c 7→ ψC(c) in Section 2.3 is an isomorphism.
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4.3.2. Examples of classical opposite geometries

The following examples are descriptions of the opposite geometries for the four

classical series of spherical buildings.

Example 1a. Let F be an arbitrary field and consider the universal Steinberg-

Chevalley group G ∼= SLn+1(F) of type An over F. It corresponds to the build-

ing geometry G of type An, better known as the projective geometry, whose

elements of type i, 1 ≤ i ≤ n, are the i-dimensional subspaces in an (n+ 1)-di-

mensional F-vector space V . The geometries G+ and G− are isomorphic to the

projective geometry G and its dual, respectively. The latter is identical to G
except that the types are interchanged by the map i 7→ n + 1 − i. Elements

x+ ∈ G+ and x− ∈ G− of type i are opposite if they intersect trivially or, equiva-

lently, form a direct sum decomposition V = x+ ⊕x−, cf. [2, II, §4, Lemma 23].

These decompositions are the elements of Gop, where x+ ⊕ x− is incident to

x′+ ⊕ x′− if and only if xǫ is incident to x′ǫ for ǫ ∈ {+,−}.

Example 2a. Let G ∼= Spin2n+1(F) be the universal Steinberg-Chevalley group

corresponding to the building geometry G of type Bn. The geometry G is the

geometry of all totally isotropic subspaces of a non-degenerate (2n+ 1)-dimen-

sional orthogonal space V over F. In this case, both G+ and G− are isomorphic

to G and two i-dimensional totally isotropic subspaces x+ and x− are opposite

if x− intersects the orthogonal complement of x+ trivially, i.e., x⊥+ ∩ x− = {0}
or, equivalently, x⊥+ ⊕ x− = V , [2, II, §6, Lemma 29]. Such pairs (x+, x−) are

the elements of Gop, where (x+, x−) is incident to (x′+, x
′
−) if and only if xǫ is

incident to x′ǫ for ǫ ∈ {+,−}.

Example 3a. Consider the universal Steinberg-Chevalley group G ∼= Sp2n(F)

of type Cn. In this case the corresponding building geometry G is the geometry

of all totally isotropic subspaces of a non-degenerate 2n-dimensional symplectic

space V over F. Both G+ and G− are isomorphic to G. Two i-dimensional totally

isotropic subspaces x+ and x− again are opposite if x− intersects the orthogonal

complement of x+ trivially, i.e., x⊥+∩x− = {0} or, equivalently, x⊥+⊕x− = V , [2,

II, §6, Lemma 29]. The pairs (x+, x−) are the elements of Gop, where (x+, x−)

is incident to (x′+, x
′
−) if and only if xǫ is incident to x′ǫ for ǫ ∈ {+,−}.

Example 4a. Let G ∼= Spin+
2n(F) be the universal Steinberg-Chevalley group of

type Dn, to which corresponds the building geometry G of totally isotropic sub-

spaces of a non-degenerate 2n-dimensional orthogonal space V over F of Witt

index n. In this case, both G+ and G− are isomorphic to G up to interchanging

the elements of types n− 1 and n in case n odd. Two totally isotropic subspaces

x+ and x− of type i are opposite, if x− intersects the orthogonal complement

of x+ trivially, i.e., x⊥+ ∩ x− = {0} or, equivalently, x⊥+ ⊕ x− = V , [2, II, §7,
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Lemma 31]. Such pairs (x+, x−) are the elements of Gop, where (x+, x−) is

incident to (x′+, x
′
−) if and only if xǫ is incident to x′ǫ for ǫ ∈ {+,−}.

4.3.3. The Curtis-Tits Theorem via geometric group theory

If a twin building admits a strongly transitive group of automorphisms, i.e.,

a group acting transitively on the pairs of opposite chambers, the group acts

flag-transitively on Gop. In case the acting group is semisimple split algebraic or

Kac-Moody, the stabilisers of the elements of a maximal flag of Gop are products

of the type GΠ\{α}Z(T ), where T is a maximal torus and Π is a system of fun-

damental roots with respect to T . This setup together with Tits’ Lemma (Sec-

tion 2.5.3) and the Redundancy Theorem [78, Theorem 3.3] (Section 2.5.4)

implies that the Curtis-Tits Theorem stated as in [62] (Section 4.1.2) follows

from the following simple-connectedness result.

Curtis-Tits Theorem Version 4 (Abramenko, Mühlherr [4], Mühlherr [98]).

Let T be a thick twin building with two-spherical diagram of rank at least three

such that there is no rank two residue in B+ or B− which is isomorphic to the

buildings associated to B2(2), G2(2), G2(3) or 2F4(2). Then Opp(T ) is simply

connected.

The proof of this theorem in [98] is derived directly from the axioms of

twin buildings, properties of apartments in buildings, and certain connected-

ness properties of buildings like their simple connectedness. The exceptions in

this approach come from the fact that the geometry opposite to a chamber in an

arbitrary Moufang polygon is connected except in the cases B2(2), G2(2), G2(3)

or 2F4(2), cf. [6, 28]. Note in passing that in [2, II, §2, Proposition 9] it is shown

that there is no hope for general connectedness results in the non-Moufang case.

Of course, the Curtis-Tits Theorem for Steinberg-Chevalley groups does not have

any exceptions by [45, 62, 131, 134, 135].

In [4] the logic of proof is turned around. The authors prove the combinato-

rial Curtis-Tits Theorem Version 4 by directly proving the following generalisa-

tion of [135, Theorem 13.32]. The key is to construct an RGD system for G, cf.

[140], also [109, 1.5], [3, Chapter 8].

Curtis-Tits Theorem Version 5 (Abramenko, Mühlherr [4], Mühlherr [98]).

Let T be a thick twin building with two-spherical diagram ∆ of rank at least three

such that there is no rank two residue in B+ or B− which is isomorphic to the

buildings associated to B2(2), G2(2), G2(3) or 2F4(2), let G be a group acting

transitively on the pairs of opposite chambers of T , and let (c+, c−) be a pair of

opposite chambers in T . For each J ⊆ ∆ let GJ be the subgroup of G stabilising

the J -residue of c+ and the J -residue of c−. Let D be the set of all subsets of ∆ with
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at most two elements. Then G is the universal enveloping group of the amalgam

(GJ)J∈D.

A variation on this theme can also be found in [33]. The classification of

amalgams in [54] allows to formulate this Curtis-Tits Theorem in Phan-style, cf.

[88, 105], also Section 4.1.3.

4.4. Abstract root subgroups

A completely different and independent approach to the Curtis-Tits Theorem is

based on the classification of groups generated by a class of abstract root sub-

groups [127, 129, 130]. This wonderful classification result makes it possible to

prove all sorts of generalisations of Steinberg-presentation-type results and the

Curtis-Tits Theorem, see [128, 131, 133]. The case of simply laced diagrams is

stated more easily than the general case, cf. [128]. Hence I restrict myself to

presenting that case here. The article [131] deals with every spherical diagram.

Curtis-Tits Theorem Version 6 (Timmesfeld [128]). Let ∆ be a spherical simply

laced diagram of rank at least three and let G be a group generated by subgroups

Xi, i ∈ ∆, satisfying

(i) Xi is a perfect central extension of PSL2(F), F a division ring,

(ii) in each Xi there exists a non-trivial diagonal subgroup Hi normalising all

Xj , j ∈ ∆,

(iii) for i 6= j one of the following holds:

(a) [Xi, Xj ] = 1;

(b) forXij := 〈Xi, Xj〉, the quotientXij/Z(Xij) is isomorphic to PSL3(F),

where Z(Xij) ⊆ X ′
ij; moreover, the unipotent subgroups of Xi, Xj are

mapped onto elation subgroups, corresponding to point-line pairs, of

Xij/Z(Xij).

Suppose further that, if |F| = 4, then |Z(Xij)| < 12 for some connected pair i, j of

nodes of ∆.

ThenG is a perfect central extension of PSLn+1(F) (F a division ring), PSΩ2n(F),

or the adjoint Steinberg-Chevalley group En(F) (F a commutative field) and there

exists a homomorphism mapping the Xi onto the fundamental subgroups. Fur-

thermore, if each Xi is a factor group of SL2(F), F a commutative field, then G is

a factor group of the universal Steinberg-Chevalley group of type An, Dn, or En

over F.
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I would like to point out that the paper [132] contains another proof of the

Curtis-Tits Theorem, one that is independent of the classification of groups gen-

erated by a class of abstract root subgroups. Instead it relies on a construction

of BN-pairs and can be considered as a direct generalisation of [105]. For a

generalisation to Kac-Moody groups see [33].

5. Phan-type theorems for finite Chevalley groups

5.1. From Aschbacher’s geometry to the general construction

In this section we discuss how Aschbacher’s geometry [13] and its simple con-

nectedness initiated Phan theory.

5.1.1. Non-degenerate unitary space, revisited

Example 1b. Consider the situation of Example 1a from Section 4.3.2, but

change the field of definition to Fq2 , so that G ∼= SLn+1(q
2). Consider a unitary

polarity τ , that is, an involutory isomorphism from G onto the dual of G which

is defined by a non-degenerate hermitian form Φ on V . The map τ sends every

subspace of V to its orthogonal complement with respect to Φ and produces

an involutory automorphism of the twin building T that switches C+ and C−
and, thus, G+ and G−. It is an automorphism in the sense that it transforms

δ+ into δ− (and vice versa), and preserves δ∗. Corresponding to τ , there is an

automorphism of G, which is also denoted by τ . The group

Gτ = CG(τ) ∼= SUn+1(q
2)

acts on

Gτ = {(x+, x−) ∈ Gop | xτ
+ = x−} .

The elements of Gτ are of the form (x+, x−) where x− = xτ
+ = x⊥+ and V =

x+ ⊕ x− = x+ ⊕ x⊥+, cf. Example 1a in Section 4.3.2. Thus, the mapping

(x+, x−) 7→ x+ establishes an isomorphism between Gτ and the geometry GAn
of

all proper non-degenerate subspaces of the unitary space (V,Φ). This geometry

GAn
is exactly Aschbacher’s geometry from Section 3.2.2.

5.1.2. Flips and Phan involutions

Section 5.1.1 suggests the following general construction introduced in [19].

Let T = (B+,B−, δ∗) be a twin building as defined in Section 4.2.5. Then an

involutory automorphism τ of T satisfying
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(F1) Cτ
+ = C−,

(F2) τ flips the distances, i.e., δǫ(x, y) = δ−ǫ(x
τ , yτ ) for ǫ = ±, and

(F3) τ preserves the co-distance, i.e., δ∗(x, y) = δ∗(x
τ , yτ )

is called a flip. Notice that by (T1) of Section 4.2.5 the element δ∗(x, x
τ ) is

always an involution.

A flip satisfying the additional condition

(F4) there exists a chamber c ∈ C± with δ∗(c, c
τ ) = 1

is called a Phan involution.

In case τ is a Phan involution the chamber system Cτ whose chambers are pairs

(c, cτ ) that belong to Opp(T ), i.e.,

Cτ =
{
(c+, c−) ∈ Opp(T ) | {c+, c−} = {cτ+, c

τ
−}

}
,

is called the flipflop system of τ . By (F4) the chamber system Cτ is non-empty. By

[73, 85] very many Cτ are geometric, in particular all flipflop systems encoun-

tered in this survey. However, it is not known to me whether Cτ is geometric

in general. For a geometric flipflop system Cτ denote by Gτ the corresponding

geometry, the flipflop geometry.

Following [52] one can alternatively define a Phan involution to be a flip of

a twin building satisfying

(F4)’ projP τ 6= P for each panel P of T

where projR τ := {x ∈ R | projR τ(x) = x} for a spherical residue R of T
(Section 4.2.5). It is easily seen that a flip satisfying (F4)’ also satisfies (F4).

When talking about Phan involutions, we will generally only assume the validity

of axioms (F1), (F2), (F3), (F4), unless explicitly stated otherwise.

5.1.3. Flips of spherical twin buildings

For a spherical twin building one can compute the action of τ on the Dynkin

diagram of the building, see [66, Section 3.3]. Indeed, by Tits’ characterisation

each spherical twin building arises from a spherical building B = (C, δ) (cf.

[140, Proposition 1] and also Section 4.2.5 of this survey) and we have

δ(c, d) = δ+(c, d) = δ−(cτ , dτ ) = w0δ(c
τ , dτ )w0
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for c, d ∈ C. Therefore, the flip τ acts on the Dynkin diagram via conjuga-

tion with the longest word w0 of the Weyl group. Hence, if T = (B+,B−, δ∗)

is a spherical twin building, then any adjacency-preserving involution τ that

interchanges B+ and B− and maps some chamber onto an opposite chamber

is a flip if and only if the induced map τ̂ on the building B = (C, δ) satisfies

δ(c, d) = w0δ(c
bτ , dbτ )w0 for all chambers c, d ∈ C where w0 is the longest word

in the Weyl group W .

5.1.4. Flips and polarities

For a flip τ of a spherical twin building of type An considered as the building

geometry, i.e., the projective geometry, the induced map τ̂ (see Section 5.1.3)

is an incidence-preserving involution that maps points onto hyperplanes such

that for points p, q one has an incidence between p and qbτ if and only if q

and pbτ are incident. Hence τ̂ is a polarity of the projective geometry, cf. [32].

This means, by [32, 135, 144, 145], that τ̂ is induced by a pseudo-quadratic

or an alternating form, if n ≥ 4, see also [42]. Therefore a flip is a natural

generalisation of a polarity, and we are on our way towards a generalisation of

Aschbacher’s geometry for arbitrary twin buildings.

I mention in passing that flipflop geometries coming from flips inducing non-

degenerate symmetric bilinear forms have been studied in [10, 12, 78, 110].

Although a flip inducing a non-degenerate alternating form cannot be a Phan

involution, one can still study the geometry of chambers having minimal co-

distance from their image under that flip. This yields the geometry on hyper-

bolic lines of a symplectic polar space, which has been studied in contexts dif-

ferent from Phan theory in [46, 68, 82, 83]. In [23] this geometry has finally

been investigated from the point of view of Phan theory, yielding interesting

presentations of symplectic groups.

5.2. Phan’s second theorem and the classical Phan-type the-

orem

5.2.1. Weak Phan systems of arbitrary spherical type

Let ∆ be an irreducible spherical Coxeter diagram of rank at least three. A group

G admits a weak Phan system of type ∆ over Fq2 , if G contains subgroups Uα
∼=

SL2(q
2) ∼= SU2(q

2), α ∈ ∆, and Uα,β , α, β ∈ ∆, so that the following hold:

(wP1) if
α
◦

β
◦ , then [x, y] = 1 for all x ∈ Uα and y ∈ Uβ ,



I I G

◭◭ ◮◮

◭ ◮

page 31 / 53

go back

full screen

close

quit

ACADEMIA

PRESS

(wP2) Uα,β
∼=






(P)SU3(q
2) , in case

α
◦

β
◦ ,

(P)Sp4(q) , in case
α
◦

β
◦ ;

moreover, Uα and Uβ form a standard pair (see below) in Uα,β , and

(wP3) G = 〈Uα,β | α, β ∈ ∆〉.

For Uα,β ∈ {SU3(q
2),Sp4(q)} defineGα,β := SL3(q

2),Sp4(q
2) accordingly. A stan-

dard pair in Uα,β is a pair of subgroups isomorphic to SU2(q
2) ∼= SL2(q) conju-

gate as a pair to the intersections Gα ∩ Uα,β and Gβ ∩ Uα,β , where Gα, Gβ

form a pair of fundamental rank one subgroups of Gα,β (Section 4.1.2). Stan-

dard pairs in central quotients are defined as the images under the canonical

homomorphism of standard pairs of the simply connected group. A concrete

description of standard pairs of SU3(q
2) can be found in Section 3.2.1. For a

concrete description of standard pairs of Sp4(q) see [72, 74].

5.2.2. Phan-type theorem of type Bn

The analogue of Aschbacher’s geometry can be constructed from Example 2a

(Section 4.3.2) as Example 1b (Section 5.1.1) has been deduced from Exam-

ple 1a (Section 4.3.2).

Example 2b. Consider the situation of Example 2a, but with F = Fq2 , let

G ∼= Ω2n+1(q
2), i.e. the commutator subgroup of GO2n+1(q

2), and denote the

form on V by (·, ·). Since the case of even q will be covered in Section 5.2.4

via the isomorphism Spin2n+1(2
e) ∼= Sp2n(2e), it suffices to study the case of

q odd. Let {e1, . . . , en, f1, . . . , fn, x} be a hyperbolic basis of the orthogonal

space V , so that (ei, fj) = δij , while x with (x, x) = 1 is orthogonal to each

basis vector except itself. Consider the semilinear transformation τ of V which

is the composition of the linear transformation given by the Gram matrix of (·, ·)
with respect to the above basis and the involutory field automorphism applied

to the coordinates.

It can be shown, cf. [20], that τ produces a Phan involution of T . Fur-

thermore, Cτ is geometric and Gτ
∼= SO2n(q) (cf. [20, Proposition 2.10]) acts

flag-transitively on the corresponding flipflop geometry Gτ . The geometry Gτ

can be described as follows. For u, v ∈ V let ((u, v)) = (u, vτ ). Then ((·, ·)) is

a non-degenerate hermitian form. The flipflop geometry Gτ can be identified

via (x+, x−) 7→ x+ with the geometry GBn
of all subspaces of V which are to-

tally isotropic with respect to (·, ·) and, at the same time, non-degenerate with

respect to ((·, ·)).
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In [20, 75] the simple connectedness of GBn
is proved, leading to the follow-

ing result.

Phan-type Theorem 2 (Bennett, Gramlich, Hoffman, Shpectorov [20], Gram-

lich, Horn, Nickel [75]). Let q be an odd prime power, let n ≥ 3, and let G be a

group admitting a weak Phan system of type Bn over Fq2 .

(i) If q ≥ 5, then G is isomorphic to a quotient of Spin(2n+ 1, q).

(ii) For n ≥ 4, let G be a group admitting a weak Phan system of type Bn

over F9. In addition, assume that 〈Ui−1, Ui, Ui+1〉 is isomorphic to a central

quotient of SU(4, 9) (if 2 ≤ i ≤ n − 2) or Spin(7, 3) (if i = n − 1). Then G

is isomorphic to Spin(2n+ 1, 3) or a central quotient thereof.

5.2.3. The group Ω(7, 3)

In [75] a group H admitting a weak Phan system of type B3 over F32 is con-

structed which is a 2187-fold extension of Ω7(3). To be precise, see [75], the

group H is isomorphic to a non-split extension of Ω(7, 3) by K := (Z/3Z)7, i.e.

the sequence 1 → K → H → Ω(7, 3) → 1 is exact and non-split. This extension

of Ω7(3) has been studied in [55, 94, 95]. Altogether we can conclude that

for q = 3 the geometry GB3
admits a 2187-fold covering, whence is not simply

connected. It is shown in [75] that this covering is universal.

5.2.4. Phan-type theorem of type Cn

The geometry needed to prove the Phan-type theorem of type Cn looks very

much like the one of type Bn.

Example 3b. Consider the situation of Example 3a, but with the field of def-

inition of order q2, so that G ∼= Sp2n(q2). Let {e1, . . . , en, f1, . . . , fn} be a hy-

perbolic basis of the symplectic space V , i.e., (ei, fj) = δij , where (·, ·) is the

alternating form on V , and consider the semilinear transformation τ of V which

is the composition of the linear transformation given by the Gram matrix of (·, ·)
with respect to the above basis and the involutory field automorphism applied

to the coordinates.

It can be shown, cf. [72], that τ produces a Phan involution of T . Further-

more, Cτ is geometric andGτ
∼= Sp2n(q) acts flag-transitively on the correspond-

ing flipflop geometry Gτ . By [72] the geometry Gτ has the following alternative

description. For u, v ∈ V let ((u, v)) = (u, vτ ), so that ((·, ·)) is a non-degenerate

hermitian form. The flipflop geometry Gτ can be identified via (x+, x−) 7→ x+
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with the geometry GCn
of all subspaces of V which are totally isotropic with

respect to (·, ·) and, at the same time, non-degenerate with respect to ((·, ·)).

By [72] (with the missing cases dealt with in [74, 84]) the geometry Gτ is

almost always simply connected, resulting in the following Phan-type theorem.

Phan-type Theorem 3 (Gramlich, Hoffman, Shpectorov [72], Gramlich, Horn,

Nickel [74], Horn [84]). Let q be a prime power, let n ≥ 3, and let G be a group

admitting a weak Phan system of type Cn over Fq2 .

(i) If q ≥ 3, then G is isomorphic to a central quotient of Sp2n(q).

(ii) If q = 2 and n ≥ 4 and if

(a) for any triple i, j, k of nodes of the Dynkin diagram Cn that form a

subdiagram
i
◦

j
◦

k
◦

of type A3, the subgroup 〈Ui,j , Uj,k〉 is isomorphic to a central quotient

of SU4(2
2);

(b) for any triple i, j, k of nodes of the Dynkin diagram Cn that form a

subdiagram
i
◦

j
◦ <

k
◦

of type C3, the subgroup 〈Ui,j , Uj,k〉 is isomorphic to a central quotient

of Sp6(2);

(c) • for any triple i, j, k of nodes of the Dynkin diagram Cn that form

a subdiagram
i
◦

j
◦

k
◦

of type A1⊕A2, the groups Ui and Uj,k commute elementwise; and

• for any quadruple of nodes of the Dynkin diagram Cn that form a

subdiagram
i
◦

j
◦

k
◦

l
◦

of type A2 ⊕ A2, the groups Ui,j and Uk,l commute elementwise;

and

• for any triple i, j, k of nodes of the Dynkin diagram Cn that form

a subdiagram
i
◦

j
◦ <

k
◦

of type A1⊕C2, the groups Ui and Uj,k commute elementwise; and
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• for any quadruple of nodes of the Dynkin diagram Cn that form a

subdiagram
i
◦

j
◦

k
◦ <

l
◦

of type A2 ⊕ C2, the groups Ui,j and Uk,l commute elementwise;

then G is isomorphic to a central quotient of Sp2n(2).

Unlike the cases A3 and B3, the geometry GC3
is simply connected even for

q = 3, cf. [74, 84].

5.2.5. Phan’s second theorem and Phan-type theorem of type Dn

The last series Dn of finite classical groups, the even-dimensional orthogonal

groups, again belongs to a simply laced diagram, which has already been treated

in [107]. The arguments in [107] are based on the construction of a presenta-

tion that identifies the target group as an orthogonal group via [148]. Here is

the main result of [107] concerning Dn.

Phan’s Theorem 2 ([107]). Let q ≥ 5 be odd and let n ≥ 4. If G admits a Phan

system of type Dn over Fq2 , then G is isomorphic to a factor group of Spin+
2n(q2),

if n is even, and isomorphic to a factor group of Spin−2n(q2), if n is odd.

This result has been revised in [71] using the following geometry.

Example 4b. Consider the situation as in Example 4a, but over the field Fq2 ,

and let G = Ω+
2n(q2). For sake of simplicity of the exposition we assume here

that q is odd, although in [71] also the case of even characteristic is dealt with.

The Phan involution τ can again be defined as the composition of the linear

transformation given by the Gram matrix of the bilinear form (·, ·) with respect

to a hyperbolic basis and coordinate-wise application of the involutory field

automorphism. This τ produces a flipflop geometry on which Gτ
∼= Ω±

2n(q) acts

flag-transitively, cf. [71, Proposition 3.10]. The geometry Gτ can be described

as follows. For u, v ∈ V let ((u, v)) = (u, vτ ), where (·, ·) is the orthogonal form

on V , so that ((·, ·)) is a non-degenerate hermitian form. The flipflop geometry

Gτ can be identified via (x+, x−) 7→ x+ with the geometry GDn
of all subspaces

of V which are totally isotropic with respect to (·, ·) and, at the same time, non-

degenerate with respect to ((·, ·)). See [71] for more details and a description

of the geometry for even q.

Phan-type Theorem 4 (Gramlich, Hoffman, Nickel, Shpectorov [71]). Let q be

a prime power, let n ≥ 3, and let G be a group admitting a weak Phan system of

type Dn over Fq2 .
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(i) If q ≥ 4, then G is isomorphic to a central quotient of

• Spin+
2n(q), if n even; and

• Spin−2n(q), if n odd.

(ii) If q = 2, 3 and n ≥ 4 and if, furthermore,

(a) for any triple i, j, k of nodes of the Dynkin diagram Dn that form a

subdiagram
i
◦

j
◦

k
◦

of type A3, the subgroup 〈Ui,j , Uj,k〉 is isomorphic to a central quotient

of SU4(q
2);

(b) in case q = 2

• for any triple i, j, k of nodes of the Dynkin diagram Dn that form

a subdiagram
i
◦

j
◦

k
◦

of type A1 ⊕A2 the groups Ui and Uj,k commute elementwise; and

• for any quadruple i, j, k, l of nodes of the Dynkin diagram ∆ that

form a subdiagram

i
◦

j
◦

k
◦

l
◦

of type A2 ⊕A2 the groups Ui,j and Uk,l commute elementwise;

then G is isomorphic to a central quotient of

• Spin+
2n(q), if n even; and

• Spin−2n(q), if n odd.

5.3. The Devillers-Mühlherr filtration

5.3.1. Filtrations of chamber systems

Lacking concrete easy models of the flipflop geometries of exceptional type some

extra theory is necessary in order to be able to extend the Phan-type theorems

to exceptional type groups.

Such a theory has been developed in [52]: A filtration of a chamber system

C = (C, (∼i)i∈I) over I is a family F = (Cn)n∈N of subsets of C such that

(i) Cn ⊂ Cn+1 for all n ∈ N,
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(ii)
⋃

n∈N
Cn = C, and

(iii) for each n > 0 with Cn−1 6= ∅ there exists i ∈ I such that for each chamber

c ∈ Cn there exists a chamber c′ ∈ Cn−1 which is i-adjacent to c.

A filtration F = (Cn)n∈N is called residual, if for each ∅ 6= J ⊂ I and each

c ∈ C the family (Cn ∩RJ(c))n∈N is a filtration of the chamber system RJ(c) =

(RJ(c), (∼j)j∈J). For x ∈ C define |x| := min{λ ∈ N | x ∈ Cλ} and, for X ⊆ C,

define |X| := min{|x| | x ∈ X} and aff(X) := {x ∈ X | |x| = |X|}. Note that

aff(C) = Cm where m = min{n ∈ N | Cn 6= ∅}.

5.3.2. Filtering flipflop systems inside buildings

Let T = (B+,B−, δ∗) be a twin building of type (W,S) with a flip τ satisfying

axiom (F4)’ from Section 5.1.2. Then there exists a filtration

Fτ = (Cn)n∈N

of the building B+ so that C0 equals the set of chambers of the flipflop system

Cτ defined as follows.

For a residue R of B+ put l∗(τ,R) := min{l(δ∗(x, τ(x))) | x ∈ R} and

Aτ (R) := {x ∈ R | l(δ∗(x, τ(x))) = l∗(τ,R)}, where l denotes the length func-

tion of the group W with respect to the generating set S. Since S is finite, there

exists an injective map Inv(W ) → N : x 7→ |x| from the involutions of W to the

non-negative integers with |1W | = 0 such that l(x) < l(y) implies |x| < |y|.
Defining

Cn := {c ∈ C+ | |δ∗(c, τ(c))| ≤ n},

the family Fτ = (Cn)n∈N is a residual filtration of C(B+) by [52].

5.3.3. A criterion for simple connectedness of a flipflop system

The setup from Section 5.3.2 and the simple 2-connectedness of buildings (cf.

the Solomon-Tits Theorem in Section 4.2.3) yield the following criterion of sim-

ple connectedness of flipflop systems established in [52].

If τ is a flip satisfying axiom (F4)’ of a three-spherical twin building T =

(B+,B−, δ∗) of finite rank (i.e., a twin building of finite rank whose residues of

rank three are spherical) such that

(i) the chamber system (Aτ (R), (∼t)t∈J) is connected for each J -residue R

of rank two, and



I I G

◭◭ ◮◮

◭ ◮

page 37 / 53

go back

full screen

close

quit

ACADEMIA

PRESS

(ii) the chamber system (Aτ (R), (∼t)t∈J) is simply 2-connected for each J -

residue R of rank three,

then the flipflop system Cτ is simply 2-connected in the sense of 2.3.3.

5.4. Wedges of spheres and the Abels-Abramenko filtration

5.4.1. Generalised flipflop geometries of type An

In view of Section 5.3.3 it remains to study the chamber systems

(Aτ (R), (∼t)t∈J)

for residues R of rank two and three in order to prove the simple connectedness

of the exceptional flipflop geometries. In case the diagram of the twin building

T is simply laced, these chambers systems can be described by so-called gener-

alised flipflop geometries of type An, defined in this section, cf. [24, 51, 79].

Two subspaces A and B of a vector space V are opposite when V = A ⊕ B.

A subspace A is transversal or in general position to a flag F , i.e., a chain of

incident subspaces of V , if for any subspace B of F we have A ∩ B = {0} or

V = A + B. In other words, A is transversal to F , in symbols A ⋔V F , if

and only if there is a subspace C of V incident with F such that A and C are

opposite.

For a field F with an involution σ and an (n+ 1)-dimensional F-vector space

V containing a flag F equal to 0 = V0 � V1 � · · · � Vt � Vt+1 = V of subspaces

of V endowed with σ-hermitian forms ωi : Vi+1×Vi+1 → F, 0 ≤ i ≤ t, satisfying

Rad (ωi) = Vi, the generalised flipflop geometry of type An (modelled in V with

respect to the flag F and the forms ωi) consists of all proper non-trivial vector

subspaces U of V transversal to F with U ∩ VkU+1 non-degenerate with respect

to ωkU
where kU = min

{
i ∈ {0, . . . , t} | U ∩ Vi+1 6= {0}

}
.

In the simply laced three-spherical case over F = Fq2 a geometry arising from

a chamber system (Aτ (R), (∼t)t∈J), |J | ∈ {2, 3} (defined in Section 5.3.2),

is isomorphic to a generalised flipflop geometry for n ∈ {2, 3} by [24], [79,

Proposition 6.6].

For t = 0 and F = Fq2 , the generalised flipflop geometry on V equals Asch-

bacher’s geometry on V , i.e., the flipflop geometry of type An over Fq2 , cf.

[19, 21] and Section 5.1.1.

For t = n, the generalised flipflop geometry on V equals the geometry op-

posite the chamber F . This follows from the fact that each ωi has rank one
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with radical Vi. Therefore any vector v ∈ Vi+1\Vi is non-degenerate with re-

spect to ωi, so that any subspace U of V with U ⊕ Vi = V intersects Vi+1 in a

non-degenerate (with respect to ωi) one-dimensional subspace.

5.4.2. A Solomon-Tits-type theorem

It turns out that generalised flipflop geometries of type An are not only a use-

ful tool in order to prove Phan-type theorems for groups with simply laced

diagrams, but are also interesting in their own right. Indeed, via the Abels-

Abramenko filtration [1] it can be shown that a generalised flipflop geometry G
of type An is homotopy equivalent to a wedge of (n − 1)-spheres provided the

field F contains sufficiently many elements.

In order to describe this filtration let p be a one-dimensional subspace of V

which is non-degenerate with respect to the hermitian form ωt and define Y0 :=

{W ∈ G | 〈p,W 〉 ∈ G} and Yi := Yi−1 ∪ {W ∈ G | dimW = n + 1 − i} for

1 ≤ i ≤ n. The strategy from [1] can be transferred literally to obtain the

following Solomon-Tits-type result, which (similar to what is surveyed in [89])

gives rise to a representation of SUn+1(Fq2) on the integral homology group

Hr−1(G) tensored with Q, which may be an interesting object to study.

Solomon-Tits-type Theorem 1 (Devillers, Gramlich, Mühlherr [51]). Let V be

an (n+1)-dimensional vector space over a field F with an involution, let (Gj)1≤j≤m

be a finite family of generalised flipflop geometries of type An modelled in V , and

let G =
⋂

j Gj . In case F = Fq2 assume 2n−1(q + 1)m < q2. Then |G| is homotopy

equivalent to a wedge of (n− 1)-spheres.

Notice in passing that this result once again proves simple connectedness of

Aschbacher’s geometry, at least for large fields.

Moreover, this result can be used to deduce finiteness properties of the group

SUn+1(Fq2 [t, t−1], θ) in the spirit of [2], [3, Chapter 13], where θ is the invo-

lution of SLn+1(Fq2 [t, t−1]) which acts as the Chevalley involution on SLn+1, as

the Frobenius involution on Fq2 , and interchanges t and t−1. In fact, this group

SUn+1(Fq2 [t, t−1], θ) is a lattice in SLn+1(Fq2((t))) and in SLn+1(Fq2((t−1))), cf.

[77], whence an arithmetic group by [96, Chapter IX]. See [24] for a concrete

description of the group SUn+1(Fq2 [t, t−1], θ) and related groups.
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5.5. Phan’s third theorem and the Phan-type theorem of type En

5.5.1. Phan’s Theorem

The article [107] also contains a theorem concerning the diagrams E6, E7,

and E8. Phan’s Theorem 2 (Section 5.2.5) plus [106] are used in order to

construct a system of subgroups satisfying the hypotheses of the Curtis-Tits The-

orem Version 3, which then is invoked.

Phan’s Theorem 3 (Phan [107]). Let q ≥ 5 be odd. If G admits a Phan system of

type E6, E7, or E8 over Fq2 , then G is isomorphic to a factor group of the universal

Chevalley group 2E6(q
2), E7(q), or E8(q), respectively.

5.5.2. Exploiting the filtrations

By the Solomon-Tits-type Theorem 1 (Section 5.4.2) a generalised flipflop ge-

ometry of type A3 over Fq2 is simply connected, provided 22(q+ 1) < q2, which

is the case for q ≥ 5, while a generalised flipflop geometry of type A2 over Fq2

is connected, if 2(q + 1) < q2, which is the case for q ≥ 3. Together with the

criterion for simple connectedness of a flipflop system from [52] (Section 5.3.3)

this implies that the flipflop geometries of type E6, E7, E8 over Fq2 are simply

connected provided q ≥ 5.

For completeness I should point out here that the chamber systems

(Aτ (R), (∼t)t∈J)

for residues J of type A1⊕A1, A1⊕A2, A1⊕A1⊕A1 are automatically (simply)

connected by the following standard argument. Assuming that G = G1⊕G2 with

G1 connected of rank at least two and G2 non-empty, the geometry G is simply

connected. Indeed, the geometry G is certainly connected, and choosing a base

point x ∈ G1 one can prove that any cycle originating at x is homotopic to a

cycle fully contained in G1. Such a cycle then is null homotopic because it forms

a cone together with any element z ∈ G2.

5.5.3. The Phan-type theorem of type En

Alternatively —and this had already been done by Hoffman, Mühlherr, Shpec-

torov and the author roughly one year before the Solomon-Tits-type Theorem 1

was proved— one can directly compute the fundamental group for generalised

flipflop geometries of type A3. It turns out that via direct computation it is possi-

ble to show that the fundamental groups are trivial for q ≥ 4. Together with the

classification of amalgams [21, 54] and the criterion for simple connectedness
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of a flipflop system in [52] (Section 5.3.3) this implies the following Phan-type

theorem.

Phan-type Theorem 5 (Gramlich, Hoffman, Mühlherr, Shpectorov 2005). Let

q ≥ 4 be a prime power and let G be a group containing a weak Phan system of

type E6, E7, or E8 over Fq2 . Then G is isomorphic to a group of type 2E6(q
2),

E7(q), or E8(q).

5.6. The Abramenko filtration and the Phan-type theorem of

type F4

5.6.1. Generalised flipflop geometries of type Bn and Cn

The criterion from Section 5.3.3 allows three-spherical diagrams. In view of the

method of proof of the Phan-type theorem of type En via generalised flipflop

geometries of type A3 it is natural to ask for the definition of generalised flipflop

geometries of type B3 and C3.

Let V be a vector space over a field F with an involution σ. For U,W ≤ V , we

say that U is transversal to W and write U ⋔ W , if U ∩W = 0 or 〈U,W 〉 = V .

Note that U ⋔ W if and only if dim(U ∩W ) = max{0,dimU +dimW −dimV }.

For a flag F = (0 = V0 ≤ . . . ≤ Vk = V ) and a subspace U ≤ V we say that U is

transversal to F and write U ⋔ F , if U ⋔ Vi for 0 ≤ i ≤ k. This is the case if and

only if 〈U, VkU
〉 = V where kU = min

{
i | U ∩ Vj 6= {0}

}
.

Given a flag F = (0 = V0 ≤ · · · ≤ Vk = V ) we call a family (ωi)1≤i≤k of

σ-hermitian forms ωi : Vi × Vi → F compatible with F if Rad(ωi) = Vi−1.

Let F be as above and let ω = (ωi)i be a family of compatible σ-hermitian

forms. For U ≤ V we say that U is transversal to (F, ω), if U is transversal to F

and U ∩ VkU
is ωkU

-non-degenerate. In this case we write U ⋔ (F, ω).

Let ∆ be the building geometry of type Bn(F) or Cn(F) embedded in a F-

vector space V of dimension 2n+ 1, resp. 2n, and let e1, . . . , en, f1, . . . , fn, x be

a standard hyperbolic basis of V (where the vector x, of course, only occurs in

case Bn). Let F = (0 = V0 ≤ · · · ≤ Vk = V ) be a flag satisfying F⊥ = F . Let ω

be a family of σ-hermitian forms compatible with F and assume that there is an

ωk-non-isotropic vector that is (·, ·)-isotropic. The generalised flipflop geometry

of type ∆ over F defined by (F, ω) consists of all subspaces U of V that are

totally (·, ·)-isotropic and transversal to (F, ω).

A closer look reveals that half of the forms ωi actually do not play any role,

because a totally isotropic subspace U that is transversal to F cannot meet any

of the Vi with dimVi ≤ n. However, taking this into account would not simplify
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anything, but would instead make the definition of a generalised Phan geometry

even more cumbersome.

5.6.2. Another Solomon-Tits-type theorem and the Phan-type theorem of

type F4

The concept of transversality introducted in Section 5.6.1 makes the Abramenko

filtration from [2] accessible. This filtration has been used in [79] in order to

prove the following theorem.

Solomon-Tits-type Theorem 2 (Gramlich, Witzel [79]). Let F be a field with an

involution σ, let (Gj)1≤j≤m be a finite family of generalised flipflop geometries of

type Bn or Cn embedded in some (2n + 1)- or 2n-dimensional F-vector space V ,

and let G =
⋂

j Gj . In case F = Fq2 assume 4n−1(q + 1)m < q2. Then |G| is

homotopy equivalent to a wedge of (n− 1)-spheres.

Similar to the caseA3, Hoffman, Mühlherr, Shpectorov and the author proved

by direct computation that generalised flipflop geometries of type B3 or C3 are

simply connected provided the underlying field contains at least 13 elements.

Again using the simple connectedness criterion from [52] (Section 5.3.3), the

final Phan-type theorem follows. Note that the generalised flipflop geometries

are the correct objects in order to describe the chamber system (Aτ (R), (∼t)t∈J)

by [79, Proposition 6.6].

Phan-type Theorem 6 (Gramlich, Hoffman, Mühlherr, Shpectorov 2007). Let

q ≥ 13 be a prime power and let G be a group containing a weak Phan system of

type F4 over Fq2 . Then G is isomorphic to a group of type F4(q).

It remains to study the cases of small q.

6. Statement of the Phan-type theorem over finite

fields

We have reached one of the main purposes of this survey, the statement of the

Phan-type theorem over finite fields. From Section 5.1.3 we know for which

groups of Lie type the Phan-type theorem can make a statement, namely 2An,

Bn, Cn, D2n, 2D2n+1, 2E6, E7, E8, F4.

The Phan-type theorem for finite fields. Let q ≥ 3, let ∆ be a spherical Dynkin

diagram of rank at least three, and let G be a group with a weak Phan system of

type ∆ over Fq2 . Then G is isomorphic to a quotient of



I I G

◭◭ ◮◮

◭ ◮

page 42 / 53

go back

full screen

close

quit

ACADEMIA

PRESS

• SUn+1(q
2), if ∆ = An and q ≥ 4

(Bennett, Shpectorov [21], Phan [106]);

• Spin2n+1(q), if ∆ = Bn and q ≥ 4

(Bennett, Gramlich, Hoffman, Shpectorov [20], Gramlich, Horn, Nickel

[75]);

• Sp2n(q), if ∆ = Cn

(Gramlich, Hoffman, Shpectorov [72], Gramlich, Horn, Nickel [74], Horn

[84]);

• Spin±2n, if ∆ = Dn and q ≥ 4, of plus type if n even, of minus type if n odd

(Gramlich, Hoffman, Nickel, Shpectorov [71], Phan [107]);

• the universal Steinberg-Chevalley group of type 2E6(q
2), if ∆ = E6 and

q ≥ 4

(Devillers, Gramlich, Mühlherr [51], Gramlich, Hoffman, Mühlherr, Sh-

pectorov 2005, Phan [107]);

• the universal Steinberg-Chevalley group of type E7(q), if ∆ = E7 and q ≥ 4

(Devillers, Gramlich, Mühlherr [51], Gramlich, Hoffman, Mühlherr, Sh-

pectorov 2005, Phan [107]);

• the universal Steinberg-Chevalley group of type E8(q), if ∆ = E8 and q ≥ 4

(Devillers, Gramlich, Mühlherr [51], Gramlich, Hoffman, Mühlherr, Sh-

pectorov 2005, Phan [107]);

• the universal Steinberg-Chevalley group of type F4(q), if ∆ = F4 and q ≥ 13

(Gramlich, Hoffman, Mühlherr, Shpectorov 2007, Gramlich, Witzel [79]).

7. Curtis-Tits theory, Phan theory, and the revision

of the classification of the finite simple groups

In this section I briefly mention by way of example how to prove a local recog-

nition result for Chevalley groups of simply laced type. I currently do not know

how to deal with the non-simply laced case.

Following [14] (Sections 3.1.2, 4.1.2) a fundamental (rank one) subgroup of

a (twisted) Chevalley group G is a group generated by two root subgroups Xα,

X−α, respectively the subgroup of fixed points of 〈Xα, X−α〉 with respect to an

involution of G interchanging Xα and X−α.

In the revision of the classification of the finite simple groups [60, 61, 62, 63,

64, 65] one is interested in proving local recognition results of the following

type.
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Local Recognition Theorem 1 (Altmann, Gramlich 2007). Let q be an odd

prime power and let G be a group containing an involution x and a subgroup

K E CG(x) such that

(i) K ∼=

{
SL6(q) (CT)

SU6(q
2) (P)

;

(ii) CG(K) contains a subgroup X ∼= SL2(q) ∼= SU2(q
2) with 〈x〉 = Z(X);

(iii) there exists an involution g ∈ G such that Y := gXg is contained in K;

(iv) if V is a natural module for K, then the commutator

[Y, V ] = {yv − v ∈ V | y ∈ Y, v ∈ V }

is a subspace of V of
Fq (CT)

Fq2 (P)

}
-dimension two;

(v) G = 〈K, gKg〉; moreover, there exists z ∈ K∩gKg which is a gKg-conjugate

of x and a K-conjugate of gxg.

Then (up to isomorphism)

G/Z(G) ∼= PSL8(q) or G/Z(G) ∼= E6(q) , (CT)

G/Z(G) ∼= PSU8(q
2) or G/Z(G) ∼= 2E6(q

2) . (P)

Using ideas developed in [43, 66, 67] the above theorem is implied by a

graph-theoretical local recognition theorem. From the hypotheses of the the-

orem one constructs a connected locally line-hyperline graph (cf. [67]), resp.

a connected locally unitary line graph (cf. [11]) with G as a group of auto-

morphisms and an induced subgraph Σ isomorphic to the commuting reflection

graphs W(A7) or W(E6) (see [70]). This information then implies the exis-

tence of a Curtis-Tits, resp. Phan amalgam inside G from which the theorem

follows.
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New York, 1981, pp. 519–547.

[137] , Ordonnés, immeubles et sommes amalgamées, Bull. Soc. Math.

Belg. Sér. A 38 (1986), 367–387.

[138] , Uniqueness and presentation of Kac-Moody groups over fields,

J. Algebra 105 (1987), 542–573.
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