

16-dimensional compact projective planes with a large group fixing two points and only one line

Hermann Hähl

Helmut Salzmann

Abstract

We complete the determination of all pairs (\mathcal{P}, Δ) , where \mathcal{P} is a compact projective plane with a 16-dimensional point set, Δ is an automorphism group of \mathcal{P} of dimension at least 35, and Δ does not fix exactly one point and one line. If Δ fixes two points and only one line, then Δ contains a 15-dimensional translation group and a compact subgroup Spin₇ \mathbb{R} ; hence dim $\Delta \geq 36$. The planes are described by their coordinatizing Cartesian fields, more explicitly for dim $\Delta > 36$.

Keywords: compact projective plane, 16-dimensional plane, Cartesian field, translation group MSC 2000: 51H10

1. Introduction

Let $\mathcal{P} = (P, \mathfrak{L})$ be a topological projective plane with a compact point set P of finite (covering) dimension $d = \dim P > 0$. A systematic treatment of such planes can be found in the book *Compact Projective Planes* [18]. Each line $L \in \mathfrak{L}$ is homotopy equivalent to a sphere \mathbb{S}_{ℓ} with $\ell \mid 8$, and $d = 2\ell$, see [18, (54.11)]. In all known examples, L is in fact homeomorphic to \mathbb{S}_{ℓ} . Taken with the compact-open topology, the automorphism group $\Sigma = \operatorname{Aut} \mathcal{P}$ (of all continuous colline-ations) is a locally compact transformation group of P with a countable basis, the dimension dim Σ is finite, cf. [18, (44.3 and 83.2)].

For $\ell \leq 4$, all sufficiently homogeneous planes are known explicitly, see [18, Chaps. 7, 8]. In the case $\ell = 8$ the aim is to determine all pairs (\mathcal{P}, Δ) , where Δ is a connected closed subgroup of Σ and dim $\Delta \geq b$ for a suitable bound *b*.

(If dim $\Delta \ge 27$, then Δ is always a Lie group [13].) Here, we deal with the case that b = 35 and Δ fixes exactly 3 elements (say two points and one line). This completes the classification for b = 35 and all groups Δ which do not fix exactly two elements (a point and a line), cf. [17] for the other possible configurations of fixed elements.

Theorem 1.1. If Δ fixes exactly 2 points and one line and if dim $\Delta \geq 34$, then the group \top of translations in Δ is at least 15-dimensional.

Either Δ has a subgroup $\Upsilon \cong \text{Spin}_7 \mathbb{R}$ and $\dim \Delta \ge 36$, or T is transitive, a maximal semi-simple subgroup of Δ is isomorphic to $\text{SU}_4\mathbb{C} \cong \text{Spin}_6\mathbb{R}$, and $\dim \Delta = 34$.

All planes satisfying the hypotheses of Theorem 1.1 with dim $\Delta \ge 35$ will be described by coordinate methods in Theorems 3.1 and 3.3.

2. Structure of the group

Essential for the proof is the so-called *stiffness*:

The stabilizer of a quadrangle has dimension at most 14; see [18, (83.23)].

Particularly important is Bödi's improvement [1]:

(◊) If the fixed elements of the connected Lie group A form a connected subplane *E*, then A is isomorphic to the 14-dimensional compact group G₂ or its subgroup SU₃C, or dim A < 8. If *E* is a Baer subplane (dim *E* = 8), then A is a subgroup of SU₂C. Moreover, A ≅ G₂ implies dim *E* = 2.

If Δ fixes 2 distinct points and dim $\Delta > 30$, then it follows from other classification results ([11, 12, 15]) that Δ is not semi-simple and has no normal torus subgroup. The main result of [16] can now be stated in the following form:

Lemma 2.1. If Δ fixes exactly one line W and at least 2 points on W, and if $\dim \Delta \geq 33$, then Δ has a minimal normal subgroup $\mathsf{M} \cong \mathbb{R}^{\overline{t}}$ consisting of translations with axis W.

Two more facts will be needed repeatedly:

Lemma 2.2. Assume that Γ is a solvable Lie subgroup of Δ . Then Γ has a chain of normal subgroups Γ_{κ} with $\dim \Gamma_{\kappa+1}/\Gamma_{\kappa} \leq 2$; see [2, I § 5, Th. 1, Cor. 4, p. 46]. If κ is the largest index such that $a^{\Gamma_{\kappa}} = a$, if $\mathsf{N} = \Gamma_{\kappa+1}$ and $a \neq x \in a^{\mathsf{N}}$, then $\dim x^{\Gamma_a} \leq 2$. In fact, $x^{\Gamma_a} \subseteq a^{\mathsf{N}}$ and $\dim x^{\Gamma_a} \leq \dim \mathsf{N}/\mathsf{N}_a \leq \dim \mathsf{N}/\Gamma_{\kappa}$.

ACADEMIA PRESS **Notation.** The connected component of a group Γ will be denoted by Γ^1 . Let u and v be the two fixed points of Δ . For a point $a \notin W = uv$ we put $\nabla = (\Delta_a)^1$. By Lemma 2.1 there exists a minimal ∇ -invariant vector subgroup $\Theta \cong \mathbb{R}^t$ consisting of translations in M. The *radical* $\mathsf{P} = \sqrt{\Delta}$ is the largest solvable normal subgroup of Δ . We write $\Delta : \Gamma = \dim \Delta - \dim \Gamma$ and $\Gamma|_M$ for the group induced by Γ on the Γ -invariant set M.

The dimension formula dim $\Gamma = \dim \Gamma_x + \dim x^{\Gamma}$ holds for any closed subgroup Γ of Δ , see [18, (96.10)]. This fact will often be used without mention.

Lemma 2.3. If a maximal semi-simple subgroup Ψ of Δ or of ∇ (a Levi complement of the radical) has a subgroup $\Lambda \cong G_2$, then Ψ is almost simple, and $\Psi = \Lambda$ or there is a group $\Upsilon \cong \text{Spin}_7 \mathbb{R}$ with $\Lambda < \Upsilon \leq \Psi$. The central involution $\alpha \in \Upsilon$ is a reflection.

Proof. This follows from (\Diamond) and the observation that (in the relevant dimension range) each simple group which contains G₂ is of type B or D or G₂, see [7] for details. By [18, (55.40)], any action of SO₅ \mathbb{R} on a compact projective plane is trivial. Hence $\Psi \not\cong$ SO₇ \mathbb{R} and α is not planar.

Proof of Theorem 1.1. Recall that there exists a minimal ∇ -invariant subgroup $\Theta \cong \mathbb{R}^t$ which is contained in the group T of translations with axis W. But for the last step, we may assume that dim T < 16.

1) The elements of Θ have center u or center v, and we may assume $\Theta \leq \mathsf{T}_{[v]}$.

In fact, for $v \in L \neq W$ the stabilizer Θ_L consists of translations with center v. The action of Θ on the pencil \mathfrak{L}_v shows that $\dim \Theta_{[v]} \ge t - 8$, cf. [18, (61.11a)], and $\dim \Theta_{[v]} = 0$ or $\Theta = \Theta_{[v]}$ by minimality. Therefore $t \leq 8$. Assume that $1 \neq \vartheta \in \Theta_{[z]}$ for some center $z \neq u, v$, and note that $\Theta_{[z]}$ is connected by [18, (61.9)]. Choose any point $a \notin W$. If $\mathbb{R} \cong \Pi \leq \Theta$ and $\vartheta \in \Pi$, then the connected component Λ of $\Delta_{a,a^{\vartheta}}$ centralizes each translation in Π because $\vartheta^{\Lambda} = \vartheta$ and Λ acts linearly on Θ . Thus, Λ fixes the orbit a^{Π} pointwise and the fixed elements of Λ form a connected subplane \mathcal{E} . Moreover, $\nabla: \Lambda = \dim(a^{\vartheta})^{\nabla} \leq \dim a^{\Theta} \leq 8$ and $\dim \Lambda \geq 18 - t$. Hence the stiffness theorem (\Diamond) shows that $\Lambda \cong G_2$. Consequently, t > 4 and Λ acts non-trivially on Θ by the last part of (\Diamond). The action of any compact or semi-simple Lie group on a real vector space is completely reducible, and each irreducible module of G_2 on \mathbb{R}^{16} has a dimension divisible by 7, see [18, (95.10)]. Since $\Pi^{\Lambda} = \Pi$, we conclude that t = 8 and $\dim \nabla \leq 22$. Because Θ is minimal, ∇ acts irreducibly on Θ . By Lemma 2.3, the group ∇ has a subgroup $\Upsilon \cong \text{Spin}_7 \mathbb{R}$. The central involution $\alpha \in \Upsilon$ is a reflection and inverts each translation in Θ . Thus, α has axis W and some center, which may be chosen as a. Now

 $\alpha^{\Delta} \alpha \subseteq \mathsf{T}$ and $\dim \mathsf{T} = \dim a^{\Delta} \geq 12$, see [18, (61.19)]. The group Υ acts faithfully on each invariant subgroup of T . This implies $\mathsf{T}_{[u]} \cong \mathsf{T}_{[v]} \cong \mathbb{R}^8$ (cf. [18, (95.10)]) and then \mathcal{P} is the classical Moufang plane \mathcal{O} over the octonions by [18, (81.17)], but we have assumed that $\dim \mathsf{T} < 16$.

Before continuing the proof of Theorem 1.1, we now prove the following lemma.

Lemma 2.4. For the connected component Λ of the stabilizer of some quadrangle containing u, v, and an arbitrary point a, the radical P of Δ satisfies $P : (\Lambda \cap P) \leq 20$. If dim $\Lambda \geq 8$, then $\Lambda \cap P = 1$; in this case, dim P = 20 implies dim $\Theta \geq 2$ and dim $P_a = 4$.

Proof. Lemma 2.2, applied to the action of P on the line pencil \mathcal{L}_v yields a group $X \leq P$ fixing two lines av and bv such that $P: X \leq 10$. Analogously, the action of X on the line av provides a point c with $X: X_{a,c} \leq 10$. As P is solvable and $\Theta^{P_a} = \Theta$ by step 1), there exists a minimal X_a -invariant vector subgroup $N \leq \Theta$ of dimension at most 2, and the argument of Lemma 2.2 shows that c can be chosen in a^N . The fixed elements of $\Lambda = (P_{a,c,bv})^1$ form a connected subplane \mathcal{E} since Λ acts linearly on N and centralizes the translation $\xi \in \mathbb{N}$ with $a^{\xi} = c$. If dim $\Lambda \geq 8$, then Λ is simple by (\Diamond) and $\Lambda \cap P$ is a solvable normal subgroup of Λ , hence trivial.

2) Our aim is to show that one of the groups $T_{[u]}$ or $T_{[v]}$ is linearly transitive.

This will be accomplished in steps 2) – 15). Again let $\Theta \leq \mathsf{T}_{[v]}$. For $a \notin W$ and $w \in W \setminus \{u, v\}$, consider the connected component Ω of ∇_w . The dimension formula gives dim $\Omega \geq 10$. As above, let $\mathbb{R} \cong \Pi \leq \Theta$, $\mathbb{1} \neq \rho \in \Pi$, $c = a^{\rho}$, and put $\Lambda = (\Omega_c)^1$. Then $\Omega : \Lambda = \dim c^{\Omega} \leq \dim a^{\Theta}$. Because the action of ∇ on Θ is linear, $\Lambda \leq \operatorname{Cs} \Pi$ and (\Diamond) applies.

- 3) For t = 1 this gives Λ ≅ G₂. Put Δ = PΨ, where P = √Δ is the radical and Ψ is a maximal semi-simple subgroup of Δ. Lemma 2.4 shows that dim P ≤ 19; consequently, dim Ψ > 14. According to Lemma 2.3 the Levi complement Ψ has a subgroup Υ ≅ Spin₇ℝ. For t < 8 the central involution α ∈ Υ acts trivially on Θ by [18, (95.10)] and α is a reflection whose axis is a line through v and whose center is u. We may choose a on this axis. By the dual of [18, (61.19b)] we get dim T_[u] = dim(av)^Δ > 0. The reflection α inverts the elements of T_[u], and the representation of Υ on T_[u] is faithful. This implies that T_[u] ≅ ℝ⁸ is linearly transitive as claimed. Moreover, T_[u] is a minimal normal subgroup of Δ. The action of Υ on av is equivalent to a linear action, see [18, (96.36)]. Hence Υ ≤ ∇ for a suitable choice of a, so that ∇ acts irreducibly on T_[u].
- 4) From t = 2 it would follow that dim T = 16, contrary to the general assump-

If $a \neq c \in a^{\Theta}$, then $\Gamma = (\nabla_c)^1$ satisfies $\dim \Gamma \geq 16$. Consider a point $w \in W \setminus \{u, v\}$ and the connected component Λ of the stabilizer Γ_w , and note that $\dim \Lambda \geq 8$. By (\Diamond) the group Λ is almost simple and hence acts trivially on a^{Θ} . Therefore, $\Lambda \not\cong G_2$ and $\Lambda \cong SU_3\mathbb{C}$. This implies that Γ acts faithfully and transitively on $W \setminus \{u, v\}$, see [18, (96.11)]. According to [15, Lemma 5], the group Γ has a compact subgroup $\Phi \cong SU_4\mathbb{C}$ of codimension 1. Consequently, Γ is not semi-simple and the commutator subgroup Γ' coincides with Φ . Moreover, $\dim \nabla = 18$ and the group Δ is transitive outside of W. Since Γ' acts trivially on Θ , the central involution α of Γ' is a reflection with axis av. (Note that $\Gamma'/\langle \alpha \rangle \cong SO_6\mathbb{R}$ cannot act on a Baer subplane.) As before, $T_{[u]} \cong \mathbb{R}^8$ and Γ' acts faithfully on $T_{[u]}$. By [18, (95.6b)], the centralizer $\nabla \cap \operatorname{Cs} T_{[u]}$ has positive dimension. Hence ∇ contains homologies with center v. The dual of [18, (61.20b)] shows that $T_{[v]}$ is also linearly transitive.

5) The cases $3 \le t \le 6$ lead to a contradiction.

Consider the subplane $\mathcal{F} = \langle a^{\Theta}, u, v, w \rangle$; either $\mathcal{F} = \mathcal{P}$ and $\Omega = (\nabla_w)^1$ acts faithfully on Θ , or \mathcal{F} is a Baer subplane. In the latter case we write $\Omega|_{\mathcal{F}} = \Omega/K$, where K denotes the kernel of the action of Ω on \mathcal{F} . Recall from (\Diamond) that K is a compact group of dimension 3 or at most 1. The different possibilities will be discussed separately. As before, Λ denotes the connected component of the stabilizer of w, a and $c \in a^{\Theta}$, and dim $\Lambda \geq 10 - t$.

- 6) If t = 3 and F = P, then Ω would be embeddable into GL₃ℝ. Hence t = 3 implies F ≠ P. A group Λ of dimension ≥ 8 would act trivially on Θ and on F, but this is impossible. Therefore, dim Λ = 7 and dim Ω = 10; moreover, Ω acts transitively on Θ \ {1} and Ω/K has a subgroup SO₃ℝ. The stiffness result [18, (83.15)] shows that Λ: K ≤ 5. Consequently, dim K = 3 and Ω/K is a 7-dimensional subgroup of GL₃ℝ. However, such a subgroup does not exist because SO₃ℝ is a maximal subgroup of SL₃ℝ, see [18, (94.34)].
- 7) Now let t = 4 and $\mathcal{F} = \mathcal{P}$. If Ω is not transitive on $\Theta \setminus \{1\}$, then it follows from (\Diamond) that there is an orbit of dimension 3, and suitable stabilizers fix subplanes of dimensions 4 and 8. By [18, (83.9)] and [5, XI.9.6], this implies that Λ is a compact Lie group of rank at most 2, in fact, $\Lambda \cong SU_3\mathbb{C}$, $SO_4\mathbb{R}$, or dim $\Lambda \leq 4$, see [14, (2.1)]. On the other hand, dim $\Lambda \geq 6$ and Λ acts faithfully on Θ and fixes a one-parameter subgroup. This is a contradiction. Hence Ω is transitive on $\Theta \setminus \{1\}$, and $\Omega' \cong Sp_4\mathbb{R}$, see [21] or [18, (95.10)]. In particular, Ω contains a central involution α , and α cannot be planar, since the stabilizer of a degenerate quadrangle in an 8-dimensional plane has dimension at most 7, see [18, (83.17)]. Therefore, α is a reflection

with axis W, and $\alpha^{\Delta} \alpha \subseteq \mathsf{T}$, cf. [18, (23.20)]. Moreover, $\dim \Omega \leq 11$ and $\dim \nabla \leq 19$. The dimension formula yields $\dim \mathsf{T} \geq \dim a^{\Delta} \geq 15$. The reflection α acts on T as $-\mathbb{1}$. Because Ω is connected, α induces on T a map of determinant 1; consequently, $\mathsf{T} \cong \mathbb{R}^{16}$.

8) If t = 4 and F ≠ P, the stiffness results [18, (83.17 and 22)] imply dim Ω/K ≤ 7 and dim K ≤ 3, hence dim Ω = 10 and dim ∇ = 18. Therefore, dim w[∇] = 8 for each choice of w, and ∇ is transitive on S = W \ {u, v}. According to [5, XI.9.5], the group Λ/K is compact, and then we have Λ/K ≅ SO₃ℝ and Λ ≅ SO₄ℝ, cf. [14, (2.1)]. In particular, dim Λ = 6, dim ∇_c = 14, and dim w^{∇_c} = 8, so that ∇_c is also transitive on S. Let Φ be a maximal compact subgroup of ∇_c containing Λ and note that S is homotopy equivalent to S₇. The exact homotopy sequence

$$\cdots \to \pi_{q+1}S \to \pi_q \Lambda \to \pi_q \Phi \to \pi_q S \to \pi_{q-1}\Lambda \to \dots$$

shows that $\pi_1 \Phi \cong \mathbb{Z}_2$, $\pi_3 \Phi \cong \mathbb{Z}^2$, $\pi_5 \Phi \cong \mathbb{Z}_2^2$, and that $\pi_7 \Phi$ is infinite. By [18, (94.36)], this implies that Φ is a semi-simple group having exactly two almost simple factors. Moreover, $\Phi \neq \Lambda$ because $\pi_7\Lambda$ is finite. Since dim $\Phi <$ dim ∇_c and $\pi_5 SU_3 \mathbb{C} \cong \mathbb{Z}$, the group Φ has a factor $B \cong U_2 \mathbb{H}$, cf. [18, (94.33)] and note that $SO_5 \mathbb{R}$ cannot act on a plane. For the same reason, the central involution $\beta \in B$ is a reflection; its axis is av, since, obviously, $[B, \Theta] = \mathbb{1}$. From dim $a^{\Delta} = 16$ we infer that $\beta^{\Delta}\beta = \mathsf{T}_{[u]}$ is linearly transitive. Either ∇ acts faithfully on $\mathsf{T}_{[u]}$ or ∇ contains homologies with axis au. In the second case, $\mathsf{T}_{[v]}$ is also linearly transitive, see [18, (61.20)], but then the representation of B on $\mathsf{T}_{[v]}$ would be trivial (use [18, (95.10)] and note that $[B, \Theta] = \mathbb{1}$) and B would consist of homologies with center u. Consequently, ∇ acts on $\mathsf{T}_{[u]}$ as a transitive subgroup of $\mathsf{GL}_8\mathbb{R}$, and [21] shows that ∇ has a transitive factor $\mathsf{X} \cong \mathsf{SL}_2\mathbb{H}$. The stabilizer $\mathsf{X}_w = \mathsf{X} \cap \Omega$ is a 7-dimensional group which fixes \mathcal{F} pointwise, a contradiction to (\Diamond).

- 9) Thus the cases 2 ≤ t ≤ 4 cannot arise. Therefore, t > 4 and F = P. For t < 7, we have Λ ≇ SU₃C and hence 10 ≤ dim Ω < t + 8. Since Θ is a minimal ∇-invariant vector group, ∇ induces on Θ an irreducible group ∇ of dimension dim ∇ ≥ dim Ω ≥ 10.</p>
- 10) Let t = 5. By [18, (95.6 and 10)], the commutator group ∇̃' is an almost simple group of dimension 10 or 24. In the latter case the dimension of ∇ would be too large. Hence ∇̃' is locally isomorphic to a group O'₅(ℝ, r) and dim ∇̃ ≤ 11. Because of Brouwer's Theorem [18, (96.30)] or [8], an almost simple group of dimension > 3 has no subgroup of codimension 1. Consequently, Ω' ≅ ∇̃' ≅ O'₅(ℝ, r), and [18, (55.40)] implies r > 0. In the notation of step 2), there is some ρ ∈ Θ such that Λ has a subgroup SO₃ℝ. By [18, (83.10)], the group Λ is then compact, and [14, (2.1)] shows Λ ≅ SO₄ℝ

UNIVERSITEIT GENT (note that $4 < \dim \Lambda < 8$). Hence Ω' is a hyperbolic motion group of the 4-dimensional projective space $P\Theta$. The stabilizer E of an exterior point of $P\Theta$ is not compact, but E contains a group $SO_3\mathbb{R}$; therefore, E has to be compact for the same reason as Λ , a contradiction.

- 11) Suppose that t = 6 and that Ω acts irreducibly on Θ . The stiffness result (\diamond) implies dim $\Lambda < 8$ and $10 \le \dim \Omega \le 13$. With [18, (95.5 and 6)] it follows that either dim $\Omega' = 8$ and the center $Z(\Omega)$ is isomorphic to \mathbb{C}^{\times} , or the action of Ω' on Θ can be understood as the tensor product of the natural representations of $A = SL_2\mathbb{R}$ and $B = SL_3\mathbb{R}$ and $\Omega' \cong A \times B$. In both cases, Ω contains a central involution ω . On a Baer subplane, Ω would induce a group of dimension at most 7, see [18, (83.17)]. Therefore, ω is a reflection with axis uv and center a. We have $\dim \nabla \leq 21$. The hypothesis together with [18, (61.19)] implies $13 \leq \dim a^{\Delta} = \dim T < 16$. Consequently $\dim \nabla > 18$, $\dim \Omega > 10$ and then $\dim \Omega' = 11$. Because ω belongs to a connected group and acts as -1 on T, both $T_{[u]}$ and $T_{[v]}$ have even dimension, and $T \cong \mathbb{R}^{14}$. Hence one of the groups $T_{[u]}$ and $T_{[v]}$ is linearly transitive. Recall that $\Theta \leq T_{[v]}$. By complete reducibility and [18, (95.10)], either B acts irreducibly on $\mathsf{T}_{[u]} \cong \mathbb{R}^8$ or B centralizes a 2- dimensional subgroup of T. In the latter case, the fixed elements of B would form a connected subplane contrary to (\Diamond). Since Ω fixes u and w, the factor A acts faithfully on $\mathsf{T}_{[u]}$. This contradicts the irreducibility of B, see [18, (95.4)].
- 12) If t = 6 and there is a minimal Ω-invariant vector subgroup H < Θ, and if Λ = (Ω_c)¹ for some c ∈ a^H \ {a}, then 10 dim H ≤ dim Λ < 8 by (◊). Consider the action of Ω on the subplane F_H = ⟨a^H, u, v, w⟩ and the connected component Φ of the kernel of this action. If dim H ≤ 4, then it follows as in steps 6) and 7) that F_H is an (Ω-invariant) Baer subplane of P. Now dim Ω/Φ ≤ 7 by [18, (83.17)], and then [18, (83.22)] implies Φ ≅ SU₂C. Recall from step 5) that Ω acts faithfully on Θ. Since the action of Φ on Θ is completely reducible, Φ acts faithfully on a complement of H in Θ, but SU₂C has no faithful representation in dimension < 4. Therefore, dim H = 5 and the commutator group Ω' is semi-simple and irreducible on H, see [18, (95.6b)]. Inspection of the list [18, (95.10)] shows Ω' ≅ O'₅(ℝ, r), and then Ω' would centralize a complement of H in Θ in contradiction to (◊). Hence t ≠ 6.
- 13) Steps 3) 12) yield the following conclusion.

Conclusion. If \mathcal{P} is not a translation plane and if $\Theta \cong \mathbb{R}^t$ is a minimal ∇ -invariant subgroup of $\mathsf{T}_{[v]}$, then either $t \geq 7$, or t = 1 and $\mathsf{T}_{[u]} \cong \mathbb{R}^8$ is a minimal normal subgroup of Δ .

14) Now let t = 7 and assume first that Ω acts irreducibly on Θ for each choice

of w. By [18, (95.6)], the commutator group Ω' is almost simple. Moreover, $9 \le \dim \Omega' \le 15$ (since $\Lambda \not\cong G_2$). The list [18, (95.10)] shows that $\dim \Omega' =$ 14 and that Ω' has torus rank 2. Because t is odd, each torus subgroup of Ω' fixes a non-trivial vector $\rho \in \Theta$, and [18, (83.10)] implies that the corresponding stabilizer Λ is compact. It follows that $\Lambda\cong SU_3\mathbb{C}$ and then $\Omega' \cong \mathsf{G}_2$ is also compact. Hence $\Lambda \cong \mathsf{SU}_3\mathbb{C}$ for each $c = a^{\rho}$ and arbitrary w. Suppose that Ω' is a Levi complement of $P = \sqrt{\Delta}$. Then Lemma 2.4 shows that dim P = 20 and dim $P_a = 4$. This implies that $[P_a, \Omega'] = \mathbb{1} = P_a \cap \Omega'$. The fixed elements of $\Omega' \cong G_2$ form a 2-dimensional subplane \mathcal{E} by [18, (96.35)] and P_a acts effectively on \mathcal{E} , but the stabilizer of a triangle in \mathcal{E} is only 2-dimensional, see [18, (33.10)]. Hence Ω' is not a Levi complement of the radical. By Lemma 2.3, the group Δ has a subgroup $\Upsilon \cong \text{Spin}_{7}\mathbb{R}$. Since Υ induces the group SO₇ \mathbb{R} on $\Theta \cong \mathbb{R}^7$, the central involution $\alpha \in \Upsilon$ is a reflection with axis av and center u. As in step 3) it follows that $\mathsf{T}_{[u]} \cong \mathbb{R}^8$ is linearly transitive and is a minimal normal subgroup of Δ , and we may assume that ∇ acts irreducibly on $\mathsf{T}_{[u]}$.

15) Last alternative: t = 7 and there is a minimal Ω -invariant vector subgroup $H < \Theta$. The proof follows a similar scheme as in the case of the action of ∇ on Θ . We have $1 \le s := \dim H < 7$. If s = 1, then $\dim \Lambda \ge 9$ and $\Lambda \cong G_2$. As G_2 has no representation in dimension < 7, the group Λ would act trivially on Θ and hence on $\langle a^{\Theta}, u, w \rangle = \mathcal{P}$, a contradiction. In the case s = 2, the stiffness theorem (\Diamond) implies $\Lambda \cong SU_3\mathbb{C}$. Again Λ would act trivially on Θ , see [18, (95.3 and 10)]. The arguments of step 6) with H instead of Θ show that $s \neq 3$. Next, let s = 4 and assume first that Ω acts faithfully on H as an irreducible subgroup of $GL_4\mathbb{R}$. Then Ω' is a semi-simple group of dimension > 8, see [18, (95.6b)]. Hence Ω' is isomorphic to $\text{Sp}_4\mathbb{R}$ or to $\text{SL}_4\mathbb{R}$. The action of Ω' on Θ is completely reducible, and H has an Ω' -invariant complement $X \cong \mathbb{R}^3$ in Θ . Consequently Ω' induces the identity on the subplane $\langle a^{\mathsf{X}}, u, w \rangle$, but this contradicts (\Diamond). Therefore $\langle a^{\mathsf{H}}, u, w \rangle$ is a Baer subplane of \mathcal{P} and Ω induces on H a group Ω/K , where K¹ is isomorphic to a subgroup of $SU_2\mathbb{C}$. Either $K^1 \cong SU_2\mathbb{C}$ or dim $K \leq 1$. In both cases, the semi-simple group Ω' fixes a complement X of H in Θ and dim $\Omega' \ge 8$. If $K^1 \cong SU_2\mathbb{C}$, then $K^1|_X \cong SO_3\mathbb{R}$, which is a maximal subgroup of $SL_3\mathbb{R}$, cf. [18, (94.34)]. Accordingly, $\Omega'|_{\mathsf{X}} \cong \mathsf{SL}_3\mathbb{R}$, a contradiction. If dim $\mathsf{K} \leq 1$, then dim $\Omega'|_{\mathsf{H}} > 7$ and Ω' contains the group Sp₄ \mathbb{R} . This is again impossible. It follows that s > 4and that Ω acts faithfully on H. For s = 5, representation theory shows that $\Omega' \cong O'_5(\mathbb{R}, r)$, see [18, (95.10)], and Ω' would act trivially on a complement of H in Θ , a contradiction to (\Diamond). In the case s = 6, finally, the semi-simple group Ω' fixes a unique complement X of H, and X is even Ω -invariant. This has been excluded at the beginning of step 15).

••	••	
•	×	
page 9 / 23		
go back		
full screen		
close		
quit		

- 16) In any case, one of the groups T_[u] or T_[v] is linearly transitive, and we may assume that Θ = T_[v] ≃ ℝ⁸ and that ∇ induces an irreducible group on Θ. By [5, XI.9.5 and 6], the stabilizer of an arbitrary quadrangle is compact and Λ is always a compact connected Lie group of torus rank at most 2. If 4 < dim Λ < 8, then Λ ≃ SO₄ℝ, see [14, (2.1)] or [5, XI.9.9].
- 17) Put $\Gamma = \Delta_{au}$. Because Θ is transitive on $av \setminus \{v\}$, it follows that $\Delta = \Gamma \Theta$ and that Γ acts irreducibly on Θ . If dim $\Delta \ge 40$, then dim T = 16 or \mathcal{P} is the classical Moufang plane according to [18, (87.7)]. Hence our assumptions imply $26 \le \dim \Gamma \le 31$. The centralizer $\Gamma \cap \operatorname{Cs} \Theta$ fixes each line in \mathfrak{L}_u and consists of collineations with center u.
- 18) Let G be a closed, connected irreducible subgroup of $SL_8\mathbb{R}$. If dim $G \ge 18$, then G' is isomorphic to an almost direct product $SL_2\mathbb{R} \cdot SL_4\mathbb{R}$ or $SU_2\mathbb{C} \cdot SL_2\mathbb{H}$, or to one of the almost simple groups $Sp_4\mathbb{C}$, $Spin_7(\mathbb{R}, r)$ with (r = 0, 3), $O'_8(\mathbb{R}, r)$, $SL_4\mathbb{C}$, or dim $G' \ge 36$.

In fact, G' is semi-simple and $\dim G' \ge 16$ by [18, (95.6)]. Suppose that G' = AB is an almost direct product where A has minimal dimension. If B acts irreducibly on $V = \mathbb{R}^8$, then $A \cong \mathbb{H}'$ and $B \le SL_2\mathbb{H}$. In the other case, $\dim B \ge 8$, and Clifford's Lemma [18, (95.5)] shows that B acts faithfully and irreducibly on a subspace U such that $V = U \oplus U^{\alpha}$ for some $\alpha \in A$. By [18, (95.10)], it follows that $\dim B \ne 8$. Therefore, $\dim B > 9$, and B contains a group $Sp_4\mathbb{R}$. If $0 \ne x \in U$, then the fixed points of B_x form a 1-dimensional subspace of U, and $\langle x, x^{\alpha} \rangle \cong \mathbb{R}^2$ is A-invariant. Consequently, $A \cong SL_2\mathbb{R}$ and $\dim B = 15$. All possibilities for an almost simple group G' are listed in [18, (95.10)].

- 19) If $\Gamma_{[u]} = 1$, then Γ acts faithfully on Θ ; hence Γ' is semi-simple and dim $\Gamma' \ge 24$, see [18, (95.6)]. By the last step, $\Gamma' \cong SL_4\mathbb{C}$ or $\Gamma' \cong O'_8(\mathbb{R}, r)$. In the first case, the involution $\beta = \text{diag}(1, -1) \in SL_4\mathbb{C}$ is not a reflection and hence fixes a Baer subplane \mathcal{B} pointwise, cf. [18, (55.29)]. The group $B = (1, SL_2\mathbb{C}) \le Cs\beta$ would induce on \mathcal{B} a group of central collineations with center u, but this is impossible by [18, (61.20)], as B is semi-simple. If $\Gamma \cong O'_8(\mathbb{R}, r)$, the diagonal involution diag $(1, 1, \ldots, 1, -1, -1)$ would fix a 6-dimensional subset of \mathcal{L}_u and hence would be neither a reflection nor a Baer involution. This contradicts [18, (55.29)].
- 20) In the previous step it has been proved that $\Gamma_{[u]} \neq \mathbb{1}$. Assume first that $\Gamma_{[u]}$ contains homologies. We may choose *a* in such a way that $\Gamma_{[u,av]} \neq \mathbb{1}$. From the dual of [18, (61.20b)] it follows that $s := \dim T_{[u]} = \dim a^{\Gamma} = \dim \Gamma \dim \nabla$, and, hence, $\Gamma = \nabla T_{[u]}^1$. Moreover, this is also the dimension of the set of all axes of homologies in Γ with center *u*. We choose $b \in a^{T_{[u]}} \setminus \{a\}$

and $c \in av \setminus \{a\}$ and put $\Lambda = (\nabla_{b,c})^1$. Then

 $26 \leq \dim \mathsf{\Gamma} = \dim \nabla + s \leq \dim \mathsf{A} + 8 + 2s \leq 22 + 2s \text{ and } 1 < s < 8.$

The assumption $s \leq 5$ implies successively $\dim \Lambda \geq 8$, $\Lambda \cong SU_3\mathbb{C}$ or $\Lambda \cong G_2$, Λ acts trivially on $T_{[u]}$, $\Lambda \not\cong G_2$, s = 5, $\Lambda \not\cong SU_3\mathbb{C}$, a contradiction. Assume that s = 6. Then $\Lambda \not\cong SU_3\mathbb{C}$ because Λ fixes some elements of $T_{[u]}$. Hence $\Lambda \cong SO_4\mathbb{R}$ by step 16), and $\dim \nabla = 20$. For any admissible *b*, the dimension formula gives

$$12 \le \dim \nabla_c = \dim b^{\nabla_c} + \dim \Lambda \le s + 6 = 12,$$

and dim $\nabla_c = 12$, dim $b^{\nabla_c} = 6$. By [18, (96.11a)], the group ∇_c acts transitively on $\mathsf{T}^1_{[u]} \cong \mathbb{R}^6$. The action is also effective since its kernel is trivial on $\langle a^{\mathsf{T}^1_{[u]}}, c, v \rangle = \mathcal{P}$. On the other hand, the results in [21] (or in [18, (96.19–22)]) show that a transitive subgroup $G \leq \mathsf{GL}_6\mathbb{R}$ satisfies dim $G \leq 10$ or dim $G \geq 16$. Therefore, s = 7 and dim $\mathsf{T} = 15$.

21) Now let $\Gamma_{[u]} = \mathsf{T}_{[u]} := \mathsf{H}$. If dim $\mathsf{H} = 1$ and if $a \neq b \in a^{\mathsf{H}}$, then dim $\Gamma_{a,b} \ge 17$, and (\Diamond) implies that Γ has a subgroup $\Lambda \cong \mathsf{G}_2$. From the fact that

$$\dim (\Gamma \cap \operatorname{Cs} \Theta) = \dim \mathsf{H} = 1,$$

it follows with [18, (95.6)] that a maximal semi-simple subgroup Ψ of Γ acts irreducibly on Θ , and that dim $\Psi \geq 23$. Because Γ contains G_2 but has no subgroup SO₅ \mathbb{R} by [18, (55.40)], step 18) shows that $\Psi \cong \text{Spin}_8(\mathbb{R}, r)$ with $r \leq 1$, and Ψ induces on Θ a group $O_8'(\mathbb{R}, r)$ by [18, (95.10)]. Consequently, Γ would contain a reflection with axis av, a possibility which has been dealt with in step 20). Thus, we may assume that dim H = s > 1; recall that s < 8by the assumption made at the beginning of the proof. As Λ fixes a subspace of H and G_2 has no non-trivial representation in dimension < 7, we conclude that $\Lambda \not\cong G_2$, dim $\Lambda \leq 8$ and dim $\nabla \leq 23$. The group ∇ acts faithfully and irreducibly on $\Theta \cong \mathbb{R}^8$. All possibilities for the semi-simple group ∇' have been listed in step 18). Only the first 5 groups of this list have a dimension at most 23 and we conclude that $18 \le \dim \nabla' \le 21$. If $\dim \nabla' > 18$, then ∇' is almost simple and the representation of ∇' on H shows that either s = 7, or ∇' fixes a^{H} pointwise, but in the latter case $\dim \nabla' \leq 8 + \dim \Lambda$, which is a contradiction. If dim $\nabla' = 18$, then dim $\nabla \leq 19$. We consider the group $\Gamma \cong \Gamma/H$ induced by Γ on Θ , which contains ∇ . From 18) and the inequalities

 $26 \leq \dim \Gamma \leq 19 + 8$ and $\dim \widetilde{\Gamma} \leq 27 - s$

it follows that $\dim \widetilde{\Gamma}' \leq 21$. Assume that ∇' is a proper subgroup of $\widetilde{\Gamma}'$. Then $\widetilde{\Gamma}'$ is isomorphic to $\text{Spin}_7(\mathbb{R}, r)$ or $\text{Sp}_4\mathbb{C}$, and a maximal compact subgroup

K of Γ̃' acts in the canonical way on the homogeneous space M = Γ̃'/∇', but this would imply dim K ≤ 6 by [18, (96.13)]. (Note that the kernel N of the action of K on M is contained in the intersection of all conjugates of ∇' in Γ̃', a proper normal subgroup of Γ̃'; hence dim N = 0.) Consequently, dim Γ̃ ≤ 19 and then s ≥ 7. Steps 19) – 21) complete the proof of the first part of Theorem 1.1.
22) Assume now that H = T¹_[u] ≅ ℝ⁷. We will show that a maximal semi-simple

22) Assume now that $H = T_{[u]}^1 \cong \mathbb{R}^7$. We will show that a maximal semi-simple subgroup of Δ is isomorphic to $\text{Spin}_7\mathbb{R}$. With the rôles of u and v interchanged, the Conclusion implies that either some 1-dimensional subgroup $\Pi < H$ is ∇ -invariant or ∇ acts irreducibly on H. By hypothesis dim $\nabla \ge 18$. Let $\nabla = \Psi P$, where Ψ is a maximal semi-simple subgroup of ∇ and $P = \sqrt{\nabla}$. In the first case, the stabilizer Λ of a suitable quadrangle has dimension at least 9; hence $\Lambda \cong G_2$ by (\Diamond), and $\Psi \neq \Lambda$ since ∇ acts irreducibly on Θ . Lemma 2.3 implies that Ψ has a subgroup $\Upsilon \cong \text{Spin}_7 \mathbb{R}$. In the second case, ∇ induces an irreducible group ∇/N on Θ and an irreducible group ∇/K on H. By [18, (95.6)] we have $P: (N \cap P) \leq 2$ and $P: (K \cap P) \leq 1$, hence dim $P \leq 3$ and dim $\Psi \ge 15$. As dim $\mathsf{K} \le 8$ and $\widehat{\Psi} = \Psi/(\mathsf{K} \cap \Psi)$ is almost simple by [18, (95.5)], the list [18, (95.10)] shows that Ψ is a simple group of type G₂ or $\Psi \cong O'_7(\mathbb{R}, r)$. The kernel $\mathsf{N} \cap \Psi$ is a product of some of the almost simple factors of Ψ , and $\mathsf{N} \cap \Psi$ acts freely on H . Consequently, $\dim(\mathsf{N} \cap \Psi) = 0$ or $N \cap \Psi \cong \widehat{\Psi}$, but the latter is impossible for reasons of dimension. In particular, $N^1 \leq P$ and dim $N \leq 1$ as N^1 injects into the centralizer of $\widehat{\Psi}$ in its representation on H. If $\dim \widehat{\Psi} = 14$, then Ψ has a proper factor of type G_2 , but this contradicts the fact that Ψ acts irreducibly on Θ . It follows that dim $\Psi \ge 21$, and then $\Psi \cong \text{Spin}_7(\mathbb{R}, r)$ with r = 0, 3 by step 18). The group Ψ is transitive neither on Θ nor on H. Therefore dim $\Lambda > 8$ for a suitable quadrangle, and Λ contains a group $SU_3\mathbb{C}$. This excludes the case r = 3.

Let $\overline{\Psi}$ be a Levi complement of $\sqrt{\Delta}$. From dim T = 15 and Theorem [18, (87.5)] it follows that dim $\Delta < 40$ and dim $\overline{\Psi} \le 24$. If dim $\overline{\Psi} > 21$, then $\overline{\Psi} = \Upsilon X$, where $\Upsilon \cong \text{Spin}_7 \mathbb{R}$ and the 3-dimensional almost simple factor X centralizes Υ . We may assume that $\Upsilon \le \Psi$. Then X fixes the axis av of the reflection in Υ and the unique fixed point a of Υ on a^{Θ} . By [18, (95.6)] the group X would induce the identity both on a^{Θ} and a^{H} , a contradiction.

23) Finally, let T ≅ ℝ¹⁶. By step 16), we may assume that the complement ∇ = Δ_a of T acts irreducibly on Θ = T_[v]. Moreover, dim ∇ ≥ 18 by hypothesis. Because of Lemma 2.3, the assertion is true whenever ∇ has a subgroup G₂, in particular, if dim ∇ > 24. In the case dim ∇ = 24, it follows from [18, (87.7)] that Δ does not have two fixed points. Therefore, attention can be restricted to dim ∇ ≤ 23. If ∇ has no subgroup G₂, we exploit the fact that in a translation plane a maximal compact subgroup Φ of ∇ has codi-

ACADEMIA

PRESS

ACADEMIA PRESS mension at most 2 and is normal in ∇ , see [18, (81.8)]. Consequently, $\dim \Phi \ge 16$. Consider the kernel $\mathsf{N} = \nabla \cap \operatorname{Cs} \Theta = \nabla_{[u]}$ of the action of ∇ on Θ and the irreducible subgroup $\widetilde{\nabla} = \nabla / \nabla_{[u]}$ of Aut Θ . It is a special feature of 16-dimensional translation planes that $\Phi_{[u]}$ is finite, see [18, (81.20)]. Hence $\widetilde{\Phi} = \Phi / \Phi_{[u]}$ satisfies $\dim \widetilde{\Phi} = \dim \Phi$. The large subgroups in the maximal compact subgroup $\mathsf{SO}_8\mathbb{R}$ of Aut Θ are listed in [18, (95.12)]. Since $\mathsf{G}_2 \not\hookrightarrow \nabla$, we conclude that $\dim \Phi = 16$ and that $\Phi' \cong \mathsf{SU}_4\mathbb{C}$ (recall from step 21) that $\mathsf{SO}_5\mathbb{R} \not\hookrightarrow \Phi$). Moreover, Φ' acts faithfully and irreducibly on Θ , see [18, (95.12c)]. Hence $\Phi \cong \mathsf{U}_4\mathbb{C}$, $\dim \nabla = 18$, and $\dim \Delta = 34$. This completes the proof of Theorem 1.1.

3. The planes and their automorphism groups

Now let dim $\Delta \ge 35$. If T is transitive, then dim $\Sigma_{[a]} > 0$ and the existence of a subgroup Spin₇ \mathbb{R} in Δ implies dim $\Sigma \ge 38$. All such planes are described in [18, (82.5)]. We may assume, therefore, that $T_{[u]} \cong \mathbb{R}^7$ and $T_{[v]} \cong \mathbb{R}^8$, cf. also [18, (61.12)]. The plane \mathcal{P} can then be coordinatized by a 'Cartesian field' ($\mathbb{O}, +, \cdot$), cf. [5, XI.4.2] or [18, (24.4)]. (Such linear ternary fields with associative addition have also been called *Cartesian groups* even though they are like rings rather than groups.) If the lines of the form $y = s \cdot x + t$ together with the 'verticals' form an affine plane and if multiplication is continuous, then, by [18, (43.6)], the Cartesian field indeed yields a compact projective plane.

Theorem 3.1. Consider a topological Cartesian field $(\mathbb{R}, +, *, 1)$ with unit element, and assume that (-r)*s = -(r*s) holds identically. Let $\rho : [0, \infty) \approx [0, \infty)$ be a homeomorphism with $\rho(1) = 1$. Write each octonion $x \in \mathbb{O}$ in the form $x = \xi + \mathfrak{x}$, where $\xi = \operatorname{Re} x = \frac{1}{2}(x + \overline{x})$ and $\mathfrak{x} = \operatorname{Pu} x = \frac{1}{2}(x - \overline{x})$, and define a new multiplication on \mathbb{O} by

 $s \diamond x = |s|^{-1}s(|s| \ast \xi + \rho(|s|) \cdot \mathfrak{x})$ for $s \neq 0$ and $0 \diamond x = 0$.

Then $\mathbb{O}_{\diamond} = (\mathbb{O}, +, \diamond, 1)$ is a topological Cartesian field with unit element 1. A plane \mathcal{P} can be coordinatized by such a Cartesian field if and only if \mathcal{P} satisfies the hypotheses of Theorem 1.1 with dim $\Delta \geq 35$.

Remark 3.2. 1) An analogous construction can be applied to \mathbb{C} and to \mathbb{H} instead of \mathbb{O} .

Obviously, the multiplications ◊ and * coincide on R. It follows that O_◊ is a quasi-field if and only if * is the ordinary multiplication of the reals. These quasifields and the corresponding translation planes are discussed in [6] and in [18, (82.4 and 5)].

Proof of Theorem **3.1**. **Part A.** Suppose first that \mathcal{P} has the properties of Theorem **1.1** without being a translation plane. Then dim T = 15 and Δ has a subgroup $\Upsilon \cong \text{Spin}_7 \mathbb{R}$.

- We may assume that Δ = T Υ and that the translation group T_[v] with center v is transitive. As remarked above, the affine plane P^W can then be coordinatized with respect to any quadrangle 0 = a, u, v, e in the usual way (as in [18, § 22]) by a Cartesian field O_◊ = (O, +, ◊), where + denotes the ordinary addition of the octonions. (Call to mind that each translation can be written in the form (x, y) ↦ (x+a, y+b); hence (O, +) ≅ T_[v] ≅ ℝ⁸.)
- 2) If *u* is the other fixed point of Δ , then $\Xi := \mathsf{T}_{[u]} \cong \mathbb{R}^7$ is Υ -invariant. Thus, there is a 7-dimensional vector subgroup *V* of $(\mathbb{O}, +)$ such that

$$\Xi = \{ (x, y) \mapsto (x + c, y) \mid c \in V \}.$$

- 3) The group Υ fixes a triangle and may be identified with ∇ = Δ_a. Indeed, ∇ ≅ Δ_a/T_a is isomorphic to a subgroup of Δ/T ≅ Υ. Since dim ∇ ≥ 20 and Υ has no proper subgroups of small codimension, ∇ ≅ Υ. By the Mal'cev– Iwasawa Theorem [18, (93.10)], Υ and ∇ are conjugate in Δ.
- 4) Because Υ induces on Ξ the group SO₇ℝ, the central involution α ∈ Υ fixes the orbit a^Ξ pointwise and α is a reflection with axis au, cf. [18, (55.29)]. In coordinates, α has the form (x, y) ↦ (x, -y) since α inverts each translation in T_[v]. This implies that (-s) ◊ x = -(s ◊ x) holds identically in O_◊.
- 5) According to [18, (96.36)], the action of Υ on the (invariant) line *au* is equivalent to a linear action, and the fixed point set is homeomorphic to S₁. Moreover, Υ acts trivially on the 1-dimensional quotient space *au*/Ξ. Therefore, each Ξ-orbit in *au* \ {*u*} is Υ-invariant and contains a unique fixed point of Υ.
- 6) Since α has center v, the group Υ acts faithfully on av. The faithful representation of Spin₇ℝ on ℝ⁸ being unique up to a linear transformation of ℝ⁸, the line av \ {v} can be identified with {0}×𝔅 in such a way that Υ preserves the ordinary norm of 𝔅.
- 7) Let *e* be chosen on a fixed line of Υ in the pencil \mathfrak{L}_v such that a, u, v, e is a nondegenerate quadrangle. Then the stabilizer $\Lambda = \Upsilon_e$ is isomorphic to G_2 , and Λ fixes a one-parameter subgroup $(\mathbb{R}, +)$ of the vector group \mathbb{O} , corresponding to a transitive group of 'vertical' translations of the 2-dimensional plane \mathcal{E} consisting of the fixed elements of Λ . Consequently, \mathcal{E} is coordinatized by a Cartesian field $\mathbb{R}_* = (\mathbb{R}, +, *)$. In fact, \mathbb{R}_* is a Cartesian subfield of \mathbb{O}_{\diamond} , and * is the restriction of the multiplication \diamond to \mathbb{R} . In particular, (-s) * x = -(s * x) holds for all $s, x \in \mathbb{R}$. Since Λ fixes the coordinate quadrangle, Λ is a group of automorphisms of \mathbb{O}_{\diamond} .

ACADEMIA PRESS

- 8) In the coordinates introduced in 1), the line *ae* is given by the equation *y* = *x*. Because the group Λ fixes this line, Λ acts in the same way on both the coordinate axes. From Ξ^Λ ⊆ Ξ^Υ = Ξ it follows that *V* is Λ-invariant. In fact, *V* is the unique Λ-invariant complement of ℝ in O. Hence *V* coincides with the vector space Pu O of the pure elements in O. The fixed point set of Λ in its action on O is ℝ. Consequently, 5) implies that the fixed point set of Υ on O×{0} is ℝ×{0}.
- 9) For $s \neq 0$, consider the line L_s of slope s with the equation $y = s \diamond x$ and note that $s \diamond 1 = s$ and that $x \mapsto s \diamond x$ is a homeomorphism of \mathbb{O} . If $s \in \mathbb{R}$, then (1, s) is a fixed point of Λ and the line L_s is Λ -invariant. Therefore, also the stabilizer $H = T_{L_s}$ is Λ invariant. It is isomorphic to \mathbb{R}^7 by [18, (61.11c)] and has the form

$$\{(x, y) \mapsto (x + c, y + \zeta(c)) \mid c \in \operatorname{Pu} \mathbb{O}\},\$$

where ζ is an \mathbb{R} -linear endomorphism of $\operatorname{Pu}\mathbb{O}$ centralizing Λ . Since the centralizer of Λ is isomorphic to \mathbb{R} by Schur's Lemma, there is a number $\rho(s) \in \mathbb{R}^{\times}$ such that

$$\mathsf{H} = \{ (x, y) \mapsto (x + \mathfrak{c}, y + \rho(s) \cdot \mathfrak{c}) \mid \mathfrak{c} \in \operatorname{Pu} \mathbb{O} \}.$$

10) For $s \in \mathbb{R}$, each point $(\xi, s * \xi)$ with $\xi \in \mathbb{R}$ belongs to L_s by 7). Hence step 9) yields

$$L_s = \{ (\xi + \mathfrak{x}, \, s * \xi + \rho(s) \cdot \mathfrak{x} \mid \xi \in \mathbb{R} \land \mathfrak{x} \in \operatorname{Pu} \mathbb{O} \} \,.$$

In the following, the other lines will be obtained by applying transformations $\varphi \in \Upsilon$ to the lines L_s with real s.

- 11) The group Υ acts on O×O in the same way as on the Moufang plane with the same point set. By 6) this is true for {0}×O because ℝ⁸ and O have been identified accordingly. The subgroup Λ acts identically on {0}×O and O×{0}, see 8). Since the centralizer of the action of Λ on PuO is the center of GL₇ℝ, the action of Υ on O×{0} is uniquely determined by the restriction to Λ and the fact that Υ fixes ℝ×{0}.
- 12) The group Υ is transitive on the spheres of constant norm in $\{0\}\times\mathbb{O}$, and for any $s \neq 0$ there is some $\varphi \in \Upsilon$ such that $\varphi(e) = (1, |s|^{-1}s)$. The map φ has the form $(x, y) \mapsto (Ax, By)$ with $A, B \in SO_8\mathbb{R}$ such that for some $C \in SO_8\mathbb{R}$ the equation $B(s \cdot x) = Cs \cdot Ax$ holds identically with respect to the ordinary multiplication \cdot of the octonions, see [18, (17.12–16)]. Hence $Bx = |s|^{-1}s \cdot Ax$ and φ maps $L_{|s|}$ onto the set

$$\left\{ (\xi + A\mathfrak{x}, |s|^{-1}s \left(|s| * \xi + \rho(|s|) \cdot A\mathfrak{x} \right) \mid \xi \in \mathbb{R} \land \mathfrak{x} \in \operatorname{Pu} \mathbb{O} \right\}.$$

Writing \mathfrak{x} instead of $A\mathfrak{x}$, we obtain for L_s the equation $y = s \diamond x$ as claimed.

ACADEMIA PRESS **Part B.** The construction in Theorem 3.1 always yields a topological Cartesian field.

Obviously, the multiplication $\mathbb{O} \times \mathbb{O} \to \mathbb{O} : (a, x) \mapsto a \diamond x$ is continuous. By [18, (43.6)] it suffices, therefore, to show that for $a \neq b$ the maps

 $\lambda_{a,b}: x \mapsto -a \diamond x + b \diamond x$ and $\mu_{a,b}: x \mapsto x \diamond a - x \diamond b$

are bijections of \mathbb{O} . For each $x \in \mathbb{O}$ we write $x = |x| x_1 = \xi + \mathfrak{x}$.

1) For $c = |c| c_1 \in \mathbb{O}$ the equation $\mu_{a,b}(x) = c$ has a unique solution: in fact, by taking norms in \mathbb{O} , we get the condition

$$(|x|*\alpha-|x|*\beta)^2+\rho(|x|)^2\cdot |\operatorname{\mathfrak{a}}-\operatorname{\mathfrak{b}}|^2=|c|^2.$$

The left hand side is monotone in |x| since $(\mathbb{R}, +, *)$ is a topological Cartesian field and therefore $r \mapsto r * \alpha - r * \beta$ is either a continuous bijection of \mathbb{R} or constant. Consequently, |x| is uniquely determined by c, in particular, c = 0 implies x = 0. In all other cases, x can be obtained from |x| and c. (Note that $x_1(|x|*\alpha - |x|*\beta + \rho(|x|)(\mathfrak{a} - \mathfrak{b}))_1 = c_1$.)

- 2) Injectivity of $\lambda_{a,b}$ means $-a \diamond x + b \diamond x = -a \diamond y + b \diamond y \Rightarrow a = b \lor x = y$, and this is equivalent to injectivity of $\mu_{x,y}$.
- 3) In order to obtain surjectivity, we will show in the next steps that

$$\lim_{x \to \infty} \lambda_{a,b}(x) = \infty \tag{(†)}$$

in the one-point compactification $\widehat{\mathbb{O}}$ of \mathbb{O} , i.e., that $\lambda_{a,b}$ has a continuous injective extension to $\widehat{\mathbb{O}}$. Such an extension is necessarily a homeomorphism, cf. also [18, (51.19)].

4) Condition (†) is true in the Cartesian field $(\mathbb{R}, +, *)$. Hence |a| < |b| implies

$$\lim_{\xi \to \infty} (|b| * \xi - |a| * \xi) = \infty.$$

5) It can easily be seen that (†) holds in each of the following cases:

$$a = 0 \lor b = 0, |a| = |b|, a_1 = \pm b_1.$$

6) If (†) is not true in general, then there is a sequence x_ν such that lim_{ν→∞} x_ν = ∞ and for some a, b ∈ O with |a| < |b| the sequence λ_{a,b}(x_ν) is bounded. Here

$$\lambda_{a,b}(x_{\nu}) = b_1(|b| * \xi_{\nu} + \rho(|b|) \cdot \mathfrak{x}_{\nu}) - a_1(|a| * \xi_{\nu} + \rho(|a|) \cdot \mathfrak{x}_{\nu}).$$

7) Suppose that the sequence \mathfrak{x}_{ν} is bounded. Then $\lim_{\nu\to\infty} \xi_{\nu} = \infty$, and 6) yields $\lim_{\nu\to\infty} (|a| * \xi_{\nu})(|b| * \xi_{\nu})^{-1} = a_1^{-1}b_1$. This is a positive number of norm 1. Hence $a_1 = b_1$ contrary to step 5). An analogous argument shows that the ξ_{ν} are unbounded. Therefore we may assume that the ξ_{ν} as well as the \mathfrak{x}_{ν} converge to ∞ in $\widehat{\mathbb{O}}$.

8) The problem can be reduced to the 2-dimensional case as follows: we have $a^{-1}b \notin \mathbb{R}$ by step 5). The automorphism group of \mathbb{O} is transitive on the sphere $\{\mathfrak{x} \in \mathbb{O} \mid \mathfrak{x}^2 = -1\}$ in $\operatorname{Pu}\mathbb{O}$, and we can arrange that $\overline{a}_1b_1 = c \in \mathbb{C}$. Write each element $x \in \mathbb{O}$ as x = x' + x'' with $x' \in \mathbb{C}$ and $x'' \in \mathbb{C}^{\perp}$, the orthogonal complement of \mathbb{C} in \mathbb{O} . Then

$$\begin{aligned} \overline{a}_1 \lambda_{a,b}(x_\nu) &= \\ c\left(|b| * \xi_\nu\right) - |a| * \xi_\nu + \left(c\rho(|b|) - \rho(|a|)\right) \cdot \mathfrak{x}'_\nu + \left(c\rho(|b|) - \rho(|a|)\right) \cdot \mathfrak{x}''_\nu \end{aligned}$$

is a bounded sequence. Hence also the sequence $(c\rho(|b|) - \rho(|a|)) \cdot \mathfrak{x}_{\nu}'' \in \mathbb{C}^{\perp}$ is bounded and therefore $\lim_{\nu \to \infty} \mathfrak{x}_{\nu}' = \infty$ by step 7).

9) Let c = p + iq with $p^2 + q^2 = 1$ and put $\mathfrak{x}'_{\nu} = i\eta_{\nu}$. Taking conjugates if necessary and selecting suitable subsequences, the possibilities can be reduced to $\lim_{\nu\to\infty} \eta_{\nu} = +\infty$ and the following cases: $\lim_{\nu\to\infty} \xi_{\nu} = +\infty$ or $\lim_{\nu\to\infty} \xi_{\nu} = -\infty$. The sequence

$$p(|b| * \xi_{\nu}) - |a| * \xi_{\nu} - q \rho(|b|) \eta_{\nu} + i \left(q \left(|b| * \xi_{\nu} \right) + p \rho(|b|) \eta_{\nu} - \rho(|a|) \eta_{\nu} \right)$$

is bounded, and so are the real and the imaginary part and the following linear combinations of these:

$$|b| * \xi_{\nu} - p(|a| * \xi_{\nu}) - q \rho(|a|) \eta_{\nu}$$
(1)

and
$$q(|a| * \xi_{\nu}) + (\rho(|b|) - p \rho(|a|)) \eta_{\nu}$$
. (2)

Since $\rho(|b|) - p \rho(|a|) > 0$, boundedness of (2) implies $\lim_{\nu \to \infty} q \xi_{\nu} = -\infty$, but then the sequence (1) would not be bounded. This proves the claim of Part B.

Part C. Consider a projective plane \mathcal{P} coordinatized by a topological Cartesian field $\mathbb{O}_{\diamond} = (\mathbb{O}, +, \diamond)$ as described in Theorem 3.1. It remains to show that $\operatorname{Aut} \mathcal{P}$ contains a group Δ fixing exactly two points such that $\dim \Delta \geq 35$.

- 1) Obviously, $\{(x, y) \mapsto (x + \mathfrak{c}, y + d) \mid \mathfrak{c} \in \operatorname{Pu} \mathbb{O}, d \in \mathbb{O}\} \leq \mathsf{T} \text{ and } \dim \mathsf{T} \geq 15.$
- 2) The maps (x, y) → (Ax, By) of O×O such that A, B ∈ Spin₇ℝ and identically B(s·x) = Bs·Ax form a group Υ of automorphisms of the Moufang plane, they satisfy A1 = 1 and hence fix the set ℝ×{0}, cf. A), step 9) or [18, (17.14)]. The involution (x, y) → (x, -y) is a reflection in Υ_[v]. Consequently, Υ ≅ Spin₇ℝ acts faithfully on {0}×O and induces on Pu O×{0} the group SO₇ℝ. It follows that

$$B(s \diamond x) = Bs_1(|s| * \xi + \rho(|s|) \cdot A\mathfrak{x}) = Bs \diamond Ax.$$

Therefore $\Upsilon \leq \operatorname{Aut} \mathcal{P}$, the group $\Delta = \Upsilon T$ fixes exactly the points u, v, and $\dim \Delta = 36$.

Theorem 3.3 (Automorphism groups). Assume that the plane \mathcal{P} satisfies the hypotheses of Theorem 1.1 with $\dim \Delta \geq 35$ and let $\Sigma = \operatorname{Aut} \mathcal{P}$ be the full automorphism group, Σ^1 its connected component. If \mathcal{P} is not the classical Moufang plane, then

- (a) dim $\Sigma < 40$ and each of the two fixed points of Δ is also a fixed point of Σ . Any subgroup $\Upsilon \cong \text{Spin}_7 \mathbb{R}$ of Σ fixes some point $a \notin uv$.
- (b) If dim $\Sigma = 39$, then \mathcal{P} is a translation plane.
- (c) The plane \mathcal{P} is a translation plane if, and only if, it can be coordinatized by a quasi-field \mathbb{O}_{\diamond} as in Theorem 3.1 where * is the ordinary multiplication of the reals. In this case dim $\Sigma = 39$ if, and only if, ρ is a multiplicative homomorphism; otherwise dim $\Sigma = 38$.

If \mathcal{P} is not a translation plane, then the following holds:

- (d) dim $\Sigma \leq 38$ and $\Sigma = T^1 \Upsilon Z$, where Z denotes the centralizer of Υ in Σ .
- (e) dim $\Sigma = 38$ if, and only if, P can be coordinatized by a Cartesian field \mathbb{O}_{\diamond} as in Theorem 3.1 where

$$r * s = \begin{cases} rs & (s \ge 0) \\ |r|^{\gamma} rs & (s < 0) \end{cases} \quad \text{for some } \gamma > 0 \,,$$

and $\rho: [0,\infty) \to [0,\infty)$ is a multiplicative homomorphism.

Proof. (a) If dim $\Sigma \ge 40$, then \mathcal{P} can be coordinatized by a mutation of the octonions and Σ has no subgroup Spin₇ \mathbb{R} , see [18, (82.29) and (87.7)]. We use the same notation as in the proof of Theorem 3.1. If $W^{\sigma} \neq W$ for some $\sigma \in \Sigma$, then $\Sigma : \Delta \geq \dim W^{\sigma \mathsf{T}} \geq 7$ and $\dim \Sigma \geq 43$. Hence $W^{\Sigma} = W$. The group $\Upsilon < \Delta$ acts effectively on W and each point $z \in W \setminus \{u, v\}$ has an orbit $z^{\Upsilon} \approx \mathbb{S}_7$. Therefore $v^{\Sigma} \in \{u, v\}$, or again dim $\Sigma > 43$. If some $\sigma \in \Sigma$ interchanges u and v, then \mathcal{P} is a translation plane. Consider a Levi complement Ψ in a maximal compact subgroup of Σ^1 . All such groups are conjugate in Σ^1 , see [18, (93.10) and (94.28)]. Therefore, Ψ contains conjugates of Υ and of Υ^{σ} . The first acts effectively on the pencil $\mathfrak{L}_u \cong$ \mathbb{R}^8 , the second induces a group SO₇ \mathbb{R} on \mathcal{L}_u . The central involutions in these groups are reflections with centers v and u respectively, their axes are Ψ -invariant, or else Ψ would contain translations by the dual of [18, (23.20)]. Consequently, Ψ fixes some point $a \notin W$, and the kernel $\Psi_{[u]}$ of the action of Ψ on \mathfrak{L}_u is finite by [18, (81.20)]. It follows that Ψ is almost simple (cf. step 18) above) and has a proper subgroup $Spin_7\mathbb{R}$. The list [18, (95.10)] shows that $\dim \Psi = 28$ and then $\dim \Sigma \ge 44$, a contradiction. Therefore Σ fixes u and v. If $\text{Spin}_7\mathbb{R} \cong \Upsilon < \Sigma$, then the central involution

••	••	
•	►	
page	18 / 23	
go back		
full screen		
close		
q	uit	

in Υ is a reflection and Υ fixes its axis X. Any action of the group Υ on a space X homeomorphic to \mathbb{R}^8 is equivalent to a linear action ([18, (96.36)]). Hence Υ has a fixed point $a \in X$.

- (b) We have Υ ≤ ∇ := Σ¹_a and dim ∇ ≤ 24. Put X = ∇∩Cs Υ. The representation of Υ on the Lie algebra of ∇ shows that ∇ = ΥX. The group X acts effectively on the two-dimensional plane *E* of the fixed elements of a subgroup Λ ≅ G₂ of Υ. By [18, (32.10)] and the dimension formula, dim X ≤ 2, dim ∇ = 23, and dim a^Σ = 16. Since the centralizer of Spin₇ℝ in GL₈ℝ is isomorphic to ℝ[×] (cf. [18, (95.10)]), the action of ∇ on *av* has a kernel ∇_[u] of positive dimension. By the dual of [18, (61.20b)] it follows that dim T_[u] = 8.
- (c) See [18, (82.5)].
- (d) For each σ ∈ Σ there is some τ ∈ T¹ such that a^{στ} is Υ-invariant, cf. step 5) of the proof of Theorem 3.1. Put στ = ω⁻¹. It follows that Υ^ω ≤ ∇. Since ∇ = ΥX and all Levi complements in a connected group are conjugate (cf. [18, (94.28c)]), we have Υ^ω = Υ. Each automorphism of Υ is an inner automorphism (see [20, 6.]). Consequently, ω ∈ ΥΖ.
- (e) Consider $\Lambda < \Upsilon$ and the subplane \mathcal{E} consisting of the fixed elements of Λ as in step 7) of the proof of Theorem 3.1. Suppose that dim $\Sigma = 38$. Then $\dim Z = 2$ by part (d), and $\dim Cs \Lambda = 3$ as Λ also centralizes the vertical translations of \mathcal{E} . Moreover, $Cs_{\Delta} \Lambda$ contains the central reflection $\alpha \in \Upsilon$ (with axis *au*). It follows from (\Diamond) that Cs A acts effectively on \mathcal{E} . By assumption, \mathcal{P} is not a translation plane; hence * is not the ordinary multiplication and \mathcal{E} is not classical. All planes \mathcal{E} admitting a 3-dimensional group are known explicitly; this classification is summarized in [18, (38.1)], details are given in [18, §§ 34–37]. As the group fixes the points u and v, the results just mentioned show that \mathcal{E} is a plane over a Cartesian field of the kind described in [18, (37.3)], which includes the Moulton planes. The reflection α induces on \mathcal{E} the map $(x, y) \mapsto (x, -y)$. This is a collineation of \mathcal{E} if and only if (-s) * x = -(s * x) holds identically in \mathbb{R} . An easy calculation shows that the multiplication * of [18, (37.3)] has indeed the form given in (e), cf. also [18, (37.4 and 6)]. In particular, \mathcal{E} is not a Moulton plane. Note that the product * is associative whenever the right or the middle factor is positive.

The group Z¹ induces on \mathcal{E} the maps $(x, y) \mapsto ((r * x) \cdot s, y \cdot s)$ with r, s > 0. It can easily be seen that $(x, y) \mapsto (x \cdot s, y \cdot s), s < 0, x, y \in \mathbb{O}$ yields always an automorphism of \mathcal{P} . An element $\zeta \in \mathbb{Z}$ which induces on \mathcal{E} a map $(x, y) \mapsto (r * x, y)$ has necessarily the form $(x, y) \mapsto (\varphi_r(x), y)$ because Υ acts irreducibly on $\mathsf{T}_{[v]} \cong \mathbb{R}^8$. This means that ζ is a homology with axis av. Hence $\zeta(x, y) = (r \diamond x, y)$. This map is a collineation if and only if

$$a \diamond (r \diamond x) = (a \diamond r) \diamond x$$
 for all $a, x \in \mathbb{O}$. Equivalently (since $|a| * r = |ar|$),

$$|a|*(r*\xi)+\rho(|a|)\rho(r)\mathfrak{x}=(|a|*r)*\xi+\rho(|ar|)\mathfrak{x}.$$

Thus ρ is multiplicative. Conversely, the conditions in (e) imply dim Z = 2 and hence dim $\Sigma = 38$. If ρ is not multiplicative, then dim $\Sigma = 37$.

The case dim $\Sigma = 37$. With the same notation as before, we have dim $\Sigma = 37$ if and only if Cs Λ acts on \mathcal{E} as a 2-dimensional group with 2 fixed points. All planes over a proper Cartesian field ($\mathbb{R}, +, *$) admitting such a group have been described. They depend on the choice of some suitable real functions rather than a few real parameters. By [18, (32.8)], a quasi-field ($\mathbb{R}, +, *$) is in fact a field; therefore, \mathcal{E} is not a translation plane. Only the Cartesian fields of those planes \mathcal{E} can be used which admit a reflection with an axis *au*. The connected component Γ of Cs Λ is isomorphic to \mathbb{R}^2 or to the linear group

$$\mathcal{L}_2 := \{ (t \mapsto at + b) : \mathbb{R} \to \mathbb{R} \mid a > 0 \}.$$

In the first case, Γ_{au} fixes each line of \mathcal{E} through the point u, because Γ contains all translations of \mathcal{E} with center v. As \mathcal{E} is not a translation plane, Γ_{au} induces a one-parameter group of homologies of \mathcal{E} with center u and a common axis. The point a may be chosen on this axis; then Γ fixes exactly the elements u, v, av, uvof \mathcal{E} , and av is the axis of the elements of Γ_{au} . The planes \mathcal{E} of this type have been determined by Groh [4], cf. [10, 2.7.11.3].

Homologies of \mathcal{E} with axis av have the form $\gamma_r : (x, y) \mapsto (r * x, y)$. The group Γ_{au} coincides with the connected component Z^1 of $Z = C_S \Upsilon$ because Z fixes the axis au of the unique central involution $\alpha \in \Upsilon$, and we have $Z^1 \leq \Gamma$ and dim $Z = \dim \Gamma_{au}$. An element $\zeta_r \in C_S \Upsilon$ which induces on \mathcal{E} the homology γ_r fixes necessarily each point on the line av because the centralizer of the representation of Υ on \mathbb{R}^8 consists of real dilatations. Consequently ζ_r can be written as $(x, y) \mapsto (r \diamond x, y)$, and the product \diamond is associative whenever the middle factor is a positive real number. The latter condition reduces to the identity $\rho(r * s) = \rho(r)\rho(s)$ for r, s > 0. An admissible multiplication * and a homeomorphism ρ yield a plane \mathcal{P} with dim $\Sigma \geq 37$ if and only if ρ satisfies this identity.

If $\Gamma \cong L_2$, there are the following possibilities:

- (a) Γ acts transitively on the set of points not on uv,
- (b) Γ fixes exactly two points and two lines,
- (c) Γ fixes exactly two lines and more than two points, or dually
- (\tilde{c}) Γ fixes exactly the points *u* and *v* and more than two lines through *v*.

(a) Planes with a group Γ satisfying (a) have been studied by Groh [3], cf. [10, 2.7.5.2]. Those planes E which are symmetric with respect to a horizontal line can be described in the half-plane (0,∞)×ℝ as follows: Let L be the graph of a strictly convex continuous function f: (0,∞) → ℝ such that

$$\lim_{x \to 0} f(x) = \infty, \ \lim_{x \to \infty} f(x) = -\infty, \ \lim_{x \to \infty} f'(x) = 0.$$

Then the images of L under the maps $(x, y) \mapsto (rx, ry+b), r \in \mathbb{R}^{\times}, b \in \mathbb{R}$ together with the horizontals and verticals are the lines of an affine plane of type (a). This can easily be translated into a representation in \mathbb{R}^2 by means of a Cartesian field \mathbb{R}_* . In the latter representation Γ contains a oneparameter subgroup of maps $\gamma_t : (x, y) \mapsto (\varphi_t(x), e^t y)$ acting transitively on the *X*-axis. A line of slope *s* is mapped by γ_t onto a line of slope $\sigma_t(s)$. The fact that γ_t is a collineation of \mathcal{E} is equivalent to the identity

$$e^t(s*x) = \sigma_t(s) * \varphi_t(x) - \sigma_t(s) * \varphi_t(0).$$
(*)

It remains to find a necessary and sufficient condition for γ_t to be induced by a map ζ_t of \mathbb{O}^2 in Z. (Note that again Γ_{au} is the connected component of $Z = Cs \Upsilon$ since $Z^1 \leq \Gamma_{au}$ and both groups are homeomorphic to \mathbb{R} .) From $\zeta_t \in Cs \Upsilon$ it follows that ζ_t has the form $(x, y) \mapsto (\varphi_t(\xi) + e^{\kappa t}\mathfrak{x}, e^t y)$. Expressing the fact that the line $y = s \diamond x$ is mapped to a line

$$e^t y = c \diamond (\varphi_t(\xi) + e^{\kappa t}\mathfrak{x}) - d$$

yields the condition

$$e^{t}|s|^{-1}s(|s|*\xi + \rho(|s|)\mathfrak{x}) = |c|^{-1}c(|c|*\varphi_{t}(\xi) - |c|*\varphi_{t}(0) + e^{\kappa t}\rho(|c|)\mathfrak{x}).$$

If $0 < s \in \mathbb{R}$, then |s| = s and $c = \sigma_t(|s|) = |c|$; comparison of the pure components of the condition above gives

$$e^t \rho(|s|) = e^{\kappa t} \rho(\sigma_t(|s|)). \tag{(†)}$$

In general, we obtain in the same way that $e^t |s|^{-1} s \rho(|s|) = |c|^{-1} c e^{\kappa t} \rho(|c|)$, which by (†) means $|s|^{-1} s e^{\kappa t} \rho(\sigma_t(|s|)) = |c|^{-1} c e^{\kappa t} \rho(|c|)$. Passing to absolute values, one obtains $|c| = \sigma_t(|s|)$ and then $|s|^{-1} s = |c|^{-1} c$, so that finally $c = \sigma_t(|s|)|s|^{-1}s$. Because of (*) and (†), the condition above is then satisfied.

We remark that $\kappa \neq 1$, or else $\sigma_t(s) = s$ for all s > 0 and then also for all s < 0, and \mathcal{E} would be a translation plane. In particular, ρ is uniquely determined by \mathcal{E} .

(b) The classification of these planes has been obtained by Schellhammer [19], cf. [10, 2.7.11.4]. For each multiplication * defining such a plane there

exists a one-parameter group of automorphisms $\gamma_t : (x, y) \mapsto (\varphi_t(x), e^t y)$ of \mathcal{E} fixing a and mapping a line of slope s to a line of slope $\sigma_t(s)$, where $e^t(s * x) = \sigma_t(s) * \varphi_t(x)$. An extension of γ_t to a map $\zeta_t \in \operatorname{Cs} \Upsilon$ has again the form $(x, y) \mapsto (\varphi_t(\xi) + e^{\kappa t} \mathfrak{x}, e^t y)$. As before, this is a collineation of \mathcal{P} if and only if condition (†) holds. Each pair of an admissible multiplication * and a homeomorphism ρ which satisfies (†) yields a plane \mathcal{P} with dim $\Sigma \geq 37$.

- (c) The description of the possible planes \mathcal{E} is due to Pohl [9], cf. [10, 2.7.11.5]. The same calculations as in case (b) lead once more to condition (†). By assumption there is some slope r > 0 such that $\sigma_t(r) = r$. It follows that $\kappa = 1$ and then $\sigma_t(|s|) = |s|$ for each s. As $\Upsilon\Gamma_a \leq \nabla$, the central involution $\alpha \in \Upsilon$ (with axis au) commutes with the maps γ_t . Consequently, γ_t also fixes the negative real slopes, and Γ_a induces homologies of \mathcal{E} . Thus, planes with dim $\Sigma \geq 37$ can be obtained in case (c) if and only if Γ fixes the line uv pointwise; there is no condition on the homeomorphism ρ . The orbits of Γ_a in \mathcal{E} are rays beginning at the origin in the real affine plane. It follows that \mathcal{E} can be described by a Cartesian field multiplication of the form s * x = sx for $x \geq 0$ and $s * x = \mu(s)x$ for x < 0, where $\mu : \mathbb{R} \approx \mathbb{R}$ with $\mu(-s) = -\mu(s)$ and $\mu(1) = 1$. Planes of this kind have been called generalized Moulton planes.
- (č) Though the planes *E* are dual to those of case (c), the conclusions are not because of the different rôles of the central reflection α ∈ Υ. As in the previous cases, the conditions e^t(s * x) = σ_t(s) * φ_t(x) and (†) must be satisfied. In case (č) we may assume that φ_t(1) = 1. Then we obtain σ_t(s) = e^ts for all s ∈ ℝ, and (†) reduces to the condition that ρ is a multiplicative homomorphism.

Examples are given by the multiplications

$$s * x = \begin{cases} sx & (x \le 1) \\ s(|s|^m x + 1 - |s|^m) & (x \ge 1) \,, \end{cases} \quad (m > 0).$$

In fact, $\varphi_t(x) = x$ for $x \leq 1$ and $\varphi_t(x) = e^{-mt}x + 1 - e^{-mt}$ for $x \geq 1$.

Thus in each of the cases there are large families of planes \mathcal{P} with a group of dimension 37 fixing exactly two points and the line joining them.

References

- [1] **R. Bödi**, On the dimensions of automorphism groups of eightdimensional ternary fields, *Geom. Dedicata* **53** (1994), 201–216.
- [2] N. Bourbaki, Lie Groups and Lie Algebras. Chapters 1–3, Elem. Math. (Berlin), Springer, 1989.

U	P	G

44	••	
•	F	
page 22 / 23		
go back		
full screen		
close		
q	uit	

- ACADEMIA PRESS
- UNIVERSITEIT GENT

- [3] H. Groh, Point homogeneous flat affine planes, J. Geom. 8 (1976), 145–162.
- [4] _____, Pasting of \mathbb{R}^2 -planes, Geom. Dedicata **11** (1981), 69–98.
- [5] Th. Grundhöfer and H. Salzmann, Locally compact double loops and ternary fields, in *Quasigroups and Loops: Theory and Applications*, O. Chein, H. O. Pflugfelder, J. D. H. Smith (eds.), Chapter XI, pp. 313–355, Berlin, Heldermann, 1990.
- [6] **H. Hähl**, Sechzehndimensionale lokalkompakte Translationsebenen mit Spin(7) als Kollineationsgruppe, *Arch. Math.* **48** (1987), 267–276.
- [7] H. Hähl and H. Salzmann, 16-dimensional compact projective planes with a large group fixing two points and two lines, *Arch. Math.* 85 (2005), 89–100.
- [8] K. H. Hofmann, Lie algebras with subalgebras of codimension one, *Illinois J. Math.* 9 (1965), 636–643.
- [9] **H.-J. Pohl**, Flat projective planes with 2-dimensional collineation group fixing at least two lines and more than two points, *J. Geom.* **38** (1990), 107–157.
- [10] **B. Polster** and **G. F. Steinke**, *Geometries on Surfaces*, Encyclopedia Math. Appl. **84**, Cambridge Univ. Press, 2001.
- [11] **B. Priwitzer**, Large semisimple groups on 16-dimensional compact projective planes are almost simple, *Arch. Math.* **68** (1997), 430–440.
- [12] _____, Large almost simple groups acting on 16-dimensional compact projective planes, *Monatsh. Math.* **127** (1999), 67–82.
- [13] **B. Priwitzer** and **H. Salzmann**, Large automorphism groups of 16dimensional planes are Lie groups, *J. Lie Theory* **8** (1998), 83–93.
- [14] H. Salzmann, Automorphismengruppen 8-dimensionaler Ternärkörper, *Math. Z.* 166 (1979), 265–275.
- [15] _____, Characterization of 16-dimensional Hughes planes, *Arch. Math.* 71 (1998), 249–256.
- [16] _____, On the classification of 16-dimensional planes, *Beiträge Algebra Geom.* **41** (2000), 557–568.
- [17] _____, 16-dimensional compact projective planes with 3 fixed points, Special issue dedicated to Adriano Barlotti, *Adv. Geom.* (2003), suppl., S153–S157.

••		
•		
page 23 / 23		
go back		
full screen		
close		
quit		

- [18] H. Salzmann, D. Betten, T. Grundhöfer, H. Hähl, R. Löwen and M. Stroppel, Compact Projective Planes. With an introduction to octonion geometry, de Gruyter Exp. Math. 21, W. de Gruyter & Co, Berlin, 1995.
- [19] I. Schellhammer, Einige Klassen von ebenen projektiven Ebenen, Diplomarbeit, Tübingen, 1981.
- [20] J. Tits, Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen, Lecture Notes in Math. 40, Springer-Verlag, Berlin-New York, 1967.
- [21] H. Völklein, Transitivitätsfragen bei linearen Liegruppen, *Arch. Math.* **36** (1981), 23–34.

Hermann Hähl

Institut für Geometrie und Topologie, Universität Stuttgart, D-70550 Stuttgart, Deutschland

e-mail: haehl@mathematik.uni-stuttgart.de

Helmut Salzmann

Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Deutschland

e-mail: helmut.salzmann@uni-tuebingen.de

