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Abstract

We prove that the dual polar space DQ(2n, 2), n ≥ 3, of rank n asso-

ciated with a non-singular parabolic quadric in PG(2n, 2) admits a faith-

ful non-abelian representation in the extraspecial 2-group 21+2
n

+ . The near

2n-gon In (section 2.4) is a geometric hyperplane of DQ(2n, 2). For n ≥ 3,

we first construct a faithful non-abelian representation of In in 21+2
n

+ and

subsequently extend it to a faithful non-abelian representation of DQ(2n, 2)

in 21+2
n

+ .
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1. Introduction

Let p be a fixed prime number. In [12], Ivanov introduced the notion of repre-

sentations in groups of point-line geometries S = (P,L) of order p, that is, lines

of size p+ 1.

Definition 1.1 ([12, p. 305]). A representation of S in a group R is a mapping

ψ from the point set P of S into the set of subgroups of order p in R such that

the following hold:

(i) R is generated by the subgroups ψ(x), x ∈ P ;

(ii) For each line l ∈ L, the subgroups ψ(x), x ∈ l, are pairwise distinct and

generate an elementary abelian p-subgroup of R of order p2.

This concept of representations in groups of geometries with lines of size

p + 1 is similar to the definition of the root group geometries of groups of Lie
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type defined over a field Fp with p elements studied by Cohen and Cooperstein

[6, p. 75]. This definition of representations of geometries led to a new research

area in the theory of groups and geometries [12]. For example, the knowledge

of the representations is crucial for the construction of affine and c-extensions

of geometries and non-split extensions of groups and modules [13, sections 2.7

and 2.8].

We write (R,ψ) to mean that ψ is a representation of S in R. The group

R is then called a representation group of S. A representation (R,ψ) of S is

faithful if ψ is injective, is abelian or non-abelian according asR is abelian or not.

Note that, in [12], ‘non-abelian representation’ means that ‘the corresponding

representation group is not necessarily abelian’.

We indicate various possibilities for a representation of a point-line geometry

of prime order and the corresponding representation group.

(1) Every representation of a projective space (as a point-line geometry) is

faithful and abelian.

(2) A representation of a point-line geometry need not be faithful. For ex-

ample: let S = (P,L) be a (2, 1)-GQ and R = {1, r1, r2, r3} be the Klein

4-group. A triad of S is a triple of pairwise non-collinear points of S. Let

P1, P2, P3 be the three triads of S partitioning the point set P of S. Define

a map ψ from P to the set of subgroups of order 2 in R by ψ(x) = 〈ri〉 if

x ∈ Pi. Then (R,ψ) is an abelian representation of S which is not faithful.

(3) The representation group for an abelian representation is an elementary

abelian p-group. So it could be considered as a vector space over Fp and

the corresponding representation is a full projective embedding which

need not be faithful.

(4) There are point-line geometries, different from the projective spaces, whose

representations are always abelian. In [14, Theorems 1.5 and 1.6] it is

proved that this is the case for every finite polar space which is not of

symplectic type of odd prime order.

(5) The representation group for a non-abelian representation of a finite point-

line geometry could be infinite.

[Let S = (P,L) be a point-line geometry of order 2 admitting at least

one representation. The universal representation group U(S) of S has the

presentation:

U(S) =
〈

ux : x ∈ P, u2
x = 1, uxuyuz = 1 for every {x, y, z} ∈ L

〉

.

Let ψS be the map from P to the set of subgroups of order 2 in U(S)

defined by x 7→ 〈ux〉 for x ∈ P . Then (U(S), ψS) is a representation
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of S, called the universal representation of S. Now, let S = (P,L) be

a generalized hexagon with parameters (2, 2). Then S is isomorphic to

H(2) or its dual H(2)∗ [16, Theorem 4, p. 402]. For each x ∈ P , consider

the geometric hyperplane H(x) of S consisting of points at non-maximal

distance from x. The subgraph of the collinearity graph of S (see section 2

for the definition) induced on the complement ofH(x) in P is connected if

S ≃ H(2) and has two connected components if S ≃ H(2)∗ [10]. By [12,

Lemma 3.6, p. 310], the universal representation group of S is infinite

when S ≃ H(2)∗.]

In this paper, we prove the following:

Theorem 1.2. Let DQ(2n, 2), n ≥ 2, be the dual polar space of rank n associated

with a non-singular parabolic quadric in PG(2n, 2). The following hold:

(i) If DQ(2n, 2) admits a non-abelian representation, then n ≥ 3.

(ii) DQ(2n, 2), n ≥ 3, admits a faithful non-abelian representation in the ex-

traspecial 2-group 21+2n

+ .

2. Basic definitions

Let S = (P,L) be a partial linear space, that is, a point-line geometry with a

‘point-set’ P and a ‘line set’ L of subsets of P of size at least two such that any

two distinct points of S are contained in at most one line of S. If each line of S

contains exactly three points, then S is called slim. For distinct points x, y ∈ P ,

we write x ∼ y if there is a line of S containing them (we then say that x and y

are collinear). For x ∈ P and A ⊆ P , we define

x⊥ = {x} ∪ {y ∈ P : x ∼ y} and A⊥ =
⋂

x∈A

x⊥.

If P⊥ is empty, then S is called non-degenerate. The graph Γ(P ) with vertex

set P , in which two distinct vertices are adjacent whenever they are collinear

in S, is called the collinearity graph of S. If Γ(P ) is connected, then S is a

connected partial linear space. A subset X of P is a subspace of S if any line of S

containing at least two points ofX is entirely contained inX. A subspaceX of S

is singular if x ∼ y for every pair of distinct points x, y ∈ X, that is, the induced

subgraph Γ(X) of Γ(P ) is a clique. A geometric hyperplane of S is a subspace

of S different from P , that meets each line of S non-trivially. Two partial linear

spaces S = (P,L) and S′ = (P ′, L′) are isomorphic, written as S ≃ S′, if there

exists a bijection α : P → P ′ such that α(x) ∼ α(y) in S′ whenever x ∼ y in S

and it induces a bijection from L to L′. Such a map α is called an isomorphism

from S to S′.
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2.1. Near polygons

A near polygon [15] is a partial linear space S = (P,L) of finite diameter (that

is, the diameter of Γ(P ) is finite) such that the following ‘near polygon’ property

holds:

For each point-line pair (x, l) ∈ P × L, there exists a unique point in l

which is nearest to x.

Here, the distance d(x, y) between two points x and y of S is measured in the

graph Γ(P ). If the diameter of S is n, then the near polygon S is called a near

2n-gon. For x ∈ P , we define

Γn(x) = {y ∈ P | d(x, y) = n} ;

Γ<n(x) = {y ∈ P | d(x, y) < n} .

For every x ∈ P with Γn(x) 6= 0, Γ<n(x) is a geometric hyperplane of S. If n = 2

and S is non-degenerate, then S is a generalized quadrangle (GQ, for short). If

a finite generalized quadrangle has a line containing at least three points and

a point contained in at least three lines, then there exist integers s and t such

that each line contains s+ 1 points and each point is contained in t+ 1 lines [3,

Theorem 7.1, p. 98]. In that case, we say that it is an (s, t)-GQ.

Let S = (P,L) be a near polygon. If every line of S contains at least three

points and if every two points of S at distance 2 have at least two common

neighbours, then S is called a dense near polygon. A subspace C of S is convex

if every geodesic in Γ(P ) between two points of C is entirely contained in C.

A quad is a convex subspace of S of diameter 2 such that no point of it is adjacent

to all other points of it. The points and the lines contained in a quad define a

generalized quadrangle. If x and y are two points of a dense near polygon at

distance 2 from each other, then there is a unique quad containing x and y [15,

Proposition 2.5, p. 10].

Let S = (P,L) be a slim dense near 2n-gon. If n = 1, then S ≃ L3, a

line of size 3. If n = 2, then S is a (2, t)-GQ. In that case, P is finite, t =

1, 2 or 4 and for each such value of t there exists a unique (2, t)-GQ, up to

isomorphism [3, Theorem 7.3, p. 99]. Thus, S is isomorphic to one of the

classical generalized quadrangles Q+(3, 2), W (2) ≃ Q(4, 2) and Q−(5, 2) for

t = 1, 2 and 4, respectively. We refer to [7] for the classification of all slim dense

near 2n-gons when n ∈ {3, 4}.
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2.2. Dual polar spaces

Here, a polar space is a non-degenerate point-line geometry S = (P,L) satisfy-

ing the following ‘one or all’ axiom (see [2, Theorem 4, p. 161] and [17, 7.1,

p. 102]):

For each point-line pair (x, l) ∈ P × L with x /∈ l, x is collinear with

one or all points of l.

A polar space is a partial linear space [2, Theorem 3]. The rank of a polar space

S is the supremum of the lengths m of chains Q0 ( Q1 ( · · · ( Qm of singular

subspaces in S. A polar space of rank 2 is a generalized quadrangle.

Let S = (P,L) be a finite polar space of rank n ≥ 2. Every singular subspace

of S is isomorphic to a projective space. The dimension of a singular subspace

of S is the dimension of the associated projective space. Each maximal singular

subspace of S has dimension n − 1 [2, Proposition 11]. For singular subspaces

X and Y of S with Y ⊂ X, the co-dimension of Y in X is the dimension of X

minus the dimension of Y . Consider the point-line geometry DS = (P ′, L′),

where

• P ′ is the collection of all maximal singular subspaces of S;

• an element of L′ is the collection of all maximal singular subspaces of S

containing a specific singular subspace of S of co-dimension 1 in each of

them.

Then DS is a partial linear space, called the dual polar space of rank n associ-

ated with S. Cameron characterized these geometries in terms of points and

lines and proved that dual polar spaces of rank n are dense near 2n-gons [4,

Theorem 1, p. 75].

2.3. The dual polar space DQ(2n, 2)

Let Q(2n, 2), n ≥ 2, be a non-singular parabolic quadric in PG(2n, 2). Then

the points together with the lines of Q(2n, 2) is a polar space of rank n and

DQ(2n, 2) is the associated dual polar space of rank n. Thus, the points of

DQ(2n, 2) are the generators (that is, subspaces of maximal dimension n − 1)

of Q(2n, 2) and a line of DQ(2n, 2) is a triple of generators containing a specific

(n − 2)-dimensional subspace of Q(2n, 2). The dual polar space DQ(2n, 2) is a

slim dense near 2n-gon. The quads of DQ(2n, 2) are isomorphic to W (2), the

unique (2, 2)-GQ. For each point x of DQ(2n, 2), the set Γ<n(x) is a maximal

subspace of DQ(2n, 2).
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2.4. The near 2n-gon In

Again, consider a non-singular parabolic quadric Q(2n, 2), n ≥ 2, in PG(2n, 2)

and a hyperplane of PG(2n, 2) which intersects Q(2n, 2) in a non-singular hy-

perbolic quadric Q+(2n − 1, 2). The set X of all generators of Q(2n, 2) which

are not contained in Q+(2n−1, 2) is a subspace of DQ(2n, 2) [7, Theorem 6.46,

p. 140]. The points and the lines of DQ(2n, 2) contained in X define a slim

dense near 2n-gon [7, Theorem 6.48, p. 141], denoted by In. For n = 2, the

generalized quadrangle I2 is isomorphic to Q+(3, 2). For n ≥ 3, each quad of In

is either a (2, 1)-GQ or a (2, 2)-GQ.

2.5. Extraspecial 2-groups

A finite 2-group G is extraspecial if the Frattini subgroup Φ(G), the commutator

subgroup G′ = [G,G] and the center Z(G) of G coincide and have order 2. We

refer to [9, section 20, p. 78,79] —see also [11, chapter 5, section 5]— for the

following properties of an extraspecial 2-group.

An extraspecial 2-group is of order 21+2m for some integer m ≥ 1. Let D8 and

Q8, respectively, denote the dihedral and quaternion groups of order 8. A non-

abelian 2-group of order 8 is extraspecial and is isomorphic to D8 or Q8. Let

G be an extraspecial 2-group of order 21+2m. Then the exponent of G is 4 and

either

(i) G is a central product of m copies of D8, or

(ii) G is a central product of m− 1 copies of D8 and a copy of Q8.

So, the maximum of the orders of its abelian subgroups is 2m+1. In case (i),

G possesses a maximal abelian subgroup of order 2m+1 which is elementary

abelian. In case (ii), each maximal abelian subgroup of G is isomorphic to

Cm−1
2 × C4. Here, Ck denotes the cyclic group of order k. We denote an ex-

traspecial 2-group of order 21+2m by 21+2m
+ if (i) holds, and by 21+2m

− if (ii)

holds.

3. Proof of Theorem 1.2

Let S = (P,L) be a slim partial linear space and (R,ψ) be a representation of S.

For each x ∈ P , we identify the subgroup ψ(x) = 〈rx〉 of R with its non-trivial

element rx. If x, y ∈ P and x ∼ y, then we denote by xy the unique line of S

containing x and y, and define x ∗ y by xy = {x, y, x ∗ y}. So, rx∗y = rxry for

every line {x, y, x ∗ y} of S, by condition (ii) of Definition 1.1. The following
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lemma is a particular case of [14, Proposition 3.1, p. 59]. We write down the

proof here for the sake of completeness of this paper. (In the statement of [14,

Proposition 3.1, p. 59], the polar space should be of order 2.)

Lemma 3.1. Let S = (P,L) be a (2, t)-GQ and (R,ψ) be a representation of S.

Then R is abelian.

Proof. We show that [rx, ry] = 1 for all x, y ∈ P with x ≁ y. Let Q be a (2, 1)-

subGQ in S containing x and y. Such a Q exists, follows from the fact that each

line contains exactly 3 points. Let {x, y}⊥∩Q = {a, b}. In Q, [rb, ry] = [rb, rx] =

1 and r(a∗x)∗(b∗y) = r(a∗y)∗(b∗x), implies that rxry = ryrx. �

The dual polar space DQ(4, 2) is a (2, 2)-GQ which is isomorphic to W (2). By

Lemma 3.1, every representation of it is abelian. This proves Theorem 1.2(i).

We next construct non-abelian representations for the near 2(n+1)-gon In+1

and the dual polar space DQ(2n + 2, 2) in the group 21+2.2n

+ when n ≥ 2. We

make use of the following recursive constructions of In+1 and DQ(2n + 2, 2)

given by De Bruyn [8].

Let Sn = (Pn,Ln) denote the dual polar space DQ(2n, 2) of rank n ≥ 2. The

quads of Sn are (2, 2)-GQs. Every triad {a, b, c} of points contained in a quad

of Sn has the property that {a, b, c}⊥ contains one or three points. In the latter

case, such a triad {a, b, c} is called a hyperbolic line of Sn. Thus, {a, b, c} is a

hyperbolic line of Sn if and only if {a, b, c}⊥ is so. Now, consider the point-line

geometries Sn+1 = (Pn+1,Ln+1) and Sn+1 = (Pn+1,Ln+1) constructed from

Sn, where

Pn+1 = {(x, y) ∈ Pn × Pn : y ∈ x⊥} ;

Ln+1 =
{

{(x, u), (y, v), (z, w)} : {x, y, z} is a line or a hyperbolic line of Sn

and {x, y, z}⊥ = {u, v, w}
}

;

Pn+1 = Pn+1 ∪ Pn ∪ P̄n, where P̄n = {x̄ : x ∈ Pn} ;

Ln+1 = Ln+1 ∪ L1, where L1 =
{

{x, (x, u), ū} : (x, u) ∈ Pn+1

}

.

Then Sn+1 is isomorphic to the near 2(n + 1)-gon In+1 and Sn+1 is isomor-

phic to the dual polar space DQ(2n + 2, 2) [8, section 1.5, Corollary 1.3 and

Theorem 1.4].

Now, let R = 21+2.2n

+ , n ≥ 2. The quotient group R/R′ is an elementary

abelian 2-group. Set R′ = 〈θ〉 and V = R/R′. Consider V as a vector space of

dimension 2n+1 over F2. The map

f : V × V → F2
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defined by

f(xR′, yR′) = i,

where [x, y] = θi, i ∈ {0, 1}, is a non-degenerate symplectic bilinear form on V

[9, Theorem 20.4, p. 78]. We write V as an orthogonal direct sum of 2n hyper-

bolic planes Ki, 1 ≤ i ≤ 2n, in V with respect to f . Let Hi be the inverse image

of Ki in R under the natural surjective homomorphism from R to V . Then Hi

is generated by two elements xi and yi such that [xi, yi] = θ. We set

M = 〈xi : 1 ≤ i ≤ 2n〉 ; M̄ = 〈yi : 1 ≤ i ≤ 2n〉 .

Then M and M̄ are elementary abelian 2-subgroups of R each of order 22n

.

The groups M , M̄ and R′ pairwise intersect trivially and R = MM̄R′. Further,

CM̄ (M) and CM (M̄) are trivial.

Let (M, τ) be the faithful abelian representation of Sn arising from the spin-

embedding of DQ(2n, 2) in a vector space of dimension 2n. We refer to [1] for a

description of the spin-embedding. Then the following property (⋆) is satisfied:

(⋆) For every point x of Sn, the subgroup 〈my : y ∈ Γ<n(x)〉 is of

index 2 in M .

This embedding of DQ(2n, 2) is the so-called minimal full polarized embed-

ding of DQ(2n, 2) in the sense of [5] and the property (⋆) is the condition of

polarization for a projective full embedding.

Let Q be a quad in DQ(2n, 2). Let G = 〈τ(Q)〉. Then (G, τ) is a faithful

abelian representation of Q. Since Q is a (2, 2)-GQ, G is of order 24 or 25. Since

(M, τ) is minimal and polarized and Q is a convex subspace of DQ(2n, 2), it

follows from [5, Theorem 1.6, p. 10] that (G, τ) is also minimal and polarized.

This implies that G is of order 24.

Lemma 3.2. Let a, b, c be three pairwise distinct points of Q. Then T = {a, b, c}

is a line or a hyperbolic line of Q if and only if gagbgc = 1.

Proof. First, assume that T is a hyperbolic line of Q. Let Q′ be a (2, 1)-subGQ

of Q containing a and b. Then c /∈ Q′ and Q = 〈Q′, c〉. Let {x, y} = {a, b}⊥ ∩Q′.

Then x, y ∈ T⊥, since T is a hyperbolic line. Let z be the unique point in Q′

such that {x, y, z} is a triad of Q′. Then c ∼ z and gz = ga∗xgb∗y = (gagx)(gbgy).

Since the subgroup H = 〈gy : y ∈ x⊥ ∩ Q〉 is of index 2 in G, |H| = 23 and

H = 〈gx, ga, gb〉. So gc is equal to either gagb or gagbgx, since τ is faithful. If the

latter holds, then gc∗z = gcgz = gy. But this is not possible, since y 6= c ∗ z and

τ is faithful. Thus gc = gagb and so gagbgc = 1.

Now assume that gagbgc = 1 and that T is not a line. Then T is a triad,

since τ is faithful. We show that T is a hyperbolic line. Suppose that T is not
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a hyperbolic line. Then |T⊥| = 1. Let {a, b}⊥⊥ = {a, b, d}. Since {a, b, d} is

a hyperbolic line, gagbgd = 1 by the first part. Since |T⊥| = 1, c 6= d and

gc = gagb = gd, a contradiction to that τ is faithful. Hence T is a hyperbolic line

of Q. �

For each point x of Sn, set Hx = 〈my : y ∈ Γ<n(x)〉. Since Hx is a maximal

subgroup of M , the centralizer of Hx in M̄ is a subgroup 〈m̄x〉 of order 2. Since

Γ<n(x) is a maximal subspace of Sn, Pn = 〈Γ<n(x) ∪ {w}〉 and M = 〈Hx,mw〉

for w ∈ Γn(x). The triviality of CM̄ (M) implies that [m̄x,mw] = θ for every

w ∈ Γn(x).

Recall that P̄n = {x̄ : x ∈ Pn}. Let L̄n =
{

{x̄, ȳ, z̄} : {x, y, z} ∈ Ln

}

. Then

S̄n = (P̄n, L̄n) ≃ DQ(2n, 2). Let τ̄ be the map from the point set P̄n of S̄n to M̄

defined by τ̄(x̄) = m̄x.

Proposition 3.3. (M̄, τ̄) is a faithful abelian representation of S̄n satisfying the

property (⋆).

Proof. For x 6= y in Pn, Γ<n(x) 6= Γ<n(y). So Hx 6= Hy and CM̄ (Hx) 6=

CM̄ (Hy). This implies that m̄x 6= m̄y and hence τ̄ is injective.

Let {x, y, z} be a line of Sn. Let w ∈ Γ<n(z). Then d(w, x) ≤ n − 1 if and

only if d(w, y) ≤ n− 1, by the ‘near polygon’ property. So ([m̄x,mw], [m̄y,mw])

is equal to either (1, 1) or (θ, θ). Then

[m̄xm̄y,mw] = [m̄x,mw][m̄y,mw] = 1.

The first equality holds, since R has nilpotent class 2. Thus, 1 6= m̄xm̄y ∈

CM̄ (Hz). Since m̄z is the unique non-trivial element in CM̄ (Hz), it follows that

m̄z = m̄xm̄y. So, m̄xm̄ym̄z = 1 for every line {x̄, ȳ, z̄} of S̄n. This verifies

condition (ii) of Definition 1.1.

Now, let K = 〈τ̄(P̄n)〉. Then (K, τ̄) is a faithful abelian representation of S̄n.

For each x̄ ∈ P̄n, Hx̄ = 〈m̄y : ȳ ∈ Γ<n(x̄)〉 is equal to K or is of index 2 in K.

Since mx commutes with each element of Hx̄ and mx does not commute with

m̄w for w ∈ Γn(x), the first possibility does not occur. This implies that the

property (⋆) holds.

Since S̄n ≃ DQ(2n, 2) does not possess a faithful polarized projective embed-

ding in a vector space of dimension less than 2n [5], it follows that K = M̄ . So

condition (i) of Definition 1.1 holds, thus completing the proof. �

By Proposition 3.3, a similar statement in Lemma 3.2 holds for the restriction

of τ̄ to a quad of S̄n. Now, let β : Pn+1 → R be defined by

β((x, y)) = mxm̄y,
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for (x, y) ∈ Pn+1. Since [mx, m̄y] = 1 for x, y ∈ Pn with y ∈ x⊥, β((x, y)) =

mxm̄y is of order 2 in R for every point (x, y) of Sn+1.

Proposition 3.4. (R, β) is a faithful non-abelian representation of Sn+1 ≃ In+1.

Proof. If β((x, u)) = β((y, v)), then mxm̄u = mym̄v implies that mymx =

m̄vm̄u. Since M ∩ M̄ is trivial, it follows that mx = my and m̄u = m̄v. This

implies that β is one-one.

We now verify conditions (i) and (ii) of Definition 1.1. Let x ∈ Pn. Let

{x, y, z} be a hyperbolic line of Sn containing x and let u ∈ {x, y, z}⊥. Then

β((y, u))β((z, u)) = mym̄umzm̄u = mymz = mx .

The last equality follows from Lemma 3.2. Thus, mx ∈ 〈β(Pn+1)〉 for every

x ∈ Pn. This also implies that m̄x ∈ 〈β(Pn+1)〉 for every x ∈ Pn. In particular,

M and M̄ are contained in 〈β(Pn+1)〉. Since R is generated by M and M̄ , we

get R = 〈β(Pn+1)〉. Now, let {(x, u), (y, v), (z, w)} be a line of Sn+1. We have

β((x, u))β((y, v)) = (mxm̄u)(mym̄v) = mxmym̄um̄vr
′ = mzm̄wr

′ ,

where r′ = [m̄u,my]. The last equality holds by Lemma 3.2, since {x, y, z} and

{ū, v̄, w̄} are lines or hyperbolic lines of Sn and S̄n respectively. Since y ∈ u⊥

in Sn, we get r′ = 1. So, β((x, u))β((y, v)) = mzm̄w = β((z, w)). �

Proof of Theorem 1.2. Let R,M, M̄, τ, τ̄ and β be as in the above. Let ρ be the

map from Pn+1 to R defined by

ρ =











τ on Pn ;

τ̄ on P̄n ;

β on Pn+1 .

Then R = 〈ρ(Pn+1)〉. Also, condition (ii) of Definition 1.1 holds for every line

in L1. As a consequence of Proposition 3.4, (R, ρ) is a faithful non-abelian

representation of Sn+1 ≃ DQ(2n+ 2, 2). This completes the proof. �
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[7] B. De Bruyn, Near polygons, Birkhäuser Verlag, Basel, Front. Math., 2006.

[8] , A recursive construction for the dual polar spaces DQ(2n, 2), Dis-

crete Math. 308 (2008), 5504–5515.

[9] K. Doerk and T. Hawkes, Finite soluble groups, de Gruyter Exp. Math.,

vol. 4, Walter de Gruyter & Co., Berlin, 1992.

[10] D. Frohardt and P. M. Johnson, Geometric hyperplanes in generalized

hexagons of order (2, 2), Comm. Algebra 22 (1994), 773–797.

[11] D. Gorenstein, Finite groups, Chelsea Publishing Co., New York, 1980.

[12] A. A. Ivanov, Non-abelian representations of geometries, Groups and com-

binatorics – in memory of Michio Suzuki, Adv. Stud. Pure Math. 32 (2001),

301–314.

[13] A. A. Ivanov and S. V. Shpectorov, Geometry of sporadic groups II – rep-

resentations and amalgams, Encyclopedia Math. Appl., vol 91, Cambridge

University Press, Cambridge, 2002.

[14] B. K. Sahoo and N. S. N. Sastry, A characterization of finite symplectic

polar spaces of odd prime order, J. Combin. Theory Ser. A 114 (2007),

52–64.

[15] E. E. Shult and A. Yanushka, Near n-gons and line systems, Geom. Dedi-

cata 9 (1980), 1–72.



I I G

◭◭ ◮◮

◭ ◮

page 12 / 12

go back

full screen

close

quit

ACADEMIA

PRESS

[16] J. A. Thas, Generalized polygons, in Handbook of incidence geometry,

North-Holland, Amsterdam, 1995, 383–431.

[17] J. Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes Math.

386 (1974), Springer-Verlag, Berlin, New York.

Kamal Lochan Patra

SCHOOL OF MATHEMATICAL SCIENCES, NATIONAL INSTITUTE OF SCIENCE EDUCATION AND RESEARCH,

INSTITUTE OF PHYSICS CAMPUS, SAINIK SCHOOL POST, BHUBANESWAR-751005, INDIA

e-mail: klpatra@niser.ac.in

Binod Kumar Sahoo

SCHOOL OF MATHEMATICAL SCIENCES, NATIONAL INSTITUTE OF SCIENCE EDUCATION AND RESEARCH,

INSTITUTE OF PHYSICS CAMPUS, SAINIK SCHOOL POST, BHUBANESWAR-751005, INDIA

e-mail: bksahoo@niser.ac.in


	Introduction
	Basic definitions
	Near polygons
	Dual polar spaces
	The dual polar space DQ(2n,2)
	The near 2n-gon In
	Extraspecial 2-groups

	Proof of Theorem 1.2

