Innovations in Incidence Geometry

Volume 11 (2010), Pages 213-235 ISSN 1781-6475

16-dimensional compact projective planes with a large group fixing two points and only one line

Hermann Hähl Helmut Salzmann

Abstrac

We complete the determination of all pairs (\mathcal{P}, Δ) , where \mathcal{P} is a compact projective plane with a 16-dimensional point set, Δ is an automorphism group of \mathcal{P} of dimension at least 35, and Δ does not fix exactly one point and one line. If Δ fixes two points and only one line, then Δ contains a 15-dimensional translation group and a compact subgroup $\mathsf{Spin}_7\mathbb{R}$; hence $\dim \Delta \geq 36$. The planes are described by their coordinatizing Cartesian fields, more explicitly for $\dim \Delta > 36$.

Keywords: compact projective plane, 16-dimensional plane, Cartesian field, translation

group

MSC 2000: 51H10

1 Introduction

Let $\mathcal{P}=(P,\mathfrak{L})$ be a topological projective plane with a compact point set P of finite (covering) dimension $d=\dim P>0$. A systematic treatment of such planes can be found in the book *Compact Projective Planes* [18]. Each line $L\in\mathfrak{L}$ is homotopy equivalent to a sphere \mathbb{S}_ℓ with $\ell\mid 8$, and $d=2\ell$, see [18, (54.11)]. In all known examples, L is in fact homeomorphic to \mathbb{S}_ℓ . Taken with the compact-open topology, the automorphism group $\Sigma=\operatorname{Aut}\mathcal{P}$ (of all continuous collineations) is a locally compact transformation group of P with a countable basis, the dimension $\dim\Sigma$ is finite, cf. [18, (44.3 and 83.2)].

For $\ell \leq 4$, all sufficiently homogeneous planes are known explicitly, see [18, Chaps. 7, 8]. In the case $\ell = 8$ the aim is to determine all pairs (\mathcal{P}, Δ) , where Δ is a connected closed subgroup of Σ and $\dim \Delta \geq b$ for a suitable bound b.

(If $\dim \Delta \geq 27$, then Δ is always a Lie group [13].) Here, we deal with the case that b=35 and Δ fixes exactly 3 elements (say two points and one line). This completes the classification for b=35 and all groups Δ which do not fix exactly two elements (a point and a line), cf. [17] for the other possible configurations of fixed elements.

Theorem 1.1. If Δ fixes exactly 2 points and one line and if dim $\Delta \geq 34$, then the group T of translations in Δ is at least 15-dimensional.

Either Δ has a subgroup $\Upsilon \cong \mathsf{Spin}_7\mathbb{R}$ and $\dim \Delta \geq 36$, or T is transitive, a maximal semi-simple subgroup of Δ is isomorphic to $\mathsf{SU}_4\mathbb{C} \cong \mathsf{Spin}_6\mathbb{R}$, and $\dim \Delta = 34$.

All planes satisfying the hypotheses of Theorem 1.1 with $\dim \Delta \geq 35$ will be described by coordinate methods in Theorems 3.1 and 3.3.

2 Structure of the group

Essential for the proof is the so-called *stiffness*:

The stabilizer of a quadrangle has dimension at most 14; see [18, (83.23)].

Particularly important is Bödi's improvement [1]:

(\Diamond) If the fixed elements of the connected Lie group Λ form a connected subplane \mathcal{E} , then Λ is isomorphic to the 14-dimensional compact group G_2 or its subgroup $\mathsf{SU}_3\mathbb{C}$, or $\dim \Lambda < 8$. If \mathcal{E} is a Baer subplane $(\dim \mathcal{E} = 8)$, then Λ is a subgroup of $\mathsf{SU}_2\mathbb{C}$. Moreover, $\Lambda \cong \mathsf{G}_2$ implies $\dim \mathcal{E} = 2$.

If Δ fixes 2 distinct points and $\dim \Delta > 30$, then it follows from other classification results ([11, 12, 15]) that Δ is not semi-simple and has no normal torus subgroup. The main result of [16] can now be stated in the following form:

Lemma 2.1. If Δ fixes exactly one line W and at least 2 points on W, and if $\dim \Delta \geq 33$, then Δ has a minimal normal subgroup $M \cong \mathbb{R}^{\overline{t}}$ consisting of translations with axis W.

Two more facts will be needed repeatedly:

Lemma 2.2. Assume that Γ is a solvable Lie subgroup of Δ . Then Γ has a chain of normal subgroups Γ_{κ} with $\dim \Gamma_{\kappa+1}/\Gamma_{\kappa} \leq 2$; see [2, I \S 5, Th. 1, Cor. 4, p. 46]. If κ is the largest index such that $a^{\Gamma_{\kappa}} = a$, if $N = \Gamma_{\kappa+1}$ and $a \neq x \in a^{\mathbb{N}}$, then $\dim x^{\Gamma_a} \leq 2$. In fact, $x^{\Gamma_a} \subseteq a^{\mathbb{N}}$ and $\dim x^{\Gamma_a} \leq \dim \mathbb{N}/\mathbb{N}_a \leq \dim \mathbb{N}/\Gamma_{\kappa}$.

Notation. The connected component of a group Γ will be denoted by Γ^1 . Let u and v be the two fixed points of Δ . For a point $a \notin W = uv$ we put $\nabla = (\Delta_a)^1$. By Lemma 2.1 there exists a minimal ∇ -invariant vector subgroup $\Theta \cong \mathbb{R}^t$ consisting of translations in M. The $\operatorname{radical} \mathsf{P} = \sqrt{\Delta}$ is the largest solvable normal subgroup of Δ . We write $\Delta : \Gamma = \dim \Delta - \dim \Gamma$ and $\Gamma|_M$ for the group induced by Γ on the Γ -invariant set M.

The dimension formula $\dim \Gamma = \dim \Gamma_x + \dim x^{\Gamma}$ holds for any closed subgroup Γ of Δ , see [18, (96.10)]. This fact will often be used without mention.

Lemma 2.3. If a maximal semi-simple subgroup Ψ of Δ or of ∇ (a Levi complement of the radical) has a subgroup $\Lambda \cong \mathsf{G}_2$, then Ψ is almost simple, and $\Psi = \Lambda$ or there is a group $\Upsilon \cong \mathsf{Spin}_7\mathbb{R}$ with $\Lambda < \Upsilon \leq \Psi$. The central involution $\alpha \in \Upsilon$ is a reflection.

Proof. This follows from (\Diamond) and the observation that (in the relevant dimension range) each simple group which contains G_2 is of type B or D or G_2 , see [7] for details. By [18, (55.40)], any action of $SO_5\mathbb{R}$ on a compact projective plane is trivial. Hence $\Psi \ncong SO_7\mathbb{R}$ and α is not planar.

Proof of Theorem 1.1. Recall that there exists a minimal ∇ -invariant subgroup $\Theta \cong \mathbb{R}^t$ which is contained in the group T of translations with axis W. But for the last step, we may assume that $\dim \mathsf{T} < 16$.

1) The elements of Θ have center u or center v, and we may assume $\Theta \leq \mathsf{T}_{[v]}$. In fact, for $v \in L \neq W$ the stabilizer Θ_L consists of translations with center v. The action of Θ on the pencil \mathfrak{L}_v shows that $\dim \Theta_{[v]} \geq t-8$, cf. [18, (61.11a)], and $\dim \Theta_{[v]} = 0$ or $\Theta = \Theta_{[v]}$ by minimality. Therefore $t \leq 8$. Assume that $\mathbb{I} \neq \vartheta \in \Theta_{[z]}$ for some center $z \neq u, v$, and note that $\Theta_{[z]}$ is connected by [18, (61.9)]. Choose any point $a \notin W$. If $\mathbb{R} \cong \Pi \leq \Theta$ and $\vartheta \in \Pi$, then the connected component Λ of Δ_{a,a^ϑ} centralizes each translation in Π because $\vartheta^\Lambda = \vartheta$ and Λ acts linearly on Θ . Thus, Λ fixes the orbit a^Π pointwise and the fixed elements of Λ form a connected subplane \mathcal{E} . Moreover, $\nabla \colon \Lambda = \dim(a^\vartheta)^\nabla \leq \dim a^\Theta \leq 8$ and $\dim \Lambda \geq 18 - t$. Hence the stiffness theorem (\Diamond) shows that $\Lambda \cong \mathsf{G}_2$. Consequently, $t \geq 4$ and Λ acts non-trivially on Θ by the last part of (\Diamond). The action of any compact or semi-simple Lie group on a real vector space is completely reducible, and each irreducible module of G_2 on \mathbb{R}^{16} has a dimension divisible by 7, see [18, (95.10)]. Since $\Pi^\Lambda = \Pi$, we conclude that t = 8 and $\dim \nabla \leq 22$. Because Θ is minimal, ∇ acts ir-

reducibly on Θ . By Lemma 2.3, the group ∇ has a subgroup $\Upsilon \cong \mathsf{Spin}_7\mathbb{R}$. The central involution $\alpha \in \Upsilon$ is a reflection and inverts each translation in Θ . Thus, α has axis W and some center, which may be chosen as α . Now

 $\alpha^{\Delta}\alpha\subseteq T$ and $\dim T=\dim a^{\Delta}\geq 12$, see [18, (61.19)]. The group Υ acts faithfully on each invariant subgroup of T. This implies $T_{[u]}\cong T_{[v]}\cong \mathbb{R}^8$ (cf. [18, (95.10)]) and then $\mathcal P$ is the classical Moufang plane $\mathcal O$ over the octonions by [18, (81.17)], but we have assumed that $\dim T<16$.

Before continuing the proof of Theorem 1.1, we now prove the following lemma.

Lemma 2.4. For the connected component Λ of the stabilizer of some quadrangle containing u,v, and an arbitrary point a, the radical P of Δ satisfies $P: (\Lambda \cap P) \leq 20$. If $\dim \Lambda \geq 8$, then $\Lambda \cap P = 1$; in this case, $\dim P = 20$ implies $\dim \Theta \geq 2$ and $\dim P_a = 4$.

Proof. Lemma 2.2, applied to the action of P on the line pencil \mathcal{L}_v yields a group X ≤ P fixing two lines av and bv such that P:X ≤ 10. Analogously, the action of X on the line av provides a point c with X:X_{a,c} ≤ 10. As P is solvable and $\Theta^{P_a} = \Theta$ by step 1), there exists a minimal X_a-invariant vector subgroup N ≤ Θ of dimension at most 2, and the argument of Lemma 2.2 shows that c can be chosen in a^N . The fixed elements of $\Lambda = (P_{a,c,bv})^1$ form a connected subplane $\mathcal E$ since Λ acts linearly on N and centralizes the translation $\xi \in \mathbb N$ with $a^\xi = c$. If dim $\Lambda \geq 8$, then Λ is simple by (\Diamond) and $\Lambda \cap \mathbb P$ is a solvable normal subgroup of Λ , hence trivial.

- 2) Our aim is to show that one of the groups $T_{[u]}$ or $T_{[v]}$ is linearly transitive. This will be accomplished in steps 2) 15). Again let $\Theta \leq T_{[v]}$. For $a \notin W$ and $w \in W \setminus \{u,v\}$, consider the connected component Ω of ∇_w . The dimension formula gives $\dim \Omega \geq 10$. As above, let $\mathbb{R} \cong \Pi \leq \Theta$, $\mathbb{1} \neq \rho \in \Pi$, $c = a^{\rho}$, and put $\Lambda = (\Omega_c)^1$. Then $\Omega : \Lambda = \dim c^{\Omega} \leq \dim a^{\Theta}$. Because the action of ∇ on Θ is linear, $\Lambda \leq \operatorname{Cs} \Pi$ and (\lozenge) applies.
- 3) For t=1 this gives $\Lambda\cong \mathsf{G}_2$. Put $\Delta=\mathsf{P}\Psi$, where $\mathsf{P}=\sqrt{\Delta}$ is the radical and Ψ is a maximal semi-simple subgroup of Δ . Lemma 2.4 shows that $\dim\mathsf{P}\leq 19$; consequently, $\dim\Psi>14$. According to Lemma 2.3 the Levi complement Ψ has a subgroup $\Upsilon\cong\mathsf{Spin}_7\mathbb{R}$. For t<8 the central involution $\alpha\in\Upsilon$ acts trivially on Θ by [18, (95.10)] and α is a reflection whose axis is a line through v and whose center is v. We may choose v0 on this axis. By the dual of [18, (61.19b)] we get $\mathsf{dim}\,\mathsf{T}_{[u]}=\mathsf{dim}(uv)^\Delta>0$. The reflection v0 inverts the elements of $\mathsf{T}_{[u]}$, and the representation of v0 on $\mathsf{T}_{[u]}$ is faithful. This implies that $\mathsf{T}_{[u]}\cong\mathbb{R}^8$ is linearly transitive as claimed. Moreover, $\mathsf{T}_{[u]}$ is a minimal normal subgroup of v0. The action of v0 on v1 is equivalent to a linear action, see [18, (96.36)]. Hence v1 for a suitable choice of v2, so that v3 acts irreducibly on $\mathsf{T}_{[u]}$ 3.
- 4) From t=2 it would follow that dim T=16, contrary to the general assump-

tion.

If $a \neq c \in a^{\Theta}$, then $\Gamma = (\nabla_c)^1$ satisfies $\dim \Gamma \geq 16$. Consider a point $w \in W \setminus \{u,v\}$ and the connected component Λ of the stabilizer Γ_w , and note that $\dim \Lambda \geq 8$. By (\lozenge) the group Λ is almost simple and hence acts trivially on a^{Θ} . Therefore, $\Lambda \not\cong \mathsf{G}_2$ and $\Lambda \cong \mathsf{SU}_3\mathbb{C}$. This implies that Γ acts faithfully and transitively on $W \setminus \{u,v\}$, see [18, (96.11)]. According to [15, Lemma 5], the group Γ has a compact subgroup $\Phi \cong \mathsf{SU}_4\mathbb{C}$ of codimension 1. Consequently, Γ is not semi-simple and the commutator subgroup Γ' coincides with Φ . Moreover, $\dim \nabla = 18$ and the group $\Phi \cong \mathsf{SU}_4\mathbb{C}$ is transitive outside of W. Since Γ' acts trivially on Θ , the central involution Φ of Φ is a reflection with axis Φ (Note that $\Phi \cong \mathsf{SO}_6\mathbb{C}$ cannot act on a Baer subplane.) As before, $\Phi \cong \mathsf{SU}_4\mathbb{C}$ has positive dimension. Hence $\Phi \cong \mathsf{SU}_4\mathbb{C}$ contains homologies with center $\Phi \cong \mathsf{SU}_4\mathbb{C}$ has positive dimension. Hence $\Phi \cong \mathsf{SU}_4\mathbb{C}$ contains homologies with center $\Phi \cong \mathsf{SU}_4\mathbb{C}$ has positive dimension. Hence $\Phi \cong \mathsf{SU}_4\mathbb{C}$ contains homologies with center $\Phi \cong \mathsf{SU}_4\mathbb{C}$ has positive dimension. Hence $\Phi \cong \mathsf{SU}_4\mathbb{C}$ contains homologies with center $\Phi \cong \mathsf{SU}_4\mathbb{C}$ has positive dimension.

- 5) The cases $3 \le t \le 6$ lead to a contradiction.
 - Consider the subplane $\mathcal{F}=\langle a^\Theta,u,v,w\rangle$; either $\mathcal{F}=\mathcal{P}$ and $\Omega=(\nabla_w)^1$ acts faithfully on Θ , or \mathcal{F} is a Baer subplane. In the latter case we write $\Omega|_{\mathcal{F}}=\Omega/K$, where K denotes the kernel of the action of Ω on \mathcal{F} . Recall from (\Diamond) that K is a compact group of dimension 3 or at most 1. The different possibilities will be discussed separately. As before, Λ denotes the connected component of the stabilizer of w, a and $c \in a^\Theta$, and $\dim \Lambda \geq 10-t$.
- 6) If t=3 and $\mathcal{F}=\mathcal{P}$, then Ω would be embeddable into $\mathsf{GL}_3\mathbb{R}$. Hence t=3 implies $\mathcal{F}\neq\mathcal{P}$. A group Λ of dimension ≥ 8 would act trivially on Θ and on \mathcal{F} , but this is impossible. Therefore, $\dim \Lambda=7$ and $\dim \Omega=10$; moreover, Ω acts transitively on $\Theta\setminus\{1\}$ and Ω/K has a subgroup $\mathsf{SO}_3\mathbb{R}$. The stiffness result [18, (83.15)] shows that $\Lambda:\mathsf{K}\leq 5$. Consequently, $\dim\mathsf{K}=3$ and Ω/K is a 7-dimensional subgroup of $\mathsf{GL}_3\mathbb{R}$. However, such a subgroup does not exist because $\mathsf{SO}_3\mathbb{R}$ is a maximal subgroup of $\mathsf{SL}_3\mathbb{R}$, see [18, (94.34)].
- 7) Now let t=4 and $\mathcal{F}=\mathcal{P}$. If Ω is not transitive on $\Theta\smallsetminus\{\mathbb{1}\}$, then it follows from (\lozenge) that there is an orbit of dimension 3, and suitable stabilizers fix subplanes of dimensions 4 and 8. By [18, (83.9)] and [5, XI.9.6], this implies that Λ is a compact Lie group of rank at most 2, in fact, $\Lambda\cong SU_3\mathbb{C}$, $SO_4\mathbb{R}$, or $\dim\Lambda\le 4$, see [14, (2.1)]. On the other hand, $\dim\Lambda\ge 6$ and Λ acts faithfully on Θ and fixes a one-parameter subgroup. This is a contradiction. Hence Ω is transitive on $\Theta\smallsetminus\{\mathbb{1}\}$, and $\Omega'\cong Sp_4\mathbb{R}$, see [21] or [18, (95.10)]. In particular, Ω contains a central involution α , and α cannot be planar, since the stabilizer of a degenerate quadrangle in an 8-dimensional plane has dimension at most 7, see [18, (83.17)]. Therefore, α is a reflection

with axis W, and $\alpha^{\Delta}\alpha\subseteq \mathsf{T}$, cf. [18, (23.20)]. Moreover, $\dim\Omega\leq 11$ and $\dim\nabla\leq 19$. The dimension formula yields $\dim\mathsf{T}\geq \dim a^{\Delta}\geq 15$. The reflection α acts on T as $-\mathbb{1}$. Because Ω is connected, α induces on T a map of determinant 1; consequently, $\mathsf{T}\cong\mathbb{R}^{16}$.

8) If t=4 and $\mathcal{F}\neq\mathcal{P}$, the stiffness results [18, (83.17 and 22)] imply $\dim\Omega/\mathsf{K}\leq 7$ and $\dim\mathsf{K}\leq 3$, hence $\dim\Omega=10$ and $\dim\nabla=18$. Therefore, $\dim w^{\nabla}=8$ for each choice of w, and ∇ is transitive on $S=W\smallsetminus\{u,v\}$. According to [5, XI.9.5], the group Λ/K is compact, and then we have $\Lambda/\mathsf{K}\cong\mathsf{SO}_3\mathbb{R}$ and $\Lambda\cong\mathsf{SO}_4\mathbb{R}$, cf. [14, (2.1)]. In particular, $\dim\Lambda=6$, $\dim\nabla_c=14$, and $\dim w^{\nabla_c}=8$, so that ∇_c is also transitive on S. Let Φ be a maximal compact subgroup of ∇_c containing Λ and note that S is homotopy equivalent to \mathbb{S}_7 . The exact homotopy sequence

$$\cdots \to \pi_{q+1}S \to \pi_q \Lambda \to \pi_q \Phi \to \pi_q S \to \pi_{q-1} \Lambda \to \dots$$

shows that $\pi_1 \Phi \cong \mathbb{Z}_2$, $\pi_3 \Phi \cong \mathbb{Z}^2$, $\pi_5 \Phi \cong \mathbb{Z}_2^2$, and that $\pi_7 \Phi$ is infinite. By [18, (94.36)], this implies that Φ is a semi-simple group having exactly two almost simple factors. Moreover, $\Phi \neq \Lambda$ because $\pi_7 \Lambda$ is finite. Since $\dim \Phi < \dim \nabla_c$ and $\pi_5 \operatorname{SU}_3 \mathbb{C} \cong \mathbb{Z}$, the group Φ has a factor $B \cong \operatorname{U}_2 \mathbb{H}$, cf. [18, (94.33)] and note that $\operatorname{SO}_5 \mathbb{R}$ cannot act on a plane. For the same reason, the central involution $\beta \in B$ is a reflection; its axis is av, since, obviously, $[B, \Theta] = \mathbb{I}$. From $\dim a^{\Delta} = 16$ we infer that $\beta^{\Delta} \beta = \mathsf{T}_{[u]}$ is linearly transitive. Either ∇ acts faithfully on $\mathsf{T}_{[u]}$ or ∇ contains homologies with axis au. In the second case, $\mathsf{T}_{[v]}$ is also linearly transitive, see [18, (61.20)], but then the representation of B on $\mathsf{T}_{[v]}$ would be trivial (use [18, (95.10)] and note that $[B, \Theta] = \mathbb{I}$) and B would consist of homologies with center u. Consequently, ∇ acts on $\mathsf{T}_{[u]}$ as a transitive subgroup of $\mathsf{GL}_8 \mathbb{R}$, and [21] shows that ∇ has a transitive factor $\mathsf{X} \cong \mathsf{SL}_2 \mathbb{H}$. The stabilizer $\mathsf{X}_w = \mathsf{X} \cap \Omega$ is a 7-dimensional group which fixes \mathcal{F} pointwise, a contradiction to (\lozenge) .

- 9) Thus the cases $2 \le t \le 4$ cannot arise. Therefore, t > 4 and $\mathcal{F} = \mathcal{P}$. For t < 7, we have $\Lambda \ncong \mathsf{SU}_3\mathbb{C}$ and hence $10 \le \dim \Omega < t + 8$. Since Θ is a minimal ∇ -invariant vector group, ∇ induces on Θ an irreducible group $\widetilde{\nabla}$ of dimension $\dim \widetilde{\nabla} \ge \dim \Omega \ge 10$.
- 10) Let t=5. By [18, (95.6 and 10)], the commutator group $\widetilde{\nabla}'$ is an almost simple group of dimension 10 or 24. In the latter case the dimension of ∇ would be too large. Hence $\widetilde{\nabla}'$ is locally isomorphic to a group $O_5'(\mathbb{R},r)$ and $\dim \widetilde{\nabla} \leq 11$. Because of Brouwer's Theorem [18, (96.30)] or [8], an almost simple group of dimension > 3 has no subgroup of codimension 1. Consequently, $\Omega' \cong \widetilde{\nabla}' \cong O_5'(\mathbb{R},r)$, and [18, (55.40)] implies r>0. In the notation of step 2), there is some $\rho \in \Theta$ such that Λ has a subgroup $SO_3\mathbb{R}$. By [18, (83.10)], the group Λ is then compact, and [14, (2.1)] shows $\Lambda \cong SO_4\mathbb{R}$

- (note that $4 < \dim \Lambda < 8$). Hence Ω' is a hyperbolic motion group of the 4-dimensional projective space $P\Theta$. The stabilizer E of an exterior point of $P\Theta$ is not compact, but E contains a group $SO_3\mathbb{R}$; therefore, E has to be compact for the same reason as Λ , a contradiction.
- 11) Suppose that t=6 and that Ω acts irreducibly on Θ . The stiffness result (\Diamond) implies dim Λ < 8 and 10 \leq dim Ω \leq 13. With [18, (95.5 and 6)] it follows that either dim $\Omega' = 8$ and the center $Z(\Omega)$ is isomorphic to \mathbb{C}^{\times} , or the action of Ω' on Θ can be understood as the tensor product of the natural representations of $A = SL_2\mathbb{R}$ and $B = SL_3\mathbb{R}$ and $\Omega' \cong A \times B$. In both cases, Ω contains a central involution ω . On a Baer subplane, Ω would induce a group of dimension at most 7, see [18, (83.17)]. Therefore, ω is a reflection with axis uv and center a. We have $\dim \nabla \leq 21$. The hypothesis together with [18, (61.19)] implies $13 \le \dim a^{\Delta} = \dim T < 16$. Consequently $\dim \nabla > 18$, $\dim \Omega > 10$ and then $\dim \Omega' = 11$. Because ω belongs to a connected group and acts as -1 on T, both $T_{[u]}$ and $T_{[v]}$ have even dimension, and $T \cong \mathbb{R}^{14}$. Hence one of the groups $T_{[u]}$ and $T_{[v]}$ is linearly transitive. Recall that $\Theta \leq T_{[v]}$. By complete reducibility and [18, (95.10)], either B acts irreducibly on $\mathsf{T}_{[u]}\cong\mathbb{R}^8$ or B centralizes a 2- dimensional subgroup of $\mathsf{T}.$ In the latter case, the fixed elements of B would form a connected subplane contrary to (\lozenge) . Since Ω fixes u and w, the factor A acts faithfully on $\mathsf{T}_{[u]}$. This contradicts the irreducibility of B, see [18, (95.4)].
- 12) If t=6 and there is a minimal Ω -invariant vector subgroup $H<\Theta$, and if $\Lambda=(\Omega_c)^1$ for some $c\in a^H\smallsetminus\{a\}$, then $10-\dim H\le \dim \Lambda<8$ by (\lozenge) . Consider the action of Ω on the subplane $\mathcal{F}_H=\langle a^H,u,v,w\rangle$ and the connected component Φ of the kernel of this action. If $\dim H\le 4$, then it follows as in steps 6) and 7) that \mathcal{F}_H is an $(\Omega$ -invariant) Baer subplane of \mathcal{P} . Now $\dim \Omega/\Phi\le 7$ by [18, (83.17)], and then [18, (83.22)] implies $\Phi\cong \mathsf{SU}_2\mathbb{C}$. Recall from step 5) that Ω acts faithfully on Θ . Since the action of Φ on Θ is completely reducible, Φ acts faithfully on a complement of Π in Π but Π and the commutator group Π is semi-simple and irreducible on Π , see [18, (95.6b)]. Inspection of the list [18, (95.10)] shows Π is Π and then Π would centralize a complement of Π in Π in contradiction to Π . Hence Π would centralize a complement of Π in Π in contradiction to Π .
- 13) Steps 3) 12) yield the following conclusion.
 - **Conclusion.** If \mathcal{P} is not a translation plane and if $\Theta \cong \mathbb{R}^t$ is a minimal ∇ -invariant subgroup of $\mathsf{T}_{[v]}$, then either $t \geq 7$, or t = 1 and $\mathsf{T}_{[u]} \cong \mathbb{R}^8$ is a minimal normal subgroup of Δ .
- 14) Now let t = 7 and assume first that Ω acts irreducibly on Θ for each choice

of w. By [18, (95.6)], the commutator group Ω' is almost simple. Moreover, $9 \le \dim \Omega' \le 15$ (since $\Lambda \not\cong G_2$). The list [18, (95.10)] shows that $\dim \Omega' = 1$ 14 and that Ω' has torus rank 2. Because t is odd, each torus subgroup of Ω' fixes a non-trivial vector $\rho \in \Theta$, and [18, (83.10)] implies that the corresponding stabilizer Λ is compact. It follows that $\Lambda \cong SU_3\mathbb{C}$ and then $\Omega' \cong \mathsf{G}_2$ is also compact. Hence $\Lambda \cong \mathsf{SU}_3\mathbb{C}$ for each $c = a^\rho$ and arbitrary w. Suppose that Ω' is a Levi complement of $P = \sqrt{\Delta}$. Then Lemma 2.4 shows that $\dim P = 20$ and $\dim P_a = 4$. This implies that $[P_a, \Omega'] = \mathbb{1} = P_a \cap \Omega'$. The fixed elements of $\Omega' \cong G_2$ form a 2-dimensional subplane \mathcal{E} by [18, (96.35)] and P_a acts effectively on \mathcal{E} , but the stabilizer of a triangle in \mathcal{E} is only 2-dimensional, see [18, (33.10)]. Hence Ω' is not a Levi complement of the radical. By Lemma 2.3, the group Δ has a subgroup $\Upsilon \cong \mathsf{Spin}_7\mathbb{R}$. Since Υ induces the group $SO_7\mathbb{R}$ on $\Theta \cong \mathbb{R}^7$, the central involution $\alpha \in \Upsilon$ is a reflection with axis av and center u. As in step 3) it follows that $T_{[u]} \cong \mathbb{R}^8$ is linearly transitive and is a minimal normal subgroup of Δ , and we may assume that ∇ acts irreducibly on $\mathsf{T}_{[u]}$.

15) Last alternative: t=7 and there is a minimal Ω -invariant vector subgroup $H < \Theta$. The proof follows a similar scheme as in the case of the action of ∇ on Θ . We have $1 \le s := \dim H < 7$. If s = 1, then $\dim \Lambda \ge 9$ and $\Lambda \cong G_2$. As G_2 has no representation in dimension < 7, the group Λ would act trivially on Θ and hence on $\langle a^{\Theta}, u, w \rangle = \mathcal{P}$, a contradiction. In the case s = 2, the stiffness theorem (\Diamond) implies $\Lambda \cong SU_3\mathbb{C}$. Again Λ would act trivially on Θ , see [18, (95.3 and 10)]. The arguments of step 6) with H instead of Θ show that $s \neq 3$. Next, let s = 4 and assume first that Ω acts faithfully on H as an irreducible subgroup of $GL_4\mathbb{R}$. Then Ω' is a semi-simple group of dimension ≥ 8 , see [18, (95.6b)]. Hence Ω' is isomorphic to $\mathsf{Sp}_4\mathbb{R}$ or to $\mathsf{SL}_4\mathbb{R}$. The action of Ω' on Θ is completely reducible, and H has an Ω' -invariant complement $X \cong \mathbb{R}^3$ in Θ . Consequently Ω' induces the identity on the subplane $\langle a^{\mathsf{X}}, u, w \rangle$, but this contradicts (\Diamond). Therefore $\langle a^{\mathsf{H}}, u, w \rangle$ is a Baer subplane of ${\cal P}$ and Ω induces on H a group $\Omega/K,$ where K^1 is isomorphic to a subgroup of $SU_2\mathbb{C}$. Either $K^1 \cong SU_2\mathbb{C}$ or dim $K \leq 1$. In both cases, the semi-simple group Ω' fixes a complement X of H in Θ and $\dim \Omega' \geq 8$. If $K^1 \cong SU_2\mathbb{C}$, then $K^1|_X \cong SO_3\mathbb{R}$, which is a maximal subgroup of $SL_3\mathbb{R}$, cf. [18, (94.34)]. Accordingly, $\Omega'|_{X} \cong SL_{3}\mathbb{R}$, a contradiction. If dim $K \leq 1$, then dim $\Omega'|_{H} > 7$ and Ω' contains the group $\operatorname{Sp}_4\mathbb{R}$. This is again impossible. It follows that s>4and that Ω acts faithfully on H. For s = 5, representation theory shows that $\Omega' \cong O'_5(\mathbb{R}, r)$, see [18, (95.10)], and Ω' would act trivially on a complement of H in Θ , a contradiction to (\lozenge) . In the case s = 6, finally, the semi-simple group Ω' fixes a unique complement X of H, and X is even Ω-invariant. This has been excluded at the beginning of step 15).

- 16) In any case, one of the groups $T_{[u]}$ or $T_{[v]}$ is linearly transitive, and we may assume that $\Theta = T_{[v]} \cong \mathbb{R}^8$ and that ∇ induces an irreducible group on Θ . By [5, XI.9.5 and 6], the stabilizer of an arbitrary quadrangle is compact and Λ is always a compact connected Lie group of torus rank at most 2. If $4 < \dim \Lambda < 8$, then $\Lambda \cong SO_4\mathbb{R}$, see [14, (2.1)] or [5, XI.9.9].
- 17) Put $\Gamma = \Delta_{au}$. Because Θ is transitive on $av \setminus \{v\}$, it follows that $\Delta = \Gamma\Theta$ and that Γ acts irreducibly on Θ . If $\dim \Delta \geq 40$, then $\dim \Gamma = 16$ or \mathcal{P} is the classical Moufang plane according to [18, (87.7)]. Hence our assumptions imply $26 \leq \dim \Gamma \leq 31$. The centralizer $\Gamma \cap \operatorname{Cs} \Theta$ fixes each line in \mathfrak{L}_u and consists of collineations with center u.
- 18) Let G be a closed, connected irreducible subgroup of $\mathsf{SL}_8\mathbb{R}$. If $\dim G \geq 18$, then G' is isomorphic to an almost direct product $\mathsf{SL}_2\mathbb{R} \cdot \mathsf{SL}_4\mathbb{R}$ or $\mathsf{SU}_2\mathbb{C} \cdot \mathsf{SL}_2\mathbb{H}$, or to one of the almost simple groups $\mathsf{Sp}_4\mathbb{C}$, $\mathsf{Spin}_7(\mathbb{R},r)$ with (r=0,3), $\mathsf{O}'_8(\mathbb{R},r)$, $\mathsf{SL}_4\mathbb{C}$, or $\dim G' \geq 36$.
 - In fact, G' is semi-simple and $\dim G' \geq 16$ by [18, (95.6)]. Suppose that $G' = \mathsf{AB}$ is an almost direct product where A has minimal dimension. If B acts irreducibly on $V = \mathbb{R}^8$, then $\mathsf{A} \cong \mathbb{H}'$ and $\mathsf{B} \leq \mathsf{SL}_2\mathbb{H}$. In the other case, $\dim \mathsf{B} \geq \mathsf{8}$, and Clifford's Lemma [18, (95.5)] shows that B acts faithfully and irreducibly on a subspace U such that $V = U \oplus U^\alpha$ for some $\alpha \in \mathsf{A}$. By [18, (95.10)], it follows that $\dim \mathsf{B} \neq \mathsf{8}$. Therefore, $\dim \mathsf{B} > \mathsf{9}$, and B contains a group $\mathsf{Sp}_4\mathbb{R}$. If $0 \neq x \in U$, then the fixed points of B_x form a 1-dimensional subspace of U, and $\langle x, x^\alpha \rangle \cong \mathbb{R}^2$ is A-invariant. Consequently, $\mathsf{A} \cong \mathsf{SL}_2\mathbb{R}$ and $\dim \mathsf{B} = 15$. All possibilities for an almost simple group G' are listed in [18, (95.10)].
- 19) If $\Gamma_{[u]} = \mathbb{1}$, then Γ acts faithfully on Θ ; hence Γ' is semi-simple and $\dim \Gamma' \geq 24$, see [18, (95.6)]. By the last step, $\Gamma' \cong \operatorname{SL}_4\mathbb{C}$ or $\Gamma' \cong \operatorname{O}'_8(\mathbb{R},r)$. In the first case, the involution $\beta = \operatorname{diag}(\mathbb{1}, -\mathbb{1}) \in \operatorname{SL}_4\mathbb{C}$ is not a reflection and hence fixes a Baer subplane \mathcal{B} pointwise, cf. [18, (55.29)]. The group $\mathsf{B} = (\mathbb{1}, \operatorname{SL}_2\mathbb{C}) \leq \operatorname{Cs}\beta$ would induce on \mathcal{B} a group of central collineations with center u, but this is impossible by [18, (61.20)], as B is semi-simple. If $\Gamma \cong \operatorname{O}'_8(\mathbb{R}, r)$, the diagonal involution $\operatorname{diag}(1, 1, \ldots, 1, -1, -1)$ would fix a 6-dimensional subset of \mathfrak{L}_u and hence would be neither a reflection nor a Baer involution. This contradicts [18, (55.29)].
- 20) In the previous step it has been proved that $\Gamma_{[u]} \neq \mathbb{1}$. Assume first that $\Gamma_{[u]}$ contains homologies. We may choose a in such a way that $\Gamma_{[u,av]} \neq \mathbb{1}$. From the dual of [18, (61.20b)] it follows that $s := \dim \Gamma_{[u]} = \dim a^{\Gamma} = \dim \Gamma \dim \nabla$, and, hence, $\Gamma = \nabla \Gamma_{[u]}^1$. Moreover, this is also the dimension of the set of all axes of homologies in Γ with center u. We choose $b \in a^{\Gamma_{[u]}} \setminus \{a\}$

and $c \in av \setminus \{a\}$ and put $\Lambda = (\nabla_{b,c})^1$. Then

$$26 \le \dim \Gamma = \dim \nabla + s \le \dim \Lambda + 8 + 2s \le 22 + 2s$$
 and $1 < s < 8$.

The assumption $s \leq 5$ implies successively $\dim \Lambda \geq 8$, $\Lambda \cong SU_3\mathbb{C}$ or $\Lambda \cong G_2$, Λ acts trivially on $T_{[u]}$, $\Lambda \not\cong G_2$, s = 5, $\Lambda \not\cong SU_3\mathbb{C}$, a contradiction. Assume that s = 6. Then $\Lambda \not\cong SU_3\mathbb{C}$ because Λ fixes some elements of $T_{[u]}$. Hence $\Lambda \cong SO_4\mathbb{R}$ by step 16), and $\dim \nabla = 20$. For any admissible b, the dimension formula gives

$$12 \le \dim \nabla_c = \dim b^{\nabla_c} + \dim \Lambda \le s + 6 = 12$$
,

and $\dim \nabla_c = 12$, $\dim b^{\nabla_c} = 6$. By [18, (96.11a)], the group ∇_c acts transitively on $\mathsf{T}^1_{[u]} \cong \mathbb{R}^6$. The action is also effective since its kernel is trivial on $\langle a^{\mathsf{T}^1_{[u]}}, c, v \rangle = \mathcal{P}$. On the other hand, the results in [21] (or in [18, (96.19–22)]) show that a transitive subgroup $G \leq \mathsf{GL}_6\mathbb{R}$ satisfies $\dim G \leq 10$ or $\dim G \geq 16$. Therefore, s = 7 and $\dim \mathsf{T} = 15$.

21) Now let $\Gamma_{[u]} = \mathsf{T}_{[u]} := \mathsf{H}$. If $\dim \mathsf{H} = 1$ and if $a \neq b \in a^\mathsf{H}$, then $\dim \Gamma_{a,b} \geq 17$, and (\lozenge) implies that Γ has a subgroup $\Lambda \cong \mathsf{G}_2$. From the fact that

$$\dim(\Gamma \cap \operatorname{Cs}\Theta) = \dim H = 1$$
,

it follows with [18, (95.6)] that a maximal semi-simple subgroup Ψ of Γ acts irreducibly on Θ , and that dim $\Psi > 23$. Because Γ contains G_2 but has no subgroup $SO_5\mathbb{R}$ by [18, (55.40)], step 18) shows that $\Psi \cong Spin_8(\mathbb{R}, r)$ with $r \leq 1$, and Ψ induces on Θ a group $O'_8(\mathbb{R}, r)$ by [18, (95.10)]. Consequently, Γ would contain a reflection with axis av, a possibility which has been dealt with in step 20). Thus, we may assume that dim H = s > 1; recall that s < 8by the assumption made at the beginning of the proof. As Λ fixes a subspace of H and G_2 has no non-trivial representation in dimension < 7, we conclude that $\Lambda \not\cong G_2$, dim $\Lambda \leq 8$ and dim $\nabla \leq 23$. The group ∇ acts faithfully and irreducibly on $\Theta \cong \mathbb{R}^8$. All possibilities for the semi-simple group ∇' have been listed in step 18). Only the first 5 groups of this list have a dimension at most 23 and we conclude that $18 \le \dim \nabla' \le 21$. If $\dim \nabla' > 18$, then ∇' is almost simple and the representation of ∇' on H shows that either s=7, or ∇' fixes a^H pointwise, but in the latter case $\dim \nabla' < 8 + \dim \Lambda$, which is a contradiction. If $\dim \nabla' = 18$, then $\dim \nabla \leq 19$. We consider the group $\Gamma \cong \Gamma/H$ induced by Γ on Θ , which contains ∇ . From 18) and the inequalities

$$26 < \dim \Gamma < 19 + 8$$
 and $\dim \widetilde{\Gamma} < 27 - s$

it follows that $\dim \widetilde{\Gamma}' \leq 21$. Assume that ∇' is a proper subgroup of $\widetilde{\Gamma}'$. Then $\widetilde{\Gamma}'$ is isomorphic to $\mathsf{Spin}_7(\mathbb{R},r)$ or $\mathsf{Sp}_4\mathbb{C}$, and a maximal compact subgroup

- K of $\widetilde{\Gamma}'$ acts in the canonical way on the homogeneous space $M=\widetilde{\Gamma}'/\nabla'$, but this would imply $\dim \mathsf{K} \leq 6$ by [18, (96.13)]. (Note that the kernel N of the action of K on M is contained in the intersection of all conjugates of ∇' in $\widetilde{\Gamma}'$, a proper normal subgroup of $\widetilde{\Gamma}'$; hence $\dim \mathsf{N}=0$.) Consequently, $\dim \widetilde{\Gamma} \leq 19$ and then $s \geq 7$. Steps 19) 21) complete the proof of the first part of Theorem 1.1.
- 22) Assume now that $H = T^1_{[u]} \cong \mathbb{R}^7$. We will show that a maximal semi-simple subgroup of Δ is isomorphic to $\mathsf{Spin}_7\mathbb{R}$. With the rôles of u and v interchanged, the Conclusion implies that either some 1-dimensional subgroup $\Pi < H$ is ∇ -invariant or ∇ acts irreducibly on H. By hypothesis dim $\nabla \ge 18$. Let $\nabla = \Psi P$, where Ψ is a maximal semi-simple subgroup of ∇ and $P = \sqrt{\nabla}$. In the first case, the stabilizer Λ of a suitable quadrangle has dimension at least 9; hence $\Lambda \cong G_2$ by (\lozenge) , and $\Psi \neq \Lambda$ since ∇ acts irreducibly on Θ . Lemma 2.3 implies that Ψ has a subgroup $\Upsilon \cong \operatorname{Spin}_7 \mathbb{R}$. In the second case, ∇ induces an irreducible group ∇/N on Θ and an irreducible group ∇/K on H. By [18, (95.6)] we have $P: (N \cap P) \le 2$ and $P: (K \cap P) \le 1$, hence dim $P \le 3$ and dim $\Psi \ge 15$. As dim $K \le 8$ and $\widehat{\Psi} = \Psi/(K \cap \Psi)$ is almost simple by [18, (95.5)], the list [18, (95.10)] shows that $\widehat{\Psi}$ is a simple group of type G_2 or $\widehat{\Psi} \cong O_7(\mathbb{R}, r)$. The kernel $\mathbb{N} \cap \Psi$ is a product of some of the almost simple factors of Ψ , and $N \cap \Psi$ acts freely on H. Consequently, $\dim(N \cap \Psi) = 0$ or $N \cap \Psi \cong \widehat{\Psi}$, but the latter is impossible for reasons of dimension. In particular, $N^1 \le P$ and dim $N \le 1$ as N^1 injects into the centralizer of $\widehat{\Psi}$ in its representation on H. If $\dim \widehat{\Psi} = 14$, then Ψ has a proper factor of type G_2 , but this contradicts the fact that Ψ acts irreducibly on Θ . It follows that $\dim \Psi \geq 21$, and then $\Psi \cong \operatorname{Spin}_7(\mathbb{R}, r)$ with r = 0, 3 by step 18). The group Ψ is transitive neither on Θ nor on H. Therefore dim $\Lambda \ge 8$ for a suitable quadrangle, and Λ contains a group $SU_3\mathbb{C}$. This excludes the case r=3.
 - Let $\overline{\Psi}$ be a Levi complement of $\sqrt{\Delta}$. From $\dim T=15$ and Theorem [18, (87.5)] it follows that $\dim \Delta < 40$ and $\dim \overline{\Psi} \le 24$. If $\dim \overline{\Psi} > 21$, then $\overline{\Psi} = \Upsilon X$, where $\Upsilon \cong \operatorname{Spin}_7 \mathbb{R}$ and the 3-dimensional almost simple factor X centralizes Υ . We may assume that $\Upsilon \le \Psi$. Then X fixes the axis av of the reflection in Υ and the unique fixed point a of Υ on a^{Θ} . By [18, (95.6)] the group X would induce the identity both on a^{Θ} and a^{H} , a contradiction.
- 23) Finally, let $T \cong \mathbb{R}^{16}$. By step 16), we may assume that the complement $\nabla = \Delta_a$ of T acts irreducibly on $\Theta = \mathsf{T}_{[v]}$. Moreover, $\dim \nabla \geq 18$ by hypothesis. Because of Lemma 2.3, the assertion is true whenever ∇ has a subgroup G_2 , in particular, if $\dim \nabla > 24$. In the case $\dim \nabla = 24$, it follows from [18, (87.7)] that Δ does not have two fixed points. Therefore, attention can be restricted to $\dim \nabla \leq 23$. If ∇ has no subgroup G_2 , we exploit the fact that in a translation plane a maximal compact subgroup Φ of ∇ has codi-

mension at most 2 and is normal in ∇ , see [18, (81.8)]. Consequently, $\dim \Phi \geq 16$. Consider the kernel $\mathsf{N} = \nabla \cap \operatorname{Cs} \Theta = \nabla_{[u]}$ of the action of ∇ on Θ and the irreducible subgroup $\widetilde{\nabla} = \nabla/\nabla_{[u]}$ of Aut Θ . It is a special feature of 16-dimensional translation planes that $\Phi_{[u]}$ is finite, see [18, (81.20)]. Hence $\widetilde{\Phi} = \Phi/\Phi_{[u]}$ satisfies $\dim \widetilde{\Phi} = \dim \Phi$. The large subgroups in the maximal compact subgroup $\mathsf{SO}_8\mathbb{R}$ of Aut Θ are listed in [18, (95.12)]. Since $\mathsf{G}_2 \not\hookrightarrow \nabla$, we conclude that $\dim \Phi = 16$ and that $\Phi' \cong \mathsf{SU}_4\mathbb{C}$ (recall from step 21) that $\mathsf{SO}_5\mathbb{R} \not\hookrightarrow \Phi$). Moreover, Φ' acts faithfully and irreducibly on Θ , see [18, (95.12c)]. Hence $\Phi \cong \mathsf{U}_4\mathbb{C}$, $\dim \nabla = 18$, and $\dim \Delta = 34$. This completes the proof of Theorem 1.1.

3 The planes and their automorphism groups

Now let $\dim \Delta \geq 35$. If T is transitive, then $\dim \Sigma_{[a]} > 0$ and the existence of a subgroup $\mathsf{Spin}_7\mathbb{R}$ in Δ implies $\dim \Sigma \geq 38$. All such planes are described in [18, (82.5)]. We may assume, therefore, that $\mathsf{T}_{[u]} \cong \mathbb{R}^7$ and $\mathsf{T}_{[v]} \cong \mathbb{R}^8$, cf. also [18, (61.12)]. The plane \mathcal{P} can then be coordinatized by a 'Cartesian field' $(\mathbb{O},+,\bullet)$, cf. [5, XI.4.2] or [18, (24.4)]. (Such linear ternary fields with associative addition have also been called *Cartesian groups* even though they are like rings rather than groups.) If the lines of the form $y=s\bullet x+t$ together with the 'verticals' form an affine plane and if multiplication is continuous, then, by [18, (43.6)], the Cartesian field indeed yields a compact projective plane.

Theorem 3.1. Consider a topological Cartesian field $(\mathbb{R}, +, *, 1)$ with unit element, and assume that (-r)*s = -(r*s) holds identically. Let $\rho: [0, \infty) \approx [0, \infty)$ be a homeomorphism with $\rho(1) = 1$. Write each octonion $x \in \mathbb{O}$ in the form $x = \xi + \mathfrak{x}$, where $\xi = \operatorname{Re} x = \frac{1}{2}(x + \overline{x})$ and $\mathfrak{x} = \operatorname{Pu} x = \frac{1}{2}(x - \overline{x})$, and define a new multiplication on \mathbb{O} by

$$s \diamond x = |s|^{-1} s \left(|s| * \xi + \rho(|s|) \cdot \mathfrak{x} \right) \text{ for } s \neq 0 \text{ and } 0 \diamond x = 0.$$

Then $\mathbb{O}_{\diamondsuit} = (\mathbb{O}, +, \diamondsuit, 1)$ is a topological Cartesian field with unit element 1. A plane \mathcal{P} can be coordinatized by such a Cartesian field if and only if \mathcal{P} satisfies the hypotheses of Theorem 1.1 with $\dim \Delta \geq 35$.

Remark 3.2. 1) An analogous construction can be applied to $\mathbb C$ and to $\mathbb H$ instead of $\mathbb O$.

2) Obviously, the multiplications \diamond and * coincide on \mathbb{R} . It follows that \mathbb{O}_{\diamond} is a quasi-field if and only if * is the ordinary multiplication of the reals. These quasifields and the corresponding translation planes are discussed in [6] and in [18, (82.4 and 5)].

Proof of Theorem 3.1. **Part A.** Suppose first that \mathcal{P} has the properties of Theorem 1.1 without being a translation plane. Then $\dim T=15$ and Δ has a subgroup $\Upsilon\cong {\sf Spin}_7\mathbb{R}$.

- 1) We may assume that $\Delta = T \Upsilon$ and that the translation group $\mathsf{T}_{[v]}$ with center v is transitive. As remarked above, the affine plane \mathcal{P}^W can then be coordinatized with respect to any quadrangle 0=a,u,v,e in the usual way (as in [18, \S 22]) by a Cartesian field $\mathbb{O}_{\Diamond}=(\mathbb{O},+,\Diamond)$, where + denotes the ordinary addition of the octonions. (Call to mind that each translation can be written in the form $(x,y)\mapsto (x+a,y+b)$; hence $(\mathbb{O},+)\cong \mathsf{T}_{[v]}\cong \mathbb{R}^8$.)
- 2) If u is the other fixed point of Δ , then $\Xi := \mathsf{T}_{[u]} \cong \mathbb{R}^7$ is Υ -invariant. Thus, there is a 7-dimensional vector subgroup V of $(\mathbb{O}, +)$ such that

$$\Xi = \{(x,y) \mapsto (x{+}c,y) \mid c \in V\}.$$

- 3) The group Υ fixes a triangle and may be identified with $\nabla = \Delta_a$. Indeed, $\nabla \cong \Delta_a/\mathsf{T}_a$ is isomorphic to a subgroup of $\Delta/\mathsf{T} \cong \Upsilon$. Since $\dim \nabla \geq 20$ and Υ has no proper subgroups of small codimension, $\nabla \cong \Upsilon$. By the Mal'cev–Iwasawa Theorem [18, (93.10)], Υ and ∇ are conjugate in Δ .
- 4) Because Υ induces on Ξ the group $SO_7\mathbb{R}$, the central involution $\alpha \in \Upsilon$ fixes the orbit a^Ξ pointwise and α is a reflection with axis au, cf. [18, (55.29)]. In coordinates, α has the form $(x,y) \mapsto (x,-y)$ since α inverts each translation in $T_{[v]}$. This implies that $(-s) \diamond x = -(s \diamond x)$ holds identically in $\mathbb{O}_{\diamondsuit}$.
- 5) According to [18, (96.36)], the action of Υ on the (invariant) line au is equivalent to a linear action, and the fixed point set is homeomorphic to \mathbb{S}_1 . Moreover, Υ acts trivially on the 1-dimensional quotient space au/Ξ . Therefore, each Ξ -orbit in $au \setminus \{u\}$ is Υ -invariant and contains a unique fixed point of Υ .
- 6) Since α has center v, the group Υ acts faithfully on av. The faithful representation of $\mathrm{Spin}_7\mathbb{R}$ on \mathbb{R}^8 being unique up to a linear transformation of \mathbb{R}^8 , the line $av \setminus \{v\}$ can be identified with $\{0\} \times \mathbb{O}$ in such a way that Υ preserves the ordinary norm of \mathbb{O} .
- 7) Let e be chosen on a fixed line of Υ in the pencil \mathfrak{L}_v such that a,u,v,e is a nondegenerate quadrangle. Then the stabilizer $\Lambda=\Upsilon_e$ is isomorphic to G_2 , and Λ fixes a one-parameter subgroup $(\mathbb{R},+)$ of the vector group \mathbb{O} , corresponding to a transitive group of 'vertical' translations of the 2-dimensional plane \mathcal{E} consisting of the fixed elements of Λ . Consequently, \mathcal{E} is coordinatized by a Cartesian field $\mathbb{R}_*=(\mathbb{R},+,*)$. In fact, \mathbb{R}_* is a Cartesian subfield of $\mathbb{O}_{\diamondsuit}$, and * is the restriction of the multiplication \diamondsuit to \mathbb{R} . In particular, (-s)*x=-(s*x) holds for all $s,x\in\mathbb{R}$. Since Λ fixes the coordinate quadrangle, Λ is a group of automorphisms of $\mathbb{O}_{\diamondsuit}$.

- 8) In the coordinates introduced in 1), the line ae is given by the equation y=x. Because the group Λ fixes this line, Λ acts in the same way on both the coordinate axes. From $\Xi^{\Lambda} \subseteq \Xi^{\Upsilon} = \Xi$ it follows that V is Λ -invariant. In fact, V is the unique Λ -invariant complement of $\mathbb R$ in $\mathbb O$. Hence V coincides with the vector space $\operatorname{Pu} \mathbb O$ of the pure elements in $\mathbb O$. The fixed point set of Λ in its action on $\mathbb O$ is $\mathbb R$. Consequently, 5) implies that the fixed point set of Υ on $\mathbb O \times \{0\}$ is $\mathbb R \times \{0\}$.
- 9) For $s \neq 0$, consider the line L_s of slope s with the equation $y = s \diamond x$ and note that $s \diamond 1 = s$ and that $x \mapsto s \diamond x$ is a homeomorphism of \mathbb{O} . If $s \in \mathbb{R}$, then (1,s) is a fixed point of Λ and the line L_s is Λ -invariant. Therefore, also the stabilizer $H = T_{L_s}$ is Λ invariant. It is isomorphic to \mathbb{R}^7 by [18, (61.11c)] and has the form

$$\{(x,y) \mapsto (x+c, y+\zeta(c)) \mid c \in \operatorname{Pu} \mathbb{O}\},\$$

where ζ is an \mathbb{R} -linear endomorphism of $\operatorname{Pu}\mathbb{O}$ centralizing Λ . Since the centralizer of Λ is isomorphic to \mathbb{R} by Schur's Lemma, there is a number $\rho(s) \in \mathbb{R}^{\times}$ such that

$$\mathsf{H} = \{(x,y) \mapsto (x + \mathfrak{c}, y + \rho(s) \cdot \mathfrak{c}) \mid \mathfrak{c} \in \mathrm{Pu} \, \mathbb{O} \}.$$

10) For $s \in \mathbb{R}$, each point $(\xi, s * \xi)$ with $\xi \in \mathbb{R}$ belongs to L_s by 7). Hence step 9) yields

$$L_s = \{ (\xi + \mathfrak{x}, \, s * \xi + \rho(s) \cdot \mathfrak{x} \mid \xi \in \mathbb{R} \, \wedge \, \mathfrak{x} \in \operatorname{Pu} \mathbb{O} \} \,.$$

In the following, the other lines will be obtained by applying transformations $\varphi \in \Upsilon$ to the lines L_s with real s.

- 11) The group Υ acts on $\mathbb{O}\times\mathbb{O}$ in the same way as on the Moufang plane with the same point set. By 6) this is true for $\{0\}\times\mathbb{O}$ because \mathbb{R}^8 and \mathbb{O} have been identified accordingly. The subgroup Λ acts identically on $\{0\}\times\mathbb{O}$ and $\mathbb{O}\times\{0\}$, see 8). Since the centralizer of the action of Λ on $\operatorname{Pu}\mathbb{O}$ is the center of $\operatorname{GL}_7\mathbb{R}$, the action of Υ on $\mathbb{O}\times\{0\}$ is uniquely determined by the restriction to Λ and the fact that Υ fixes $\mathbb{R}\times\{0\}$.
- 12) The group Υ is transitive on the spheres of constant norm in $\{0\} \times \mathbb{O}$, and for any $s \neq 0$ there is some $\varphi \in \Upsilon$ such that $\varphi(e) = (1, |s|^{-1}s)$. The map φ has the form $(x,y) \mapsto (Ax,By)$ with $A,B \in \mathsf{SO}_8\mathbb{R}$ such that for some $C \in \mathsf{SO}_8\mathbb{R}$ the equation $B(s \cdot x) = Cs \cdot Ax$ holds identically with respect to the ordinary multiplication \cdot of the octonions, see [18, (17.12–16)]. Hence $Bx = |s|^{-1}s \cdot Ax$ and φ maps $L_{|s|}$ onto the set

$$\left\{ (\xi + A\mathfrak{x},\, |s|^{-1}s\, (|s| * \xi + \rho(|s|) \cdot A\mathfrak{x}) \mid \xi \in \mathbb{R} \, \wedge \, \mathfrak{x} \in \operatorname{Pu} \mathbb{O} \right\}.$$

Writing \mathfrak{x} instead of $A\mathfrak{x}$, we obtain for L_s the equation $y = s \diamond x$ as claimed.

Part B. The construction in Theorem 3.1 always yields a topological Cartesian field.

Obviously, the multiplication $\mathbb{O} \times \mathbb{O} \to \mathbb{O} : (a,x) \mapsto a \diamond x$ is continuous. By [18, (43.6)] it suffices, therefore, to show that for $a \neq b$ the maps

$$\lambda_{a,b}: x \mapsto -a \diamond x + b \diamond x$$
 and $\mu_{a,b}: x \mapsto x \diamond a - x \diamond b$

are bijections of \mathbb{O} . For each $x \in \mathbb{O}$ we write $x = |x| x_1 = \xi + \mathfrak{x}$.

1) For $c = |c| c_1 \in \mathbb{O}$ the equation $\mu_{a,b}(x) = c$ has a unique solution: in fact, by taking norms in \mathbb{O} , we get the condition

$$(|x| * \alpha - |x| * \beta)^2 + \rho(|x|)^2 \cdot |\mathfrak{a} - \mathfrak{b}|^2 = |c|^2.$$

The left hand side is monotone in |x| since $(\mathbb{R},+,*)$ is a topological Cartesian field and therefore $r\mapsto r*\alpha-r*\beta$ is either a continuous bijection of \mathbb{R} or constant. Consequently, |x| is uniquely determined by c, in particular, c=0 implies x=0. In all other cases, x can be obtained from |x| and c. (Note that $x_1(|x|*\alpha-|x|*\beta+\rho(|x|)(\mathfrak{a}-\mathfrak{b}))_1=c_1$.)

- 2) Injectivity of $\lambda_{a,b}$ means $-a \diamond x + b \diamond x = -a \diamond y + b \diamond y \Rightarrow a = b \lor x = y$, and this is equivalent to injectivity of $\mu_{x,y}$.
- 3) In order to obtain surjectivity, we will show in the next steps that

$$\lim_{x \to \infty} \lambda_{a,b}(x) = \infty \tag{\dagger}$$

in the one-point compactification $\widehat{\mathbb{O}}$ of \mathbb{O} , i.e., that $\lambda_{a,b}$ has a continuous injective extension to $\widehat{\mathbb{O}}$. Such an extension is necessarily a homeomorphism, cf. also [18, (51.19)].

4) Condition (†) is true in the Cartesian field $(\mathbb{R},+,*)$. Hence |a|<|b| implies

$$\lim_{\xi \to \infty} (|b| * \xi - |a| * \xi) = \infty.$$

5) It can easily be seen that (†) holds in each of the following cases:

$$a = 0 \lor b = 0$$
, $|a| = |b|$, $a_1 = \pm b_1$.

6) If (†) is not true in general, then there is a sequence x_{ν} such that $\lim_{\nu \to \infty} x_{\nu} = \infty$ and for some $a, b \in \mathbb{O}$ with |a| < |b| the sequence $\lambda_{a,b}(x_{\nu})$ is bounded. Here

$$\lambda_{a,b}(x_{\nu}) = b_1(|b| * \xi_{\nu} + \rho(|b|) \cdot \mathfrak{x}_{\nu}) - a_1(|a| * \xi_{\nu} + \rho(|a|) \cdot \mathfrak{x}_{\nu}).$$

7) Suppose that the sequence \mathfrak{x}_{ν} is bounded. Then $\lim_{\nu\to\infty}\xi_{\nu}=\infty$, and 6) yields $\lim_{\nu\to\infty}(|a|*\xi_{\nu})(|b|*\xi_{\nu})^{-1}=a_1^{-1}b_1$. This is a positive number of norm 1. Hence $a_1=b_1$ contrary to step 5). An analogous argument shows that the ξ_{ν} are unbounded. Therefore we may assume that the ξ_{ν} as well as the \mathfrak{x}_{ν} converge to ∞ in $\widehat{\mathbb{Q}}$.

8) The problem can be reduced to the 2-dimensional case as follows: we have $a^{-1}b \notin \mathbb{R}$ by step 5). The automorphism group of \mathbb{O} is transitive on the sphere $\{\mathfrak{x}\in\mathbb{O}\mid \mathfrak{x}^2=-1\}$ in $\operatorname{Pu}\mathbb{O}$, and we can arrange that $\overline{a}_1b_1=c\in\mathbb{C}$. Write each element $x\in\mathbb{O}$ as x=x'+x'' with $x'\in\mathbb{C}$ and $x''\in\mathbb{C}^\perp$, the orthogonal complement of \mathbb{C} in \mathbb{O} . Then

$$\overline{a}_{1}\lambda_{a,b}(x_{\nu}) = c(|b| * \xi_{\nu}) - |a| * \xi_{\nu} + (c\rho(|b|) - \rho(|a|)) \cdot \mathfrak{x}_{\nu}' + (c\rho(|b|) - \rho(|a|)) \cdot \mathfrak{x}_{\nu}''$$

is a bounded sequence. Hence also the sequence $(c\rho(|b|)-\rho(|a|))\cdot \mathfrak{x}_{\nu}''\in\mathbb{C}^{\perp}$ is bounded and therefore $\lim_{\nu\to\infty}\mathfrak{x}_{\nu}'=\infty$ by step 7).

9) Let c=p+iq with $p^2+q^2=1$ and put $\mathfrak{x}_{\nu}'=i\eta_{\nu}$. Taking conjugates if necessary and selecting suitable subsequences, the possibilities can be reduced to $\lim_{\nu\to\infty}\eta_{\nu}=+\infty$ and the following cases: $\lim_{\nu\to\infty}\xi_{\nu}=+\infty$ or $\lim_{\nu\to\infty}\xi_{\nu}=-\infty$. The sequence

$$p(|b| * \xi_{\nu}) - |a| * \xi_{\nu} - q \rho(|b|) \eta_{\nu} + i (q(|b| * \xi_{\nu}) + p \rho(|b|) \eta_{\nu} - \rho(|a|) \eta_{\nu})$$

is bounded, and so are the real and the imaginary part and the following linear combinations of these:

$$|b| * \xi_{\nu} - p(|a| * \xi_{\nu}) - q \rho(|a|) \eta_{\nu}$$
 (1)

and
$$q(|a| * \xi_{\nu}) + (\rho(|b|) - p \rho(|a|)) \eta_{\nu}$$
. (2)

Since $\rho(|b|) - p \, \rho(|a|) > 0$, boundedness of (2) implies $\lim_{\nu \to \infty} q \, \xi_{\nu} = -\infty$, but then the sequence (1) would not be bounded. This proves the claim of Part B.

Part C. Consider a projective plane \mathcal{P} coordinatized by a topological Cartesian field $\mathbb{O}_{\diamond} = (\mathbb{O}, +, \diamond)$ as described in Theorem 3.1. It remains to show that $\operatorname{Aut} \mathcal{P}$ contains a group Δ fixing exactly two points such that $\dim \Delta \geq 35$.

- 1) Obviously, $\{(x,y) \mapsto (x+\mathfrak{c}, y+d) \mid \mathfrak{c} \in \operatorname{Pu} \mathbb{O}, d \in \mathbb{O}\} \leq \mathsf{T} \text{ and } \dim \mathsf{T} \geq 15.$
- 2) The maps $(x,y)\mapsto (Ax,By)$ of $\mathbb{O}\times\mathbb{O}$ such that $A,B\in \mathrm{Spin}_7\mathbb{R}$ and identically $B(s\cdot x)=Bs\cdot Ax$ form a group Υ of automorphisms of the Moufang plane, they satisfy A1=1 and hence fix the set $\mathbb{R}\times\{0\}$, cf. A), step 9) or [18, (17.14)]. The involution $(x,y)\mapsto (x,-y)$ is a reflection in $\Upsilon_{[v]}$. Consequently, $\Upsilon\cong \mathrm{Spin}_7\mathbb{R}$ acts faithfully on $\{0\}\times\mathbb{O}$ and induces on $\mathrm{Pu}\,\mathbb{O}\times\{0\}$ the group $\mathrm{SO}_7\mathbb{R}$. It follows that

$$B(s \diamond x) = Bs_1(|s| * \xi + \rho(|s|) \cdot A\mathfrak{x}) = Bs \diamond Ax.$$

Therefore $\Upsilon \leq \operatorname{Aut} \mathcal{P}$, the group $\Delta = \Upsilon \mathsf{T}$ fixes exactly the points u, v, and $\dim \Delta = 36$.

Theorem 3.3 (Automorphism groups). Assume that the plane $\mathcal P$ satisfies the hypotheses of Theorem 1.1 with $\dim \Delta \geq 35$ and let $\Sigma = \operatorname{Aut} \mathcal P$ be the full automorphism group, Σ^1 its connected component. If $\mathcal P$ is not the classical Moufang plane, then

- (a) dim Σ < 40 and each of the two fixed points of Δ is also a fixed point of Σ . Any subgroup $\Upsilon \cong \operatorname{Spin}_7 \mathbb{R}$ of Σ fixes some point $a \notin uv$.
- (b) If dim $\Sigma = 39$, then P is a translation plane.
- (c) The plane \mathcal{P} is a translation plane if, and only if, it can be coordinatized by a quasi-field $\mathbb{O}_{\diamondsuit}$ as in Theorem 3.1 where * is the ordinary multiplication of the reals. In this case $\dim \Sigma = 39$ if, and only if, ρ is a multiplicative homomorphism; otherwise $\dim \Sigma = 38$.

If P is not a translation plane, then the following holds:

- (d) $\dim \Sigma \leq 38$ and $\Sigma = T^1 \Upsilon Z$, where Z denotes the centralizer of Υ in Σ .
- (e) dim $\Sigma=38$ if, and only if, $\mathcal P$ can be coordinatized by a Cartesian field $\mathbb O_\diamondsuit$ as in Theorem 3.1 where

$$r * s = \begin{cases} rs & (s \ge 0) \\ |r|^{\gamma} rs & (s < 0) \end{cases}$$
 for some $\gamma > 0$,

and $\rho:[0,\infty)\to[0,\infty)$ is a multiplicative homomorphism.

Proof. (a) If dim $\Sigma \geq 40$, then \mathcal{P} can be coordinatized by a mutation of the octonions and Σ has no subgroup $\mathsf{Spin}_7\mathbb{R}$, see [18, (82.29) and (87.7)]. We use the same notation as in the proof of Theorem 3.1. If $W^{\sigma} \neq W$ for some $\sigma \in \Sigma$, then $\Sigma : \Delta \ge \dim W^{\sigma \mathsf{T}} \ge 7$ and $\dim \Sigma \ge 43$. Hence $W^{\Sigma} = W$. The group $\Upsilon < \Delta$ acts effectively on W and each point $z \in W \setminus \{u, v\}$ has an orbit $z^{\Upsilon} \approx \mathbb{S}_7$. Therefore $v^{\Sigma} \in \{u, v\}$, or again dim $\Sigma \geq 43$. If some $\sigma \in \Sigma$ interchanges u and v, then $\mathcal P$ is a translation plane. Consider a Levi complement Ψ in a maximal compact subgroup of Σ^1 . All such groups are conjugate in Σ^1 , see [18, (93.10) and (94.28)]. Therefore, Ψ contains conjugates of Υ and of Υ^{σ} . The first acts effectively on the pencil $\mathfrak{L}_u \cong$ \mathbb{R}^8 , the second induces a group $SO_7\mathbb{R}$ on \mathfrak{L}_u . The central involutions in these groups are reflections with centers v and u respectively, their axes are Ψ -invariant, or else Ψ would contain translations by the dual of [18, (23.20)]. Consequently, Ψ fixes some point $a \notin W$, and the kernel $\Psi_{[u]}$ of the action of Ψ on \mathfrak{L}_u is finite by [18, (81.20)]. It follows that Ψ is almost simple (cf. step 18) above) and has a proper subgroup $Spin_7\mathbb{R}$. The list [18, (95.10)] shows that $\dim \Psi = 28$ and then $\dim \Sigma \ge 44$, a contradiction. Therefore Σ fixes u and v. If $\mathsf{Spin}_7\mathbb{R} \cong \Upsilon < \Sigma$, then the central involution in Υ is a reflection and Υ fixes its axis X. Any action of the group Υ

- on a space X homeomorphic to \mathbb{R}^8 is equivalent to a linear action ([18, (96.36)]). Hence Υ has a fixed point $a \in X$.
- (b) We have $\Upsilon \leq \nabla := \Sigma_a^1$ and $\dim \nabla \leq 24$. Put $X = \nabla \cap \operatorname{Cs} \Upsilon$. The representation of Υ on the Lie algebra of ∇ shows that $\nabla = \Upsilon X$. The group X acts effectively on the two-dimensional plane $\mathcal E$ of the fixed elements of a subgroup $\Lambda \cong \mathsf{G}_2$ of Υ . By [18, (32.10)] and the dimension formula, $\dim X \leq 2$, $\dim \nabla = 23$, and $\dim a^{\Sigma} = 16$. Since the centralizer of $\operatorname{Spin}_7 \mathbb R$ in $\operatorname{GL}_8 \mathbb R$ is isomorphic to $\mathbb R^\times$ (cf. [18, (95.10)]), the action of ∇ on av has a kernel $\nabla_{[u]}$ of positive dimension. By the dual of [18, (61.20b)] it follows that $\dim \mathsf{T}_{[u]} = 8$.
- (c) See [18, (82.5)].
- (d) For each $\sigma \in \Sigma$ there is some $\tau \in \mathsf{T}^1$ such that $a^{\sigma\tau}$ is Υ -invariant, cf. step 5) of the proof of Theorem 3.1. Put $\sigma\tau = \omega^{-1}$. It follows that $\Upsilon^\omega \leq \nabla$. Since $\nabla = \Upsilon X$ and all Levi complements in a connected group are conjugate (cf. [18, (94.28c)]), we have $\Upsilon^\omega = \Upsilon$. Each automorphism of Υ is an inner automorphism (see [20, 6.]). Consequently, $\omega \in \Upsilon Z$.
- (e) Consider $\Lambda < \Upsilon$ and the subplane \mathcal{E} consisting of the fixed elements of Λ as in step 7) of the proof of Theorem 3.1. Suppose that $\dim \Sigma = 38$. Then $\dim Z = 2$ by part (d), and $\dim \operatorname{Cs} \Lambda = 3$ as Λ also centralizes the vertical translations of \mathcal{E} . Moreover, $Cs_{\Delta} \Lambda$ contains the central reflection $\alpha \in \Upsilon$ (with axis au). It follows from (\lozenge) that $Cs \Lambda$ acts effectively on \mathcal{E} . By assumption, \mathcal{P} is not a translation plane; hence * is not the ordinary multiplication and \mathcal{E} is not classical. All planes \mathcal{E} admitting a 3-dimensional group are known explicitly; this classification is summarized in [18, (38.1)], details are given in [18, $\S\S$ 34–37]. As the group fixes the points u and v, the results just mentioned show that \mathcal{E} is a plane over a Cartesian field of the kind described in [18, (37.3)], which includes the Moulton planes. The reflection α induces on \mathcal{E} the map $(x,y) \mapsto (x,-y)$. This is a collineation of \mathcal{E} if and only if (-s)*x = -(s*x) holds identically in \mathbb{R} . An easy calculation shows that the multiplication * of [18, (37.3)] has indeed the form given in (e), cf. also [18, (37.4 and 6)]. In particular, \mathcal{E} is not a Moulton plane. Note that the product * is associative whenever the right or the middle factor is positive.

The group Z^1 induces on $\mathcal E$ the maps $(x,y)\mapsto ((r*x)\cdot s,y\cdot s)$ with r,s>0. It can easily be seen that $(x,y)\mapsto (x\cdot s,y\cdot s),\ s<0,\ x,y\in\mathbb O$ yields always an automorphism of $\mathcal P$. An element $\zeta\in\mathsf Z$ which induces on $\mathcal E$ a map $(x,y)\mapsto (r*x,y)$ has necessarily the form $(x,y)\mapsto (\varphi_r(x),y)$ because Υ acts irreducibly on $\mathsf{T}_{[v]}\cong\mathbb R^8$. This means that ζ is a homology with axis av. Hence $\zeta(x,y)=(r\diamond x,y)$. This map is a collineation if and only if

$$a \diamond (r \diamond x) = (a \diamond r) \diamond x$$
 for all $a, x \in \mathbb{O}$. Equivalently (since $|a| * r = |ar|$),
$$|a| * (r * \xi) + \rho(|a|)\rho(r)\mathfrak{x} = (|a| * r) * \xi + \rho(|ar|)\mathfrak{x}.$$

Thus ρ is multiplicative. Conversely, the conditions in (e) imply dim Z = 2 and hence dim $\Sigma = 38$. If ρ is not multiplicative, then dim $\Sigma = 37$.

The case dim $\Sigma=37$. With the same notation as before, we have dim $\Sigma=37$ if and only if $\operatorname{Cs}\Lambda$ acts on $\mathcal E$ as a 2-dimensional group with 2 fixed points. All planes over a proper Cartesian field $(\mathbb R,+,*)$ admitting such a group have been described. They depend on the choice of some suitable real functions rather than a few real parameters. By [18, (32.8)], a quasi-field $(\mathbb R,+,*)$ is in fact a field; therefore, $\mathcal E$ is not a translation plane. Only the Cartesian fields of those planes $\mathcal E$ can be used which admit a reflection with an axis au. The connected component Γ of $\operatorname{Cs}\Lambda$ is isomorphic to $\mathbb R^2$ or to the linear group

$$L_2 := \{ (t \mapsto at + b) : \mathbb{R} \to \mathbb{R} \mid a > 0 \}.$$

In the first case, Γ_{au} fixes each line of \mathcal{E} through the point u, because Γ contains all translations of \mathcal{E} with center v. As \mathcal{E} is not a translation plane, Γ_{au} induces a one-parameter group of homologies of \mathcal{E} with center u and a common axis. The point a may be chosen on this axis; then Γ fixes exactly the elements u, v, av, uv of \mathcal{E} , and av is the axis of the elements of Γ_{au} . The planes \mathcal{E} of this type have been determined by Groh [4], cf. [10, 2.7.11.3].

Homologies of $\mathcal E$ with axis av have the form $\gamma_r:(x,y)\mapsto (r*x,y)$. The group Γ_{au} coincides with the connected component $\mathsf Z^1$ of $\mathsf Z=\mathrm{Cs}\,\Upsilon$ because $\mathsf Z$ fixes the axis au of the unique central involution $\alpha\in\Upsilon$, and we have $\mathsf Z^1\leq\Gamma$ and $\dim\mathsf Z=\dim\Gamma_{au}$. An element $\zeta_r\in\mathrm{Cs}\,\Upsilon$ which induces on $\mathcal E$ the homology γ_r fixes necessarily each point on the line av because the centralizer of the representation of Υ on $\mathbb R^8$ consists of real dilatations. Consequently ζ_r can be written as $(x,y)\mapsto (r\diamond x,y)$, and the product \diamond is associative whenever the middle factor is a positive real number. The latter condition reduces to the identity $\rho(r*s)=\rho(r)\rho(s)$ for r,s>0. An admissible multiplication * and a homeomorphism ρ yield a plane $\mathcal P$ with $\dim\Sigma\geq 37$ if and only if ρ satisfies this identity.

If $\Gamma \cong L_2$, there are the following possibilities:

- (a) Γ acts transitively on the set of points not on uv,
- (b) Γ fixes exactly two points and two lines,
- (c) Γ fixes exactly two lines and more than two points, or dually
- (\tilde{c}) Γ fixes exactly the points u and v and more than two lines through v.

(a) Planes with a group Γ satisfying (a) have been studied by Groh [3], cf. [10, 2.7.5.2]. Those planes $\mathcal E$ which are symmetric with respect to a horizontal line can be described in the half-plane $(0,\infty)\times\mathbb R$ as follows: Let L be the graph of a strictly convex continuous function $f\colon (0,\infty)\to\mathbb R$ such that

$$\lim_{x\to 0} f(x) = \infty$$
, $\lim_{x\to \infty} f(x) = -\infty$, $\lim_{x\to \infty} f'(x) = 0$.

Then the images of L under the maps $(x,y)\mapsto (rx,ry+b), r\in\mathbb{R}^\times, b\in\mathbb{R}$ together with the horizontals and verticals are the lines of an affine plane of type (a). This can easily be translated into a representation in \mathbb{R}^2 by means of a Cartesian field \mathbb{R}_* . In the latter representation Γ contains a one-parameter subgroup of maps $\gamma_t:(x,y)\mapsto (\varphi_t(x),\,e^ty)$ acting transitively on the X-axis. A line of slope s is mapped by s onto a line of slope s. The fact that s is a collineation of s is equivalent to the identity

$$e^{t}(s * x) = \sigma_{t}(s) * \varphi_{t}(x) - \sigma_{t}(s) * \varphi_{t}(0).$$
(*)

It remains to find a necessary and sufficient condition for γ_t to be induced by a map ζ_t of \mathbb{O}^2 in Z. (Note that again Γ_{au} is the connected component of $Z = \operatorname{Cs} \Upsilon$ since $Z^1 \leq \Gamma_{au}$ and both groups are homeomorphic to \mathbb{R} .) From $\zeta_t \in \operatorname{Cs} \Upsilon$ it follows that ζ_t has the form $(x,y) \mapsto (\varphi_t(\xi) + e^{\kappa t}\mathfrak{x}, e^t y)$. Expressing the fact that the line $y = s \diamond x$ is mapped to a line

$$e^t y = c \diamond (\varphi_t(\xi) + e^{\kappa t}\mathfrak{x}) - d$$

vields the condition

$$e^{t}|s|^{-1}s(|s|*\xi + \rho(|s|)\mathfrak{x}) = |c|^{-1}c(|c|*\varphi_{t}(\xi) - |c|*\varphi_{t}(0) + e^{\kappa t}\rho(|c|)\mathfrak{x}).$$

If $0 < s \in \mathbb{R}$, then |s| = s and $c = \sigma_t(|s|) = |c|$; comparison of the pure components of the condition above gives

$$e^t \rho(|s|) = e^{\kappa t} \rho(\sigma_t(|s|)).$$
 (†)

In general, we obtain in the same way that $e^t|s|^{-1}s\,\rho(|s|)=|c|^{-1}c\,e^{\kappa t}\,\rho(|c|)$, which by (†) means $|s|^{-1}s\,e^{\kappa t}\,\rho(\sigma_t(|s|))=|c|^{-1}c\,e^{\kappa t}\,\rho(|c|)$. Passing to absolute values, one obtains $|c|=\sigma_t(|s|)$ and then $|s|^{-1}s=|c|^{-1}c$, so that finally $c=\sigma_t(|s|)|s|^{-1}s$. Because of (*) and (†), the condition above is then satisfied.

We remark that $\kappa \neq 1$, or else $\sigma_t(s) = s$ for all s > 0 and then also for all s < 0, and \mathcal{E} would be a translation plane. In particular, ρ is uniquely determined by \mathcal{E} .

(b) The classification of these planes has been obtained by Schellhammer [19], cf. [10, 2.7.11.4]. For each multiplication * defining such a plane there

exists a one-parameter group of automorphisms $\gamma_t : (x,y) \mapsto (\varphi_t(x), e^t y)$ of $\mathcal E$ fixing a and mapping a line of slope s to a line of slope $\sigma_t(s)$, where $e^t(s*x) = \sigma_t(s) * \varphi_t(x)$. An extension of γ_t to a map $\zeta_t \in \operatorname{Cs} \Upsilon$ has again the form $(x,y) \mapsto (\varphi_t(\xi) + e^{\kappa t}\mathfrak x, e^t y)$. As before, this is a collineation of $\mathcal P$ if and only if condition (†) holds. Each pair of an admissible multiplication * and a homeomorphism ρ which satisfies (†) yields a plane $\mathcal P$ with $\dim \Sigma \geq 37$.

- (c) The description of the possible planes $\mathcal E$ is due to Pohl [9], cf. [10, 2.7.11.5]. The same calculations as in case (b) lead once more to condition (†). By assumption there is some slope r>0 such that $\sigma_t(r)=r$. It follows that $\kappa=1$ and then $\sigma_t(|s|)=|s|$ for each s. As $\Upsilon\Gamma_a\leq \nabla$, the central involution $\alpha\in \Upsilon$ (with axis au) commutes with the maps γ_t . Consequently, γ_t also fixes the negative real slopes, and Γ_a induces homologies of $\mathcal E$. Thus, planes with dim $\Sigma\geq 37$ can be obtained in case (c) if and only if Γ fixes the line uv pointwise; there is no condition on the homeomorphism ρ . The orbits of Γ_a in $\mathcal E$ are rays beginning at the origin in the real affine plane. It follows that $\mathcal E$ can be described by a Cartesian field multiplication of the form s*x=sx for $x\geq 0$ and $s*x=\mu(s)x$ for x<0, where $\mu:\mathbb R\approx \mathbb R$ with $\mu(-s)=-\mu(s)$ and $\mu(1)=1$. Planes of this kind have been called generalized Moulton planes.
- ($ilde{c}$) Though the planes $\mathcal E$ are dual to those of case (c), the conclusions are not because of the different rôles of the central reflection $\alpha \in \Upsilon$. As in the previous cases, the conditions $e^t(s*x) = \sigma_t(s)*\varphi_t(x)$ and (\dagger) must be satisfied. In case (\tilde{c}) we may assume that $\varphi_t(1) = 1$. Then we obtain $\sigma_t(s) = e^t s$ for all $s \in \mathbb R$, and (\dagger) reduces to the condition that ρ is a multiplicative homomorphism.

Examples are given by the multiplications

$$s * x = \begin{cases} sx & (x \le 1) \\ s(|s|^m x + 1 - |s|^m) & (x \ge 1), \end{cases} \quad (m > 0).$$

In fact, $\varphi_t(x) = x$ for $x \le 1$ and $\varphi_t(x) = e^{-mt}x + 1 - e^{-mt}$ for $x \ge 1$.

Thus in each of the cases there are large families of planes \mathcal{P} with a group of dimension 37 fixing exactly two points and the line joining them.

References

- [1] **R. Bödi**, On the dimensions of automorphism groups of eight-dimensional ternary fields, *Geom. Dedicata* **53** (1994), 201–216.
- [2] **N. Bourbaki**, *Lie Groups and Lie Algebras. Chapters 1–3*, Elem. Math. (Berlin), Springer, 1989.

- [3] **H. Groh**, Point homogeneous flat affine planes, *J. Geom.* **8** (1976), 145–162.
- [4] ______, Pasting of \mathbb{R}^2 -planes, Geom. Dedicata 11 (1981), 69–98.
- [5] Th. Grundhöfer and H. Salzmann, Locally compact double loops and ternary fields, in *Quasigroups and Loops: Theory and Applications*, O. Chein, H. O. Pflugfelder, J. D. H. Smith (eds.), Chapter XI, pp. 313– 355, Berlin, Heldermann, 1990.
- [6] **H. Hähl**, Sechzehndimensionale lokalkompakte Translationsebenen mit Spin(7) als Kollineationsgruppe, *Arch. Math.* **48** (1987), 267–276.
- [7] **H. Hähl** and **H. Salzmann**, 16-dimensional compact projective planes with a large group fixing two points and two lines, *Arch. Math.* **85** (2005), 89–100.
- [8] **K. H. Hofmann**, Lie algebras with subalgebras of codimension one, *Illinois J. Math.* **9** (1965), 636–643.
- [9] **H.-J. Pohl**, Flat projective planes with 2-dimensional collineation group fixing at least two lines and more than two points, *J. Geom.* **38** (1990), 107–157.
- [10] **B. Polster** and **G. F. Steinke**, *Geometries on Surfaces*, Encyclopedia Math. Appl. **84**, Cambridge Univ. Press, 2001.
- [11] **B. Priwitzer**, Large semisimple groups on 16-dimensional compact projective planes are almost simple, *Arch. Math.* **68** (1997), 430–440.
- [12] ______, Large almost simple groups acting on 16-dimensional compact projective planes, *Monatsh. Math.* **127** (1999), 67–82.
- [13] **B. Priwitzer** and **H. Salzmann**, Large automorphism groups of 16-dimensional planes are Lie groups, *J. Lie Theory* **8** (1998), 83–93.
- [14] **H. Salzmann**, Automorphismengruppen 8-dimensionaler Ternärkörper, *Math. Z.* **166** (1979), 265–275.
- [15] ______, Characterization of 16-dimensional Hughes planes, *Arch. Math.* 71 (1998), 249–256.
- [16] ______, On the classification of 16-dimensional planes, *Beiträge Algebra Geom.* **41** (2000), 557–568.
- [17] ________, 16-dimensional compact projective planes with 3 fixed points, Special issue dedicated to Adriano Barlotti, *Adv. Geom.* (2003), suppl., S153–S157.

- [18] H. Salzmann, D. Betten, T. Grundhöfer, H. Hähl, R. Löwen and M. Stroppel, Compact Projective Planes. With an introduction to octonion geometry, de Gruyter Exp. Math. 21, W. de Gruyter & Co, Berlin, 1995.
- [19] **I. Schellhammer**, Einige Klassen von ebenen projektiven Ebenen, Diplomarbeit, Tübingen, 1981.
- [20] **J. Tits**, *Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen*, Lecture Notes in Math. **40**, Springer-Verlag, Berlin-New York, 1967.
- [21] **H. Völklein**, Transitivitätsfragen bei linearen Liegruppen, *Arch. Math.* **36** (1981), 23–34.

Hermann Hähl

Institut für Geometrie und Topologie, Universität Stuttgart, D-70550 Stuttgart, Deutschland

 $e\hbox{-}mail\hbox{: haehl@mathematik.uni-stuttgart.de}$

Helmut Salzmann

 $\hbox{Mathematisches Institut, Universit"at T"ubingen, Auf der Morgenstelle 10, D-72076 T"ubingen, Deutschland \\$

e-mail: helmut.salzmann@uni-tuebingen.de