
Innovations in Incidence Geometry
Volume 11 (2010), Pages 197–212

ISSN 1781-6475

ACADEMIA

PRESS

Generalized Clifford parallelisms

Andrea Blunck Stefano Pasotti Silvia Pianta∗

Dedicated to Mario Marchi on the occasion of his 70th birthday

Abstract

We define generalized Clifford parallelisms in PG(3, F ) with the help of a

quaternion skew field H over a field F of arbitrary characteristic. Moreover

we give a geometric description of such parallelisms involving hyperbolic

quadrics in projective spaces over suitable quadratic extensions of F .
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1 Introduction

It is known that the three dimensional real projective space PG(3, R) can be

endowed with two projectively equivalent parallelisms, namely the left and right

Clifford parallelisms, related to left and right multiplications in the Hamilton

quaternion algebra H(R) (see e.g. [15]). For these parallelisms there are many

equivalent geometric representations (see e.g. [22, Sec. 142], [8, 12 A], [16,

Chapter 14]). In particular each parallel class can be described considering the

lines that meet a fixed imaginary line (and its conjugate) belonging to one of

the two reguli of a complex hyperbolic quadric whose points do not belong to

PG(3, R).

The aim of this work is to extend these notions to the projective 3-space over

a general (commutative) field of arbitrary characteristic. This can be done in

several ways, using constructions that involve either rings of generalized quater-

nions, or the notions of Baer subspace of a projective space and indicator set of
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a spread of lines (see [12], [13]). All these constructions always give rise to

regular parallelisms.

In particular we consider these constructions over a field which admits dif-

ferent quadratic extensions.

For the description of the parallelisms our starting point in Section 4 is the

context of projective kinematic spaces (see [15]). Here the lines through the

point 1 are the maximal commutative subalgebras of H. The set of these lines is

partitioned into conjugacy classes with respect to the quaternion multiplication.

We show that each conjugacy class of lines corresponds to a different quadratic

extension L of the field F and determines by right and left cosets respectively

two sets of mutually disjoint spreads which are some of the right and left Clif-

ford parallel classes. Such spreads are indicated by the lines of the two reguli

of a quadric in PG(3, L) with no points in PG(3, F ) (Theorem 4.7). Following

this procedure for all quadratic extensions L/F the whole line set of PG(3, F )

is covered, thus obtaining the complete right and left Clifford parallelisms with

respect to the given quaternion skew field H (see Theorem 4.10). We remark

that different Clifford parallelisms corresponding to different quaternion skew

fields over F are not projectively equivalent. Moreover new “non-Clifford” reg-

ular parallelisms can be obtained, using a method which has no equivalent in

the classical case (see Remark 4.13).

2 Quadratic spaces and quaternion algebras

Recall from [19] that a quadratic space (V (F ), q) is an n-dimensional vector

space V over a field F of arbitrary characteristic, endowed with a quadratic

form q. The bilinear form corresponding to q is bq(v, w) = q(v +w)−q(v)−q(w)

for all v, w ∈ V , and the quadratic space (V (F ), q) is said to be regular or non-

degenerate if bq is non-degenerate, singular otherwise.

If (V (F ), q) is a quadratic space, a nonzero vector v ∈ V is said to be isotropic

if q(v) = 0 and anisotropic otherwise. We say that (V (F ), q) is isotropic if it

contains an isotropic vector, anisotropic otherwise; a subspace W of V is said to

be totally isotropic if bq(W,W ) = 0; an isotropic n-dimensional quadratic form

is said to be hyperbolic if n is even and V is a direct sum of two totally isotropic

(n/2)-dimensional subspaces.

If (V (F ), q) is a regular n-dimensional quadratic space and charF 6= 2, the

discriminant of q is d(q) = (−1)
n(n−1)/2

det(q) considered as an element of

F ∗/(F ∗)2, where we denote by (F ∗)2 the group of squares of F ∗. If, on the

contrary, char F = 2, then the symmetric bilinear form bq is in fact alternat-

ing, thus one can fix a symplectic basis
(
e1, . . . , en/2, f1, . . . , fn/2

)
of (V (F ), q)
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(that is a basis such that bq(ei, fi) = 1 for every i = 1, 2, . . . , n/2, and all

other pairs of vectors are orthogonal) and define the discriminant to be d(q) =

q(e1)q(f1)+ · · ·+q(en/2)q(fn/2) considered as an element of F/{x+x2 | x ∈ F}
(see e.g. [19, 9.4.2]).

If (V (F ), q) is an n-dimensional regular quadratic space over the field F ,

then associated to q there is a non-degenerate quadric Q in the projective space

PG(n− 1, F ), namely the quadric whose points are represented by the isotropic

vectors of q (Q = ∅ if q is anisotropic). Conversely, given any non-degenerate

quadric in PG(n − 1, F ), its equation gives rise to a family of similar regular

quadratic forms qρ over Fn, i.e. quadratic forms whose elements differ in a

proportional factor ρ ∈ F ∗. Note that the quadratic spaces (Fn, qρ) in general

are not isometric, but they correspond to the same quadric Q in PG(n − 1, F )

and their discriminant is the same.

If K is any commutative field extension of F , then a quadratic form q de-

fined in V (F ) can be regarded also as a quadratic form denoted by qK over the

extended vector space V (K), and the quadric Q associated to q in PG(3, F ) as

a quadric in PG(3,K), denoted by QK .

Let K be a separable quadratic extension of a non-separably closed field F ,

denote by x 7→ x the unique non trivial element of Gal(K/F ) and fix an element

b ∈ F ∗. Then, according to [21], the quaternion algebra H = (K/F, b) is the

subring of M2(K) consisting of matrices of the form

(
x y

by x

)

and it is a central simple algebra over F ; if F is separably closed, then the

quaternion algebra H over F is M2(F ). In both cases the ground field F can be

identified with the subalgebra of scalar matrices. For a quaternion h ∈ H we

define the conjugate of h to be the quaternion

h :=

(
x −y

−by x

)
,

the norm of h to be n(h) := hh = det(h) ∈ F and the trace of h to be t(h) :=

h + h = tr(h) ∈ F . Then each h ∈ H satisfies the quadratic equation h2 −
t(h)h + n(h) = 0. Note that K, embedded into H as the subring of all matrices

(
x 0

0 x

)
,

is invariant under the conjugation of H, which, restricted to K, coincides with

the conjugation associated to the field extension K/F . Note also that n is a
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non-degenerate quadratic form on the vector space F 4, which in the sequel will

be called the norm form of H, thus (F 4, n) is a quadratic space that turns out to

be regular. The following holds true.

2.1 Theorem ([18, Chapter 3, Theorem 2.7], [10, Chapter 11]). For H =

(K/F, b) the following statements are equivalent.

(i) H ∼= M2(F ).

(ii) H is not a division algebra.

(iii) (H,n) is isotropic as a quadratic space.

(iv) (H,n) is hyperbolic as a quadratic space.

(v) b ∈ N(K), where N is the norm of K/F .

If any of these conditions holds for the algebra H, then we say that H splits

over F , or equivalently that H is a split quaternion algebra over F or that F is

a splitting field for H.

Recall that the quaternion algebra H = (K/F, b) is a 4-dimensional vector

space over F , and it is always possible to find a basis (1, i, j, ij) of H such that

K = F (i) and

i2 = a

j2 = b

ij = −ji

if char F 6= 2, or

i2 + i = a

j2 = b

ij = j(i + 1)

if char F = 2.

Moreover, if char F = 2, then K ′ := F (j) is an inseparable field extension of F

contained in H.

The following theorem is a characterization of those quadratic field exten-

sions of the given field F which are subalgebras (indeed maximal commutative

subfields) of a fixed quaternion skew field H over F in terms of algebraic prop-

erties of the norm of H which correspond to geometric properties of the quadric

associated to the norm form.

2.2 Theorem. Let F be a field of any characteristic, and let H be a quaternion

skew field over F , with norm form n. Let L be a quadratic extension of F . Then

the following are equivalent:

(i) L is a subalgebra of H.

(ii) nL is isotropic.

(iii) nL is hyperbolic.

The equivalence (i) ⇔ (ii) is a well known result, see e.g. [23, Chapter I,

Theorem 2.8], [19, Chapter 8, Theorem 5.4] and also [10, 11.A]; in the partic-
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ular case char F 6= 2 we provide a simple and direct proof in [2]. Equivalence

(ii) ⇔ (iii) follows from Theorem 2.1.

2.3 Proposition. Let q be a 4-dimensional regular quadratic form over a field F .

If d(q) is trivial, then q is similar to the norm form of a suitable quaternion algebra

H over F , and H is a skew field if and only if q is anisotropic over F . If d(q) is non-

trivial, then there exists a quadratic extension F ′ of F (namely the discriminant

extension) such that qF ′ is similar to the norm form of a quaternion algebra H

over F ′, and H is a skew field if and only if qF ′ is anisotropic over F ′. Conversely

if q is isometric to the norm form of a quaternion algebra H over a field F , then

d(q) is trivial.

Proof. Assume d(q) is trivial. Then by [6, Lemma 4.4] q is either hyperbolic

or similar to the orthogonal sum of quadratic forms s1N ⊥ s2N for suitable

s1, s2 ∈ F ∗, where N is the norm of a separable quadratic extension K/F .

In the first case q is similar to the norm form of a split quaternion algebra,

and this happens exactly when q is isotropic over F . If, on the contrary, q is

anisotropic over F , then q is similar to the norm form of the quaternion algebra

H = (K/F, s−1
1 s2). If d(q) is non-trivial and d is a representative for the square

class of d(q), the same as above holds over the discriminant quadratic extension

F ′ = F (
√

d) of F . The converse is obvious. ¤

2.4 Proposition. Let Q be a quadric of PG(3, F ) and write q for a representative

of the similarity class of quadratic forms associated to Q in the vector space F 4.

Then the following hold:

(i) Q is hyperbolic if and only if q is isometric to the norm form of the split

quaternion algebra M2(F ) over F .

(ii) Q has no points in PG(3, F ) and there exists a separable quadratic extension

K of F such that QK is hyperbolic in PG(3,K) if and only if q is isometric

to the norm form of a quaternion skew field H over F .

Proof. (i) is obvious. To prove claim (ii) note that, if q is anisotropic and qK

hyperbolic, by [6, Lemma 4.2], q is similar to the quadratic form s1N ⊥ s2N ,

where N is the norm of the extension K/F , and thus, as in the proof of the

previous proposition, q is similar to the norm form of a suitable quaternion

algebra H. Since q is anisotropic over F , H is a division algebra.

Conversely if q is isometric to the norm form of a quaternion skew field H

over F , then Q does not have points in PG(3, F ) by Theorem 2.1. Moreover H

contains a maximal separable subfield K, so qK is hyperbolic by Theorem 2.2

and QK is then hyperbolic in PG(3,K). ¤
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2.5 Remark. Note that Propositions 2.3 and 2.4(ii) characterize the quadrics Q
without points in PG(3, F ) which determine a quaternion skew field H over F

as those quadrics whose similarity class of associated quadratic forms consists

of anisotropic forms with trivial discriminant.

3 Spreads and parallelisms in 3-space

Let P = (P,L) be a 3-dimensional projective space. If M ⊆ L, then a line L ∈ L
is said to be transversal to M if L meets each M ∈ M in a unique point.

Using the notion of transversals, we can now state the definition of a regulus

in P, due to B. Segre [20, Chapter 18] (see also [14]):

Let T0, T1, T2 ∈ L be pairwise skew. Then the set

R := {L ∈ L | L transversal to T0, T1, T2} (3.1)

is called a regulus.

The elements of a regulus R must be pairwise skew, because otherwise the

three lines T0, T1, T2 ∈ L that determine R could not be pairwise skew.

Given three pairwise skew lines R0, R1, R2, there is always at least one regu-

lus containing them, since R0, R1, R2 possess at least three transversals T0, T1, T2,

that are also pairwise skew and hence determine a regulus that of course must

contain R0, R1, R2. This regulus is unique, i.e., does not depend on the choice

of the transversals T0, T1, T2, if and only if the field F is commutative. See [14,

Chapter 4].

Given a regulus R, we consider

Ropp := {T ∈ L | T transversal to R}.

By the above, Ropp is a regulus if and only if F is commutative. In this case,

we call Ropp the regulus opposite to R. Note that in this situation a regulus and

its opposite cover the same set of points, namely, a hyperbolic quadric QR in

PG(3, F ) (see [4], [5, Chapter 4]).

In pappian spaces, one can also define reguli as follows (see, e.g., [9, 17]):

A regulus R is a set of pairwise skew lines, such that each line that meets three

lines of R, is a transversal of R, and each point on a transversal of R lies on an

element of R.

Recall that a set S ⊆ L is called a spread of P, if each point p ∈ P lies on

exactly one line L ∈ S. So S is a partition of the point set P into lines. In

particular, any two elements of a spread S are skew. A spread S in a pappian
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3-space is called regular, if with any three pairwise skew lines S1, S2, S3 ∈ S
also all other lines of the unique regulus through S1, S2, S3 belong to S.

A partial parallelism of P is a set of mutually disjoint spreads. A parallelism

of P is a partial parallelism which covers the whole line set L of the projective

space; a regular parallelism is a parallelism consisting of regular spreads only.

Given a parallelism of P we say that two lines L,M ∈ L are parallel (L//M) if

they belong to the same spread.

From now on we study the pappian projective space P = PG(3, F ) over a

commutative field F .

By [1], there is a regular spread in PG(3, F ) if and only if the field F admits

a quadratic extension K. In this case PG(3, F ) = (P,L) can be embedded in

PG(3,K) = (P ′,L′) as a Baer subspace, i.e. a projective subgeometry such that

each point p ∈ P ′ is incident with at least one line L ∈ L. This means that, given

any line I ∈ L′ not intersecting P, through any point p of I there is exactly one

line Lp ∈ L; so I defines the set of lines

S(I) := {Lp | p ∈ I} ⊆ L

which turns out to be a regular spread of PG(3, F ) (see [1, Theorem 3.6]).

Conversely, any regular spread of PG(3, F ) can be obtained as a set S(I) as

above, where K is a suitable quadratic extension of F . We say that the line I

indicates, or is an indicator set of, the spread S(I) (see e.g. [11]). If K/F is

a separable field extension and I denotes the line (which is necessarily skew

to I) conjugate to I with respect to this extension, then S(I) = S(I). Note that

different spreads of PG(3, F ) may give rise to different quadratic extensions of

the ground field F (see [3]).

4 Clifford parallelisms

Let now H = (K/F, b) be a quaternion skew field over F . We consider H ∼=
F 4 as the underlying vector space of PG(3, F ). The group H∗ acts on H via

right (or left) multiplications. Since these are F -linear bijections they induce

collineations of PG(3, F ). Now the right and left Clifford parallelisms on PG(3, F )

can be defined as follows:

L//r M :⇔ L = Mh for some h ∈ H∗ (right Clifford parallel)

L//ℓ M :⇔ L = hM for some h ∈ H∗ (left Clifford parallel)

One can easily check that these two relations are in fact parallelisms. By defini-

tion, right multiplications map each line to a right parallel one. Moreover, left
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multiplications map right parallel classes to right parallel classes. These same

holds if “right” and “left” are interchanged. Altogether, PG(3, F ), endowed with

the two Clifford parallelisms, is an example of a kinematic space (for details see

[15]).

Since each (right or left) parallel class is a spread, we know that it has a

unique representative passing through the point 1 := F . The lines through 1

are exactly the 2-dimensional subspaces F + Fx, x ∈ H \ F , and these are

exactly the maximal commutative subfields of H, which are certain quadratic

field extensions of F .

First we study the split quaternion algebra (by Theorem 2.2) HL over one

of such extension fields L. As mentioned above, then HL is isomorphic to the

algebra M2(L) of 2 × 2 matrices over L and the norm is nothing else but the

determinant.

We consider HL = M2(L) also as the endomorphism ring of the vector space

L2, where the matrices are supposed to act from the right. For each U ≤ L2 we

introduce the following notation:

IU :=
{
M ∈ M2(L) | U ⊆ ker M

}
, IU :=

{
M ∈ M2(L) | im M ⊆ U

}
.

We study the quadric QL associated to nL = det in PG(3, L), i.e.

QL =
{
LM | M ∈ M2(L),M 6= 0,det M = 0

}
.

By Proposition 2.4, the quadric QL is hyperbolic. In addition, the following

holds.

4.1 Proposition. The two reguli on QL are the sets

RL = {IU | U ≤ L2,dim U = 1}

and

(RL)opp = {IU | U ≤ L2,dim U = 1}.

Proof. For each U ≤ L2 with dim U = 1 the set IU is a 2-dimensional subspace

of M2(L), since for a fixed u ∈ U \ {0} the mapping M2(L) → L2 : M 7→ uM

is linear and surjective with kernel IU . Similarly, one can see that IU is a 2-di-

mensional subspace of M2(L). So all IU and all IU are lines in QL. Clearly, two

such lines meet if and only if they are of different types, and each point LM in

QL belongs to a line of each type. ¤

Now we turn to the quaternion skew field H = (K/F, b) over F and consider

a maximal commutative subfield of H, i.e. a quadratic field extension L of F

with F ⊆ L ⊆ H. Then the following holds true.



Generalized Clifford parallelisms 205

4.2 Proposition ([7, p. 104]). Let H be a quaternion algebra over F and L any

quadratic subfield of H.

(i) If L/F is separable, then there exists d ∈ F ∗ such that H ∼= (L/F, d).

(ii) If char F = 2 and L = F (h) is inseparable, then there exists a separable

quadratic extension F ⊆ L′ ⊆ H such that H ∼= (L′/F, c), where c = n(h).

According to this result in the following, whenever we consider a quadratic

subfield L of H, me may assume without loss of generality L = K = F + Fi

if L/F is a separable extension, or L = K ′ := F + Fj if L/F is an inseparable

extension.

4.3 Lemma. Consider the quaternion skew field H = (K/F, b), write K ′ = F+Fj

and consider the matrix algebras HK = M2(K) over K and HK′ = M2(K
′) over

K ′.

(i) The elements of H ⊆ HK are exactly those matrices that are fixed by the

bijection

κ :

(
x y

z t

)
7→

(
t̄ b−1z̄

bȳ x̄,

)
,

which is involutory and K-semilinear with respect to conjugation.

(ii) If char F = 2, the F -algebra H can be embedded in the K ′-algebra HK′ via

the correspondence ϕ mapping

1 7→
(

1 0

0 1

)
, i 7→

(
a + 1 a

a a

)
,

j 7→
(

0 j

j 0

)
, ij 7→ j

(
a a + 1

a a

)
.

(iii) If char F = 2, the embedding ϕ described above is an isometry, i.e. for each

h ∈ H, n(h) = detϕ(h).

Proof. Direct computation. ¤

4.4 Remark. Since K/F is quadratic, the projective space PG(3, F ) is a Baer

subspace of PG(3,K). Describe the projective spaces with the help of the 4-di-

mensional vector spaces H and HK , respectively. Then, the collineation κ̃ in-

duced by κ is a Baer collineation of PG(3,K), fixing exactly the points and lines

of PG(3, F ). The quadric QK is invariant under κ̃. In particular, lines in QK are

mapped to lines in QK . Assume that for a line R ∈ RK we have Rκ̃ ∈ (RK)opp.

Then R and Rκ̃ meet in a point, which must belong to PG(3, F ). But QK con-

tains no points of PG(3, F ) since the norm of H is anisotropic, a contradiction.

Hence the reguli RK and (RK)opp are invariant under κ̃. Each line of RK (and,
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similarly, each line of (RK)opp) indicates a regular spread of PG(3, F ). The

spreads indicated by lines I, I ′ ∈ RK with I ′ 6= I, I κ̃ are disjoint (this can be

shown analogously to [2, Proposition 3.1]); so RK (and also (RK)opp) gives

rise to a regular partial parallelism.

In the case of characteristic 2, if we consider the inseparable extension K ′/F ,

conjugation is trivial for points in PG(3,K ′) and so we do not have a Baer

collineation.

In what follows we will use the notion of conjugation with respect to multi-

plication in H, which here means automorphisms of type x 7→ c−1xc, c ∈ H∗,

rather than the anti-automorphism x 7→ x̄ from before.

4.5 Remark. Let x, y be elements of an arbitrary quaternion algebra H. Then

x is conjugate to y (i.e. y = c−1xc for some c ∈ H∗) if and only if as matrices

in M2(K), they have the same characteristic and minimal polynomials, if and

only if t(x) = t(y) and n(x) = n(y). This simple characterization of conjugate

elements entails that, considering a quaternion algebra H over a field F and the

algebra HL over any extension field L/F , any two elements x, y ∈ H ⊂ HL are

conjugate with respect to multiplication in HL if and only if they are so in H.

4.6 Lemma. Let R be any line of PG(3, F ) through the point 1. Then R, consid-

ered as a line of PG(3, L), meets QL if and only if R is conjugate to L.

Proof. Let R be the line through the points 1 = F and Fh, for some h ∈ H \ F .

Since by Lemma 4.3 the quaternions 1 and h are matrices of M2(L), R meets

QL if and only if there is an l ∈ L such that det(−l1 + h) = 0. This in turn is

equivalent to the statement that the characteristic polynomial ph(X) = X2 −
tr(h)X + deth = X2 − t(h)X + n(h) of the matrix h has a root l ∈ L \ {0}.

Since h ∈ H \ F the polynomial ph(X) ∈ F [X] is irreducible over F , and since

l is a root of ph(X), it is the minimal polynomial of l over F , hence l ∈ L \ F .

Moreover, since ph(X) has degree 2, it is also the characteristic polynomial of l,

thus the quaternions h and l are conjugate as elements of M2(L) and R = F+Fh

is conjugate to F + Fl = L. ¤

Now we study the partial parallelisms mentioned in Remark 4.4. We show

that the spreads indicated by lines on QL are Clifford parallel classes. By

Lemma 4.6 a line through 1 which is not conjugate to L does not meet QL

and hence its (right or left) parallel class cannot be indicated by a line on QL.

4.7 Theorem. The regular spreads S(I) indicated by lines I ∈ RL (or (RL)opp,

respectively) are exactly the right (left) parallel classes of lines R through 1 that

are conjugate to L.
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Proof. We distinguish the cases L = K = F + Fi and L = K ′ = F + Fj. First

consider the line L = K. Each line of the right parallel class of K has the form

Kh for some h ∈ H∗, thus it is spanned by h =

(
x y

bȳ x̄

)
and ih =

(
ix iy

b̄iȳ īx̄

)
.

The points of intersection of Kh and QK are exactly the points p = KM , where

M is a non-invertible K-linear combination of these two matrices. One obtains

the two solutions

p = KM, with M = −ī

(
x y

bȳ x̄

)
+

(
ix iy

b̄iȳ īx̄

)
= (i − ī)

(
x y

0 0

)
and

p′ = KM ′, with M ′ = −i

(
x y

bȳ x̄

)
+

(
ix iy

b̄iȳ īx̄

)
= (̄i − i)

(
0 0

bȳ x̄

)
.

Obviously (cfr. Proposition 4.1), the matrices M from above, with x, y ∈ K, are

exactly the elements of I = IU ∈ RK , where U = K(0, 1). In particular, the

right parallel class of K is indicated by I. Similarly, one can show that the left

parallel class of K is indicated by J = IV ∈ (RK)opp, where V = K(1, 0).

Assume now char F = 2 and consider the inseparable extension L = K ′ =

F + Fj. Again each line of the right parallel class of K ′ is spanned by h and jh

for a suitable h ∈ H∗. We consider H as a subring of HK′ (cfr. Lemma 4.3(ii)),

and thus h =

(
x y

z t

)
and jh =

(
jz jt

jx jy

)
. The points of intersection of K ′h

and QK′ are the points p = K ′M where M is a non-invertible K ′-linear combi-

nation of h and jh. A straightforward computation shows that, assuming as a

consequence of h ∈ H∗ that det(h) 6= 0, the only solution is

p = K ′M, with M = j

(
x + z y + t

x + z y + t

)
,

and, again by Proposition 4.1, the matrices M of this form are the elements of

I = IU ∈ RK′ , where U = K ′(1, 1). Similarly one can show that the left parallel

class of K ′ is indicated by J = IU ∈ (RK′)opp.

In the remainder of this proof there is no need to distinguish any more the

separable case from the inseparable one, thus, from now on, writing L we mean

either K or K ′. We consider now R = c−1Lc, c ∈ H∗. Let α be the collineation

of PG(3, L) induced by the conjugation x 7→ c−1xc. Then α leaves both PG(3, F )

and QL invariant. Moreover,

u ∈ ker M ⇐⇒ uc ∈ ker c−1Mc, u ∈ im M ⇐⇒ uc ∈ im c−1Mc (4.1)

implies that α leaves RL and (RL)opp invariant. Since α maps the right (left)

parallel class of L to the right (left) parallel class of R we conclude that the right

(left) parallel class of R is indicated by Iα ∈ RL (or Jα ∈ (RL)opp, respectively).



208 A. Blunck • S. Pasotti • S. Pianta

It remains to show that all spreads indicated by a line of RL (or (RL)opp)

are right (left) parallel classes of lines c−1Lc. But this follows from the above

by (4.1), since for each 1-dimensional subspace W ≤ L2 there is a c ∈ H∗ with

W = Uc (or W = V c, respectively). ¤

Note that, in the proof above, in the separable case we have p′ = pκ̃ (see

Remark 4.4). So the right parallel class of K is also indicated by I ′ = I κ̃.

Since each (right or left) parallel class has a representative through 1, which

is a maximal commutative subfield of H, by Proposition 4.2 we can describe it as

S(I), with I a line in an appropriate Baer superspace of PG(3, F ). In particular,

we get the following.

4.8 Corollary. The right and left Clifford parallelisms are regular.

In the special case that F admits only one quadratic extension K (and hence

K/F is separable, thus char F 6= 2), the Clifford parallelisms are indicated by

exactly the lines of a regulus and its opposite in PG(3,K). For F = R and K = C

this is well known, see e.g. [8, 12 A]. This observation leads to the following

corollary.

4.9 Corollary. Let F , K and H be as before. Then all quadratic extensions of F in

H are conjugate to K if and only if there exists a hyperbolic quadric Q in PG(3,K)

having no points in PG(3, F ) and incident with every line of PG(3, F ).

In general, however, we need more than one Baer superspace PG(3, L). In

order to get a unified description of the entire parallelisms, we proceed as fol-

lows: Let F̂ be the quadratic closure of F . Then all quadratic extensions L of

F are contained in F̂ . We consider PG(3, F ) and all PG(3, L) as subspaces of

PG(3, F̂ ). More explicitly, we take H as underlying vector space of PG(3, F )

and HL or H bF (with the same basis (1, i, j, ij)) as underlying vector spaces of

PG(3, L) or PG(3, F̂ ), respectively. In particular, for any two distinct separable

quadratic extensions L,L′ we have PG(3, L) ∩ PG(3, L′) = PG(3, F ).

In addition, we consider in PG(3, F̂ ) and in all PG(3, L) the quadrics Q bF and

QL associated to the norm of H. By Theorem 2.2 the quadric QL is empty

exactly if L is not a subalgebra of H, and hyperbolic otherwise. This implies

that also Q bF is hyperbolic. Let the reguli R bF on Q bF and RL on QL be defined

as in Proposition 4.1. Then RL consists exactly of those lines of R bF that belong

to PG(3, L), the same holds for the opposite reguli. In case that QL = ∅ we set

RL := ∅ =: (RL)opp.

For a line I on Q bF we can define S(I) only if I belongs to some PG(3, L);

note that of course we then only consider the points of I that are points of

PG(3, L).
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4.10 Theorem. Let F be a (commutative) field, H be a quaternion skew field

over F and, for any quadratic extension L of F , let QL be the quadric of PG(3, L)

associated to the norm of H and RL and (RL)opp the reguli of QL defined as

above. Then the set

{
S(I) | I ∈ RL, L/F quadratic extension

}

is the right Clifford parallelism of PG(3, F ). Analogously,

{
S(I) | I ∈ (RL)opp, L/F quadratic extension

}

is the left Clifford parallelism of PG(3, F ).

Proof. This follows from Theorem 4.7. The change of basis we employed in

order to prove that theorem (depending on L, and writing the elements of H

and of HL as matrices) does not affect the statements needed. ¤

4.11 Remark. Note that, according to Proposition 2.4, any quadric of PG(3, F )

which has no points in PG(3, F ) and is hyperbolic in a quadratic field extension

of F is in fact the quadric associated to the norm form of a quaternion skew field

over F , and thus, according to the previous theorem, it defines a Clifford paral-

lelism in PG(3, F ). Moreover any two such quadrics which are not projectively

equivalent on F (i.e. such that there is no projective collineation of PG(3, F̂ )

with coefficients in F mapping one to the other) define non projectively equiv-

alent Clifford parallelisms in PG(3, F ).

4.12 Example. In order to illustrate that in fact many different Baer super-

spaces may be needed, we consider an example. First, we make some general

observations: Consider a field F of characteristic different from 2. A quadratic

extension K = F (
√

c) of F (with c ∈ F a non-square) appears as a maximal

commutative subfield of H, if K = F + Fx with t(x) = 0 and n(x) = −c. Two

subfields F + Fx, F + Fy of H with t(x) = 0 = t(y) are isomorphic as F -al-

gebras if and only if they are conjugate in H (by the classical Skolem-Noether

Theorem), i.e., if and only if n(x) and n(y) are in the same square class of F ∗.

So the conjugacy classes of maximal commutative subfields of H are in 1-1 cor-

respondence with the square classes of the subgroup {n(x) | x ∈ H∗, t(x) = 0}
of F ∗.

Let us take the special case of the ordinary rational quaternions, i.e., F = Q

and H = (K/Q, b), where K = Q(i) with i2 = −1 = b. Then for x ∈ H

with t(x) = 0 we have n(x) = x2
2 + x2

3 + x2
4, whence each field Q(

√
−d), with

d ∈ Q sum of three squares, appears as a subfield of H. Among many others, H

contains the non-conjugate subfields Q(
√
−1), Q(

√
−2), Q(

√
−3), each of which

gives rise to (only) a part of the Clifford parallelisms.
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4.13 Remark. Assume that the 2-dimensional subalgebras of a quaternion skew

field H over F do not belong to the same conjugacy class, or equivalently that

the field F has non isomorphic quadratic extensions that are subalgebras of H.

In this case the projective space PG(3, F ) can be endowed with new parallelisms

in the following way. Consider the right and left Clifford parallelisms defined in

Theorem 4.10, fix a family F of quadratic extensions L of F with F ⊆ L ⊆ H

and define the following family of spreads:

C (F ) := {S(I) | I ∈ RL, L/F quadratic extension, L /∈ F}
∪ {S(I) | I ∈ (RL)opp, L ∈ F}.

Then C (F ) is a covering of the line set of PG(3, F ), and any two spreads of

this family are disjoint, for, a line Rh through a generic point h of PG(3, F )

belongs to a left parallel class if and only if there exists a line R′ through 1

such that Rh = hR′, and hence if and only if R and R′ are conjugate in H.

By Theorem 4.7 this happens if and only if the parallel classes are indicated by

lines belonging to the same quadratic extension L of F .

These new “Clifford-like” parallelisms will be the target of more investiga-

tions in forthcoming papers.
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Geom. 58 (1997), 106–116.

[14] H. Havlicek and S. Pasotti, A survey on the notion of regulus in a skew

space, Quad. Sem. Mat. Brescia (2003), 1–32.

[15] H. Karzel, Kinematic spaces, in Symposia Mathematica, Vol. XI (Convegno

di Geometria, INDAM, Rome, 1972), Academic Press, London, 1973, pp.

413–439.

[16] H. Karzel and H.-J. Kroll, Geschichte der Geometrie seit Hilbert, Wiss.

Buchges., Darmstadt, 1988.

[17] N. Knarr, Translation Planes. Foundations and construction principles, Lec-

ture Notes in Math. 1611, Springer-Verlag, Berlin, 1995.

[18] T. Y. Lam, The Algebraic Theory of Quadratic Forms, Math. Lecture Note

Ser., W. A. Benjamin, Inc., Reading, Mass., 1973.

[19] W. Scharlau, Quadratic and Hermitian Forms, Grundlehren Math. Wiss.

270, Springer-Verlag, Berlin, 1985.

[20] B. Segre, Lectures on Modern Geometry. With an appendix by Lucio

Lombardo-Radice, Edizioni Cremonese, Rome, 1961.

[21] J. Tits and R. Weiss, Moufang Polygons, Springer Monogr. Math., Springer-

Verlag, Berlin, 2002.



212 A. Blunck • S. Pasotti • S. Pianta

[22] O. Veblen and J. Young, Projective Geometry, vol. II, Ginn and Company,

Boston, 1918.

[23] M.-F. Vignéras, Arithmétique des Algèbres de Quaternions, Lecture Notes

in Math. 800, Springer, Berlin, 1980.

Andrea Blunck
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