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Collineation groups with one or two orbits on

the set of points not on an oval and its

nucleus
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Abstract

Projective planes of even order admitting a collineation group fixing an

oval and having one or two orbits on the set of points not on the oval and

its nucleus are investigated.
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1. Introduction

Let Π be a projective plane of order n and O an oval: a set of n + 1 points no

three collinear. In this paper we only consider the case where n is even. In

this case all the tangent lines to O are on the same point K, called the nucleus

of O. Denote by E the set of points not in O ∪ {K}. The aim of this paper is to

investigate the following situation:

Let G be a collineation group fixing O. Assume that G has one or two

orbits on E . Then determine the abstract structure of G, the plane and

the oval.

The case of one orbit is treated in [10], where we proved the following the-

orem:

Theorem 1.1 ([10, Theorem 2.4]). Let Π be a projective plane of even order n.

Then G is transitive on E if and only if the plane is desarguesian, O is the set of

points of an irreducible conic and G D PSL(2, n).
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The proof uses the classification of line-transitive maximal arcs [5] which

depends on the classification of finite simple groups. We raised the question of

finding a proof avoiding such classification.

In this paper we give a different proof that does not use that classification. We

also provide a classification of projective planes and groups having two orbits

on the set E . We prove that there are precisely three possibilities: either

(1) the plane is the dual Lüneburg plane of order n = 22(2e+1), some e ≥ 1 and

G contains a subgroup isomorphic to the Suzuki simple group Sz(
√

n); or

(2) O is a two-transitive parabolic oval; or

(3) n = 4, Π = PG(2, 4), O is the set of points of an irreducible conic and

G D PSL(2, 4).

An oval O is called a two-transitive parabolic oval if there is a tangent line ℓ and

a collineation group G fixing ℓ and acting 2-transitively on the points of O not

on the tangent line. Two-transitive parabolic ovals are classified in [2]. For the

sake of completeness we report on such a classification.

Theorem 1.2 ([2, Theorem 2.1]). Let O be a two-transitive parabolic oval with

group G. Then O is a translation oval, n = 2d, G is isomorphic to a subgroup of

AΓL(1, 2d) and contains the translation group of AΓL(1, 2d).

2. One orbit

Let Π be a projective plane of even order n, O an oval with nucleus K and G

a collineation group fixing O. We say that G is strongly irreducible on O if G

does not fix any point, secant line or suboval of O. The main result of [1] states

that if G is strongly irreducible on O and has even order, then G has involutory

elations. Let 〈∆〉 be the subgroup generated by the set ∆ of all elations. Then

both the structure of 〈∆〉 and its action on O are determined (see [1] and [9],

and note that both papers do not use the classification of finite simple groups).

Theorem 2.1. Let G be strongly irreducible on O and assume |G| even. Then one

of the following holds.

(1) G fixes a line, and 〈∆〉 ∼= O(〈∆〉) ⋊ 〈γ〉, where γ is a nontrivial elation.

Moreover, G does not contain Baer involutions.

(2) G does not fix any line, and either

(a) n = q = 2d ≥ 4, 〈∆〉 ∼= PSL(2, q), Π = PG(2, q) and O is the set of points

of an irreducible conic; or

(b) n = 22e+1, with e ≥ 1, Π is the dual Lüneburg plane of order n and

G D Sz(
√

n); or
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(c) 〈∆〉 ∼= PSU(3, q2), where n = q ≥ 4 is a suitable power of 2.

If G is transitive on O, then the case 〈∆〉 ∼= PSU(3, q2) does not hold.

In cases (2)(a) and (2)(b) the group G is 2-transitive on O and has one and

two further point orbits on the set E , respectively.

The case where G has precisely one orbit is the desarguesian case.

Theorem 2.2. Let G be transitive on E . Then n = q = 2d, where d ≥ 1, Π =

PG(2, q), O is the set of points of an irreducible conic and, if q ≥ 4, G D PSL(2, q).

Proof. First of all we note that G is transitive on O. For, given A,B ∈ O, choose

P ∈ KA and Q ∈ KB, with P,Q ∈ E; hence there is g ∈ G mapping P onto Q,

and so A onto B.

Let N be a minimal normal subgroup of G. Then by [7, Theorem 4.3A and

Corollary 4.3A] either

(A) N is a direct product of normal nonabelian simple subgroups of N which

are conjugate under G; or

(B) N is an elementary abelian p-group for some prime p.

In case (A), G contains a nonabelian simple group, so that its order is even.

By Theorem 2.1 either case (2)(a) or (2)(b) holds. The latter cannot hold, since

in the dual Lüneburg plane the group fixing O has two further orbits on E .

Therefore only the case where Π = PG(2, q), G D PSL(2, q) and O is a conic

holds.

Now we examine case (B). Since G is transitive on O and N E G, then N is

fixed point free on O (the set of fixed points of N is mapped onto itself by G).

Therefore N has orbits whose lengths are powers of p; hence p | n + 1, and so

p is odd. As a consequence, p does not divide n/2, nor n − 1. Then p does not

divide n(n − 1)/2. Since this number is the number of exterior lines to O, then

N fixes some exterior line. Let F be the set of fixed lines of N . Since N E G,

then G fixes F . Moreover, as G is transitive on E , the following condition must

be satisfied:

The number of points that are on the lines of F is greater than or
equal to n2 − 1. (∗)

We examine the possibilities for F .

(a) F consists of one line.

Because of (∗), n + 1 ≥ n2 − 1. So n = 2. Clearly, Π = PG(2, 2) and O is

a conic. Moreover, G is the symmetric group on 3 elements and N is the

alternating group.
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(b) F consists of k ≥ 2 lines through a point P .

In this case, the point P should belong to E , and this is absurd, as G is

transitive on E .

(c) F consists of three lines not on the same point.

By condition (∗), we have 3(n − 2) + 3 ≥ n2 − 1. So n = 2, Π = PG(2, 2)

and O is a conic.

(d) F is the set of lines of a subplane π0.

Since G fixes F , then G fixes π0. So, because of (∗), π0 must be a Baer

subplane. Moreover π0 ∩ O = ∅. Let g ∈ N be a p-element. If A ∈ O, then

the line AAg meets π0 in a fixed point of N . So Ag2

= A. Hence g2 = 1 and

so p = 2, which contradicts the fact that p is odd. ¤

3. Two orbits

As before Π is a projective plane of even order n, O is an oval with nucleus K

and G a collineation group fixing O. Here we consider the case where G has

two orbits on E , the set of points not in O ∪ {K}.

Theorem 3.1. Assume that G has two orbits on E . Then either

(1) G fixes a point P∞ ∈ O and acts 2-transitively on O \ {P∞}; or

(2) n = 22(2e+1), where e ≥ 1, Π is the dual Lüneburg plane of order n and

G D Sz(
√

n); or

(3) n = 4, Π = PG(2, 4), O is the set of points of an irreducible conic and G D

PSL(2, 4).

Proof. We begin with the following lemma.

Lemma 3.2. Let H be a collineation group fixing O. If |H| is odd, then H fixes a

line.

Proof. By the Feit–Thompson theorem, H is soluble. Therefore H contains a

normal subgroup N , which is an elementary abelian p-group, where p is an

odd prime. Let Fix(N) be the set of points fixed by N . Since N is a normal

subgroup of H, then H maps Fix(N) onto itself. In its action on O, there are

two possibilities for N : either

(a) Fix(N) ∩ O = ∅; or

(b) Fix(N) ∩ O 6= ∅.
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We prove that in case (a) there is precisely one fixed line which is exterior

to O.

Since N fixes no point of O, then p | n+1, and so p does not divide n(n−1)/2,

which is the number of exterior lines. Therefore N fixes some exterior line. If N

could fix two exterior lines, then their point of intersection P would be a fixed

point, distinct from K. Therefore the tangent line KP would meet O in a fixed

point; a contradiction.

As for case (b), there are the following subcases to examine:

(i) |Fix(N)∩O| = 1. In this case N fixes the tangent line through the unique

fixed point of N .

(ii) |Fix(N) ∩ O| = 2. The secant line joining the two fixed points is clearly a

fixed line.

(iii) |Fix(N) ∩ O| ≥ 3. As N fixes the nucleus K, then N fixes a quadrangle.

Thus the fixed points and lines of N form a subplane π0. Let m be the

order of π0. Since K is a fixed point, then on each of the m + 1 lines of

π0 passing through K there is a point of O, which is then a fixed point

of N . Therefore the set O0 = π0 ∩O has size m+1 and so is an oval of π0,

on which N acts trivially. If H acts trivially on π0, then H has fixed lines.

Assume that H acts non-trivially on π0. Then H/N induces a collineation

group of π0 which fixes O0. Now H/N has odd order, so we can repeat the

same argument, as at begin of the proof, with π0, H/N and O0 instead of

Π, H and O, until we will find a subplane and a collineation group acting

trivially on it. ¤

We note en passant the following result, which seems interesting.

Corollary 3.3. If H has no fixed point on O and |H| is odd, then H fixes precisely

one line, which is exterior to O.

Now we can conclude the proof of Theorem 3.1.

Since G has two orbits on E and |E| = n2 − 1 is odd, then one orbit has even

length. Therefore G has even order, and so has involutions. We aim to prove

that G has involutory elations.

By way of contradiction, assume that G has only Baer involutions. Therefore

G ∼= O(G) ⋊ S2, where S2 is a cyclic Sylow 2-subgroup (see [1, Proposition 5])

and O(G) is the largest subgroup of G of odd order. Clearly O(G) also acts

on O, and since |O(G)| is odd, it has fixed lines, because of the previous lemma.

There are several cases to treat.
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1. O(G) fixes an exterior line.

Since O(G) E G, the points of this line constitute one of the two orbits of G

on E . Therefore G is transitive on O and case (1) of Theorem 2.1 applies.

But in this case G has no Baer involution; so this case cannot hold.

2. O(G) fixes a secant line.

Let s be this secant line, let s ∩ O = {A,B}, and let tA and tB be the tan-

gent lines at A and B respectively. The group O(G) fixes the two points of

intersection of this secant line or interchanges them. Since O(G) is odd, then

O(G) must fix each of the two points. Therefore G would have at least three

orbits on E: the points of s \ {A,B}, the points of tA \ {A} and the points of

tB \ {B}. This is a contradiction.

3. O(G) fixes a tangent line t.

Let A be the point of tangency. Then t \ {A,K} is one of the two orbits of

G on E . Let π1, π2, . . . , πk be the Baer subplanes determined by S2 and its

conjugates. All these planes share the line t, and for the corresponding affine

planes having t as line at infinity we have (letting πt
i and Πt to denote the

set of points of the affine planes)

k
⋃

i=1

πt
i = Πt . (1)

We claim that (1) is a partition. For if C is, for example, a common point

of πt
1 and πt

2, then C should be fixed by the corresponding Baer involutions:

Cγ1 = Cγ2 . So Cγ1γ2 = C, and γ1γ2 ∈ O(G). Therefore O(G) fixes a point

not in t, and so O(G) must fix a secant line. This case has been proven to be

impossible.

The partition (1) induces a partition of O \ {t}. Therefore we have two

equations involving n and k
{

k
√

n = n

n2 − n = k(n −√
n) ,

which are clearly incompatible.

4. O(G) fixes a subplane π0.

Since G ∼= O(G) ⋊ S2, then S2 induces a collineation group on π0 and the

Baer involution γ of S2 is either a Baer involution on π0 or the identity (cf.

[4, Proposition 2.3]). Let γ be the identity on π0. Let C be any point of π0

and let ℓ be a line of π0 exterior to O0 = O ∩ π0. Then ℓ, as a line of Π,

is fixed by γ, which is a Baer involution. Therefore ℓ is secant to O, and so

ℓ ∩ O is a pair of points fixed by O(G). Therefore O(G) fixes a secant line

to O; this case has been proven to be impossible (cf. case 2.).
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Therefore γ is a Baer involution of π0, and so defines a Baer subplane of π0.

We repeat the same argument as before until G will have at least three fixed

points on O. This will give rise to a contradiction, as G would have at least

three orbits on E .

In conclusion G has some involutorial elation. In particular then n = 2 or n ≡ 0

(mod 4) ([6, Chapter 4, sec. 1, result 12]). Let Λ be the set of all centres of

these elations. Since Λ ⊆ E , then Λ is one of the two orbits of G on E . We have

to examine two alternatives for Λ: either

(I) Λ is contained in one tangent line; or

(II) Λ is contained in more than one tangent line.

Case (I). Let t be the tangent line containing Λ. Clearly Λ = t \ {K,P∞},

where P∞ is the point of tangency. We prove that G acts 2-transitively on O \
{P∞}. It suffices to show that for A,B,B′ ∈ O \ {P∞} there is an element

g ∈ G which fixes A and maps B to B′. To prove this, let U = P∞B ∩ KA and

U ′ = P∞B′ ∩KA. Since U and U ′ are in E \Λ, there is g ∈ G mapping U to U ′.

Clearly this element maps, by construction, B to B′. We proved that case (I)

corresponds to case (1) of the theorem.

Case (II). Every tangent line contains an element of Λ, that is, every tangent is

the axis of a nontrivial elation. Therefore G acts transitively on O. Since G has

even order, Theorem 2.1 applies. The case that G contains PSL(2, q) does not

hold, since in this case G would have only one orbit on E . To exclude case (1)

of Theorem 2.1 we prove that if n > 4 then G cannot fix any line. Clearly G

cannot fix a secant line (otherwise it would have more than two orbits on E).

We argue by contradiction and assume that G fixes an exterior line ℓ. First of

all we prove:

Lemma 3.4. G is 2-transitive on O.

Proof. G has four orbits of points: O, {K}, the set of points of ℓ and E \ ℓ.

Therefore G has four orbits of lines. The tangent lines and {ℓ} are two orbits,

the other two are clearly the set of secant lines to O and the set of exterior

lines minus ℓ. Hence G acts transitively on the secant lines, and so it is 2-ho-

mogeneous. Since |G| is even, then G is 2-transitive on O (see [8, Theorem 1,

case (i)] or [7, Theorem 9.4B]). ¤

Lemma 3.5. Let t be a tangent line and T its point of tangency. If n > 2, then GT

acts transitively on t \ {K,T,C}, where C = ℓ ∩ t.

Proof. Let A,B ∈ t \ {K,T,C}. Since A,B ∈ L \ ℓ, there is g ∈ G mapping A

to B. Therefore g fixes the tangent line t and so g ∈ GT . ¤
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Because of Lemma 3.5, if n > 2, then n − 2 divides |G|. By Lemma 3.4, G is

2-transitive, and so its order is |G| = n(n + 1)a, for some integer a ≥ 1. Now

(n(n + 1), n − 2) is either 2 or 6. Therefore the order of G is either

[n(n + 1)(n − 2)/2]b or

[n(n + 1)(n − 2)/6]c

and in this case n ≥ 8. By the main result of [3], we have n+1 = q = pd, where

p is an odd prime, and G is isomorphic to a subgroup of AΓL(1, q). Now

|AΓL(1, q)| = q(q − 1)d .

Since |G| divides q(q − 1)d and n = q − 1, we get either

(q − 3)b/2 ≤ d or (2)

(q − 3)c/6 ≤ d . (3)

Case (2) is possible only if q = 5, b = 1 and d = 1; hence n = 4, the plane

is desarguesian and O is a conic. Case (3) holds only if q = 9, c = 1 and

d = 2; hence n = 8, the plane is desarguesian and O is a conic, but there is no

collineation group acting 2-transitively on O and fixing an exterior line.

We conclude that if n > 4, then G fixes no line. Therefore case (2) of The-

orem 2.1 applies, and so n = 22(2e+1), where e ≥ 1, the plane Π is the dual

Lüneburg plane of order n and G D Sz(
√

n). ¤
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