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Transitive groups of axial homologies

of hyperbola structures and Minkowski planes

Hans-Joachim Kroll Andrzej Matraś∗

Abstract

In this paper a typification of the automorphism groups of hyperbola

structures based on the notion of axial homologies (i.e. automorphisms fix-

ing two generators of the same kind) is given. For the class of hyperbola

structures over half-ordered fields (cf. [6, 12]) the types of the full auto-

morphism groups are determined.
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1. Introduction

Analogous to the well known Lenz-Barlotti typification of projective planes there

are typifications for Minkowski planes based on the notion of G- and p-transla-

tions and (p, q)-homologies (cf. [9, 8]). The typification with respect to tran-

sitive groups of G-translations was done actually for the more extensive class

of hyperbola structures (cf. [9]). Beside the G-translations axial homologies

can be defined for hyperbola structures. An automorphism α of a hyperbola

structure H is called a (G,H)-homology if α fixes pointwise the generators G,H

(where G ∩ H = ∅). Let A(G,H) denote the group of all (G,H)-homologies.

For a given subgroup Γ of the automorphism group of H we are interested in

the configuration A(Γ) of all 2-sets {G,H} of generators such that the group

A(G,H)∩Γ acts transitively on X \ (G∪H) for a generator X. By determining

all possible configurations A(Γ) we obtain a typification for the automorphism

groups of hyperbola structures (cf. Theorem 3.3). In the case of a hyperbola

∗This research was supported in part by DAAD.
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structure defined by a sharply 3-transitive permutation group Lemma 3.5 yields

examples of automorphism groups of every type. In particular we deal with

characterizations of the hyperbola structures defined by sharply 3-transitive per-

mutation groups (cf. Theorem 3.9).

The type of the full automorphism group of a hyperbola structure H will be

called the type of H. Just as in the theory of projective planes the typification

causes the problem to determine the hyperbola structures of each type, or at

least to give examples. In the last section of this paper the types of the hyper-

bola structures over half-ordered fields constructed by J. Jakóbowski [6] will be

determined (cf. Theorem 4.12, Lemma 4.6, Theorem 4.9).

2. Hyperbola structures: definitions and notations

Hyperbola structures can be defined in different ways (cf. [5, 1, 7]). For our

purpose the representation by permutation sets is most suitable. Let (M,Σ) be

a permutation set1. Putting P := M×M , K := {{(x, γ(x)) | x ∈ M} | γ ∈ Σ}
and G1 := {{a}×M | a ∈ M}, G2 := {M ×{a} | a ∈ M} we obtain an

incidence structure H(M,Σ) = H(Σ) := (P,K,G1 ∪ G2); the elements of P ,

K and G := G1 ∪ G2 are called points, chains and generators respectively, and

n := |M |−1 is called the order of H(M,Σ). For every point x ∈ P and i ∈ {1, 2}
there is exactly one generator X ∈ Gi with x ∈ X (notation: [x]i := X).

Then H(M,Σ) is called a hyperbola structure, if Σ is acting sharply 3-transitively

on M . The chains of a hyperbola structure are called circles.

Let H = (P,K,G1 ∪ G2) be a hyperbola structure. For every point w ∈ P

we define: [w] := [w]1 ∪ [w]2, Pw := P \ [w], K(w) := {X ∈ K | w ∈ X},

Kw := {X \ {w} | X ∈ K(w)}, Gw
i := {X ∩ Pw | X ∈ Gi, w 6∈ X} for i ∈ {1, 2},

and Hw := (Pw,Kw,Gw
1 ∪ Gw

2 ), A(w) := (Pw,Kw ∪ Gw
1 ∪ Gw

2 ). Then Hw is

called the derivation of H in the point w. Moreover, H is called a Minkowski

plane, if A(w) is an affine plane for all w ∈ P ; in this case A(w) is called the

affine derivation of H in w.

Let H(M,Σ) and H(M ′,Σ′) be two hyperbola structures and ϕ : P → P ′ a

bijection. The bijection ϕ is called an isomorphism from H(M,Σ) onto H(M ′,Σ′)

if ϕ(K) = K′.

Let ϕ be an isomorphism. Then ϕ(G1) = G′
1, ϕ(G2) = G′

2 or ϕ(G1) = G′
2,

ϕ(G2) = G′
1.

1i.e. Σ is a set of permutations of the set M
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For every isomorphism ϕ there exist two bijections α, β : M → M ′, such

that ϕ(x, y) = (α(x), β(y)) for all (x, y) ∈ P or ϕ(x, y) = (α(y), β(x)) for all

(x, y) ∈ P.

Lemma 2.1 (Wefelscheid [14]). Let H(M,Σ) and H(M ′,Σ′) be two hyperbola

structures and α, β : M → M ′ two bijections.

(1) ϕ : (x, y) 7→ (α(x), β(y)) is an isomorphism iff Σ′ = β Σ α−1.

(2) ϕ : (x, y) 7→ (α(y), β(x)) is an isomorphism iff Σ′ = β Σ−1α−1.

An automorphism ϕ of a hyperbola structure H is called proper, if ϕ(G1) = G1.

The following notation is convenient to describe the proper automorphisms

of H(M,Σ). For α ∈ SymM let denote ά : M×M → M×M, (x, y) 7→ (α(x), y)

and ὰ : M×M → M×M, (x, y) 7→ (x, α(y)). For every proper automorphism

ϕ there exist α, β ∈ Sym M with ϕ = ά ◦ β̀.

The classical model of a Minkowski plane is H(PGL(2, F)), where F is a com-

mutative field. Every Minkowski plane isomorphic to a plane H(PGL(2, F)) is

called a Miquelian Minkowski plane.

Modifying the classical model J. Jakobowski [6] constructed a class of non-

Miquelian Minkowski planes. Let (F, P ) be a half-ordered field, i.e. P is a sub-

group of index 2 of the multiplicative group (F∗, ·) of the field (F,+, ·). Let

χ : F∗ → {−1, 1} denote the character belonging to P , F = F ∪ {∞} the projec-

tive line over F and

F
(3)

:=
{

(x1, x2, x3) ∈ F
3 ∣

∣ |{x1, x2, x3}| = 3
}

.

For (x1, x2, x3) ∈ F
(3)

we define ω(x1, x2, x3) = χ(x1 − x2)χ(x2 − x3)χ(x3 − x1)

where χ(x − y) :=

{

1 for x = ∞
−1 for y = ∞

.

A permutation f ∈ Sym F is called order-preserving (order-reversing) if for all

(x1, x2, x3) ∈ F
(3)

,

ω(f(x1), f(x2), f(x3)) = ω(x1, x2, x3) ( = −ω(x1, x2, x3) )

holds.

We define Π+ and Π− to be the set of all order-preseving and all order-

reversing permutations of F respectively. Finally we put PGL
+ := PGL(2, F)∩Π+

and PGL
− := PGL(2, F) ∩ Π−. Then PGL(2, F) = PGL

+ .
∪ PGL

−.

Theorem 2.2 (Jakóbowski 1993). Let (F,P) be an half-ordered field and let

f, g ∈ Π+. Then Σ(f, g) := PGL
+ ∪ g−1PGL

−f acts sharply 3-transitively on F.
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Theorem 2.2 is a generalization of a result of C. Pedrini [10].

Let (F,P) be a half-ordered field and f, g ∈ Π+. Then H(F, f, g) := H(Σ(f, g))

is a hyperbola structure by Theorem 2.2.

For a, b ∈ F, a 6= 0 let a• : F → F and b+ : F → F denote the canonic exten-

sion of the left multiplication x 7→ ax and translation x 7→ b + x respectively.

We note that b+ ∈ PGL
+ for all b ∈ F (cf. [13, 2.4]).

3. Transitive groups of axial homologies of

hyperbola structures

Let H = (P,K,G1 ∪ G2) be a hyperbola structure. Let α ∈ AutH and G,H ∈ G

with G∩H = ∅. The automorphism α is called an axial homology with axis G,H

(shortly (G,H)-homology), if G ∪ H ⊂ Fixα. The automorphism α is called a

G-translation, if α = id or Fixα = G.

If α is a (G,H)-homology or a G-translation with G ∈ Gi then α(X) = X for

all X ∈ G \ Gi. Note that every (G,H)-homology and every G-translation is a

proper automorphism, i.e. maps Gi onto Gi.

All (G,H)-homologies form a group A(G,H). The set of all G-translations is

denoted by T(G).

Lemma 3.1. Let γ ∈ A(G,H) and p ∈ P \ (G ∪ H) with γ(p) = p. Then γ = id.

Proof. We may assume G,H ∈ G1. Consider X := [p]1. Then X 6= G,H. For

x ∈ X we have γ(x) = γ([p]1 ∩ [x]2) = [γ(p)]1 ∩ [x]2 = [p]1 ∩ [x]2 = x. Hence,

for all C ∈ K we have γ(C) = C, because g := C ∩ G, h := C ∩ H, x := C ∩ X

are three fixed points. Let z ∈ P \ (G ∪ H). Then there is a circle C ∈ K with

z ∈ C, and γ(z) = γ(C ∩ [z]2) = γ(C) ∩ [z]2 = C ∩ [z]2 = z. ¤

Let Γ be a subgroup of AutH. Then Γ is called (G,H)-transitive, if there is an

X ∈ G with |G∩X| = 1 such that Γ∩A(G,H) acts transitively on X \ (G ∪ H).

Moreover, Γ is called G-transitive, if there is an X ∈ G with |G ∩ X| = 1 such

that Γ ∩ T(G) acts transitively on X \ G. The hyperbola structure is called

(G,H)-transitive if AutH is (G,H)-transitive.

If Γ is (G,H)-transitive and G ∈ Gi then Γ ∩ A(G,H) acts transitively on

Gi \ {G,H}, hence transitively on Y \ (G ∪ H) for every Y ∈ G \ Gi.

Looking for all imaginable configurations Z := {G ∈ G | ΓisG-transitive} the

subgroups Γ of the automorphism group of a hyperbola structure were typified
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in [9]. Here we consider for i = 1, 2 the configurations

Ai(Γ) :=
{

{G,H} | G,H ∈ Gi, Γ is (G,H)-transitive
}

.

Describing all possible configurations A1(Γ) and A2(Γ) we obtain a further typ-

ification of the subgroups Γ of AutH. For this purpose we first notice the fol-

lowing.

Lemma 3.2. Let γ ∈ Γ and G,H ∈ G with G ∩ H = ∅. Then we have:

(1) A(γ(G), γ(H)) = γ A(G,H)γ−1;

(2) if Γ is (G,H)-transitive, then Γ is (γ(G), γ(H))-transitive.

From Lemma 3.2, we get the following result.

Theorem 3.3. Let H be a hyperbola structure and Γ a subgroup of AutH. For

i ∈ {1, 2} exactly one of the following statements is valid:

(0) Ai(Γ) = ∅;

(1) |Ai(Γ)| = 1;

(2) there is an involution α : Gi → Gi such that

Ai(Γ) = {{X,α(X)} | X ∈ Gi};

(3) there exists a generator E ∈ Gi such that

Ai(Γ) = {{E,X} | X ∈ Gi, X 6= E};

(4) Ai(Γ) = {{X,Y } | X,Y ∈ Gi, X 6= Y }.

Proof. Let {E,F} ∈ Ai(Γ). If γ({E,F}) = {E,F} for all γ ∈ Γ then |Ai(Γ)| = 1.

Now, let {A,B} ∈ Ai(Γ) with {E,F} 6= {A,B}, say B 6= E,F . Then for X ∈
Gi, X 6= E,F there is an η ∈ Γ ∩ A(E,F ) with η(B) = X, hence {η(A), X} =

{η(A), η(B)} ∈ Ai(Γ) by Lemma 3.2(2). Thus every X ∈ Gi is contained in at

least one element of Ai(Γ). If E = A, then {E,X} ∈ Ai(Γ) for all X ∈ Gi \{E}.

Hence, every X ∈ Gi is contained in exactly one element of Ai(Γ) or Ai(Γ) =

{{E,X} | X ∈ Gi, X 6= E} or Ai(Γ) = {{X,Y } | X,Y ∈ Gi, X 6= Y }. ¤

Let j, k ∈ {0, 1, 2, 3, 4}, j ≤ k. We will say that Γ is of type (j; k), if A1(Γ)

and A2(Γ) are of the form (j) and (k) in Theorem 3.3, respectively, or if A1(Γ)

and A2(Γ) are of the form (k) and (j), respectively. For Γ there are 15 possible

types.
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In the following we consider a hyperbola structure H = H(M,Σ) with id ∈ Σ.

To avoid brackets, for x ∈ M we identify the point (x, x) with x.

In the following lemma we characterize those permutations α, β of M yield-

ing an axial homology ά ◦ β̀.

Lemma 3.4. Let g, h ∈ M , g 6= h and Gi := [g]i, Hi := [h]i (i = 1, 2). For all

bijections α, β : M → M we have:

(1) ά ◦ β̀ is an axial homology ⇐⇒ β Σ α−1 = Σ, |Fixα| ≥ 2, |Fixβ| ≥ 2 and

β = id or α = id.

(2) ά is a (G1, H1)-homology ⇐⇒ g, h ∈ Fixα and Σα = Σ.

In particular we have: ά ∈ A(G1, H1) =⇒ α ∈ Σg,h
2.

(3) β̀ is a (G2, H2)-homology ⇐⇒ g, h ∈ Fixβ and Σ = βΣ.

In particular we have: β̀ ∈ A(G2, H2) =⇒ β ∈ Σg,h.

Proof. Because of Lemma 2.1 we may assume βΣα−1 = Σ, i.e. βΣ = Σα. We

have G1 = {g}×M, H1 = {h}×M . Hence

ά ◦ β̀ ∈ A(G1, H1) ⇐⇒ {g} × M, {h} × M ⊂ Fix ά ◦ β̀

⇐⇒ g, h ∈ Fixα and β = id.

Hence ά ∈ A(G1, H1) implies Σα−1 = Σ, thus Σα = Σ, and α = id ◦ α ∈ Σg,h.

This proves (2) and the first part of (1). The remaining parts follow in the same

way. ¤

The meaning of the (G,H)-transitivity for the permutation set (M,Σ) is given

in the following lemma.

Lemma 3.5. Let g, h ∈ M, g 6= h and Gi := [g]i, Hi := [h]i (i = 1, 2) and

A := {α ∈ SymM | ά is a (G1, H1)-homology},

B := {α ∈ SymM | ὰ is a (G2, H2)-homology}.

Then we have:

(1) A = A−1 ⊂ Σg,h and ΣA = Σ;

(2) AutH is (G1, H1)-transitive ⇐⇒ A = Σg,h;

(3) B = B−1 ⊂ Σg,h and BΣ = Σ;

(4) AutH is (G2, H2)-transitive ⇐⇒ B = Σg,h.

2
Σg,h denotes the stabilizer of g and h in Σ.
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Proof. (1) For α ∈ A we have Σα = Σ and α ∈ Σg,h by Lemma 3.4. Further-

more, (ά)−1 = ´α−1, hence α−1 ∈ A.

(2) “⇒”. Let γ ∈ Σg,h. Consider a ∈ M, a 6= g, h. By assumption there is an

α ∈ SymM such that ά is a (G1, H1)-homology with ά(a, a) = (γ(a), a),

hence α(a) = γ(a). Since α ∈ Σg,h by (1) and Σ is sharply 3-transitive, we

get α = γ. Hence Σg,h ⊂ A, and therefore A = Σg,h by (1).

“⇐”. Consider (a, c), (b, c) ∈ M×M \ (G ∪ H). There is a γ ∈ Σg,h = A

with γ(a) = b, hence γ́ ∈ A(G,H) and γ́(a, c) = (b, c).

The claims in (3) and (4) are proved in the same way as (1) and (2). ¤

With respect to Lemma 3.5 it is easy to give examples of groups Γ for every

type if Σ is a sharply 3-transitive group. We are satisfied with the following

example.

Example 3.6. Let F be a commutative field and H = H(PGL(2, F)) the Miquelian

Minkowski plane over F. Consider the subgroup Γ := {a• | a ∈ F∗} and the in-

volution σ ∈ PGL(2, F) with σ(x) = x+1
x−1 for x ∈ F, x 6= 1, and define Γ1 := Γ́

and Γ2 := 〈Γ1 ∪ {σ́}〉. Then Γ1 is of type (0; 1), and if |F| ∈ {3, 5} the group Γ2

is of type (0; 2).

Conversely we have the following result.

Theorem 3.7. Let H = H(M,Σ) be a hyperbola structure, Γ < AutH an

automorphism group, and let α : G1 → G1 be an involution such that A1 =

{{X,α(X)} | X ∈ G1}. If there is a G ∈ G1 such that A(G,α(G)) contains

at most one involution then the order of H is 3 or 5.

Proof. Since {X,α(X)} is a 2-set we have X 6= α(X) for all X ∈ G1. Hence, if

H is finite then |G1| is even, because α is involutory. Hence:

(1) The order of H is at least 3.

Consider the following mapping ᾱ : P → P, x 7→ α([x]1) ∩ [x]2. ᾱ has no

fixed points since X 6= α(X) for every X ∈ G1. Because of [ᾱ([x]1 ∩ [x]2)]1 =

α([x]1) we have ᾱ2(x) = α(α([x]1))∩[x]2 = [x]1∩[x]2 = x, i.e. ᾱ is an involution.

(2) If γ ∈ Γ is a proper automorphism then γᾱ = ᾱγ.

Because for X ∈ G1 we have γ({X,α(X)}) = {γ(X), γα(X)} = {γ(X), αγ(X)},

hence γα(X) = αγ(X) implying γᾱ(x) = γ(α([x]1) ∩ [x]2) = α([γ(x)]1) ∩
[γ(x)]2 = ᾱγ(x) for all x ∈ P .

Because of (1) we may assume that the order of H is at least 5; i.e. |G1| ≥ 6.
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(3) For all A ∈ G1 there exists a unique involution γA ∈ A(A,α(A)). For all

x ∈ P \ (A ∪ α(A)) we have γA(x) = ᾱ(x).

Because |G1| ≥ 6 there is an S ∈ G1, S 6= A,α(A), G, α(G), and there is

a σ ∈ A(A,α(A)) with σ(A) = G and thus A(A,α(A)) = σ−1 A(G,α(G))σ.

Hence, by assumption

A(A,α(A)) contains at most one involution. (∗)

For x ∈ P \ (A∪α(A)) we have ᾱ(x) ∈ [x]2. Since Γ is (A,α(A)-transitive there

is a γ ∈ A(A,α(A)) with γ(x) = ᾱ(x), and by (2) we have γ2(x) = γᾱ(x) =

ᾱγ(x) = ᾱ2(x) = x, hence γ2 = id by Lemma 3.1, and thus γ is an involution.

By (∗) the involution γ =: γA is unique.

Now let us assume that the order of H is greater than 5, i.e. |G1| ≥ 8. Then

there exist A,B,C ∈ G1 with B,C 6= A,α(A), C 6= B,α(B), and there is a

p ∈ P with p 6∈ A∪α(A)∪B∪α(B)∪C∪α(C). By (3) there is γA ∈ A(A,α(A)),

γB ∈ A(B,α(B)) with γA(x) = ᾱ(x) = γB(x) for all x ∈ P \(A∪α(A)∪B∪α(B))

and γA(b) = ᾱ(b) 6= b for b ∈ B. Hence γAγB(p) = p and γAγB(c) = ᾱ2(c) = c

for c ∈ C ∪ α(C), i.e.γAγB ∈ A(C,α(C)), hence γAγB = id by Lemma 3.1, but

γAγB(b) = ᾱ(b) for b ∈ B, and so we have a contradiction. ¤

Remark 3.8. The assumption that there is at most one involution in A(G,α(G))

is fulfilled if one derivation A(w) is a desarguesian affine plane.

Theorem 3.9. For a sharply 3-transitive permutation set (M,Σ) with id ∈ Σ the

following statements are equivalent:

(i) Σ is a group;

(ii) there is a subgroup Γ of AutH(M,±) of type (0; 4);

(iii) AutH(M,Σ) is of type (4; 4).

Proof. (i) ⇒ (iii). Because of Lemma 3.5 the group Γ = Σ́×Σ̀ is of type (4;4).

(iii) ⇒ (ii). This is obvious.

(ii) ⇒ (i). If the order of H(M,Σ) is less than 5 the hyperbola structure is a

Miquelian Minkowski plane (cf. [5] and [2]), hence Σ is a group. Let the

order be at least 5. We may assume that

A1(Γ) = {{X,Y } | X,Y ∈ G1, X 6= Y }.

For all g, h ∈ M, g 6= h we have Σg,h = Σg,h
−1 and ΣΣg,h = Σ by

Lemma 3.5. Hence

S :=
〈

⋃

g,h∈M, g 6=h

Σg,h

〉

⊂ Σ. (∗∗)
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Let σ ∈ Σ. Consider a, b, c ∈ M with a 6= b 6= c 6= a, b, c 6= σ(a). Then there

exist α, β, γ ∈ Σ with α ∈ Σb,c , α(a) = σ(a), β ∈ Σσ(a),c , β(b) = σ(b) and

γ ∈ Σσ(a),σ(b) , γ(c) = σ(c). Then we get γβα(a) = σ(a) , γβα(b) = σ(b)

and γβα(c) = σ(c) and γβα ∈ Σ by (∗∗), hence γβα = σ. Thus we have

Σ ⊂ S and consequently Σ = S by (∗∗). ¤

Defining the type of a hyperbola structure H as the type of AutH we have the

following corollaries to Theorem 3.9.

Corollary 3.10. There is no hyperbola structure of type (0; 4), (1; 4), (2; 4), or

(3; 4).

Corollary 3.11. The hyperbola structures of type (4; 4) are exactly the hyperbola

structures which can be represented as H = H(M,Σ) with a sharply 3-transitive

group Σ.

Example 3.12. In 1981 E. Hartmann [3] constructed a family of Minkowski

planes over the reals R depending on two real parameters r1, r2 > 0 using the

bijection

f : R := R ∪ {∞} → R, x 7→























x−r1 for x > 0

−|x|−r2 for x < 0

∞ for x = 0

0 for x = ∞.

With

Σ := {b+a• | a, b ∈ R, a 6= 0} ∪ {c+a•fb+ | a, b, c ∈ R, a 6= 0},

the incidence structure M(r1, r2) := H(Σ) is a Minkowski plane (cf. [3]).

For g ∈ R we have Σg,∞ = {g+m•(−g)+ | m ∈ R∗} = (Σg,∞)−1. For

γ = c+a•fb+ ∈ Σ and α = g+m•(−g)+ = g(1 − m)+m• ∈ Σg,∞ we have

αγ = (g(1 − m) + mc)+(ma)•fb+ ∈ Σ, hence ὰis a ([g]2, [∞]2)-homology by

Lemma 3.4. Because of Lemma 3.5 the Minkowski plane M(r1, r2) is (G, [∞]2)-

transitive for every G ∈ G2 \ {[∞]2}.

For m ∈ R, m 6= 0, 1 we have

fm• ∈ Σ ⇐⇒ ∃a ∈ R∗ with a•f = fm•

⇐⇒ |m|−r1 = |m|−r2 ⇐⇒ r1 = r2.

By Lemma 3.4 and Lemma 3.5 we obtain that M(r1, r2) is (G, [∞]1)-transitive

for all G ∈ G1 \ {[∞]1} if and only if r1 = r2.

If (r1, r2) 6= (1, 1) then every automorphism of M(r1, r2) fixes the point ∞ =

(∞,∞). Hence the type of M(r1, r2) is (0; 3) or (3; 3) if r1 6= r2 or r1 = r2 6= 1,

respectively.
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4. Hyperbola structures H(F, f, g) with transitive

groups of axial homologies

Let H(F, f, g) be a hyperbola structure over a half-ordered field (F,P). We con-

sider the following sets of bijections:

M :=
{

f ∈ Sym F | f(0) = 0, f(∞) = ∞,

∀a ∈ P, ∀x ∈ F : f(ax) = f(a)f(x)
}

,

I :=
{

f ∈ Sym F | f(0) = 0, f(∞) = ∞,

∀d ∈ F \ P, ∀x ∈ F : f(df(x)) = f(d)x
}

,

Λ+ := M ∩ I ∩ Π+.

A permutation f ∈ Sym F with f(0) = 0, f(∞) = ∞ is called a Moulton

mapping if f |P = id|P and if there is a k ∈ P such that for all x ∈ F \ P , the

equality f(x) = kx holds.

Lemma 4.1. For every Moulton mapping f we have:

(1) f ∈ M ∩ I;

(2) f ∈ Π+ ⇐⇒ ∀x ∈ F \ P : χ(1 − x) = χ(1 − f(x)).

Proof. (1) For a ∈ P, d, x ∈ F \ P we have f(df(a)) = f(da) = kda = f(d)a

and f(df(x)) = f(kdx) = kdx = f(d)x.

(2) “⇒”. For x ∈ F \ P we have χ(1 − x) = −ω(1, x,∞) = −ω(1, f(x),∞) =

χ(1 − f(x)).

“⇐”. For x, y ∈ F \ P we have χ(x − y) = χ(f(x) − f(y)) because of

χ(k) = 1. For x ∈ P, y ∈ F we have χ(x − y) = χ(x)χ(1 − x−1y) =

χ(f(x))χ(1 − f(x−1y)) = χ(f(x) − f(x)f(x−1y)) = χ(f(x) − f(y)) by (1).

Hence, for all x, y ∈ F, x 6= y holds χ(x − y) = χ(f(x) − f(y)). Thus

f ∈ Π+. ¤

Examples 4.2. (1) Let (F, P ) be an ordered field, i.e. (F, P ) is a half-ordered

field with P + P ⊂ P . Then every Moulton mapping f is order-preserving

by Lemma 4.1(2), hence f ∈ Λ+.

(2) Let F = Q be the field of rational numbers. There is exactly one subgroup

P < Q∗ of index 2 containing all primes different from 3 with −1 ∈ P

(cf. [11]). For x ∈ Q∗ there exists z ∈ Z, n ∈ N and ν ∈ Z such that

x = 3ν z
n

and 3 ∤ z, n, i.e. z, n ∈ P . Therefore x = 3ν z
n

/∈ P iff ν ∈ 2Z + 1.

Take a k ∈ P ∩ N with 3 ∤ k and consider the Moulton mapping f defined
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by k. For x = 3ν z
n

with ν 6= 0 and 3 ∤ z, n we have

1 − x

1 − kx
=

n − 3νz

n − 3νzk
=

3−νn − z

3−νn − zk
∈ P.

Therefore f is order-preserving by Lemma 4.1(2), thus f ∈ Λ+.

Lemma 4.3. Let (F, P ) be a half-ordered field and f ∈ Λ+. Then we have:

(1) For all x ∈ P : f2(x) = x;

(2) if there is an x ∈ P with f(x) 6= x then −1 ∈ P ;

(3) if f |P = id|P then f is a Moulton mapping;

(4) if −1 /∈ P then f is a Moulton mapping;

(5) for Σ = PGL
+ ∪ PGL

−f the stabilizer Σ∞,0 contains at most one involution.

Proof. Since f is order-preserving f(P ) = P .

(1) Let d ∈ F∗\P . For all x ∈ P we have f(x)f(d) = f(xd) = f(d·f(f−1(x))) =

f(d) · f−1(x), hence f(x) = f−1(x), i.e. f2(x) = x.

(2) Let x ∈ P , f(x) 6= x. Then ω(x, f(x),∞) = ω(f(x), x,∞) by (1), thus

χ(x − f(x)) = −ω(x, f(x),∞) = −ω(f(x), x,∞) = χ(f(x) − x), hence

χ(−1) = 1, i.e. −1 ∈ P .

(3) Consider a fixed d ∈ F∗ \ P . For every x ∈ F∗ \ P there exists a y ∈ P

with x = dy, in particular there is a k ∈ P with f(d) = kd. Hence f(x) =

f(dy) = f(df(y)) = f(d)y = kdy = kx.

(4) This follows by (2) and (3).

(5) For γ ∈ PGL(2, F) we have ∞, 0 ∈ Fix γf if and only if ∞, 0 ∈ Fix γ,

hence Σ∞,0 = {a• | a ∈ P} ∪ {d•f | d ∈ F∗ \ P}. First we characterize the

involutions of Σ∞,0.

For a ∈ P we have: a• is an involution ⇐⇒ a = −1 6= 1. (⋆)

Indeed, (a•)2 = id implies 1 = a•(a•(1)) = a2, hence a ∈ {−1, 1}, and

conversely 1• = id and −1 6= 1 implies that (−1)• is involutory.

For d ∈ F∗ \ P we have: d•f is an involution ⇐⇒ df(d) = 1. (⋆⋆)

Indeed, d•f 6= id and (d•f)2 = id implies 1 = df(df(1)) = df(d), and

conversely df(d) = 1 implies for all x ∈ F: (d•f)2(x) = df(df(x)) =

df(d)x = x.

We have to distinguish two cases: −1 6∈ P and −1 ∈ P .
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First case: −1 6∈ P . Because of (⋆) the subset {a• | a ∈ P} of Σ∞,0 contains

no involutions. By (4), f is a Moulton mapping, f(−1) = −k with k ∈ P .

Now, let d ∈ F∗ \ P such that d•f is involutory. Then kd2 = df(d) = 1

by (⋆⋆), hence d2 = 1
k

. Since −1 6∈ P there is at most one d ∈ F∗ \ P with

d2 = 1
k

. Hence {d•f | d ∈ F∗ \ P} contains at most one involution.

Second case: −1 ∈ P . If −1 6= 1 then {a• | a ∈ P} contains by (⋆) exactly

one involution. Now let us assume that there is an involution d•f with

d ∈ F∗ \ P . Then df(d) = 1 by (⋆⋆), hence f(d) = 1
d
. Since f is order-

preserving we have

χ(1 − d) = −ω(1, d,∞) = −ω
(

1,
1

d
,∞

)

= χ
(

1 −
1

d

)

= χ
(d − 1

d

)

= χ(−1)χ(1 − d)χ(d),

hence 1 = χ(d) contradicting d 6∈ P . ¤

Lemma 4.4. Let f ∈ Π+ with {∞, 0, 1} ⊂ Fix f . Then H = H(F, f, id) is

([∞]1, [0]1)-transitive if and only if f ∈ Λ+.

Proof. We have Σ = PGL
+ ∪ PGL

−f .

1. Let us assume that H is ([∞]1, [0]1)-transitive. By Lemma 3.5 the group of all

([∞]1, [0]1)-homologies is

A([∞]1, [0]1) = Σ́∞,0 = {ά | α ∈ Σ∞,0}.

As shown in the proof of Lemma 4.3 we have:

Σ∞,0 = {a• | a ∈ P} ∪ {d•f | d ∈ F∗ \ P}.

Let a ∈ P. By Lemma 3.4 we have Σ = Σa• = PGL
+ ∪ PGL

−fa•, and there-

fore PGL
−f = PGL

−fa•, hence fa•f−1 ∈ PGL
+. Since ∞, 0 ∈ Fix fa•f−1

there is a b ∈ P with fa•f−1 = b•. Because of f(1) = 1 we get b =

b•(1) = f(a) and thus f(ax) = f(a)f(x) for all x ∈ F. Let d ∈ F∗ \ P .

By Lemma 3.4 we have Σ = Σd•f = PGL
+d•f ∪ PGL

−fd•f and therefore

PGL
+ = PGL

−fd•f , hence fd•f ∈ PGL
−. Because of ∞, 0 ∈ Fix fd•f and

f(1) = 1 we obtain fd•f = f(d)•, and thus f(df(x)) = f(d)x for all x ∈ F.

2. Now let us assume that f ∈ Λ+. For a ∈ P we have f(a) ∈ P , a•, f(a)• ∈
PGL

+, ∞, 0 ∈ Fix a•, and fa• = f(a)•f because of f ∈ M+, and therefore

Σa• = PGL
+ ∪ PGL

−fa• = PGL
+ ∪ PGL

−f = Σ. Thus Lemma 3.4 yields

á• ∈ A([∞]1, [0]1). For d ∈ F∗ \ P we have f(d) ∈ F∗ \ P , d•, f(d)• ∈
PGL

−, ∞, 0 ∈ Fix d•f and fd•f = f(d)• because of f ∈ I+, hence Σd•f =

PGL
+d•f ∪ PGL

−fd•f = PGL
−f ∪ PGL

−f(d)• = Σ. Thus Lemma 3.4 yields

d́•f́ ∈ A([∞]1, [0]1). Since á•(1, 0) = (a, 0) and d́•f́(1, 0) = (d, 0) we obtain

that H is ([∞]1, [0]1)-transitive. ¤
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Lemma 4.5. Let P be a subgroup of (F∗, ·) of index 2 and let f : F → F be an

additive bijection satisfying f(ax) = f(a)f(x) for all a ∈ P , x ∈ F. Then f is an

automorphism of (F,+, ·).

Proof. Since f is additive we have f(−x) = −f(x), in particular f(−1) = −1,

hence f((−1)x) = f(−1)f(x). If |F| = 3 we have f = id. Let |F| > 4. Consider

d ∈ F∗ \ P , d 6= 0, 1. Then d + 1 ∈ P or d2 + d ∈ P . Hence there is a p ∈ P

with d + p ∈ P . For all x ∈ F we have f(dx) + f(p)f(x) = f(dx) + f(px) =

f((d+p)x) = f(d+p)f(x) = f(d)f(x)+f(p)f(x), hence f(dx) = f(d)f(x). ¤

Lemma 4.6. There exist A,B ∈ G1, such that H(F, f, g) is (A,B)-transitive if

and only if there is an automorphism φ of (F,+, ·) such that f ∈ φPGL
+Λ+PGL

+,

g ∈ φPGL
+.

Proof. (a) Let A =: {a}×F and B =: {b}×F with a 6= b. Then there is an

α ∈ PGL
+ with α(a) = ∞, α(b) = 0 and ά is an isomorphism from H(F, f, g)

to H(F, fα−1, g) (cf. [13, 2.1]). By Lemma 3.2 the hyperbola structure

H(F, f, g) is (A,B)-transitive if and only if H(F, fα−1, g) is ([∞]1, [0]1)-tran-

sitive. By [13, Remark 2.5] there are ρ, σ ∈ PGL
+ such that {∞, 0, 1} ⊂

Fix ρfα−1 ∩ Fixσg, and we have H(F, fα−1, g) = H(F, ρfα−1, σg).

(b) Let H(F, f, g) be (A,B)-transitive. Put φ := σg ∈ Π+. By (a) the hyperbola

structure H(F, ρfα−1, φ) is ([∞]1, [0]1)-transitive, and {∞, 0, 1} ⊂ Fixφ.

Consider x ∈ F∗ \ P . Then there exists an order-reversing bijection ξ ∈
φ−1PGL

−ρfα−1 = φ−1PGL
−fα−1 with ξ(0) = 0, ξ(∞) = ∞, ξ(1) = x.

By Lemma 3.5(2), ξ́ is a ([∞]1, [0]1)-homology, hence φ−1PGL
−fα−1ξ−1 =

PGL
+ because of PGL

+ξ−1 ⊂ Π−. Thus there is a ν ∈ PGL
− such that

ξ = φ−1νfα−1, hence PGL
+ = φ−1PGL

−ν−1φ = φ−1PGL
+φ.

Let a, b ∈ F. Because of a+, b+ ∈ PGL
+ we have φ−1a+φ, φ−1b+φ ∈ PGL

+,

and for a 6= 0 the mapping φ−1a+φ has exactly ∞ as fixed point, hence

φ−1a+φ = φ−1(a)+ because of φ−1a+φ(0) = φ−1(a). Therefore,

φ−1(a + b) = φ−1(a+(b)) = φ−1(a+φφ−1(b)) = φ−1(a)+(φ−1(b))

= φ−1(a) + φ−1(b).

Hence φ−1 is additive.

For a ∈ P we have a•, φ−1a•φ ∈ PGL
+, hence φ−1a•φ = φ−1(a)•. There-

fore, for all z ∈ F we have

φ−1(az) = φ−1(a•(z)) = φ−1a•(φ−1(z)) = φ−1(a)•(φ−1(z))

= (φ−1(a) · (φ−1(z).

Hence φ is an automorphism of the field F by Lemma 4.5.
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With φ−1σg = id we have H(F, ρfα−1, σg) = H(F, φ−1ρfα−1, id) by [13,

Remark 2.5], therefore φ−1ρfα−1 ∈ Λ+ by Lemma 4.4, hence f ∈ φρΛ+α ⊂
φPGL

+Λ+PGL
+ and g ∈ φPGL

+.

(c) For α ∈ PGL
+ and f ∈ φPGL

+Λ+α, g ∈ φPGL
+ it follows with (a) by

Lemma 4.4 that H(F, f, g) is ([α−1(∞)]1, [α
−1(0)]1)-transitive. ¤

Since H(F, f, g) and H(F, g, f) are isomorphic, Lemma 4.6 yields imediatelly

the following corollaries.

Corollary 4.7. There exist A,B ∈ G such that H(F, f, g) is (A,B)-transitive if

and only if there is an automorphism φ of (F,+, ·) such that f ∈ φPGL
+Λ+PGL

+,

g ∈ φPGL
+ or f ∈ φPGL

+, g ∈ φPGL
+Λ+PGL

+.

Corollary 4.8. If H(F, f, g) admits a group of type (0; 2) then H(F, f, g) is the

Minkowski plane of order 3 or 5.

Proof. We may assume that g = id; ∞, 0, 1 ∈ Fix f and that H(F, f, g) is

([∞]1, [0]1)-transitive (cf. proof of Lemma 4.6). Hence f ∈ Λ+ by Lemma 4.4.

For a permutation α of F the bijection ά is an involution if and only if α is an in-

volution. Hence, because of Lemma 3.5 and Lemma 4.3 the group A([∞]1, [0]1)

contains at most one involution. Now Theorem 3.7 yields the asertion. ¤

Theorem 4.9. Let f ∈ Π+ with {∞, 0, 1} ⊂ Fix f , and Σ = PGL
+ ∪ PGL

−f .

Then the following statements are equivalent:

(i) Σ is a group;

(ii1) H = H(F, f, id) is (X, [∞]1)-transitive for every X ∈ G1 \ {[∞]1};

(ii2) H = H(F, f, id) is (X, [∞]2)-transitive for every X ∈ G2 \ {[∞]2};

(iii) f |F is an automorphism with f2 = id.

Proof. (i) ⇒ (ii1) and (i) ⇒ (ii2) follow by Theorem 3.9.

(ii1) ⇒ (iii). We may assume that |F| > 4. We have f ∈ Λ+ by Lemma 4.4. For

all α ∈ Σ∞,0 we have Σα = Σ by Lemma 3.5 and Lemma 3.4. Let b ∈ F∗.

Consider a ∈ P , a 6= 1. Then a• ∈ PGL
+∩Σ∞,0 and with c = ab

1−a
we have

a•b+ ∈ PGL
+ ∩ Σ∞,c and Σ = Σa•b+ = Σb+ = PGL

+b+ ∪ PGL
−fb+ =

PGL
+ ∪ PGL

−fb+, hence PGL
−fb+ = PGL

−f = PGL
−f(b)+f . Therefore

for every γ ∈ PGL
− there exists a δ ∈ PGL

− with γfb+ = δf(b)+f or

fb+ = γ−1δf(b)+f . Because of fb+(∞) = ∞ and f(b)+f(∞) = ∞ we

have γ−1δ(∞) = ∞, and hence there is mb, db ∈ F such that γ−1δ =

d+
b m•

b. From f(b) = fb+(0) = γ−1δf(b)+f(0) = mb · f(b) + db we get
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db = (1 − mb)f(b), hence

f(b + x) = fb+(x) = d+
b m•

bf(b)+(x) = mb(f(x) + f(b)) + (1 − mb)f(b)

for all x ∈ F, in particular 0 = f(0) = mb(f(−b) + f(b)) + (1 − mb)f(b) =

mbf(−b) + f(b), thus mb = − f(b)
f(−b) . Because of f ∈ Λ+ we have

mb = −
f(b)

f(b)f(−1)
= −

1

f(−1)

for all b ∈ P . Hence for all b ∈ P , x ∈ F we have

f(b+x) = −
1

f(−1)

(

f(x)+f(b)
)

+
(

1+
1

f(−1)

)

f(b) = −
1

f(−1)
f(x)+f(b).

If x ∈ P we obtain f(b+x) = − 1
f(−1)f(b)+f(x) by exchanging b and x in

the previous formula. Therefore we have (1+ 1
f(−1) )f(b) = (1+ 1

f(−1) )f(x)

for all b, x ∈ P . Because of |P | ≥ 2 this implies 1 + 1
f(−1) = 0, hence

f(−1) = −1 and mb = 1 for all b ∈ P . For b ∈ F∗ \ P we obtain

mb = −
f(b)

f(−b)
= −

f(b)

f(bf(−1))
= −

f(b)

f(b) · (−1)
= 1.

Therefore we have for all b, x ∈ F:

f(b + x) = mb(f(x) + f(b)) + (1 − mb)f(b) = f(x) + f(b).

Hence f |F is an automorphism of (F,+, ·) by Lemma 4.5.

Consider d ∈ F∗ \ P . Since f ∈ Aut(F,+, ·) ∩ I+ we have for all x ∈ F:

f(d)x = f(df(x)) = f(d)f2(x), hence f2(x) = x.

(ii2) ⇒ (iii). This follows from the fact that H(F, f, g) and H(F, g, f) are isomor-

phic (cf. [13, 2.2]) by the implication (ii1) ⇒ (iii).

(iii) ⇒ (i). Since f |F is an automorphism of (F,+, ·) we have PGL
−f = fPGL

−,

and because of f2 = id we obtain PGL
−f · PGL

−f = PGL
+. Therefore Σ

is a group. ¤

Corollary 4.10. If Σ = PGL
+∪PGL

−f is a group, then H(F, f, id) is a Minkowski

plane (cf. Hartmann [4]).

Corollary 4.11. If H(F, f, g) admits an automorphism group of type (1; 1) then

H(F, f, g) is of type (4; 4).

Proof. By assumption there are subgroups Γ1,Γ2 of AutH(F, f, g) such that

Ai(Γi) 6= ∅ for i = 1, 2. Since A1(Γ1) 6= ∅ we may assume that g = id and
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{∞, 0, 1} ⊂ Fix f (cf. proof of Lemma 4.6); then f ∈ Λ+ by Lemma 4.4. Be-

cause A2(Γ2) 6= ∅, by Lemma 4.6 (now in Lemma 4.6 we have to exchange the

roles of 1 and 2 as well as those of g and f) there is an automorphism φ of F(+, ·)
such that id = g ∈ φPGL

+Λ+PGL
+ and f ∈ φPGL+. Hence there is γ ∈ PGL

+

such that f = φγ. Because of ∞, 0, 1 ∈ Fix f ∩ Fixφ we obtain ∞, 0, 1 ∈ Fix γ,

hence γ = id. Therefore f = φ, hence f2 = id (cf. the last sentence of the

proof of Theorem 4.9, (ii1) ⇒ (iii). Thus Σ = PGL
+ ∪ PGL

−f is a group by

Theorem 4.9, and therefore H(F, f, g) is of type (4; 4) by Theorem 3.9. ¤

Theorem 4.12. A hyperbola structure H(F, f, g) is of type (0; 0), (0; 1), or type

(4; 4).

Proof. Let (j; k) be the type of H(F, f, g). If j 6= 0 then there is an automorphism

group of type (1; 1) because k ≥ j, hence (j; k) = (4; 4) by Corollary 4.11. Now

let us assume j = 0. Then k < 3 by Theorem 4.9 and Theorem 3.9. Since the

Minkowski planes of order 3 and 5 are Miquelian (cf. [2]) and therefore of type

(4; 4), we obtain k 6= 2. ¤

Examples 4.13. (1) Let (F, P ) be an ordered field. Then −1 6∈ P . For every

Moulton mapping f we have f ∈ Λ+. For k = −f(−1) 6= 1 the bijection

f =: fk is not an automorphism. Hence for k = −f(−1) 6= 1 the hyper-

bola structure H(F, fk, id) is of type (0; 1) by Lemma 4.4, Theorem 4.9 and

Theorem 4.12. For an ordered field (F, P ) these are the only examples of

hyperbola structures H(F, fk, id) of type (0; 1) (cf. Lemma 4.3(4)).

(2) Every Miquelian Minkowski plane is of type (4; 4). If (F, P ) is a half-

ordered field and f an order-preserving involutory automorphism of the

field (extended canonically onto F) then H(F, f, id) is of type (4; 4) (cf. The-

orem 4.9).

(3) If (F, P ) is a half-ordered field and f ∈ Π+ \PGL+Λ+PGL
+ then H(F, f, id)

is of type (0; 0) (cf. Corollary 4.7 and Theorem 4.12). For example take F =

R and the order-preserving bijection f with f(x) = x3 for all x ∈ R. Then

f 6∈ PGL
+Λ+PGL

+, because otherwise there would be δ, γ ∈ PGL
+ with

δfγ ∈ Λ+, hence by Lemma 4.3(3) for all x ∈ P would hold x = δ(γ(x)3),

or δ−1(x) = γ(x)3, which is impossible.
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[14] H. Wefelscheid, Über die Automorphismengruppen von Hyperbelstruk-

turen, in Beitr. geom. Algebra, Proc. Symp. Duisburg 1976, 1977,

pp. 337–343.



I I G

◭◭ ◮◮

◭ ◮

page 18 / 18

go back

full screen

close

quit

ACADEMIA

PRESS

Hans-Joachim Kroll
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