
Innovations in Incidence Geometry
Volume 11 (2010), Pages 157–185

ISSN 1781-6475

ACADEMIA

PRESS

Compact generalized polygons and

Moore graphs as stable graphs

Nils Rosehr

Abstract

We introduce stable graphs as a common generalization of compact gen-

eralized polygons with closed adjacency, stable planes and other types of

graphs with continuous geometric operations; non-bipartite structures like

Moore graphs are also included. Topological and graph-theoretical proper-

ties of stable graphs are established, and generalized polygons are charac-

terized among all stable graphs by means of topological properties. Some

results about Moore graphs, which might help to find infinite examples, are

included.
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1 Introduction

Let G = (V,E) be a graph with vertex set V and edge set E; our graphs will

always be without loops, so every element of E is a subset of V with precisely

two elements. Two vertices v, w ∈ V with {v, w} ∈ E are called adjacent or

neighbours; the set of all neighbours of a vertex is called a panel (to distinguish

it from neighbourhoods in the topological sense). A path of length k from v0 to

vk of G is a finite sequence (v0, v1, . . . , vk) of vertices such that vi−1 and vi are

adjacent for i = 1, . . . , k. The distance d(v, w) of vertices v and w is the shortest

length of a path from v to w or ∞, if there is none. The diameter of a graph is the

supremum of all these distances. A path (v0, . . . , vk) is called non-stammering,

if vi 6= vi+2 for i = 0, . . . k − 2. The girth of a graph is the shortest positive

length of a non-stammering path from some vertex to itself or infinity, if there

is none. Note that a graph with girth g has at least diameter d with 2d ≤ g. We
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will frequently use that (v0, . . . , vk) is the unique non-stammering path from v0

to vk and that d(v0, vk) = k, if the girth is greater than 2k. A Moore graph is a

graph with finite diameter d ≥ 2 and girth 2d + 1. A graph is called bipartite,

if its vertex set is the disjoint union of classes P and L such that all edges have

one vertex in P and one in L. A generalized polygon or d-gon is a bipartite graph

with finite diameter d ≥ 3 and girth 2d.

It is easy to see that Moore graphs are regular graphs, i.e. all panels have

the same cardinality (local projectivities as in Lemma 2.1 are defined on panels

minus one vertex). Damerell and Bannai–Ito have shown that apart from the

cycles of odd length all finite Moore graphs have diameter 2; see [5] or [1]. The

only known non-trivial finite Moore graphs are the Petersen graph with 10 ver-

tices and the Hoffman–Singleton graph with 50 vertices. They have also shown

that any other finite Moore graph has valency 57 and 3250 = 572 + 1 vertices,

but it is not known whether such a graph exists. For infinite Moore graphs the

situation is different. It is possible to give free constructions of Moore graphs

for all diameters and with an infinite vertex set of an arbitrary cardinality; also

there is considerable freedom in this construction so that it is not possible to

classify all infinite Moore graphs without any further assumptions. In this paper

we will investigate topological assumptions.

For generalized polygons the situation is quite different. There is a wealth of

examples: Moufang polygons related to algebraic structures (see [23]), compact

projective planes or generalized 3-gons (see [19]), finite generalized quadran-

gles (see [16]), generalized quadrangles related to circle geometries (see [20])

or related to isoparametric hypersurfaces (see [22, 14, 12]). But there are also

similarities: Finite generalized polygons whose panels have at least three ele-

ments have diameter 3, 4, 6 or 8 (see [7]), and for a wide class of compact

generalized polygons the diameter is restricted to 3, 4 or 6. For compact gener-

alized hexagons only the two split Cayley hexagons over the fields R and C are

known; see [25, Section 9.3.7].

We will denote the set of pairs of vertices at distance n ∈ N0 with Dn :=

d−1(n) in this paper and regard Dn as a relation on V . For a vertex v the set

Dn(v) = {w ∈ V : (v, w) ∈ Dn} is defined as usual for relations; so D1(v) is a

panel. In extension of the symbol Dn we will also write Dn,m := Dn ∪ Dm and

D≤n := D0 ∪ D1 ∪ · · · ∪ Dn and so on, as well as DA := d−1(A) for A ⊆ N0.

In order to be able to say anything about Moore graphs we might assume, as

suggested by generalized polygons, that the vertex set is equipped with a com-

pact topology, but for this assumption to actually be a restriction the topology

has to be related to the graph. In the area of topological incidence geometry,

that is for topological bipartite graphs, it is common to assume that the adja-

cency relation is closed. This is not an option here, as the following lemma
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shows. (Note for readers which are not familiar with the notion of nets: we will

show later that most spaces we are dealing with are second countable so that

working with sequences instead of nets would be sufficient in most situations.)

Lemma 1.1. A compact Moore graph with a closed adjacency relation is finite.

Proof. Assume that (V,E) is a Moore graph with diameter k such that V is

a compact topological space and D1 is closed in V 2. Let D1(v1) be an infi-

nite panel and (vσ
2 ) be an injective sequence in it. Note that then all pan-

els are infinite. By passing to subnets we can assume that (vσ
2 ) converges to

some v0 ∈ D1(v1) and that (vσ
2 ) is a net in D1(v1) \ {v0}, because V is com-

pact and D1 is closed. For every σ we can choose vσ
3 , vσ

4 ,. . . ,vσ
k+1 such that

(v0, v1, v
σ
2 , vσ

3 , . . . , vσ
k+1) is a non-stammering path. Because (V,E) has diame-

ter k and girth 2k + 1, the vertices v0 and vσ
k+1 have distance k and so there

are further vertices vσ
k+2,. . . ,vσ

2k such that (v0, v1, v
σ
2 , vσ

3 , . . . , vσ
2k, v0) is a closed

non-stammering path of length 2k + 1. Because V is compact, we can assume

that this net of paths has a limit (v0, v1, v0, v3, v4, . . . , v2k, v0), which is a path,

because the adjacency D1 is closed. Thus there is a closed path of odd length

2k − 1 < 2k + 1, a contradiction. So we have shown that all panels are finite,

which implies that V is finite. ¤

The following observation is fundamental for all that follows.

Observation 1.2. Let (V,E) be a Moore graph or a generalized polygon with a

compact topology on V such that D1 is closed in V 2 \ D0, and let k be the largest

integer such that 2k is smaller than the girth of (V,E); for k = 2 assume also that

V is a Hausdorff space. Then the well-defined map

f : Dk → V k+1, (v, w) 7→ p, where p is the path from v to w,

is continuous, and its domain Dk is open in V 2.

Proof. For the topological closure of D1 in V 2 we have D1 ⊆ D0,1 by as-

sumption. Note that we have the representations D≤2 = D1 D1 ∪ D1 and

D≤l+1 = D≤lD1 as composite relations for l ≥ 2. Since V is compact, products

of closed relations on V are closed (which can be seen by an easy argument

with nets), so by induction D≤l is closed for all l ≥ 2. In the case k = 2 we have

by assumption that D≤1 = D0 ∪D1 is closed. Thus in the case of a Moore graph

Dk = D≥k is open.

If (V,E) is a generalized polygon, then Dk+1 = D≥k+1 is open. Thus Dk+1(v)

is an open neighbourhood of w for (v, w) ∈ Dk+1; it is contained in one of the

classes P or L of the bipartite graph (V,E). Therefore P and L are open. Since
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also U := Dk,k+1 = D≥k is open, it follows that the sets (P 2 ∪ L2) ∩ U and

(P × L ∪ L × P ) ∩ U are open, one of which is Dk.

In both cases the map f : Dk → V k+1 is continuous, because its codomain

V k+1 is compact and because its graph

{((x, y), (v0, . . . , vk)) : (x, y) = (v0, vk) ∈ Dk, (vi−1, vi) ∈ D1 for i = 1, . . . , k}

is closed in Dk × V k+1, as we can replace D1 with D1 in this description. ¤

Contrary to Moore graphs, the above proof shows that in the case of gener-

alized polygons the adjacency relation is in fact closed in the larger set V 2 as

P and L are closed in V . For a graph (V,E) with a topology on V , we call the

adjacency relation D1 semi-closed if it is closed in V 2 \ D0, or equivalently, if

D1 ⊆ D0,1.

Definition 1.3. A graph G = (V,E) is called stable, or more precisely k-stable

for k ∈ N with k ≥ 2, if the girth of G is greater than 2k, if all panels contain

at least three vertices and if V caries a topology such that Dk is open in V 2 and

the geometric map

f : Dk → V k+1, (v, w) 7→ p, where p is the path from v to w,

is continuous. We will always denote the geometric map of a k-stable graph by f

and its coordinate functions by fi for i = 0, . . . , k. Furthermore for 0 ≤ i ≤ l ≤ k

and (x, y) ∈ Dl we denote the i-th vertex in a non-stammering path from x to y

by fl,i(x, y).

We give an example to explain the idea of stability. Let P be an arbitrary

non-empty open subset of R
2 and let L be the set of ordinary affine lines in R

2

meeting P in at least one point. Then (V,E) with V := P ∪̇L and E :=
{

{v, w} :

v ∈ P, v ∈ w ∈ L
}

is a 2-stable graph. As an aside, note that for P = R
2 we get

the incidence graph of the real affine plane and for P an open disc we get the

Klein model for the hyperbolic plane. The vertices in P are usually called points

and the ones in L lines. Note that P 2∩D2 = P 2\idP , i.e. any two distinct points

can be joined by a line. For lines the dual property that any two lines meet in

a point is false. But the fact that D2 is open implies that two meeting lines can

be “moved” slightly and they will still meet; this property is responsible for the

name stability. Note that it is false in R
3, and for this reason the stability axiom

rules out geometries of higher rank. For a simple non-bipartite 2-stable example

see the graphs Gr below.

Concerning the definition of stable graphs it can be shown that it is enough

to ask for the continuity of the coordinate function f1 only, which is important,

for example, for the application to (semi)-biplanes; see [17, Proposition 5.2].
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In [17] the notion of a k-stable graph is more general; it entails graphs with a

topology where vertices at distance k have unique joining paths only locally, that

is, no assumption about the girth is made; the graphs according to Definition 1.3

are called monocursal k-stable graphs there. We treat only monocursal stable

graphs here, because we are mainly interested in Moore graphs and generalized

polygons, and we drop the qualifier monocursal for ease of language. However,

most of the results we will obtain hold in a much more general context; see [17].

We will call a graph compact, locally compact, locally connected, or discrete, if

the vertex space carries a topology which has this property. We will see later

that this usually means that all panels share the respective property.

There are numerous examples of stable graphs: Given a non-discrete k-stable

graph and an open subset of the vertex space such that the induced subgraph

has no vertices without neighbours the induced subgraph defines a k-stable

graph. So starting with a stable generalized polygon we obtain many examples.

There are also examples which cannot be embedded in generalized polygons

as an open subgraph, for example Gr = (Vr, {{v, w} ⊆ Vr : |v − w| = 1}) for

Vr := {x ∈ R
2 : 1 − r < |x| < r} and 1/2 < r ≤ 1/

√
3 is a 2-stable graph which

is not bipartite; see also [21], [9] and [17, Section 3]. In [18] it is shown that

every graph-connected non-discrete stable graph can be embedded in a maximal

graph-connected stable graph as an open subgraph, which means that all stable

graphs are obtained as substructures of these maximal objects; furthermore a

large class of Cayley graphs on C2 ⋉R
2, which is maximal with respect to this

embedding is exhibited. For many more examples see [17].

Of course Observation 1.2 says that every compact Moore graph or compact

generalized polygon with a semi-closed adjacency relation and large enough

panels is a stable graph. One of our main theorems says that there is a certain

converse: a locally connected non-discrete stable graph with compact panels is

a generalized polygon. Since we will also show that every locally compact stable

graph is metrizable as well as either locally connected or totally disconnected,

this result implies that every stable Moore graph with compact panels and a

compact vertex space is defined on the Cantor set.

2 Properties of stable graphs

2.1 Local projectivities and local coordinates

Let v0 and vk+1 be two vertices at maximal distance k + 1 in a generalized

(k+1)-gon. The geometric map f1(vk+1, ·) : D1(v0) → D1(vk+1) is a bijection —

a so called projectivity. The following basic lemma provides local versions of
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Figure 1: A local projectivity and a staircase path with its perspectivity

these projectivities for stable graphs; see Figure 1.

Lemma 2.1. Let (V,E) be a k-stable graph, and let (v0, . . . , vk+1) be a non-

stammering path. Then there is an open neighbourhood U1 × Uk of (v1, vk) in

D1(v0)×D1(vk+1) such that f1(vk+1, ·) : U1 → Uk is a homeomorphism mapping

v1 to vk.

Proof. Set U1 := D1(v0) ∩ f1(vk+1, · )−1(Dk(v0)) and Uk := D1(vk+1) ∩
f1(v0, · )−1(Dk(vk+1)). Then f1(vk+1, · ) : U1 → Uk and f1(v0, · ) : Uk → U1

are inverse to each other and continuous. ¤

The maps from the previous lemma are called local projectivities. If we apply

this lemma l-times we get local perspectivities as the following lemma states. It

owes its name to the shape of the path used in its formulation; see Figure 1.

Staircase lemma 2.2. Let (V,E) be a k-stable graph, and set n := k + 1. Let

l ∈ N, and let v0, . . . , vln ∈ V such that vin−1 = vin+1 for i = 1, . . . , l − 1 and

(v(i−1)n, . . . , vin) is a non-stammering path for i = 1, . . . , l. Then there is an open

neighbourhood U1 × Uln−1 of (v1, vln−1) in D1(v0) × D1(vln) such that

f1(vln, · ) ◦ · · · ◦ f1(v2n, · ) ◦ f1(vn, · ) : U1 → Uln−1

is a homeomorphism mapping v1 to vln−1.

Recall that two topological spaces X and Y are locally homeomorphic if any

two elements x and y of X and Y respectively have homeomorphic neighbour-

hoods, and that X is called locally homogeneous if it is locally homeomorphic

with itself. Of course, a space that is locally homeomorphic to some space is

locally homogeneous.
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Figure 2: The staircase path making panels locally homogeneous
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Figure 3: Local coordinates given by the map g

Proposition 2.3. Let (v0, . . . , v2l) be a path of even length 2l ∈ N0 of a stable

graph. Then the panels D1(v0) and D1(v2l) are locally homeomorphic. In partic-

ular panels are locally homogeneous.

Proof. Let (V,E) be a k-stable graph. In order to show the case l = 0 let v ∈
V and x, y ∈ D1(v); see Figure 2. Because all panels contain at least three

elements, we can choose a, b ∈ V , p, q ∈ V k and s ∈ V k−1 such that (a, x, p),

(a, x, v, s), (v, x, p), (b, y, q), (b, y, v, s) and (v, y, q) are non-stammering paths.

For p = (x1, . . . , xk) set p⇌ := (x1, . . . , xk−1, xk, xk−1, . . . , x1) and define q⇌

and s⇌ analogously. Then

(v, x, p⇌, x, a, x, v, s⇌, v, y, b, y, q⇌, y, v)

is a path as in the staircase Lemma 2.2. Thus D1(v) is locally homogeneous.

Since (v, x, p⇌, x, a) is also such a path, D1(v) and D1(a) are locally homeo-

morphic, and induction completes the proof. ¤

Next we will show that there are local coordinates of the vertex set in terms

of the panels.



164 N. Rosehr

Theorem 2.4. Let (V,E) be a k-stable graph, and let (v0, . . . , vk) be a non-

stammering path. Then there are open neighbourhoods U of vk in V and W of

(v1, . . . , vk) in D1(v0) × · · · × D1(vk−1) and a homeomorphism h : U → W such

that h(Dk−l(vl)) =
(

{(v1, . . . , vl)} × V k−l
)

∩ W for any l = 0, . . . k.

Proof. We extend the given path to a non-stammering path (v0, . . . , v2k) and

show that there are open neighbourhoods U of vk in V and W in D1(vk+1) ×
· · · × D1(v2k) such that

g : U → W,xk 7→
(

f1(vk+i, fi(v0, xk))
)

i=1,...,k

is a homeomorphism; see Figure 3. We have

g(Dk−l(vl)) =
(

{(vk, . . . , vk+l−1)} × V k−l
)

∩ W,

because the girth is greater than 2k, and the theorem follows if we compose g

with the local projectivities D1(vk+i) → D1(vi−1) for i = 1, . . . , k according to

Lemma 2.1.

We may set U := f(v0, · )−1(Dk(vk)× · · · ×Dk(v2k)). Because U is open, the

set of all (yk, . . . , y2k−1) ∈ V k such that

πy2k−1
◦ πy2k−2

◦ · · · ◦ πyk−1
◦ πyk

(v0) ∈ U, where πy := f1( · , y) for y ∈ V ,

is also open by stability. Let W be its intersection with D1(vk+1)×· · ·×D1(v2k).

Then it is easy to see that g and the map defined on W by the above expression

are inverse to each other. ¤

In a non-bipartite k-stable graph there is a cycle of odd length; so there are

two adjacent vertices v and w such that D1(v) and D1(w) are locally homeo-

morphic by Proposition 2.3. The same is true if k is even: local projectivities

can be used to see that D1(v0) and D1(vk+1) are locally homeomorphic for a

non-stammering path (v0, . . . , vk+1), and Proposition 2.3 yields that D1(v0) and

D1(v1) are locally homeomorphic. Thus Theorem 2.4 yields the following result.

Corollary 2.5. Let G be a graph-connected k-stable graph. Then all panels and

classes (in the bipartite case) of G are locally homogeneous. If G is not bipartite or

k is even, then the vertex space of G is locally homogeneous and any two panels are

locally homeomorphic.

2.2 Separation properties

The vertex space of a stable graph is in general not a Hausdorff space. However,

this only happens if the adjacency relation is not closed, and vertices which are

close together in the graph theoretical sense can always be separated. More

precisely we have the following result.
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Theorem 2.6. Let G be a k-stable graph. Then all panels are Hausdorff spaces,

and the vertex set is a locally Hausdorff space and in particular a T1-space. Vertices

at distance at most 2k or greater than 4k can be separated. Every panel has an

open neighbourhood which is a Hausdorff space.

The relations Dl for l = 0, 1, . . . , k and in particular the adjacency relation are

locally closed, and if D1 is closed, then V is a Hausdorff space.

Proof. Let G = (V,E) and (v0, vl) ∈ Dl. If 0 < l ≤ k, choose vi such that

(v0, . . . , vl+k) is a non-stammering path; the domain of g := fl( · , fk−l( · , vl+k))

is an open neighbourhood of (v0, vl) which is disjoint from the diagonal idV ⊆
V 2, because the girth of G is greater than 2k. If k ≤ l < 2k, choose a non-

stammering path (v0, . . . , vl) and consider f( · , f2k−l(vl−k, · )). For l = 2k we

can choose (using the case l = 2) separating neighbourhoods Uk−1 and Uk+1

of vk−1 and vk+1 respectively. Then f1(vk, · )−1(Uk−1) and f1(vk, · )−1(Uk+1)

are separating neighbourhoods of v0 and v2k. If 4k < l, then Dk(x) and Dk(y)

are open disjoint neighbourhoods of v0 and vl for x ∈ Dk(v0) and y ∈ Dk(vl)

respectively.

Panels are Hausdorff spaces as they have diameter 2; thus V is a locally

Hausdorff space by Theorem 2.4. Let v ∈ V , and choose w1, w2, w3 ∈ Dk−1(v)

such that the elements fk−1,1(v, wi) for i = 1, 2, 3 are distinct. Then the open

subsets Ui := Dk(wi) for i = 1, 2, 3 are Hausdorff spaces by what we have

shown already, and we have D1(v) ∩ Ui = D1(v) \ {fk−1,1(v, wi)}. Thus the

open subset
⋃

i,j∈{1,2,3},i 6=j Ui ∩Uj contains D1(v), and it is easy to see that it is

a Hausdorff space.

The local closedness of Dl follows as V is a locally Hausdorff space and

(x, y) ∈ Dl ∩ dom g if and only if g(x, y) = y with the map g from above.

If v0 and v′
1 are distinct vertices, then there is a v1 ∈ D1(v0)\D1(v

′
1), because

otherwise there would be a circle of length 4. Choose v2, . . . , vk ∈ V such that

(v0, . . . , vk) is a non-stammering path. Since D1 is closed and the map (x, y) 7→
(f1(x, vk), y) is continuous, there is an open neighbourhood U0 × U ′

1 of (v0, v
′
1)

such that f1(U0, vk) × U ′
1 is disjoint from D1. But then U0 and U ′

1 are disjoint,

since otherwise there would be a vertex x ∈ U0 such that (f1(x, vk), x) ∈ D1 ∩
(f1(U0, vk) × U ′

1). ¤

Let (V,E) be a generalized (k +1)-gon with a vertex v satisfying D1(v) ∼= S1.

If we remove two edges {v, w1} and {v, w2} from E and replace v by new ver-

tices v1 and v2 such that the respective panels of these vertices are precisely

the connected components of D1(v) \ {w1, w2} and such that the open neigh-

bourhoods of vi for i = 1, 2 are precisely the open neighbourhoods of v with

v replaced by vi, then the resulting graph is again a k-stable graph and the

vertices v1 and v2 cannot be separated. Their distance is 2k + 2.
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The above example seems a little pathological and in related situations non-

Hausdorff graphs are often excluded from the treatment. We would like to stress

that this would be unnatural in the realm of stable graphs, because there are

interesting maximal examples with a large automorphism group whose vertex

space is not a Hausdorff space; see [24]. These graphs are related to shift

planes.

Consequently we never assume any separation properties implicitly: our

compact spaces are not assumed to be Hausdorff spaces, and our locally com-

pact spaces are spaces with a neighbourhood basis of compact spaces.

Sometimes the property of being a locally Hausdorff space allows to conclude

stronger separation properties. We note the following lemma for later use in

the proof of Theorem 3.6; it can be applied to compact vertex sets of graph-

theoretical diameter at most 2k.

Lemma 2.7. Let X be a locally Hausdorff space and C ⊆ X a compact subspace

such that any two distinct elements in C can be separated in X. Then there is a

neighbourhood of C which is a Hausdorff space.

Proof. Let x ∈ C and Hx be an open neighbourhood of x which is a Hausdorff

space. For any y ∈ C \ Hx let Ũy and Ṽy be disjoint open neighbourhoods of x

and y respectively. Because C\Hx is compact, there are y1, . . . , yn ∈ C\Hx such

that C \Hx ⊆ Ṽy1
∪· · ·∪ Ṽyn

. Then any element of Ux := Hx∩Ũy1
∩· · ·∩Ũyn

can

be separated from any distinct element of Vx := Hx ∪ Ṽy1
∪· · ·∪ Ṽyn

⊇ C. There

are x1, . . . , xm ∈ C such that C ⊆ Ux1
∪ · · · ∪ Uxm

, because the Ux for x ∈ C

cover C. As all Vx contain C, the subspace (Ux1
∪ · · · ∪ Uxm

) ∩ Vx1
∩ · · · ∩ Vxm

is a neighbourhood of C which is a Hausdorff space. ¤

2.3 Openness and continuity

Proposition 2.8. Let (V,E) be a k-stable graph and 0 ≤ i ≤ l ≤ k integers.

(a) The geometric maps fl,i are continuous and open.

(b) The maps fl,i(v0, · ) : Dl(v0) → Di(v0) are open.

(c) If U is an open subset of V , then Dl(U) is open in V .

Proof. (a) Let (v0, vl) ∈ Dl. Choose vi such that (v0, . . . , vl+k) is a non-stam-

mering path. The map fi( · , fk−l( · , vl+k)) is continuous and defined on

an open neighbourhood W of (v0, vl) by stability. It equals the restriction

fl,i|W on Dl, which is therefore continuous.

To show openness let now W be an arbitrary open neighbourhood of (v0, vl);

see Figure 4. Choose further vj ∈ V such that (vi−k, . . . , vi+k) is a non-
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v0 vi vl

xlx0

vi−k vi+k
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Figure 4: Openness of the geometric maps

stammering path. Then vi−1 and vi+1 can be separated by open disjoint

neighbourhoods by Theorem 2.6. Thus there is an open neighbourhood Ui

of vi such that for all xi ∈ Ui the path (f(vi−k, xi), f(xi, vi+k)) is a non-

stammering path from vi−k via xi to vi+k; furthermore by continuity Ui can

be chosen so small that (fk−i(vi−k, xi), fl−i(xi, vi+k)) is contained in W .

For xi ∈ Ui we have

fl,i

(

fk−i(vi−k, xi), fl−i(xi, vi+k)
)

= xi,

and therefore Ui ⊆ fl,i(W ).

(b) This follows if we specialize to xi ∈ Di(v0) ∩ Ui.

(c) We have Dl(U) = fl(U × V ), and this set is open by (a). ¤

The open subsets Dk(v) for a vertex v cover the vertex space of a k-stable

graph, and any of them is contained in a graph component and a class in the

bipartite case. Thus the graph-components and the classes of a stable graph are

open. Any collection of graph-components of a k-stable graph forms a k-stable

graph.

By the continuity and openness of f2,1 we have the following result.

Corollary 2.9. If P is a class of a bipartite stable graph (V,E), then the topology

of V \ P is determined by the topology of P .

2.4 The addition

There is a local addition and a local subtraction on panels as the following

result shows. We will use this addition to prove the existence of local isotopies

on panels which is a strong form of local homogeneity.

Lemma 2.10. Let (V,E) be a stable graph, and let v ∈ V and o ∈ D1(v). Then

there are an open neighbourhood U of o in D1(v) and continuous operations

± : U × U → D1(v)
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lk rkr1 = o→

uk

uk−1

olk−1 = o←−

u1 = v

w
w←−

y

y→

x←−

x

U

Figure 5: The addition

satisfying o+x = x = x+o and (x+y)−y = x = (x−y)+y for vertices x, y ∈ U

for which all terms are defined.

Proof. Let (V,E) be a k-stable graph. Set l0 := r0 := u0 := o and u1 := v, and

choose distinct vertices li, ri, ui ∈ V such that l0, . . . , lk, r0, . . . , rk and u0, . . . , uk

are paths and lk, rk, uk ∈ Dk(o); see Figure 5. If defined for x, y, z ∈ V set

x←− := f1(lk, x) , y→ := f1(y, rk) and

π(x, y, z) := f1

(

u1, f1(z
→, f1(uk, f1(y

→, x←−)))←−
)

.

By the choice of the li, ri, and ui we have π(o, o, o) = o, because o→ = r1, o←− =

lk−1, f1(r1, lk−1) = o, f1(uk, o) = uk−1, f1(r1, uk−1) = o and f1(u1, lk−1) = o.

Thus there is an open neighbourhood U of o in D1(v) such that U3 ⊆ dom π,

because Dk is open in V 2 and f is continuous. The maps

± : U × U → D1(v) are defined by

x + y := π(x, o, y) and x − y := π(x, y, o).

Let x, y, w ∈ U . It is easy to show that (x + y) − y = x if x + y ∈ U and that

(w − y) + y = w if w − y ∈ U ; see Figure 5. Also it is straightforward to see that

o is a left and a right neutral element. ¤

The following application constitutes a strong homogeneity property which

will be crucial in the proof of the fact that panels are cohomology manifolds. We
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prove that two points which are connected by a path in the topological sense

not only have homeomorphic neighbourhoods, but that these neighbourhoods

can be shifted along the continuous path in the following sense.

Lemma 2.11. Let (V,E) be a stable graph. Every element o of any panel has

arbitrary small neighbourhoods W such that for every continuous path λ : [0, 1] →
W there is a neighbourhood W ′ ⊆ W of λ(0) and an isotopy h : [0, 1]×W ′ → W ,

i.e., h( · , λ(0)) = λ and h(t, · ) : W ′ → h(t,W ′) is a homeomorphism for all

t ∈ [0, 1].

Proof. Let ± : U × U → V be the local operations with zero o ∈ U as in

Lemma 2.10. Let W be an open neighbourhood of o in U such that ± : W×W →
U , and let λ : [0, 1] → W be a continuous map. Define

h : [0, 1] × W → V, (t, v) 7→
(

v − λ(0)
)

+ λ(t).

Then h(t, λ(0)) =
(

λ(0)−λ(0)
)

+λ(t) =
(

(o+λ(0))−λ(0)
)

+λ(t) = o+λ(t) = λ(t)

and in particular h([0, 1], λ(0)) ⊆ W . So by compactness of [0, 1] there is a

neighbourhood W ′ of λ(0) such that h : [0, 1] × W ′ → W . We have

(h(t, v) − λ(t)) + λ(0) = (v − λ(0)) + λ(0) = v

for all v ∈ W ′. Thus h(t, · ) : W ′ → h(t,W ′) is a homeomorphism. ¤

2.5 The multiplication

As we will see later the following result has far reaching applications and poses

strong restrictions on the topology of the vertex space and the panels of a stable

graph.

Proposition 2.12. Let (V,E) be a k-stable graph, let (v0, . . . , v2k) be a non-

stammering path, and set (o1, o2, o3) := (v1, vk+1, v2k−1). Then there is an open

neighbourhood U1 ×U2 of (o1, o2) in D1(v0)×D1(vk) and a continuous multipli-

cation

· : U1 × U2 → D1(v2k)

satisfying o1 · y = o3 = x · o2 for all (x, y) ∈ U1 × U2; furthermore the right-

multiplication U1 → D1(v2k), x 7→ x · y is an open and injective map for every

y ∈ U2 \ {o2}.

Proof. If defined for x, y ∈ V set

g(x, y) := f1(v2k, f1(y, x));
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v2kv2k−1 = o3vk+1 = o2

Figure 6: The multiplication

see Figure 6. Let (x, y) ∈ dom g. If x = o1 and y ∈ D1(vk), then f1(y, x) = vk

and f1(v2k, vk) = v2k−1. If y = o2 = vk+1, then v′
k := f1(y, x) ∈ D1(vk+1)

and therefore f1(v2k, v′
k) = v2k−1. Thus in either case g(x, y) = o3. In particular

g(o1, o2) = o3, so dom g is an open neighbourhood of (o1, o2), and we can choose

the neighbourhood U1 × U2 as required and define the multiplication to be the

restriction of g to this neighbourhood.

It is easy to see that the right-multiplications are injective, because (V,E) has

girth greater than 2k, and as local projectivities they are open maps. ¤

The following result says that the multiplication of the previous proposition

can be chosen such that it contains a given compact proper subset of a panel in

its domain of definition. In view of Proposition 2.14 it holds for non-discrete

stable graphs.

Lemma 2.13. Let (V,E) be a k-stable graph. For (v, w) ∈ D1 let C be a proper

compact subset of D1(v) and assume that D1(w) is not discrete. Then for any

o1 ∈ C there is a multiplication · : U1 × U2 → U3 with zeros o1, o2 and o3 as in

Proposition 2.12 containing C × {o2} in its domain of definition.

Proof. Choose a path (w2, . . . , w2k+1) of distinct vertices such that C is con-

tained in D1(w2). If defined for x, y, z ∈ V set

h(x, y, z) := f1

(

f1(w2k+1, z), f1(y, x)
)

;

see Figure 7. Since h(c, wk+1, wk+1) = f1(w2k, wk) = w2k−1 for all c ∈ C, we

have that C × {(wk+1, wk+1)} ⊆ dom h. Since C is compact and dom h is open

there is an open neighbourhood W1 ×W2 of C ×{wk+1} such that W1 ×W2
2 ⊆

dom h. Let v1 = o1 ∈ C. The set f1(v1,W2) is an open neighbourhood of

w2 (Proposition 2.8) in the non-discrete set D1(v1) (Proposition 2.3); so there

is a vk+1 ∈ W2 such that (v1, . . . , vk+1) := f(v1, vk+1) satisfies v2 6= w2. Set

v0 := w2 and (vk+1, . . . , v2k+1) := f(vk+1, w2k+1). As panels are Hausdorff

spaces W2 can be chosen so small that vk−1 6= vk+1. Then (v0, . . . , v2k) is a non-

stammering path. Note that with the notation from the proof of Proposition 2.12

we have g = h( · , · , vk+1). So again by the compactness of C there is an open
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x · y = h(x, y, vk+1)

v2k

y

vk o3

o2 = vk+1

w2kwk w2k+1wk+1 w2k−1v0 = w2

v1 = o1

C

x

v2

Figure 7: The map h

neighbourhood U1×U2 of C×{o2} contained in the domain of the multiplication

defined from g as in the proof of Proposition 2.12. ¤

2.6 Discreteness

It is not excluded that the vertex space of a stable graph is a discrete topological

space. However a graph (V,E) with the discrete topology on V satisfies the

topological assumptions for k-stable graphs for any k. If (V,E) is a k-stable

graph and V is not discrete, then k is unique, and the discreteness can be seen

in the panels as the following proposition shows.

Proposition 2.14. The vertex space of a graph-connected k-stable graph is discrete

if and only if some panel has an isolated element.

If this is not the case, then the girth of the graph is at most 2k + 2, and in

particular k is uniquely determined.

Proof. Let (V,E) be a k-stable graph. Of course, if V is discrete, then every

vertex is an isolated element of any panel it is contained in. If a panel D1(v) has

an isolated element, then the panel is discrete by local homogeneity (Proposi-

tion 2.3); furthermore every panel D1(w) such that v and w can be connected

by a path of even length is also discrete. Thus, if k is even, then all panels are

discrete by Lemma 2.1, and therefore V is discrete by Corollary 2.4.

Now let k be odd, and let p = (v0, . . . , v2k) be a non-stammering path such

that the panel D1(v0) is discrete. We will use the multiplication · : U1 × U2 →
D1(v2k) from Proposition 2.12 for open subsets U1 ⊆ D1(v0) and U2 ⊆ D1(vk)

to show that D1(vk) is discrete; this implies that V is discrete as in the even

case.

We assume that D1(vk) is not discrete, which implies that D1(v1) is not dis-

crete, as k − 1 is even. So by Lemma 2.13 we can assume that U1 contains an

element x 6= o1. Now the map h : U2 → D1(v2k), y → x · y is continuous and
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h−1(o3) = {o2} by Proposition 2.12, because x 6= o1 and the right multiplica-

tion with y 6= o2 is injective. So the discreteness of D1(v2k) implies that {o2}
is open in the panel D1(vk), which is therefore discrete in contradiction to our

assumption that it is not.

The statement about the girth follows from the existence of local projectivi-

ties (Lemma 2.1): if the domain of definition of such a bijection contains more

than one element, then the geometric maps defining this map provide cycles of

length 2k + 2; see Figure 1 on page 162. ¤

The above proposition implies that a stable graph is discrete if and only if all

its panels are discrete.

2.7 The dichotomy of connectedness

In this subsection we show as a second application of the local multiplication

that the graph components of the vertex space are either locally connected or

totally disconnected.

Theorem 2.15. Let (V,E) be a graph-connected locally compact k-stable graph.

Then V and all panels are locally connected or every open Hausdorff subspace of V

and in particular all panels are totally disconnected.

Proof. Note that V and all panels have a basis consisting of locally compact

Hausdorff spaces. Assume that there is a connected subset Z of an open Haus-

dorff subspace of V with |Z| ≥ 2. By Theorem 2.4 about local coordinates we

need to show that all panels are locally connected.

(1) Let X be a locally compact Hausdorff space, x ∈ X and U a neighbourhood

of x. If the connected component of x in U is {x}, then {x} is also the com-

ponent relative to X: It suffices to show that x has a neighbourhood basis of

open and closed sets in X. Let W be an open neighbourhood of x such that

W ⊆ U is compact. In a compact space the connected component of a point

is the intersection of all open and closed neighbourhoods; see [6, 6.1.23].

Thus there are finitely many open and closed subsets of W whose intersec-

tion is contained in W , since W \ W is compact. This intersection is open

and closed in X, because it is open in W and closed in W .

(2) If (u0, uk) ∈ Dk and if D1(u0) is not totally disconnected, then D1(uk) is

locally connected: There are open subsets Ui of panels and a multiplica-

tion · : U1 × U2 → U3 with zeros oi ∈ Ui for i = 1, 2, 3, U2 ⊆ D1(u0)

and U3 ⊆ D1(uk) as in Proposition 2.12. Let C be a compact neighbour-

hood of o2 in U2. By local homogeneity (Proposition 2.3) and (1) the con-

nected component Z of o2 in C contains at least two elements. On the one
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hand, U1 · Z =
⋃

z∈Z\{o2}
U1 · z is a neighbourhood of o3, because right-

multiplication is an open map. On the other hand U1 · Z =
⋃

u∈U1
u · Z

is connected, because o3 = u · o2 ∈ u · Z for all u ∈ U1. Thus o3 has a

neighbourhood basis of connected sets, because U3 can be chosen arbitrar-

ily small. By local homogeneity D1(uk) is locally connected.

(3) All panels are locally connected: Choose (v0, vk) ∈ Dk with v0 ∈ Z. By (1)

we can assume that Z × {vk} ⊆ dom f . For the smallest l ∈ {1, . . . , k} such

that there is a u0 ∈ V with fl(Z, vk) = {u0} we have that fl−1(Z, u0) is a

connected subset of the panel D1(u0) with at least two elements. Now let

ui ∈ V such that (u0, . . . , uk+1) is a non-stammering path. Then D1(uk) is

locally connected by (2) and D1(uk+1) is not totally disconnected, which

can be seen with local projectivities (Lemma 2.1). So by (2) again D1(u0)

and D1(u1) are locally connected. Now all panels are locally connected by

Proposition 2.3, because every vertex v is connected to u0 or to u1 by a path

of even length. ¤

2.8 Metrizability

The vertex space of a compact generalized polygon is metrizable; see [8, 1.5].

The following generalization for stable graphs guarantees metrizability in the

case of Hausdorff spaces.

Theorem 2.16. Let (V,E) be a locally compact stable graph. Then every non-

discrete graph-component is second countable, and every regular subspace of V

is metrizable. In particular every panel and every open subset of V which is a

Hausdorff space is metrizable.

Proof. By the remark before Corollary 2.9 we may assume that (V,E) is graph-

connected and non-discrete, because the topological sum of metric spaces is

metrizable.

(1) Every panel is first-countable: Let · : U1×U2 → U3 be a multiplication with

open subsets Ui of panels and oi ∈ Ui for i = 1, 2, 3 as in Proposition 2.12.

Because every panel is non-discrete by Proposition 2.14, there is an injective

sequence in U2 with a cluster point in U2. Panels are locally homogeneous

by Proposition 2.3, so we have a sequence (vn) in U2\{o2} converging to o2.

If C is a compact neighbourhood of o1 such that C ×{o2} ⊆ dom · and U is

a neighbourhood of o3 in U3, then there is a neighbourhood W of o2 such

that · is defined on C × W and C · W ⊆ U , because C is compact. Thus

C · vn ⊆ C · W ⊆ U for large n ∈ N and consequently {C · vn : n ∈ N} is a

neighbourhood basis at o3, since these right-multiplications are open maps.

Now panels are first-countable, since panels are locally homogeneous.
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(2) Every vertex of a panel has a neighbourhood in the panel with a countable

basis: Let the operations ± : U × U → D1(v) be as in Lemma 2.10 with

zero o. Let C and U ′ be neighbourhoods of o in U such that U ′ + U ′ ⊆ U ,

C ⊆ U ′ is compact and U ′ is open. Let the sequence (Un) of open subsets

of U ′ be a neighbourhood basis at o. Note that Un + u for u ∈ U ′ is a

neighbourhood of u, since (Un + u) − u = Un and U → X,x 7→ x − u is

continuous. Thus there are finite sets Cn ⊆ C such that C ⊆ Un +Cn for all

n ∈ N, because C is compact. We show that {C ∩ (Un + c) : n ∈ N, c ∈ Cn}
is a basis of C. Let W be an open neighbourhood of w ∈ C in U ′. Choose

cn ∈ Cn such that w ∈ Un + cn, and assume that there is un ∈ Un such that

un + cn 6∈ W for all n ∈ N. Since w − cn, un ∈ Un, the sequences (w − cn)

and (un) converge to o, and since C is compact, we can assume that (cn)

converges, namely to w = (w − cn) + cn. Thus the sequence (un + cn) in

U \ W converges to w ∈ W , a contradiction.

(3) The vertex space is second-countable: Using local coordinates (Corollary

2.4) we see that every vertex has a neighbourhood in V with a countable

basis. If U is an open subset of V and B be a countable basis of U , then

{f2,1(X,Y ) : X,Y ∈ B} is a countable basis of D1(U), because f2,1 is a

continuous and open map by Proposition 2.8(a). Thus by induction D≤l(U)

has a countable basis for all l ∈ N, and consequently V =
⋃

l∈N
D≤l(U) has

a countable basis.

(4) Finally panels as well as open subsets of V which are Hausdorff spaces are

regular, and such spaces with a countable basis are metrizable; see [6, 4.2.9].

¤

2.9 Generalized manifolds

In this subsection we prove that a large class of stable graphs has a locally con-

tractible vertex space. Together with the local addition this will allow us to show

that finite- and positive-dimensional locally compact stable graphs are cohomol-

ogy manifolds. Let us recall the small inductive dimension, or simply dimension,

indX of a topological space X: it is defined by ind ∅ = −1 and indX ≤ n if X

has a base consisting of sets U with ind ∂U ≤ n− 1 for n ∈ N0; see [6, 7.1]. For

example a non-empty space is zero-dimensional if and only if every point has

a neighbourhood base of open and closed sets. For locally compact Hausdorff

space this is equivalent to the space being totally disconnected; see [6, 6.2.9].

The Euclidean spaces R
n satisfy ind R

n = n; see [6, 7.3.19]. Every subset A

of a regular space X satisfies indA ≤ indX; see [6, 7.1.1]. Note that a lo-

cally compact stable graph is positive-dimensional if and only if all its panels

are non-discrete and locally connected.
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An ANR or absolute neighbourhood retract X is a metric space with the fol-

lowing property: for any metric space Y of which X is a closed subspace there

is a neighbourhood U of X in Y such that X is a retract of U . A locally con-

tractible second-countable metric space of finite small inductive dimension is an

ANR; see [10, V.7.1] (by [6, 4.1.16, 7.3.3] the small inductive dimension and

the covering dimension, which is used in [10], agree).

Easier to understand are ENRs or Euclidean neighbourhood retracts: an ENR is

a subset of some R
n which is a retract of an open subset of R

n. Because a retract

of a space is a closed subset of that space, every ENR is locally compact. This

means it can also be embedded as a closed subset in some R
n; see [3, E.2]. Since

an ENR is a retract and R
n is locally contractible, ENRs are locally contractible.

Thus an ENR is an ANR, because its small inductive dimension is finite.

Theorem 2.17. In a positive-dimensional locally compact stable graph every panel

is locally arcwise connected and locally contractible.

In a finite- and positive-dimensional locally compact stable graph all open Haus-

dorff subspaces of the vertex space are ANRs and all open Hausdorff subspaces of

graph-components as well as panels are ENRs.

Proof. Let (V,E) be a stable graph as above and v ∈ V . By Proposition 2.16

the panel D1(v) is metrizable. It is locally connected, and locally compact by

assumption, so the panel is locally arcwise connected by a theorem related to

the Hahn–Mazurkiewicz theorem; see [4, 9.B.1].

We show that D1(v) is locally contractible. Let · : U1×U2 → D1(v) be a mul-

tiplication with zeros o1 ∈ U1, o2 ∈ U2 and o3 ∈ D1(v) as in Proposition 2.12.

Let U be an open neighbourhood of o3, and choose an open neighbourhood

U ′
1 × U ′

2 of (o1, o2) such that · : U ′
1 × U ′

2 → U . Let λ : [0, 1] → U ′
2 be an arc

from o2 to some y ∈ U ′
2 \ {o2}. The right-multiplication g : U ′

1 → U, x 7→ x · y is

injective and open. Set W := im g and define

Λ: [0, 1] × W → U, (t, x) 7→ g−1(x) · λ(t).

Then Λ(0, x) = g−1(x) · o2 = o1 and Λ(1, x) = g−1(x) · y = g(g−1(x)) = x for all

x ∈ W , so Λ is a homotopy from the constant map o2 : W → U to the inclusion

W → U . By local homogeneity panels are locally contractible, and using local

coordinates (Proposition 2.3 and Corollary 2.4) we see that the vertex space is

locally contractible.

Let X be a panel or an open subset of V which is a Hausdorff space. We show

that X is an ANR. This is a local property by [10, III.8.1]; so we can assume that

X is a second-countable metric space by Proposition 2.16. Then X has finite

small inductive dimension by assumption, and we obtain that X is an ANR as a

locally contractible space.
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If X is contained in a graph component, then X is second-countable by 2.16

and therefore embeddable into some Euclidean space; see [11, V 3]. As an ANR

it is also an ENR. ¤

Theorem 2.18. Every panel and open Hausdorff subspace of the vertex space of

a finite- and positive-dimensional locally compact stable graph is a cohomology

manifold over any countable principal ideal domain with a unit.

Proof. Let U be an open subset of a panel such that U is locally arcwise con-

nected and locally contractible (Theorem 2.17), second-countable and metriz-

able (Proposition 2.16) and connected. Let L be a countable principal ideal do-

main with a unit. Since U is a locally compact Hausdorff space of finite inductive

dimension, it also has finite cohomology dimension over L; see [2, II.16.38]. Be-

cause U is locally contractible, it is semi-locally 1-connected; i.e., every element

has a neighbourhood whose embedding into U induces the trivial homomor-

phism between the respective fundamental groups. The local addition allows

to construct local isotopies (Lemma 2.11); so we can assume that U is locally

isotopic in the sense of [2, V.17.2]. Now a theorem of Bredon (see [2, V.17.6])

says that U is a cohomology manifold over L, because U is cohomology locally

connected of any degree as U is locally contractible. This proves the theorem,

since being a cohomology manifold is a local property. ¤

A topological space X is said to have the domain invariance property if for

any homeomorphic subsets U and V of X the subset U is open if and only if

V is open. Note that any cohomology manifold and in particular any Euclidean

space R
n has the domain invariance property; see [2, V.16.9].

Let X be a locally homogeneous space with a basis consisting of cohomol-

ogy manifolds (and therefore locally compact Hausdorff spaces). Note that we

do not assume X to be a Hausdorff space. Let U be an open subset of X and

f : U → V ⊆ X a homeomorphism. For any x ∈ U there is an open neigh-

bourhood W which is a locally compact Hausdorff space such that f(U ∩ W ) is

contained in a cohomology manifold and hence in a Hausdorff space with do-

main invariance. Then the open mapping theorem in [19, 51.19] implies that

f(U ∩ W ) is open. Thus V = f(U) is open. We have shown that X has the do-

main invariance property and obtain the following corollary to Theorem 2.18.

Corollary 2.19. The vertex space and all panels of a finite- and positive-dimensional

locally compact stable graph have the domain invariance property.

By a result of Bing–Borsuk second-countable cohomology manifolds with

small inductive dimension n ≤ 2 are locally homeomorphic to R
n; for a proof

see [2, II.16.38, V.16.32]. Thus we have the following result.
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Corollary 2.20. In a positive-dimensional locally compact stable graph panels of

small inductive dimension n ≤ 2 are locally homeomorphic to R
n.

2.10 Compact panels

In this subsection we prove properties of compact panels and derive properties

of the vertex space.

Lemma 2.21. Panels of locally connected non-discrete stable graphs have no proper

non-empty open compact subsets.

Proof. Let (V,E) be a locally connected non-discrete k-stable graph, and let

C 6= ∅ be a compact and open proper subset of D1(v1). By Proposition 2.12

and Lemma 2.13 there is a continuous multiplication with zeros oi defined on

a neighbourhood of C × {o2} such that C · o2 = {o3} and C · y is open for

y 6= o2. Because C is compact, the sets C · y form a neighbourhood basis of

o3; see the proof of Theorem 2.16, part (1). By continuity the sets C · y are

compact; so we obtain a neighbourhood basis of open and closed sets, since

panels are Hausdorff spaces. By local connectedness panels are discrete, which

is excluded. ¤

Since panels are Hausdorff spaces, we have that for compact panels their

closed subsets are precisely their compact subsets, which proves the following

corollary.

Corollary 2.22. Compact panels of locally connected non-discrete stable graphs

are connected.

The conclusion of Lemma 2.21 also has implications on panels in the vicinity

of a compact panel, as shown in the following lemma, which we state in a purely

topological fashion. Part (b) says, roughly speaking, that a ‘compact union’ of

compact connected sets in a locally compact space is compact; the compactness

of the union is ‘measured’ with a relation satisfying a weak continuity assump-

tion.

Lemma 2.23. Let X and Y be locally compact spaces, and let R ⊆ X × Y be a

locally closed relation such that for every x ∈ X the subspace R(x) of Y has no

proper non-empty open and compact subspaces. Assume furthermore that for every

x ∈ X and every neighbourhood U of R(x) in Y the set R−1(U) is a neighbourhood

of x. Then the following holds.

(a) The relation R is continuous at any x ∈ X for which R(x) is compact, i.e.

for any neighbourhood U of R(x) there is a neighbourhood T of x such that
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R(T ) ⊆ U . Furthermore T can be chosen such that R(t) is compact for all

t ∈ T .

(b) If X is compact and all R(x) are compact for x ∈ X, then R and the projection

R(X) are compact.

Proof. We have assumed that R is a locally closed relation; so let W be an open

subset of X × Y such that R is a closed subset of W .

(a) Let x and U be as above. Because X×Y is locally compact, the compact set

{x} × R(x) ⊆ W has a compact neighbourhood of the form T ′ × U ′ ⊆ W

satisfying U ′ ⊆ U . Thus R ∩ (T ′ × U ′) is closed in T ′ × U ′, and R(t) ∩ U ′ is

closed in U ′ and therefore compact for all t ∈ T ′. Assume that there is no

neighbourhood T ⊆ T ′ of x satisfying R(T ) ⊆ U ′. Then there is a net (xσ)

in T ′ converging to x such that R(xσ) 6⊆ U ′ and R(xσ) contains points of the

interior U ′◦ of U ′, because R−1(U ′◦) is a neighbourhood of x by assumption.

We have that R(xσ) ∩ (U ′ \ U ′◦) 6= ∅, because otherwise R(xσ) ∩ U ′◦ =

R(xσ)∩U ′ would be a proper non-empty open and compact subset of R(xσ),

which is not possible by assumption. Choose uσ ∈ R(xσ) ∩ (U ′ \ U ′◦).

The net (uσ) has an accumulation point u in the compact set U ′ \ U ′◦.

Since R ∩ (T ′ × U ′) is closed in T ′ × U ′, we have on the other hand that

u ∈ R(x) ⊆ U ′◦, which is a contradiction. Thus there is a neighbourhood

T ⊆ T ′ such that R(T ) ⊆ U ′ ⊆ U , and we also have that R(t) = R(t) ∩ U ′

is compact for all t ∈ T .

(b) We need to show that any net (xσ, yσ) in R has a cluster point in R. By

the compactness of X we can assume that (xσ) converges to some x ∈
X. As X is locally compact, there is a compact neighbourhood U of R(x)

contained in the open subset W (x) of Y . Then (a) implies that R(xσ) is

finally contained in U and the net (yσ) has therefore a cluster point y ∈
U ⊆ W (x). By the closedness of R in W we have (x, y) ∈ R. Thus R and

the image R(X) are compact. ¤

Note that the assumption of not containing any proper non-empty open and

compact subspaces cannot be replaced by the stronger assumption of connected-

ness, because it is not satisfied in the application Proposition 2.24(a).

To get a feeling for the condition on R(x) and to see why the assumption of

compactness of R(x) in (a) is necessary consider the following example: let X

be the set of ordinary affine lines of Y = R
2, and let R be the reversed element

relation; then this defines a 2-stable graph, and U = R× ]−1, 1[ and x = R×{0}
show that the assumption of compactness in (a) is necessary.

By Lemma 2.21, Theorem 2.6 and Proposition 2.8(c) the assumptions of the

previous lemma are satisfied for R = D1, and we have the following corollary.
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Proposition 2.24. Let (V,E) be a locally compact locally connected non-discrete

stable graph.

(a) The set of vertices v for which D1(v) is compact is open.

(b) If C ⊆ V and all panels D1(v) for v ∈ C are compact, then D1(C) is compact.

(c) The relation D1 is continuous at any v for which D1(v) is compact, i.e. for

any neighbourhood U of D1(v) there is a neighbourhood T of v such that

D1(T ) ⊆ U .

Note that using induction Proposition 2.24(b) implies that D≤l(v) is compact

for all l ∈ N0, if all panels are compact. We will see in the next section that there

is a much stronger result.

3 Characterization of generalized polygons

In this section we characterize generalized (k + 1)-gons among k-stable graphs

by topological properties. The following lemma is basic and says that the set of

vertices at distance at most k − 2 of a given vertex is topologically a ‘thin’ set.

Lemma 3.1. Let (V,E) be a locally connected k-stable graph, and let U be an

open and connected subset of V . Fix v ∈ V and k2 ≤ k − 2, and assume that

D≤l(v) is closed for all l ≤ k2. Then U \ D≤l(v) is connected for all l ≤ k2.

Proof. In a first step we prove the existence of certain geometric neighbour-

hoods of elements in D≤k2
(v). The rest of the proof is then purely topological.

(1) For l ∈ {0, . . . , k2} and w ∈ Dl(v) there are arbitrarily small neighbour-

hoods Uw of w such that Uw \ Dl(v) is connected and dense in Uw: Let

(v0, . . . , vk) be a non-stammering path with (v, w) = (vk−l, vk). By Theo-

rem 2.4 about local coordinates there are homeomorphic connected neigh-

bourhoods Uw of w in V and U1 × · · · × Uk of (v1, . . . , vk) in D1(v0) ×
· · · ×D1(vk−1) such that Uw \Dl(v) is homeomorphic to

(

U1 × · · · ×Uk−l \
{(v1, . . . , vk−l)}

)

×Uk−l+1 × · · ·×Uk. This set is connected, since k− l ≥ 2.

It is dense, because panels have no isolated points by Proposition 2.14.

(2) We will now prove the lemma by induction over l. Let l ∈ {0, . . . , k2} and

assume that U ′ := U \ D<l(v) is connected. By assumption U ′ is open

and A := Dl(v) ∩ U ′ is closed in U ′. Let Z be a connected component

of U ′ \ A. We show that the closure Z taken in U ′ is open in U ′. Let

w ∈ Z. If w 6∈ A, then w has a connected neighbourhood disjoint from

A. This neighbourhood meets the component Z and is therefore contained

in it. If w ∈ A there is a neighbourhood Uw as in (1). Since it meets
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the component Z, the connected subset Uw \ A also meets this component

and is therefore contained in it. By the density property from (1) we have

Uw ⊆ Uw \ A ⊆ Z. This proves that Z is open and therefore equal to U ′.

Now because of Z ⊆ Z \ A ⊆ Z the set Z \ A is connected and therefore

contained in the component Z. Thus U ′ \ A = Z \ A = Z is connected. ¤

The following proposition is the basis for the characterization theorem for

generalized polygons.

Proposition 3.2. Let (V,E) be a locally connected k-stable bipartite graph, and

let v ∈ V be a vertex such that D≤l(v) is closed for all l ≤ k. Then any connected

subset of V meeting Dk(v) is contained in D≤k(v).

Proof. Let U be a connected subset of V meeting Dk(v). We can assume that

U is a connected component. It is closed and also open, because V is locally

connected. The bipartiteness of (V,E) implies that Dk+2Z(v) is an open and

closed subset of V . Thus U is contained in this subset. Consequently U ∩Dk(v)

is closed in U \ D≤k−2(v), because D≤k(v) is closed; the intersection is also

closed by stability. But U \D≤k−2(v) is connected by Lemma 3.1, so U∩Dk(v) =

U \ D≤k−2(v), which completes the proof. ¤

Assume that the adjacency relation D1 is closed and that D<k(v) is compact.

It can be seen, for example, with nets that D≤l(v) is closed for all l ≤ k (cf. the

proof of Observation 1.2); so we have the following corollary.

Corollary 3.3. Let (V,E) be a locally connected k-stable bipartite graph with a

closed adjacency relation D1. If v ∈ V is a vertex such that D<k(v) is compact,

then D≤k(v) contains the connected component of every vertex in Dk(v).

This is a generalization of a result of Löwen (see [15, 1.15]) for stable planes

which says that a compact line meets every line; indeed a compact line meets

some other line; thus it meets all lines, because the line space is connected.

The above corollary also implies that a stable triangle with compact line pencils

is a linear space (any two points can be joined by a line) if the point space

is connected. We give another version of the above corollary which does not

assume that the adjacency relation is closed.

Corollary 3.4. Let G = (V,E) be a locally connected k-stable polygon such that

V is a Hausdorff space. If v ∈ V is a vertex such that all panels D1(w) are compact

for w ∈ D<k(v), then D≤k(v) contains the connected component of every vertex

in Dk(v).
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Proof. Because D1(v) and D1(w) for some w ∈ D1(v) are compact, all panels

in the graph component of v are locally compact by local homogeneity; so with

local coordinates we see that also the component is locally compact. By induc-

tion Proposition 2.24(b) implies that D≤l(v) is compact for all l ≤ k. Thus we

can apply Proposition 3.2, because V is a Hausdorff space ¤

For the next theorem we need the following lemma.

Lemma 3.5. The vertex space of a locally connected stable graph with only com-

pact panels is a Hausdorff space.

Proof. Let (V,E) be a locally connected stable graph such that all panels are

compact. It is enough to show the lemma for non-discrete graph-connected

stable graphs, as graph-components are open, and discrete spaces are Hausdorff

spaces. We consider the two cases of odd and even k separately, and in each

case we will assume that there are two vertices which cannot be separated and

derive the contradiction that they can be separated after all.

Let k be even and w ∈ V . Because vertices at distance at most 2k can be sep-

arated by Theorem 2.6 and because D≤k(w) is compact by Corollary 2.24(b),

there is a neighbourhood U of D≤k(w) which is a Hausdorff space by Lemma 2.7.

Choose a connected open neighbourhood W ⊆ U of w. Consider the k-stable

graph induced on U now. Since this stable graph is not discrete, panels that

meet W have infinitely many points with W in common. Thus, because k is

even, W contains a vertex at distance k from w. By Corollary 3.4 we have

W ⊆ D≤k(w). It has been shown that every vertex w has a neighbourhood

contained in D≤k(w). Thus, if there were two vertices w and w′ which cannot

be separated, neighbourhoods of w and w′ as above would meet, and therefore

the two vertices would have distance at most 2k. This yields that w and w′ can

be separated.

Let k be odd and (v, w) ∈ D1. We leave out a few details which are similar

to the even case. There is a neighbourhood U of D≤k(v) which is a Hausdorff

space. Choose a connected neighbourhood W ⊆ U of w. Because k is odd,

we can argue as in the even case that there is a vertex in W at distance k

from v. Thus W is contained in D≤k(v). Now assume that w and w′ are two

vertices that cannot be separated. Then for any v ∈ D1(w) and v′ ∈ D1(w
′) and

neighbourhoods W and W ′ of w and w′ as above there is an x ∈ W ∩W ′. Thus

we have d(v, v′) ≤ 2k, and therefore v and v′ can be separated. This holds for

all v ∈ D1(w) and v′ ∈ D1(w
′). Thus, since D1(w

′) is compact, there are disjoint

neighbourhoods X and Y of v and D1(w
′) respectively. By Proposition 2.24(c)

there is a neighbourhood Y ′ of w′ such that D1(Y
′) ⊆ Y . Now D1(X) and Y ′

are separating neighbourhoods for w and w′. ¤
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Here is the main theorem of this section. It says that the k-stable graphs

which are generalized polygons can be characterized by the compactness of

panels. It is not necessary to assume that the graph is bipartite, that the girth is

2k + 2, or that the vertex space is a Hausdorff space.

Theorem 3.6. Let a graph-connected locally connected non-discrete stable graph

be given. Then the following statements are equivalent.

(a) The graph is a generalized polygon, and the vertex set is locally compact.

(b) The vertex set is compact, and the adjacency relation is closed.

(c) All panels are compact.

Proof. The implication (a)⇒(b) follows from [13, 2.5.5, 2.5.2], and (b)⇒(c)

follows, because closed subsets of compact spaces are compact.

Assume that G = (V,E) is a k-stable graph as above such that all panels

are compact. Then V is a Hausdorff space by Lemma 3.5. Let us consider

the bipartite case first. By Corollary 2.22 all panels are connected. Thus any

two vertices at distance 2 (and therefore at even distance) are contained in a

connected set. Thus V consists of precisely two connected components, the two

classes of the bipartite graph G. Now Corollary 3.4 implies that the diameter

of G is at most k + 1. It cannot be k, because G is bipartite and the girth is at

least 2k +1. Thus the girth is 2k +2, and we have shown that G is a generalized

(k + 1)-gon.

We still need to exclude the non-bipartite case. Consider the bipartite graph

G×K2 with vertex set V ×{1, 2}, where two vertices (v, i) and (w, j) are adjacent

if and only if {v, w} ∈ E and i 6= j. It has compact panels, and it is graph-

connected, because G is graph-connected and not bipartite. Thus G × K2 is a

generalized (k + 1)-gon. Let v and w be two adjacent vertices of G. In G × K2

the vertices (v, 1) and (w, 1) have an even distance less than or equal to k + 1,

and there is also a path of this even length from v to w in G. So there is a path

with equal end-points of odd length l ≤ k + 2 in G. Because l is odd this path

contains a cycle, and we can conclude that the girth of G is bounded by l, so

2k < l ≤ k + 2. It follows that k = 1, which is a contradiction, because we have

excluded this case from our definition of stable graphs. ¤

Corollary 3.7. Every locally connected non-discrete stable graph with compact

panels is bipartite.

Every totally disconnected compact metric space without isolated points is

homeomorphic to the Cantor set; see [4, 6.C.11]. Thus by 2.16 we have the

following result.
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Corollary 3.8. If all panels of an infinite stable Moore graph are compact, then

each of them is homeomorphic to the Cantor set. If furthermore the vertex set is

compact, then it is also homeomorphic to the Cantor set.

If infinite stable Moore graphs exist at all, the analogy to generalized poly-

gons does not work, because the adjacency relation is not closed in the case of

stable Moore graphs by Lemma 1.1. Therefore it seems unlikely that there is a

Moore graph with compact panels. On the other hand panels should be com-

pact, because the diameter is the smallest possible. If there are infinite stable

Moore graphs at all, I would expect that the vertex space is compact and that

the extended panels D(v) ∪ {v} are compact for all vertices v ∈ V and not all or

maybe no panels are compact.

Problems 3.9. (a) Is there an infinite stable Moore graph with compact (ex-

tended) panels?

(b) Is there an infinite Moore graph with a compact vertex space and a semi-

closed adjacency relation?

(c) Is there a stable Moore graph on a locally Euclidean space?
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[9] T. Grundhöfer and M. Stroppel, Direct limits and maximality of stable

planes, Arch. Math. 75 (2000), 65–74.

[10] S.-T. Hu, Theory of Retracts, Wayne State Univ. Press, Detroit, 1965.

[11] W. Hurewicz and H. Wallman, Dimension Theory, Princeton Univ. Press,

1941.

[12] S. Immervoll, Isoparametric hypersurfaces and smooth generalized

quadrangles, J. Reine Angew. Math. 554 (2003), 1–17.

[13] L. Kramer, Compact Polygons, Ph.D. Thesis, Tübingen, 1994.
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