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Abstract

Using a variation of Seydewitz’s method of projective generation of quadrics

we define two algebraic surfaces of PG(3, q
2), called elliptic QF -sets and

semi-hyperbolic QF -sets, and we show that these surfaces are contained in

the Hermitian surface of PG(3, q
2). Also, we characterize a semi-hyperbolic

QF -set as the intersection of two Hermitian surfaces. Finally we describe all

possible configurations of the absolute set of an α-correlation in PG(2, q
2),

where α is the involutory automorphism of GF(q2).
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1 Introduction

Let A and B be two distinct points of a three-dimensional projective space. Let

SA be the star of lines through A, let S∗
B be the star of planes through B and let

Φ be a projectivity between SA and S∗
B . In 1847 Franz Seydewitz proved that

quadrics may be generated as the set of points of intersection of corresponding

elements under Φ (see e.g. [14]). In this paper we define two algebraic surfaces

of PG(3, q2) by using a variation of Seydewitz’s projective generation of quadrics

by means of a suitable collineation instead of a projectivity.

A Hermitian variety of a Desarguesian projective space PG(n, q2) of order q2,

q any prime power, is the set of absolute points of a unitary polarity. A Hermitian

variety of a projective plane PG(2, q2) is called a Hermitian curve and a Hermi-

tian variety of a projective space PG(3, q2) is called a Hermitian surface. A point

P on a Hermitian variety H is singular if any line through P either intersects H
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just in P or it is contained in H. A Hermitian variety of PG(n, q2) is called degen-

erate if it contains at least a singular point, otherwise it is called non-degenerate.

The vertex of H is the set of all singular points of H and it is denoted by V (H).

It easily follows that V (H) is a projective subspace of PG(n, q2). The rank r(H)

of H is defined as r(H) = n − dim(V (H)). Notice that a Hermitian curve of

rank 2 is a Baer subpencil of lines of PG(2, q2) and that a Hermitian curve of

rank 1 is a line counted q + 1 times. Moreover a Hermitian surface of PG(3, q2)

of rank 3 is a cone with vertex a point projecting a non-degenerate Hermitian

curve, a Hermitian surface of rank 2 is a Baer subpencil of planes, a Hermitian

surface of rank 1 is a plane repeated q + 1 times. A non-degenerate Hermitian

curve H of PG(2, q2) has q3 + 1 points; every line meets H in a Baer subline or

in exactly one point. Through each point of H there is exactly one tangent line

and through each point not on H there are exactly q +1 tangent lines, that form

a Baer subpencil of lines. A non-degenerate Hermitian surface H of PG(3, q2)

has (q2 + 1)(q3 + 1) points, every line intersects H in 1, q + 1 or q2 + 1 points.

Every (q + 1)-secant line intersects H in a Baer subline. Every plane intersects

H either in a non-degenerate Hermitian curve or in a Baer subpencil of lines.

More details about Hermitian varieties can be found in [8].

Let PA and PB be the pencils of lines with vertices two distinct points A and

B in PG(2, q2). Let αF be the involutory automorphism of GF(q2) and let Φ be

an αF -collineation between PA and PB . If Φ does not map the line AB onto the

line BA, then the set of points of intersections of corresponding lines under Φ is

called a CF -set (see [4]). If Φ maps the line AB onto the line BA, then the set

of points of intersections of corresponding lines under Φ is called a degenerate

CF -set (see [5]).

Every CF -set has q2 + 1 points, it is of type (0, 1, 2, q + 1) with respect to lines

of PG(2, q2) and every (q + 1)-secant intersects such a set in a Baer subline. The

(q + 1)-secant lines number q − 1 and all contain a common point C not on the

CF -set. Those lines, together with the lines CA and CB, form a Baer subpen-

cil. Every CF -set is projectively equivalent to the set of GF(q2)-rational points of

algebraic curve with equation x1x
q
2 − xq+1

3 = 0. Under the André–Bruck–Bose

representation a CF -set corresponds with an elliptic quadric contained in a suit-

able hyperplane of PG(4, q).

Every degenerate CF -set has 2q2 + 1 points, it is of type (1, 2, q + 1, q2 + 1)

with respect to lines of PG(2, q2) and every (q + 1)-secant intersects such a set

in a Baer subline. Moreover every degenerate CF -set is the union of the line AB

and a Baer subplane meeting the line AB in a Baer subline. The points A and

B are called the vertices of a CF -set (degenerate or not).

Let P and P ′ be two Baer subpencils of lines of PG(2, q2) with vertices V and

V ′ respectively and let C be the set of points of intersection between the lines of
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P and the lines of P ′. If the line V V ′ belongs to P and not to P ′, then C is called

a K-set. Under the André–Bruck–Bose representation to a K-set corresponds a

quadratic cone contained in a suitable hyperplane of PG(4, q).

If the line V V ′ belongs neither to P nor to P ′, then C is called an H-set.

Under the André–Bruck–Bose representation to an H-set corresponds an hyper-

bolic quadric contained in a suitable hyperplane of PG(4, q).

Every K-set C has q2 + q + 1 points, it is of type (0, 1, 2, q + 1) with respect to

lines of PG(2, q2) and every (q + 1)-secant intersects C in a Baer subline. Every

H-set C has (q + 1)2 points, it is of type (0, 1, 2, q + 1) with respect to lines of

PG(2, q2) and every (q + 1)-secant intersects C in a Baer subline.

Finally let H be a non-degenerate Hermitian curve and let P be a Baer sub-

pencil with vertex V on H containing the tangent line to H at V. A Γ-set C is

the set of points of intersection between H and the lines of P. It has q2 + 1

points, it is of type (0, 1, 2, q + 1) with respect to lines of PG(2, q2) and every

(q + 1)-secant intersects C in a Baer subline. In the following we will make use

of the Barlotti–Cofman representation of PG(3, q2) in PG(6, q).

A spread of PG(3, q) is a partition of PG(3, q) into lines. A spread S of PG(3, q)

is a regular spread if the regulus containing any three distinct lines of S is

contained in S. A 1-spread of PG(5, q) is a partition of PG(5, q) into lines. A

1-spread S of PG(5, q) is a normal spread if S induces a spread in any subspace

generated by two distinct lines of S (see [13, 10]). Let H∞ be a hyperplane of

PG(3, q2), that we consider as the hyperplane at infinity. Let Σ∞ be a hyperplane

of PG(6, q) and let S be a normal spread of Σ∞. The points of the affine space

PG(3, q2)\H∞ are represented by the points of PG(6, q)\Σ∞. The points of H∞

are represented by the elements of the spread S. The lines of PG(3, q2)\H∞ are

represented by planes of PG(6, q) intersecting Σ∞ exactly in an element of S.

The lines of H∞ are represented by the 3-dimensional subspaces containing two

elements of S. The incidence relation of PG(3, q2) is represented by set theoretic

inclusion in PG(6, q).

From now on if P is a point of PG(3, q2), the corresponding point or line of

PG(6, q) will be denoted by P ∗. The same notation will be used for subsets of

PG(3, q2). For more details about the Barlotti–Cofman representation see [1].

A parabolic quadric Q(4, q) of a four-dimensional subspace contained in Σ∞,

is called an R-quadric if Q(4, q) contains a regulus contained in S.

A correlation v of a projective plane π is a one-to-one mapping of its points

onto its lines and its lines onto its points, such that P ∈ ℓ ⇐⇒ v(ℓ) ∈ v(P )

for every flag (P, ℓ). A correlation v of PG(2, q2) maps a point P = 〈(y1, y2, y3)〉

onto the following line:

v(P ) = {〈(x1, x2, x3)〉 : (x1, x2, x3)A(α(y1), α(y2), α(y3))
T = 0},
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where A is a non-singular 3 × 3 matrix over GF(q2) and α is an automorphism

of GF(q2) called the companion automorphism of v. The map v will be called

an α-correlation. An absolute point of v is a point P such that P ∈ v(P ). The

absolute set of v is the set of its absolute points.

2 Definitions

Let A and B be two distinct points of a three-dimensional projective space

PG(3, q2) over the Galois field GF(q2), q any prime power. Let αF be the in-

volutory automorphism of GF(q2), given by αF : x ∈ GF(q2) 7→ xq ∈ GF(q2),

and let Φ be an αF -collineation between the star SA of lines through A and the

star S∗
B of planes through B, mapping the line AB onto a plane not containing

the line AB. Without loss of generality we may assume that A = 〈(0, 0, 0, 1)〉,

B = 〈(0, 0, 1, 1)〉 and that Φ maps the line through A and 〈(y1, y1, y3, 0)〉 onto

the plane through B with equation b1x1 + b2x2 + b3x3 − b3x4 = 0, where





b1

b2

b3



 =





a11 a12 a13

a21 a22 a23

a31 a32 a33









y1
q

y2
q

y3
q



 ,

and (aij) is a non-singular matrix over GF(q2).

Put U1 = 〈(0, 0, 0, 1)〉, U2 = 〈(0, 1, 0, 0)〉, U3 = 〈(0, 0, 1, 0)〉. We may as-

sume that the line AU1 is mapped onto the plane x1 = 0, that the line AU2 is

mapped onto the plane x2 = 0 and that the line AU3 is mapped onto the plane

x3 − x4 = 0. Under these assumptions it follows readily that a21 = a31 = a12 =

a32 = a13 = a23 = 0. Hence a11a22a33 6= 0. Let ℓ be a line through A and let

〈(y1, y2, y3, 0)〉) be a point of ℓ \ {A}. If y3 = 0 and a11y
q+1
1 + a22y

q+1
2 = 0, then

the line ℓ is contained in the plane Φ(ℓ). If either y3 6= 0 or a11y
q+1
1 + a22y

q+1
2 6=

0, then ℓ ∩ Φ(ℓ) is a point with homogeneous coordinates

(a33y
q
3y1, a33y

q
3y2, a33y

q+1
3 , a11y

q+1
1 + a22y

q+1
2 + a33y

q+1
3 ),

and this gives a parametric representation of the set Q of points of intersection

of corresponding elements under Φ. Therefore the locus Q has an equation of

the form

axq+1
1 + bxq+1

2 + xq+1
3 − x4x

q
3 = 0,

where a = a11

a33

6= 0 and b = a22

a33

6= 0.

The line AB is mapped under Φ onto a plane πB not through A. Moreover,

the lines through A, mapped under Φ onto the planes of the pencil with axis

AB, are the lines of a pencil PA contained in a plane πA not through B. So
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the αF -collineation ΦπA
: ℓ ∈ PA 7→ Φ(ℓ) ∩ πA ∈ PA can be defined. The lines

through A contained in Q are exactly the lines fixed by ΦπA
, so they number

0, 1, 2 or q+1 and form in the last case a Baer subpencil of PA (see [3]). Observe

that the line r = AU1 is not fixed under ΦπA
and that a line t of PA\{r} through

A and a point 〈(y1, y2, 0, 0)〉, is mapped onto the plane ayq
1x1+byq

2x2 = 0. So t is

fixed by ΦπA
if and only if (y1y2

−1)q+1 = −ba−1. This equation, in the unknown

y1y2
−1, has q+1 distinct roots over GF(q2) if and only if ba−1 ∈ GF(q), otherwise

the equation has no root over GF(q2) (see e.g. [12, p. 102]). It follows that the

set Q intersects the plane πA either in a Baer subpencil of lines with vertex A

or exactly in A, hence πA is the tangent plane to Q at A. Similarly, the set Q

intersects πB either in a Baer subpencil of lines with vertex B or exactly in B,

so πB is the tangent plane to Q at B.

If Q intersects the tangent plane πA (respectively the tangent plane πB) in

a Baer subpencil of lines with vertex A (respectively B), then Q is called a

semi-hyperbolic QF -set. If Q intersects the tangent plane πA (respectively the

tangent plane πB) just in A (respectively just in B), then Q is called an elliptic

QF -set. The points A and B are called the vertices of Q and the line πA ∩ πB is

called the axis of Q. The set Q is then a semi-hyperbolic QF -set if and only if

ba−1 ∈ GF(q). The set Q is an elliptic QF -set if and only if ba−1 /∈ GF(q).

3 Semi-hyperbolic QF -sets

Let Q be a semi-hyperbolic QF -set, then ba−1 ∈ GF(q). It follows that there

exists an element λ in GF(q) such that b = aλ, and then the equation of Q has

the form axq+1
1 +aλxq+1

2 +xq+1
3 −x4x

q
3 = 0. Since λ belongs to GF(q), it follows

that there exists an element ρ ∈ GF(q2) such that ρq+1 = λ. Hence, via the

projectivity x1
′ = x1, x2

′ = ρx2, x3
′ = x3, x4

′ = x4, the equation of the locus Q

becomes axq+1
1 + axq+1

2 +xq+1
3 −x4x

q
3 = 0. Assuming that the point 〈(1, 0, 1, 0)〉

belongs to Q, the equation of this set has the form −xq+1
1 −xq+1

2 +xq+1
3 −x4x

q
3 =

0. Let δ be an element of GF(q2) such that δq+1 = −1. Hence, via the projectivity

x1
′ = δx1, x2

′ = δx2, x3
′ = x3, x4

′ = x4, the equation of a semi-hyperbolic

QF -set has the canonical form

xq+1
1 + xq+1

2 + xq+1
3 − x4x

q
3 = 0.

Proposition 3.1. Let Q be a semi-hyperbolic QF -set of PG(3, q2) with vertices A

and B. The set Q has q4 + q3 + q2 + 1 points. Every line of PG(3, q2) intersects Q

in 0, 1, 2, q + 1 or q2 + 1 points and every (q + 1)-secant meets Q in a Baer subline.

Moreover every line contained in Q contains either A or B.

Proof. Every line of the pencil PA either intersects Q exactly in A or it is one
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of the q + 1 lines through A contained in Q. Every line ℓ through A, not in πA,

intersects Q in two points, namely A and ℓ ∩Φ(ℓ). Similarly, every line through

B either is contained in Q or intersects Q exactly in B or intersects Q in two

distinct points. It follows that Q has q4 + q3 + q2 + 1 points. Let ℓ be a line

of PG(3, q2) neither through A nor through B. If there exists a point R on ℓ

such that ℓ ⊆ Φ(AR), then the axis of the pencil of planes {Φ(AP ) : P ∈ ℓ}

intersects ℓ in a point R′ possibly coincident to R. It follows that for every point

P ∈ ℓ, distinct from R and distinct from R′, the plane Φ(AP ) cannot contain

P, so Q ∩ ℓ = {R,R′}. If the line ℓ is not contained in any plane of the pencil

{Φ(AP ) : P ∈ ℓ}, then Φ induces an αF -collineation of the line ℓ into itself

defined by

φℓ : P ∈ ℓ 7→ Φ(AP ) ∩ ℓ ∈ ℓ.

The points of the line ℓ which belong to Q are exactly all the fixed points of φℓ.

The system of fixed points of φℓ is one of the following (see [3]): the empty set,

a single point, a pair of distinct points or a subline formed by all the points of

ℓ coordinatized over the subfield Fix(αF ) = {x ∈ GF(q2) : xq = x} = GF(q),

with respect to a suitable basis of ℓ. In the last case this set is a Baer subline of

the line ℓ. From these arguments it follows that every line of PG(3, q2), neither

through A nor through B, intersects Q in 0, 1, 2 or q + 1 points. ¤

Proposition 3.2. Every semi-hyperbolic QF -set is the union of q−1 non-degenerate

Hermitian curves with two Baer subpencils of lines with vertices A and B, all with

a common Baer subline, such that the planes containing the q − 1 non-degenerate

Hermitian curves, together with πA and πB , form a Baer subpencil of planes with

axis the line πA ∩ πB .

Proof. Let Q be a semi-hyperbolic QF -set. W.l.o.g. we may assume that Q has

canonical equation xq+1
1 + xq+1

2 + xq+1
3 − x4x

q
3 = 0. Let F be the set of all the

planes of the pencil with axis πA ∩ πB , different from πA and from πB . A plane

of F has equation x4 = kx3, k ∈ GF(q2)\{1}. The intersection of this plane with

Q is a set Ck with equations x4 = kx3 and xq+1
1 + xq+1

2 + (1 − k)xq+1
3 = 0. The

set Ck is a non-degenerate Hermitian curve of the plane x4 = kx3 if and only if

1−k ∈ GF(q) and so if and only if k ∈ GF(q). Therefore Q intersects q−1 planes

of F in a non-degenerate Hermitian curve and intersects the planes πA and πB

in two Baer subpencils of lines with vertices A and B, respectively. Observe that

the set of the q − 1 planes with equations x4 = kx3, k ∈ GF(q) \ {1}, together

with πA and πB , form a Baer subpencil of planes with axis the line πA ∩ πB .

Furthermore, it is clear that Q ∩ πA ∩ πB is a Baer subline contained in every

non-degenerate Hermitian curve Ck and contained in each one of the two Baer
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subpencils of lines Q∩ πA and Q∩ πB . Finally, the set Q contains the set

Q′ =
⋃

k∈GF(q)\{1}

Ck ∪ (Q∩ πA) ∪ (Q∩ πB)

and since |Q′| = q4 + q3 + q2 + 1 = |Q|, it follows that Q = Q′ as requested. ¤

We will need the following well known result on polynomials over GF(q2).

Lemma 3.3. The polynomial xq + x + 1 has q roots over GF(q2).

Proof. Consider the map f : x ∈ GF(q2) 7→ xq + x ∈ GF(q). For any y ∈ GF(q)

there exist at most q elements x of GF(q2) such that xq + x = y. From the

cardinalities of GF(q2) and GF(q), it follows that for any y ∈ GF(q) there exist

exactly q elements of GF(q2) which are mapped onto y under f . So the equation

xq + x = −1 has q roots over GF(q2). ¤

Proposition 3.4. Every semi-hyperbolic QF -set of PG(3, q2) is contained in a non-

degenerate Hermitian surface.

Proof. Let Q be a semi-hyperbolic QF -set of PG(3, q2). Without loss of general-

ity we may assume that Q has canonical equation xq+1
1 +xq+1

2 +xq+1
3 −x4x

q
3 = 0.

By Lemma 3.3 there exists an element σ of GF(q2) satisfying the condition

σq + σ + 1 = 0. It follows that Q is contained in the non-degenerate Hermitian

surface with equation xq+1
1 + xq+1

2 + xq+1
3 + σx3x

q
4 + σqx4x

q
3 = 0. ¤

Proposition 3.5. Every semi-hyperbolic QF -set of PG(3, q2) is the intersection of

a non-degenerate Hermitian surface with a Baer subpencil of planes.

Proof. Let Q be a semi-hyperbolic QF -set of PG(3, q2). By Propositions 3.2

and 3.4, Q is a set of q4 + q3 + q2 + 1 points contained in the intersection

of a non-degenerate Hermitian surface H with a Baer subpencil of planes P.

From [6] it is known that there exists only one configuration for the intersec-

tion of H and P with more than q4 + q3 + q2 + 1 points. Such a configuration

is the union of q + 1 Baer subpencils of lines with a common Baer subline such

that the vertices of these pencils form a Baer subline. Since this configuration

cannot contain a semi-hyperbolic QF -set, it follows that H ∩ P = Q. ¤

Proposition 3.6. Every plane of PG(3, q2) intersects a semi-hyperbolic QF -set in

one of the following: a non-degenerate Hermitian curve, a Baer subpencil of lines,

a pair of distinct lines, a CF -set, a degenerate CF -set, a K-set, an H-set, a Γ-set, a

Baer subline.
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Proof. Let π be a plane of PG(3, q2) and let Q be a semi-hyperbolic QF -set with

vertices A and B. By Proposition 3.5 Q is the intersection of a non-degenerate

Hermitian surface H with a Baer subpencil of planes P with axis the line πA∩πB.

If π is a plane of P, then π intersects Q either in a non-degenerate Hermitian

curve or in a Baer subpencil of lines with vertex A or B. If π belongs to the

pencil of planes with axis πA ∩ πB and does not belong to P, then π ∩ Q is a

Baer subline of the line πA ∩ πB . If π is a plane not containing the line πA ∩ πB

then π ∩Q = P ∩ π ∩H and so π ∩Q is the intersection between the Hermitian

curve π ∩ H (possibly degenerate of rank 2) with the Baer subpencil of lines

π ∩ P (degenerate Hermitian curve of rank 2). In [6] the intersection between

two distinct, possibly degenerate, Hermitian curves has been studied and it has

been proved that, if π ∩H 6= π ∩P, then π ∩Q is one of the following: a CF -set,

a degenerate CF -set, an H-set, a K-set, a Γ-set, a pair of distinct lines. Finally,

if π ∩H = π ∩P then π ∩Q is a Baer subpencil of lines, hence either π = πA or

π = πB , which is not possible in this case. ¤

Proposition 3.7. Let H be a non-degenerate Hermitian curve of a plane π of

PG(3, q2) and let A, B be two points not on π such that the point AB ∩ π is not

on H. Then there exists a unique semi-hyperbolic QF -set of PG(3, q2), with vertices

A and B, that meets π in the Hermitian curve H.

Proof. Let u be the polarity associated with H. The αF -collineation

Φ: ℓ ∈ SA 7→ 〈u(ℓ ∩ π), B〉 ∈ S∗
B ,

maps the line AB onto a plane not through AB. Let P = π ∩ AB, every line

joining A with a point of u(P ) ∩ H is contained in the corresponding plane

under Φ. It follows that Φ generates a semi-hyperbolic QF -set Q of PG(3, q2),

with vertices A and B and axis u(AB ∩ π), that meets π in H. In order to

prove the uniqueness observe that there is a bijection Ψ between the set of the

αF -correlations of the plane π and the set of the αF -collineations between SA

and S∗
B . Indeed, Ψ maps the αF -correlation v of π onto the αF -collineation

Φv defined by Φv : ℓ ∈ SA 7→ 〈v(ℓ ∩ π), B〉 ∈ S∗
B . Hence Φu is the unique

αF -collineation between SA and S∗
B such that every point of H is a point of

intersection of corresponding elements. Therefore the semi-hyperbolic QF -set

with vertices A and B defined by Φu is the unique semi-hyperbolic QF -set that

intersects π exactly in H. ¤

3.1 Representation of semi-hyperbolic QF -sets in PG(6, q)

We start with the Barlotti–Cofman representation of Baer subpencils of planes

of PG(3, q2).
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Lemma 3.8. Every Baer subpencil of planes of PG(3, q2) containing π∞ is repre-

sented by a hyperplane H of PG(6, q) different from Σ∞. Conversely, every hy-

perplane of PG(6, q), different from Σ∞, represents a Baer subpencil of planes

containing π∞.

Proof. Let P be a Baer subpencil of planes of PG(3, q2) containing π∞ with axis ℓ

and let m be a line skew to ℓ. Then P∩m is a Baer subline m0 which corresponds

in PG(6, q) to a line m∗
0 not contained in Σ∞. The axis ℓ corresponds to a spread

ℓ∗ induced by S on a three-dimensional subspace Sℓ contained in Σ∞. Therefore

P corresponds to the hyperplane (different from Σ∞) spanned by m∗
0 and Sℓ.

Conversely let H be a hyperplane of PG(6, q) different from Σ∞. There exists a

unique three-dimensional subspace Sℓ of H ∩ Σ∞ such that S induces a spread

ℓ∗ on Sℓ. A line contained in H, skew to Sℓ, represents a Baer subline m0

contained in a line skew to ℓ. Hence H represents the Baer subpencil of planes

{〈ℓ, P 〉 : P ∈ m0} with axis ℓ. ¤

Now we are able to prove that semi-hyperbolic QF -sets of PG(3, q2) corre-

spond, under the Barlotti–Cofman representation, to hyperbolic quadrics con-

tained in hyperplanes of PG(6, q), and viceversa.

Proposition 3.9. Let Q be a semi-hyperbolic QF -set of PG(3, q2), with axis ℓ and

let π∞ be a plane such that Q∩ π∞ is a non-degenerate Hermitian curve. Then in

the Barlotti–Cofman representation with π∞ as plane at infinity, Q∗ is a hyperbolic

quadric contained in a hyperplane of PG(6, q), meeting Σ∞ in an R-quadric.

Proof. From Proposition 3.5, Q is the intersection of a Baer subpencil of planes

P with a non-degenerate Hermitian surface H. Hence in PG(6, q) we have Q∗ =

P∗∩H∗. Since H∩π∞ = Q∩π∞ is a non-degenerate Hermitian curve, it follows

that H∗ is a non-degenerate quadric Q(6, q) of PG(6, q) (see e.g. [11]). From

Lemma 3.8, P∗ is a hyperplane of PG(6, q) different from Σ∞. Hence Q∗ is a

quadric of P∗ and since |Q∗| = (q+1)2+(q3−q)+(q4+q2) = q4+q3+2q2+q+1 it

follows that Q∗ is a hyperbolic quadric of P∗. Finally, since Q∩π∞ is a Hermitian

curve of π∞ intersecting ℓ in a Baer subline ℓ0, it follows that Q∗ meets Σ∞ in

an R-quadric containing the regulus ℓ∗0 contained in S. ¤

Proposition 3.10. Every hyperbolic quadric contained in a hyperplane of PG(6, q),

meeting Σ∞ in an R-quadric, represents a semi-hyperbolic QF -set.

Proof. Let Q+(5, q) be a hyperbolic quadric contained in a hyperplane H of

PG(6, q) meeting Σ∞ in an R-quadric Q(4, q). The hyperplane H represents a

Baer subpencil of planes P with axis a line ℓ and Q(4, q) represents a Hermitian

curve H of the plane π∞ (see [2]). Let R be the regulus contained in Q(4, q) and

contained in S. The lines of S contained in the three-dimensional subspace Sℓ
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spanned by the lines of R, represent all the points of ℓ. There exist exactly two

four-dimensional subspaces of H containing Sℓ which are tangent hyperplanes

to Q+(5, q) at points say A∗ and B∗. The line A∗B∗ intersects Σ∞ in a point

not on Q(4, q), so the line AB intersects π∞ in a point not on H. From Proposi-

tion 3.7 there exists a unique semi-hyperbolic QF -set Q of PG(3, q2), with ver-

tices A and B, that meets π∞ in the Hermitian curve H. The set Q is represented

by a hyperbolic quadric Q∗ contained in the hyperplane 〈Q(4, q), A∗, B∗〉 = H,

meeting Σ∞ in the R-quadric Q(4, q) (see Proposition 3.9). Let m and m′ be two

lines of R. The quadrics Q+(5, q) and Q∗ both contain the quadric Q(4, q) and

the planes 〈A∗,m〉 and 〈B∗,m′〉. This gives 20 independent linear conditions

satisfied by the equations of both quadrics. It follows that Q+(5, q) = Q∗. ¤

3.2 Semi-hyperbolic QF -sets and Hermitian surfaces

In Proposition 3.4 we proved that every semi-hyperbolic QF -set is contained in

a Hermitian surface. In this section we characterize a semi-hyperbolic QF -set

as the intersection of two Hermitian surfaces.

Let H3 be a non-degenerate Hermitian surface of PG(3, q2), with associated

polarity u3 and let ℓ be a (q + 1)-secant line to H3 meeting H3 in a Baer subline

ℓ0. Let π∞ be a plane through ℓ, meeting H3 in a non-degenerate Hermitian

curve H2 with associated polarity u2, that we consider as the plane at infinity

in the Barlotti–Cofman representation. Moreover let πA and πB be two tangent

planes to H3 at points A and B (respectively) containing ℓ.

Proposition 3.11. The intersection of the Hermitian surface H3 with the Baer

subpencil of planes containing π∞, πA and πB is the unique semi-hyperbolic QF -set

with vertices A and B containing the non degenerate Hermitian curve H2.

Proof. Let P be the Baer subpencil of planes with axis ℓ containing π∞, πA and

πB . Observe that if P would contain three tangent planes to H3, then it would

be coincident with the Baer subpencil of planes formed by the tangent planes to

H3 through ℓ. It follows that every plane of P different from πA and πB inter-

sects H3 in a non-degenerate Hermitian curve. Hence |H3∩P| = q4 +q3 +q2 +1

and H∗
3 ∩ P∗ is a hyperbolic quadric of the hyperplane P∗ meeting Σ∞ in the

R-quadric H∗
2 (see Proof of Proposition 3.9). By Proposition 3.10 H∗

3 ∩ P∗ rep-

resents a semi-hyperbolic QF -set Q of PG(3, q2). A∗ and B∗ are the points of

intersection of H∗
3∩P

∗ with the two tangent hyperplanes to H∗
3∩P

∗ through the

subspace Sℓ containing the lines of ℓ∗. Such points are the Barlotti–Cofman rep-

resentation of the vertices of Q (see Proof of Proposition 3.10). Therefore Q is

a semi-hyperbolic QF -set with vertices A and B containing the non-degenerate

Hermitian curve H2. From Proposition 3.7 the uniqueness of Q follows. ¤
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Proposition 3.12. Let H3 and H′
3 be two distinct non-degenerate Hermitian sur-

faces of PG(3, q2), with associated polarities u3 and u′
3, respectively. Let A, B be

two distinct points of H3∩H′
3 such that B /∈ u3(A) and B /∈ u′

3(A). Then H3∩H′
3

is a semi-hyperbolic QF -set with vertices A and B if and only if the following

conditions hold:

(1) u3 and u′
3 agree on the points A and B.

(2) u3 and u′
3 induce the same unitary polarity on a plane π∞ containing the line

ℓ = u3(A) ∩ u3(B).

Proof. Suppose that H3 ∩ H′
3 is a semi-hyperbolic QF -set Q with vertices A

and B. Since the two tangent planes πA and πB to Q at A and B (respectively)

intersect Q in two Baer subpencils of planes with vertices A and B (respec-

tively), it follows that u3(A) = u′
3(A) = πA and u3(B) = u′

3(B) = πB. The

axis of Q is the line ℓ = πA ∩ πB , hence Q contains q − 1 non-degenerate

Hermitian curves contained in q − 1 planes through ℓ. Let H2 be one of such

Hermitian curves, with associated polarity u2, contained in a plane π∞. Since

H2 ⊆ Q = H3 ∩ H′
3, it follows that u3 and u′

3 induce on the plane π∞ the po-

larity u2. Conversely, from conditions (1) and (2) it follows that there exists a

non-degenerate Hermitian curve H2 of a plane π∞, with associated polarity u2,

contained in H3 ∩ H′
3 such that the line ℓ = u3(A) ∩ u3(B) is contained in π∞.

Since B /∈ u3(A) and B /∈ u′
3(A), the line AB is a (q + 1)-secant to both H3 and

H′
3, hence ℓ = u3(AB) is also a (q + 1)-secant line to both H3 and H′

3. Let P be

the Baer subpencil of planes with axis ℓ containing the planes π∞, πA = u3(A)

and πB = u3(B). From Proposition 3.11 it follows that H3 ∩ P is the unique

semi-hyperbolic QF -set Q with vertices A and B containing H2. In a similar

way it can be shown that H′
3 ∩ P = Q, and so Q ⊆ H3 ∩ H′

3. From [6] or [7]

it is known that there exists only one configuration of the intersection of H3

and H′
3 with more than q4 + q3 + q2 + 1 points. This configuration has exactly

q4 +2q3 +1 points and it is formed by the union of q +1 Baer subpencils of lines

with a common Baer subline such that the vertices of these pencils form a Baer

subline. Since such a configuration cannot contain a semi-hyperbolic QF -set, it

follows that H3 ∩H′
3 = Q, as requested. ¤

4 Elliptic QF -sets

Let Q be an elliptic QF -set. Assume that the point 〈(0, 1, 1, 0)〉 belongs to Q, it

follows that b = −1 hence Q has equation axq+1
1 − xq+1

2 + xq+1
3 − x4x

q
3 = 0 and

assuming that the point 〈(1, 1, 1, ξ)〉, ξ a primitive element of GF(q2), belongs

to Q, it follows that Q has equation ξxq+1
1 − xq+1

2 + xq+1
3 − x4x

q
3 = 0. Let

δ be an element of GF(q2) such that δq+1 = −1. Hence, via the projectivity
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x1
′ = δx1, x2

′ = δx2, x3
′ = x3, x4

′ = x4, we may assume that the canonical

form of the equation of an elliptic QF -set is as follows:

ξxq+1
1 + xq+1

2 + xq+1
3 − x4x

q
3 = 0.

Proposition 4.1. Let Q be an elliptic QF -set of PG(3, q2) with vertices A and B.

The set Q has q4 + 1 points. Every line of PG(3, q2) intersects Q in 0, 1, 2 or q + 1

points and every (q + 1)-secant meets Q in a Baer subline.

Proof. Every line of the pencil PA intersects Q exactly in A. Every line ℓ through

A, not in πA, intersects Q in two points, namely A and ℓ ∩ Φ(ℓ). Similarly,

every line through B either intersects Q exactly in B or intersects Q in two

distinct points. It follows that Q has q4 + 1 points. Using the same proof as

in Proposition 3.1 it follows that every line of PG(3, q2), neither through A nor

through B, intersects Q in 0, 1, 2 or q + 1 points. ¤

Proposition 4.2. Every elliptic QF -set of PG(3, q2) is contained in a non-degenerate

Hermitian surface.

Proof. Let Q be an elliptic QF -set of PG(3, q2). Without loss of generality we

may assume that Q has canonical equation

ξxq+1
1 + xq+1

2 + xq+1
3 − x4x

q
3 = 0.

By Lemma 3.3 there exists an element σ of GF(q2) satisfying the condition

σq + σ + 1 = 0. It follows that Q is contained in the Hermitian surface with

equation

−(ξσ + ξqσq)xq+1
1 + xq+1

2 + xq+1
3 + σxq

3x4 + σqx3x
q
4 = 0.

Observe that for σ 6= ξq−1

1−ξq−1 , the previous Hermitian surface is non-degenerate.

¤

Proposition 4.3. Every elliptic QF -set is the union of q3 − q2 Baer sublines con-

tained in q3 − q2 lines through a common point V on no Baer subline with q2 + 1

points forming a CF -set on a plane not containing V .

Proof. Let Q be an elliptic QF -set of PG(3, q2). From the proof of previous

proposition we have that Q is contained in the Hermitian cone Γ with equation

xq+1
2 + xq+1

3 +
ξq−1

1 − ξq−1
xq

3x4 +
1

ξq−1 − 1
x3x

q
4 = 0

with vertex the point V = 〈(1, 0, 0, 0)〉 and in a non-degenerate Hermitian sur-

face H not containing V . It follows that Q is contained in the base B of the
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Hermitian pencil F generated by Γ and H. We will prove that Q = B. Let u

be the polarity associated with H. The plane π = u(V ) has equation x1 = 0

and B ∩ π contains the set C with equations xq+1
2 + xq+1

3 − x4x
q
3 = 0, x1 = 0.

Via the projectivity x′
1 = x1, x

′
2 = x2, x

′
3 = x3, x

′
4 = x3 − x4 the equations of

the set C become xq+1
2 − x4x

q
3 = 0, x1 = 0 and hence C is a CF -set. From [6,

Theorem 2.2] we have that B∩π is either a CF -set or a K-set or an H-set. Since

H-sets and K-sets cannot contain a CF -set it follows that B∩π is a CF -set. From

[6, Theorem 3.1] we have that |B| = |Q| = q4 + 1, hence B = Q and Q is the

union of q3 − q2 Baer sublines contained in q3 − q2 lines through a common

point V on no Baer subline with q2 + 1 points forming a CF -set on a plane not

containing V . ¤

Proposition 4.4. Every elliptic QF -set of PG(3, q2) is the intersection of two non-

degenerate Hermitian surfaces.

Proof. Let Q be an elliptic QF -set of PG(3, q2). From the proof of the previous

proposition Q is the base of an Hermitian pencil F generated by a Hermitian

cone Γ and a non-degenerate Hermitian surface H. Let H′ be a non-degenerate

Hermitian surface, different from H. It follows that Q = H ∩H′. ¤

Proposition 4.5. Every plane through A (resp. B), different from πA (resp. πB)

intersects an elliptic QF -set in a CF -set.

Proof. Let Q be an elliptic QF -set with vertices A and B generated by an αF -

collineation Φ between SA and S∗
B . Let π be a plane on A, different from πA.

The lines on A contained in π correspond, under Φ, to planes of a pencil with

axis a line t, different from the line AB. Let B′ = π ∩ t; the collineation Φ

induces an αF -collineation φπ mapping any line ℓ on A contained in π onto the

line π ∩ Φ(ℓ) on B′. The points of π ∩ Q are given by the points of intersection

of corresponding lines under φπ. Since the line AB′ is not mapped onto itself it

follows that π ∩Q is a CF -set with vertices A and B′. ¤

Proposition 4.6. Every plane of PG(3, q2) intersects an elliptic QF -set in one of

the following: a point, a Baer subline, a CF -set, an H-set, a K-set, a Γ-set, a

complete (q2 − q + 1)-arc.

Proof. Let π be a plane of PG(3, q2) and let Q be an elliptic QF -set with vertices

A and B, generated by an αF -collineation Φ: SA → S∗
B . By Proposition 4.4, the

set Q is the intersection of two distinct non-degenerate Hermitian surfaces H

and H′. Let C = H∩π and let C′ = H′∩π. If C and C′ are degenerate Hermitian

curves of rank 2, then C 6= C′ since Q does not contain lines. If C and C′ are

non-degenerate Hermitian curves, then also C 6= C′. Indeed, if C = C′ then π

contains neither A nor B (see Proposition 4.5). Let u be the polarity associated



112 G. Donati • N. Durante

to C, from the proof of Proposition 3.7 it follows that Φ is uniquely determined

by u. If π ∩ AB is a point not on C, then Φ defines a semi-hyperbolic QF -set,

a contradiction. If π ∩ AB is a point on C, then Φ defines a set containing the

line AB, a contradiction. Hence C 6= C′ and from [6], where the intersection

between two distinct, possibly degenerate, Hermitian curves has been studied,

it follows that π ∩ Q is one of the following: a point, a Baer subline, a CF -set,

an H-set, a K-set, a Γ-set, a complete (q2 − q + 1)-arc. ¤

5 Absolute points of an αF -correlation of PG(2, q2)

B. C. Kestenband proved in [9] that the correlations of PG(2, q2n) defined by

diagonal matrices with companion automorphism α : x ∈ GF(q2n) 7→ xqm

∈

GF(q2n), where (m, 2n) = 1, have the following numbers of absolute points:

q2n + qn+2 − qn+1 + 1 or q2n − qn+1 + qn + 1 or (qn + 1)2 for n odd;

q2n − qn+2 + qn+1 + 1 or q2n + qn+1 − qn + 1 or (qn − 1)2 for n even.

Moreover some properties regarding the configurations of the absolute sets of

these correlations are given.

In this section we will determine, independently from Kestenband’s results,

all the possible configurations for the absolute set of an αF -correlation of the

plane PG(2, q2), where αF is the involutory automorphism of GF(q2).

Proposition 5.1. Let v be an αF -correlation of PG(2, q2). The set of absolute

points of v is one of the following: a point, a Baer subline, a complete (q2 − q + 1)-

arc, a CF -set, a Γ-set, a K-set, an H-set, a non-degenerate Hermitian curve.

Proof. We may assume that the correlation v is defined on a plane π embedded

in a projective space PG(3, q2). Let A be the set of absolute points of v in π. It

is well known that null systems exist only in odd dimensional projective spaces,

hence A 6= π. Let P be a point of π \ A and let A and B be two distinct points

of PG(3, q2) \ π such that AB ∩ π = P . The correlation v induces a unique

αF -collineation Φ between SA and S∗
B (see the proof of Proposition 3.7). Let Q

be the set of points of intersections of corresponding elements under Φ. Then

A = Q ∩ π. The set Q is either a semi-hyperbolic QF -set or an elliptic QF -set

and since A and B do not belong to π, the set π ∩ Q does not contain lines.

From Proposition 3.6 and Proposition 4.6 the assertion follows. ¤
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