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16-dimensional compact projective planes
with a large group fixing two points
and only one line

Hermann Hahl Helmut Salzmann

Abstract

We complete the determination of all pairs (P, A), where P is a compact
projective plane with a 16-dimensional point set, A is an automorphism
group of P of dimension at least 35, and A does not fix exactly one point
and one line. If A fixes two points and only one line, then A contains a
15-dimensional translation group and a compact subgroup Spin,R; hence
dim A > 36. The planes are described by their coordinatizing Cartesian
fields, more explicitly for dim A > 36.

Keywords: compact projective plane, 16-dimensional plane, Cartesian field, translation

group
MSC 2000: 51H10

1. Introduction

Let P = (P, £) be a topological projective plane with a compact point set P of fi-
nite (covering) dimension d = dim P > 0. A systematic treatment of such planes
can be found in the book Compact Projective Planes [18]. Each line L € £ is ho-
motopy equivalent to a sphere S, with ¢|8, and d = 2/, see [18, (54.11)]. In
all known examples, L is in fact homeomorphic to S,. Taken with the compact-
open topology, the automorphism group ¥ = Aut P (of all continuous colline-
ations) is a locally compact transformation group of P with a countable basis,
the dimension dim ¥ is finite, cf. [18, (44.3 and 83.2)].

For ¢ < 4, all sufficiently homogeneous planes are known explicitly, see [18,
Chaps. 7, 8]. In the case ¢ = 8 the aim is to determine all pairs (P, A), where
A is a connected closed subgroup of ¥ and dim A > b for a suitable bound b.
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(If dim A > 27, then A is always a Lie group [13].) Here, we deal with the case
that b = 35 and A fixes exactly 3 elements (say two points and one line). This
completes the classification for b = 35 and all groups A which do not fix exactly
two elements (a point and a line), cf. [17] for the other possible configurations
of fixed elements.

Theorem 1.1. If A fixes exactly 2 points and one line and if dim A > 34, then the
group T of translations in A is at least 15-dimensional.

Either A has a subgroup T = Spin;R and dim A > 36, or T is transitive, a max-
imal semi-simple subgroup of A is isomorphic to SU,C = SpingR, and dim A = 34.

All planes satisfying the hypotheses of Theorem 1.1 with dim A > 35 will be
described by coordinate methods in Theorems 3.1 and 3.3.

2. Structure of the group

Essential for the proof is the so-called stiffness:
The stabilizer of a quadrangle has dimension at most 14; see [18, (83.23)].
Particularly important is Bodi’s improvement [1]:

(Q) If the fixed elements of the connected Lie group N form a connected subplane
&, then A is isomorphic to the 14-dimensional compact group Gs or its sub-
group SUsC, or dim A < 8. If £ is a Baer subplane (dim & = 8), then Ais a
subgroup of SU;C. Moreover, A = G, implies dim € = 2.

If A fixes 2 distinct points and dim A > 30, then it follows from other classifi-
cation results ([11, 12, 15]) that A is not semi-simple and has no normal torus
subgroup. The main result of [16] can now be stated in the following form:

Lemma 2.1. If A fixes exactly one line W and at least 2 points on W, and if
dim A > 33, then A has a minimal normal subgroup M = R! consisting of trans-
lations with axis W.

Two more facts will be needed repeatedly:

Lemma 2.2. Assume that I is a solvable Lie subgroup of A. Then I has a chain
of normal subgroups I', with dim .11 /T, < 2; see [2,1§ 5, Th. 1, Cor. 4, p. 46].
If s is the largest index such that a™~=a, if N = .., and a # = € a", then
dim '« < 2. In fact, 2"« C aN and dim 2’ < dim N/N, < dim N/T.
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Notation. The connected component of a group I will be denoted by I'!. Let u
and v be the two fixed points of A. For a point a ¢ W = uv we put V = (A,)!.
By Lemma 2.1 there exists a minimal V-invariant vector subgroup © = R’
consisting of translations in M. The radical P = /A is the largest solvable
normal subgroup of A. We write A : [ = dim A — dim T and I'|,; for the group
induced by I' on the -invariant set M.

The dimension formula dim I = dim I, +dim z" holds for any closed subgroup
I of A, see [18, (96.10)]. This fact will often be used without mention.

Lemma 2.3. If a maximal semi-simple subgroup W of A or of V (a Levi comple-
ment of the radical) has a subgroup A\ = Gs, then W is almost simple, and ¥ = A
or there is a group T = Spin,R with A < T < W. The central involution o € T is
a reflection.

Proof. This follows from () and the observation that (in the relevant dimension
range) each simple group which contains G is of type B or D or Gs, see [7] for
details. By [18, (55.40)], any action of SO5R on a compact projective plane is
trivial. Hence W 22 SO7R and « is not planar. O

Proof of Theorem 1.1. Recall that there exists a minimal V-invariant subgroup
© = R' which is contained in the group T of translations with axis W. But for
the last step, we may assume that dim T < 16.

1) The elements of © have center u or center v, and we may assume © < T,.

In fact, for v € L # W the stabilizer © consists of translations with cen-
ter v. The action of © on the pencil £, shows that dim ©(,) >t — 8, cf. [18,
(61.11a)], and dim©p,; = 0 or © = Oy, by minimality. Therefore ¢ < 8.
Assume that 1 # ¥ € ©,) for some center z # u, v, and note that ©|,, is con-
nected by [18, (61.9)]. Choose any pointa ¢ W. If R =1 < © and v € I,
then the connected component A of A, ,» centralizes each translation in I
because ¥ = 9 and A acts linearly on ©. Thus, A fixes the orbit o' point-
wise and the fixed elements of A form a connected subplane £. Moreover,
V:A = dim(a”)V < dima® < 8 and dim A > 18 — t. Hence the stiffness the-
orem () shows that A = G,. Consequently, ¢ > 4 and A acts non-trivially on
© by the last part of (). The action of any compact or semi-simple Lie group
on a real vector space is completely reducible, and each irreducible module
of Gy on R'6 has a dimension divisible by 7, see [18, (95.10)]. Since N" = N,
we conclude that ¢ = 8 and dimV < 22. Because © is minimal, V acts ir-
reducibly on ©. By Lemma 2.3, the group V has a subgroup T = Spin.R.
The central involution o« € T is a reflection and inverts each translation in
©. Thus, « has axis W and some center, which may be chosen as a. Now
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2)

3)

4)

a?a C Tand dim T = dima® > 12, see [18, (61.19)]. The group T acts
faithfully on each invariant subgroup of T. This implies Ty, = T, = R®
(cf. [18, (95.10)]) and then P is the classical Moufang plane O over the
octonions by [18, (81.17)], but we have assumed that dim T < 16.

Before continuing the proof of Theorem 1.1, we now prove the following
lemma.

Lemma 2.4. For the connected component A\ of the stabilizer of some quad-
rangle containing u, v, and an arbitrary point a, the radical P of A satisfies
P:(ANP)<20. If dim A > 8, then AN P =1; in this case, dim P =20 implies
dim © >2 and dim P, = 4.

Proof. Lemma 2.2, applied to the action of P on the line pencil £, yields a
group X < P fixing two lines av and bv such that P: X < 10. Analogously,
the action of X on the line av provides a point ¢ with X:X, . <10. As P is
solvable and ©" = © by step 1), there exists a minimal X,-invariant vector
subgroup N < © of dimension at most 2, and the argument of Lemma 2.2
shows that ¢ can be chosen in aN. The fixed elements of A = (Pacow)!
form a connected subplane £ since A acts linearly on N and centralizes the
translation ¢ € N with a® = c. If dim A > 8, then A is simple by (¢) and ANP
is a solvable normal subgroup of A, hence trivial. O

Our aim is to show that one of the groups Ty, or Ty, is linearly transitive.

This will be accomplished in steps 2) — 15). Again let © < Tp. Fora ¢ W
and w € W~ {u,v}, consider the connected component Q2 of V,,. The di-
mension formula gives dimQ > 10. As above, let R <O, 1 #p €I,
c = a?, and put A = (.)'. Then Q:A = dimc®? < dima®. Because the
action of V on © is linear, A < CsTI1 and () applies.

For ¢t = 1 this gives A = G,. Put A = PV, where P = /A is the radical and W
is a maximal semi-simple subgroup of A. Lemma 2.4 shows that dim P < 19;
consequently, dim W > 14. According to Lemma 2.3 the Levi complement W
has a subgroup T = Spin,R. For ¢ < 8 the central involution a@ € T acts
trivially on © by [18, (95.10)] and « is a reflection whose axis is a line
through v and whose center is u. We may choose a on this axis. By the
dual of [18, (61.19b)] we get dim T},,) = dim(av)® > 0. The reflection o
inverts the elements of Tj,;, and the representation of T on Ty, is faithful.
This implies that Tp,; = R® is linearly transitive as claimed. Moreover, Ty is
a minimal normal subgroup of A. The action of T on av is equivalent to a
linear action, see [18, (96.36)]. Hence T <V for a suitable choice of a, so
that V acts irreducibly on T,;.

From t = 2 it would follow that dim T =16, contrary to the general assump-
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5)

6)

7)

tion.

Ifa # c € a®, then I = (V,)! satisfies dim > 16. Consider a point
w € W~ {u,v} and the connected component A of the stabilizer I, and
note that dimA > 8. By (0) the group A is almost simple and hence acts
trivially on a®. Therefore, A % G, and A = SU3C. This implies that I acts
faithfully and transitively on W ~\ {u,v}, see [18, (96.11)]. According to
[15, Lemma 5], the group I has a compact subgroup ¢ = SU4C of codimen-
sion 1. Consequently, I' is not semi-simple and the commutator subgroup
" coincides with ®. Moreover, dimV = 18 and the group A is transitive
outside of W. Since I acts trivially on ©, the central involution « of I" is a
reflection with axis av. (Note that I'"/{«) = SOgR cannot act on a Baer sub-
plane.) As before, Tj,) = R® and I acts faithfully on Tp- By [18, (95.6b)],
the centralizer V N Cs Ty,) has positive dimension. Hence V contains ho-
mologies with center v. The dual of [18, (61.20b)] shows that Tp is also
linearly transitive.

The cases 3 < t < 6 lead to a contradiction.

Consider the subplane F = (a®, u,v,w); either F =P and Q = (V,,)! acts
faithfully on ©, or F is a Baer subplane. In the latter case we write Q|r =
/K, where K denotes the kernel of the action of Q2 on F. Recall from
() that K is a compact group of dimension 3 or at most 1. The different
possibilities will be discussed separately. As before, A denotes the connected
component of the stabilizer of w, a and ¢ € a®, and dim A > 10 — ¢.

If t = 3 and F = P, then Q would be embeddable into GL3R. Hence ¢t = 3
implies F # P. A group A of dimension > 8 would act trivially on © and
on F, but this is impossible. Therefore, dim A =7 and dim 2 = 10; moreover,
Q acts transitively on © \ {1} and Q/K has a subgroup SOsR. The stiffness
result [18, (83.15)] shows that A: K <5. Consequently, dimK=3 and Q/K
is a 7-dimensional subgroup of GL3R. However, such a subgroup does not
exist because SO3R is a maximal subgroup of SL3R, see [18, (94.34)].

Now let ¢t = 4 and F = P. If Q is not transitive on © \ {1}, then it follows
from (¢) that there is an orbit of dimension 3, and suitable stabilizers fix
subplanes of dimensions 4 and 8. By [18, (83.9)] and [5, X1.9.6], this implies
that A is a compact Lie group of rank at most 2, in fact, A = SU3C, SO4R,
or dimA < 4, see [14, (2.1)]. On the other hand, dimA > 6 and A acts
faithfully on © and fixes a one-parameter subgroup. This is a contradiction.
Hence (2 is transitive on © \ {1}, and Q" = Sp,R, see [21] or [18, (95.10)].
In particular, Q contains a central involution «, and « cannot be planar,
since the stabilizer of a degenerate quadrangle in an 8-dimensional plane
has dimension at most 7, see [18, (83.17)]. Therefore, « is a reflection
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8)

9)

with axis W, and a®« C T, cf. [18, (23.20)]. Moreover, dimQ < 11 and
dimV < 19. The dimension formula yields dim T > dima® > 15. The
reflection a acts on T as —1. Because (2 is connected, « induces on T a map
of determinant 1; consequently, T = RS,

If t = 4 and F # P, the stiffness results [18, (83.17 and 22)] imply
dim Q/K < 7 and dimK < 3, hence dim Q = 10 and dim V = 18. Therefore,
dimwY = 8 for each choice of w, and V is transitive on S = W \ {u,v}.
According to [5, XI1.9.5], the group A/K is compact, and then we have
A/K = SO3R and A = SO4R, cf. [14, (2.1)]. In particular, dimA = 6,
dim V, = 14, and dimw"Y* = 8, so that V. is also transitive on S. Let ® be a
maximal compact subgroup of V, containing A and note that S is homotopy
equivalent to S;. The exact homotopy sequence

= TS = TN = @ — TS — N —

shows that m® = Zy, m3® = Z2, 75® = Z2, and that 7;® is infinite. By
[18, (94.36)], this implies that ¢ is a semi-simple group having exactly two
almost simple factors. Moreover, ® # A because 77 is finite. Since dim ¢ <
dim V, and 75SU3C = Z, the group ¢ has a factor B = UsHi, cf. [18, (94.33)]
and note that SO5R cannot act on a plane. For the same reason, the central
involution € B is a reflection; its axis is av, since, obviously, [B,©] = 1.
From dima® = 16 we infer that 323 = T, is linearly transitive. Either
V acts faithfully on Tj,) or V contains homologies with axis au. In the
second case, Ty, is also linearly transitive, see [18, (61.20)], but then the
representation of B on Tiv would be trivial (use [18, (95.10)] and note that
[B,©] = 1) and B would consist of homologies with center u. Consequently,
V acts on Ty, as a transitive subgroup of GLgR, and [21] shows that V has
a transitive factor X = SL,H. The stabilizer X,, = X N Q is a 7-dimensional
group which fixes F pointwise, a contradiction to ().

Thus the cases 2 < ¢ < 4 cannot arise. Therefore, ¢ > 4 and F = P. For
t < 7, we have A 22 SU3C and hence 10 < dimQ < ¢t + 8. Since © is a
minimal V-invariant vector group, V induces on © an irreducible group v
of dimension dim V > dim Q > 10.

10) Let ¢ = 5. By [18, (95.6 and 10)], the commutator group V' is an almost

simple group of dimension 10 or 24. In the latter case the dimension of
V would be too large. Hence V' is locally isomorphic to a group Of (R, r)
and dim V < 11. Because of Brouwer’s Theorem [18, (96.30)] or [8], an
almost simple group of dimension > 3 has no subgroup of codimension 1.
Consequently, Q' = AV~ Of(R,r), and [18, (55.40)] implies r > 0. In the
notation of step 2), there is some p € © such that A has a subgroup SO3R. By
[18, (83.10)], the group A is then compact, and [14, (2.1)] shows A = SO4R



page 7 /23

go back

full screen

close

quit

ACADEMIA
PRESS

) &

UNIVERSITEIT
GENT

(note that 4 < dimA < 8). Hence Q' is a hyperbolic motion group of the
4-dimensional projective space P©O. The stabilizer E of an exterior point of
PO is not compact, but E contains a group SO3R; therefore, E has to be
compact for the same reason as A, a contradiction.

11) Suppose that t = 6 and that Q acts irreducibly on ©. The stiffness result
() implies dimA < 8 and 10 < dimQ < 13. With [18, (95.5 and 6)] it
follows that either dim Q' = 8 and the center Z(Q2) is isomorphic to C*, or
the action of 2’ on © can be understood as the tensor product of the nat-
ural representations of A = SLoR and B = SL3R and Q' = AxB. In both
cases, {2 contains a central involution w. On a Baer subplane, Q2 would in-
duce a group of dimension at most 7, see [18, (83.17)]. Therefore, w is a
reflection with axis uv and center a. We have dim V < 21. The hypothesis to-
gether with [18, (61.19)] implies 13 < dima® = dim T < 16. Consequently
dimV > 18, dim Q > 10 and then dim Q' = 11. Because w belongs to a con-
nected group and acts as —1 on T, both T}, and T,; have even dimension,
and T = R'*. Hence one of the groups T}, and Ty, is linearly transitive. Re-
call that © < Tj,;. By complete reducibility and [18, (95.10)], either B acts
irreducibly on Tp,) = R® or B centralizes a 2- dimensional subgroup of T.
In the latter case, the fixed elements of B would form a connected subplane
contrary to ({). Since Q fixes u and w, the factor A acts faithfully on Tp,.
This contradicts the irreducibility of B, see [18, (95.4)].

12) If ¢ = 6 and there is a minimal Q-invariant vector subgroup H < ©, and
if A = (Q.)! for some ¢ € a"\ {a}, then 10 — dimH < dimA < 8 by
(0). Consider the action of Q on the subplane 7y = (a",u,v,w) and the
connected component ¢ of the kernel of this action. If dimH < 4, then
it follows as in steps 6) and 7) that Fy is an (Q2-invariant) Baer subplane
of P. Now dimQ/® < 7 by [18, (83.17)], and then [18, (83.22)] implies
® = SU,C. Recall from step 5) that Q acts faithfully on ©. Since the action
of ® on © is completely reducible, ¢ acts faithfully on a complement of H
in ©, but SU,>C has no faithful representation in dimension < 4. Therefore,
dim H = 5 and the commutator group ' is semi-simple and irreducible on H,
see [18, (95.6b)]. Inspection of the list [18, (95.10)] shows Q' = OL (R, r),
and then Q" would centralize a complement of H in © in contradiction to
(¢). Hence t # 6.

13) Steps 3) — 12) yield the following conclusion.

Conclusion. If P is not a translation plane and if © = R? is a minimal V-in-
variant subgroup of Ty, then either t > 7, or t = 1 and Ty,; = RS is a minimal
normal subgroup of A.

14) Now let ¢t = 7 and assume first that Q2 acts irreducibly on © for each choice
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of w. By [18, (95.6)], the commutator group ' is almost simple. Moreover,
9< dim Q' <15 (since A ¢ Gg). The list [18, (95.10)] shows that dim Q' =
14 and that Q" has torus rank 2. Because t is odd, each torus subgroup
of Q' fixes a non-trivial vector p € ©, and [18, (83.10)] implies that the
corresponding stabilizer A is compact. It follows that A = SU3C and then
Q' = G, is also compact. Hence A = SU3C for each ¢ = a” and arbitrary w.
Suppose that Q' is a Levi complement of P = v/A. Then Lemma 2.4 shows
that dim P = 20 and dim P, = 4. This implies that [P,, Q'] =1 =P, N Q.
The fixed elements of Q' = G, form a 2-dimensional subplane £ by [18,
(96.35)] and P, acts effectively on &, but the stabilizer of a triangle in £ is
only 2-dimensional, see [18, (33.10)]. Hence Q' is not a Levi complement of
the radical. By Lemma 2.3, the group A has a subgroup T = Spin.R. Since
T induces the group SO;R on © = R, the central involution o € T is a
reflection with axis av and center u. As in step 3) it follows that T, = R®
is linearly transitive and is a minimal normal subgroup of A, and we may
assume that V acts irreducibly on Tj,.

15) Last alternative: ¢ =7 and there is a minimal Q-invariant vector subgroup

H < ©. The proof follows a similar scheme as in the case of the action of V
on ©. We have 1 <s:=dimH<7. If s=1, then dimA>9 and A = G,. As
G2 has no representation in dimension < 7, the group A would act trivially
on © and hence on (a®,u,w) =P, a contradiction. In the case s=2, the
stiffness theorem (¢) implies A = SU3C. Again A would act trivially on ©,
see [18, (95.3 and 10)]. The arguments of step 6) with H instead of © show
that s # 3. Next, let s=4 and assume first that Q acts faithfully on H as an
irreducible subgroup of GL4R. Then ' is a semi-simple group of dimension
> 8, see [18, (95.6b)]. Hence Q' is isomorphic to Sp,R or to SL4R. The
action of Q' on © is completely reducible, and H has an ’-invariant com-
plement X = R3 in ©. Consequently Q’ induces the identity on the subplane
(a®, u,w), but this contradicts (¢). Therefore (a",u,w) is a Baer subplane of
P and Q induces on H a group /K, where K! is isomorphic to a subgroup
of SU,C. Either K! 2SU,C or dimK <1. In both cases, the semi-simple
group ' fixes a complement X of H in © and dim Q' > 8. If K! = SU,C, then
Kllx = SO3R, which is a maximal subgroup of SL3R, cf. [18, (94.34)]. Ac-
cordingly, ’|x = SL3R, a contradiction. If dim K <1, then dim Q’|y > 7 and
Q' contains the group Sp,R. This is again impossible. It follows that s >4
and that Q acts faithfully on H. For s =5, representation theory shows that
Q' = OL(R,r), see [18, (95.10)], and Q' would act trivially on a complement
of H in ©, a contradiction to ((). In the case s =6, finally, the semi-simple
group €’ fixes a unique complement X of H, and X is even Q-invariant. This
has been excluded at the beginning of step 15).
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16) In any case, one of the groups T, or Ty, is linearly transitive, and we may
assume that © = Tj,; = R® and that V induces an irreducible group on ©.
By [5, XI1.9.5 and 6], the stabilizer of an arbitrary quadrangle is compact
and A is always a compact connected Lie group of torus rank at most 2. If
4 < dimA < 8, then A = SO4R, see [14, (2.1)] or [5, XI.9.9].

17) Put ' = A,,. Because O is transitive on av \ {v}, it follows that A = T©
and that I acts irreducibly on ©. If dim A > 40, then dim T = 16 or P is the
classical Moufang plane according to [18, (87.7)]. Hence our assumptions
imply 26 < dim[ < 31. The centralizer ' N Cs © fixes each line in £, and
consists of collineations with center w.

18) Let GG be a closed, connected irreducible subgroup of SLgR. If dim G > 18, then
G' is isomorphic to an almost direct product SLsR - SL4R or SU>C - SLoH, or
to one of the almost simple groups Sp,C, Spin, (R, r) with (r =0, 3), O%(R, r),
SL,4C, or dim G’ > 36.

In fact, G’ is semi-simple and dim G’ > 16 by [18, (95.6)]. Suppose that
G’ =AB is an almost direct product where A has minimal dimension. If B
acts irreducibly on V =R8, then A~H’ and B<SL,H. In the other case,
dim B > 8, and Clifford’s Lemma [18, (95.5)] shows that B acts faithfully
and irreducibly on a subspace U such that V =U ¢ U“ for some o € A. By
[18, (95.10)], it follows that dim B # 8. Therefore, dim B > 9, and B contains
a group Sp,R. If 0 # = € U, then the fixed points of B, form a 1-dimensional
subspace of U, and (z, z®) = R? is A-invariant. Consequently, A = SL,R and
dim B = 15. All possibilities for an almost simple group G’ are listed in [18,
(95.10)].

19) If I,; = 1, then T acts faithfully on ©; hence I'" is semi-simple and dim I'" >
24, see [18, (95.6)]. By the last step, " = SL,C or " = Of{(R,r). In
the first case, the involution 5 = diag(1,—1) € SL4C is not a reflection
and hence fixes a Baer subplane B pointwise, cf. [18, (55.29)]. The group
B = (1, SL2C) < Cs 8 would induce on B a group of central collineations
with center u, but this is impossible by [18, (61.20)], as B is semi-simple.
If T~ 0%(R,r), the diagonal involution diag(1,1,...,1,—1,—1) would fix a
6-dimensional subset of £, and hence would be neither a reflection nor a
Baer involution. This contradicts [18, (55.29)].

20) In the previous step it has been proved that I,; # 1. Assume first that
M contains homologies. We may choose a in such a way that I, .. # 1.
From the dual of [18, (61.20b)] it follows that s := dim Tj,) = dima" =
dim [l —dim V, and, hence, I = VT[}L]. Moreover, this is also the dimension of

the set of all axes of homologies in ' with center u. We choose b€ a'*l \ {a}
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and ¢ € av \ {a} and put A= (V, ). Then
26< dimlMN=dimV+s< dimA+8+25<22+2s and 1<s<8.

The assumption s <5 implies successively dim A >8, A=SU3C or A= G,
A acts trivially on Ty, A% Gg, s=5, A¥SU3C, a contradiction. Asssume
that s =6. Then A2 SU3C because A fixes some elements of T(,. Hence
A = SO4R by step 16), and dim V = 20. For any admissible b, the dimension
formula gives

12< dimV, = dimb% 4+ dimA<s+6=12,

and dim V. =12, dimbY> =6. By [18, (96.11a)], the group V, acts tran-

sitively on T[z]%RG. The action is also effective since its kernel is trivial

on (aTllul ,¢,v) = P. On the other hand, the results in [21] (or in [18,
(96.19-22)]) show that a transitive subgroup G < GLgR satisfies dim G < 10
or dim G > 16. Therefore, s =7 and dim T =15.

21) Now let I[,; = Ty, ;= H. If dimH = 1 and if a # b € a", then dim [, ;, > 17,

and (¢) implies that I has a subgroup A = G,. From the fact that
dim(fF'NCs®)=dimH=1,

it follows with [18, (95.6)] that a maximal semi-simple subgroup V of I acts
irreducibly on ©, and that dim W > 23. Because I contains Gy but has no
subgroup SO5R by [18, (55.40)], step 18) shows that W = Sping(R, ) with
r < 1, and V induces on © a group Og(R, r) by [18, (95.10)]. Consequently,
I would contain a reflection with axis av, a possibility which has been dealt
with in step 20). Thus, we may assume that dim H=s > 1; recall that s <8
by the assumption made at the beginning of the proof. As A fixes a subspace
of H and G, has no non-trivial representation in dimension < 7, we conclude
that A 2 Gy, dimA <8 and dim V <23. The group V acts faithfully and
irreducibly on © = R8. All possibilities for the semi-simple group V' have
been listed in step 18). Only the first 5 groups of this list have a dimension
at most 23 and we conclude that 18 < dim V'’ <21. If dim V’ > 18, then V'
is almost simple and the representation of V’ on H shows that either s=7,
or V' fixes a" pointwise, but in the latter case dim V’ <8+ dim A, which
is a contradiction. If dim V' =18, then dim V <19. We consider the group
re~r /H induced by I on ©, which contains V. From 18) and the inequalities

26< dimF<19+8 and diml<27—s

it follows that dim I’ < 21. Assume that V' is a proper subgroup of I. Then

" is isomorphic to Spin,(R,r) or Sp,C, and a maximal compact subgroup
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K of T’ acts in the canonical way on the homogeneous space M = [/V/,
but this would imply dim K <6 by [18, (96.13)]. (Note that the kernel N
of the action of K on M is contained in the intersection of all conjugates of
V' in I, a proper normal subgroup of ’; hence dimN = 0.) Consequently,
dimT <19 and then s>7. Steps 19) — 21) complete the proof of the first
part of Theorem 1.1.

22) Assume now that H= T[i] =~ R7. We will show that a maximal semi-simple

subgroup of A is isomorphic to Spin,R. With the roles of v and v inter-
changed, the Conclusion implies that either some 1-dimensional subgroup
< H is V-invariant or V acts irreducibly on H. By hypothesis dim V > 18.
Let V = WP, where V is a maximal semi-simple subgroup of V and P =+/V.
In the first case, the stabilizer A of a suitable quadrangle has dimension at
least 9; hence A = Gy by (¢), and W #A since V acts irreducibly on ©.
Lemma 2.3 implies that W has a subgroup T = Spin;R. In the second case, V
induces an irreducible group V /N on © and an irreducible group V/K on H.
By [18, (95.6)] we have P: (NN P)<2and P: (KN P) <1, hence dimP <3
and dim W >15. As dimK <8 and ¥ = V/(KN W) is almost simple by [18,
(95.5)], the list [18, (95.10)] shows that Visa simple group of type G or
U= O%(R,r). The kernel N N WV is a product of some of the almost simple
factors of W, and N N W acts freely on H. Consequently, dim(N N ¥)=0 or
NAW = U, but the latter is impossible for reasons of dimension. In particular,
N! <P and dim N <1 as N! injects into the centralizer of V in its represen-
tation on H. If dim ¥ = 14, then W has a proper factor of type G, but this
contradicts the fact that W acts irreducibly on ©. It follows that dim W > 21,
and then W = Spin, (R, ) with r =0, 3 by step 18). The group V is transitive
neither on © nor on H. Therefore dim A > 8 for a suitable quadrangle, and A
contains a group SU3C. This excludes the case r = 3.

Let W be a Levi complement of V/A. From dim T =15 and Theorem [18,
(87.5)] it follows that dim A < 40 and dim ¥ < 24. If dim W > 21, then ¥ = TX,
where T 2 Spin,R and the 3-dimensional almost simple factor X centralizes
T. We may assume that T <W. Then X fixes the axis av of the reflection
in T and the unique fixed point a of T on a®. By [18, (95.6)] the group X
would induce the identity both on ¢® and a", a contradiction.

23) Finally, let T = R!6, By step 16), we may assume that the complement

V =A, of T acts irreducibly on © = Tj,;. Moreover, dim V > 18 by hypothe-
sis. Because of Lemma 2.3, the assertion is true whenever V has a subgroup
Go, in particular, if dim V > 24. In the case dim V = 24, it follows from [18,
(87.7)] that A does not have two fixed points. Therefore, attention can
be restricted to dim V <23. If V has no subgroup G,, we exploit the fact
that in a translation plane a maximal compact subgroup ® of V has codi-
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mension at most 2 and is normal in V, see [18, (81.8)]. Consequently,
dim ® > 16. Consider the kernel N=V N Cs© =V, of the action of V on

© and the irreducible subgroup V =V /Viu of Aut ©. It is a special feature
of 16-dimensional translation planes that ®(, is finite, see [18, (81.20)].

Hence & =& /®[. satisfies dim ® = dim ®. The large subgroups in the max-
imal compact subgroup SOgR of Aut © are listed in [18, (95.12)]. Since
Gy 4 V, we conclude that dim® =16 and that ¢’ = SU4C (recall from
step 21) that SO5R & ®). Moreover, ¢’ acts faithfully and irreducibly on
O, see [18, (95.12¢)]. Hence ¢ = U, C, dimV =18, and dim A = 34. This
completes the proof of Theorem 1.1. O

3. The planes and their automorphism groups

Now let dim A >35. If T is transitive, then dim X,) > 0 and the existence of
a subgroup Spin;R in A implies dim¥ > 38. All such planes are described
in [18, (82.5)]. We may assume, therefore, that Tj,) = R” and T,; = RS,
cf. also [18, (61.12)]. The plane P can then be coordinatized by a ‘Cartesian
field’ (O, +,s), cf. [5, XI.4.2] or [18, (24.4)]. (Such linear ternary fields with
associative addition have also been called Cartesian groups even though they are
like rings rather than groups.) If the lines of the form y = sex + ¢ together with
the ‘verticals’ form an affine plane and if multiplication is continuous, then, by
[18, (43.6)], the Cartesian field indeed yields a compact projective plane.

Theorem 3.1. Consider a topological Cartesian field (R, +,*,1) with unit ele-
ment, and assume that (—r)*s = — (rx*s) holds identically. Let p : [0, 00) = [0, c0)
be a homeomorphism with p(1) = 1. Write each octonion x € Q in the form
z=¢+r, where{ =Rex = 1 (24 7) and t = Puz = 4 (z — T), and define a new

2
multiplication on O by
sox=s|"'s(|s|«&+p(|s])-x) for s#0 and 0oz =0.

Then O = (O, +, ¢, 1) is a topological Cartesian field with unit element 1. A plane
P can be coordinatized by such a Cartesian field if and only if P satisfies the
hypotheses of Theorem 1.1 with dim A > 35.

Remark 3.2. 1) An analogous construction can be applied to C and to H in-
stead of Q.

2) Obviously, the multiplications ¢ and * coincide on R. It follows that O, is a
quasi-field if and only if * is the ordinary multiplication of the reals. These
quasifields and the corresponding translation planes are discussed in [6] and
in [18, (82.4 and 5)].



page 13 /23

go back

full screen

close

quit

ACADEMIA
PRESS

) &

UNIVERSITEIT
GENT

Proof of Theorem 3.1. Part A. Suppose first that P has the properties of The-
orem 1.1 without being a translation plane. Then dim T = 15 and A has a
subgroup T = Spin,R.

D

2)

3)

4)

5)

6)

7)

We may assume that A = TT and that the translation group T;,; with center
v is transitive. As remarked above, the affine plane P" can then be coordi-
natized with respect to any quadrangle 0 = a, u, v, e in the usual way (as in
[18, § 22]) by a Cartesian field O = (0O, +,¢), where + denotes the ordi-
nary addition of the octonions. (Call to mind that each translation can be
written in the form (z,y) — (2+a,y+b); hence (0, +) = Tj,; = R®)

If u is the other fixed point of A, then =:= Tj,; = R7 is T-invariant. Thus,
there is a 7-dimensional vector subgroup V' of (0, +) such that

=={(z,y) = (a+c,y) | ce V}

The group T fixes a triangle and may be identified with V = A,. Indeed,
V = A,/T, is isomorphic to a subgroup of A/T = T. Since dim V > 20 and
T has no proper subgroups of small codimension, V = T. By the Mal’cev—
Iwasawa Theorem [18, (93.10)], T and V are conjugate in A.

Because T induces on = the group SO-R, the central involution o € T fixes
the orbit a= pointwise and « is a reflection with axis au, cf. [18, (55.29)]. In
coordinates, « has the form (z,y) — (x, —y) since « inverts each translation
in Ty,). This implies that (—s) o 2 = —(s ¢ x) holds identically in Q.

According to [18, (96.36)], the action of T on the (invariant) line au is
equivalent to a linear action, and the fixed point set is homeomorphic to S;.
Moreover, T acts trivially on the 1-dimensional quotient space au/=. There-
fore, each =-orbit in au~ {u} is T-invariant and contains a unique fixed
point of T.

Since « has center v, the group T acts faithfully on av. The faithful represen-
tation of Spin.R on R® being unique up to a linear transformation of R®, the
line av ~ {v} can be identified with {0} xO in such a way that T preserves
the ordinary norm of Q.

Let ¢ be chosen on a fixed line of T in the pencil £, such that a,u, v, e is a
nondegenerate quadrangle. Then the stabilizer A = T, is isomorphic to Go,
and A fixes a one-parameter subgroup (R, +) of the vector group O, corre-
sponding to a transitive group of ‘vertical’ translations of the 2-dimensional
plane £ consisting of the fixed elements of A. Consequently, £ is coordina-
tized by a Cartesian field Rx = (R, +, *). In fact, R4 is a Cartesian subfield
of Q¢, and x is the restriction of the multiplication ¢ to R. In particular,
(=s) *x = —(s * ) holds for all s,z € R. Since A fixes the coordinate
quadrangle, A is a group of automorphisms of Q.
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8)

9)

In the coordinates introduced in 1), the line ae is given by the equation
y = x. Because the group A fixes this line, A acts in the same way on both
the coordinate axes. From =" C =7 = = it follows that V is A-invariant. In
fact, V is the unique A-invariant complement of R in Q. Hence V coincides
with the vector space Pu O of the pure elements in Q. The fixed point set of
A in its action on O is R. Consequently, 5) implies that the fixed point set of
T on Ox{0} is Rx{0}.

For s # 0, consider the line L, of slope s with the equation y = sox and note
that s © 1 = s and that x — s o z is a homeomorphism of Q. If s € R, then
(1,s) is a fixed point of A and the line L, is A-invariant. Therefore, also the
stabilizer H = Ty, is A- invariant. It is isomorphic to R” by [18, (61.11¢)]
and has the form

{(z,y) = (x+c,y+((c)) | c € PuO},

where ( is an R-linear endomorphism of PuO centralizing A. Since the
centralizer of A is isomorphic to R by Schur’s Lemma, there is a number
p(s) € R* such that

H={(z,y) = (x+¢, y+p(s)c) | c€Pul}.

10) For s € R, each point (£, s«¢) with £ € R belongs to L, by 7). Hence

step 9) yields
Le={(+r sx&+p(s)r| €R A rePul}.

In the following, the other lines will be obtained by applying transformations
¢ € T to the lines L, with real s.

11) The group T acts on Ox O in the same way as on the Moufang plane with

the same point set. By 6) this is true for {0} xO because R® and O have
been identified accordingly. The subgroup A acts identically on {0} xO and
Ox{0}, see 8). Since the centralizer of the action of A on Pu@ is the center
of GL7R, the action of T on Ox{0} is uniquely determined by the restriction
to A and the fact that T fixes Rx{0}.

12) The group 7T is transitive on the spheres of constant norm in {0} xO, and

for any s # 0 there is some ¢ € T such that p(e) = (1,]s|7!s). The map
¢ has the form (z,y) — (Az, By) with A, B € SOgR such that for some
C € SOgR the equation B(s-z) = Cs-Az holds identically with respect to
the ordinary multiplication - of the octonions, see [18, (17.12-16)]. Hence
Bz =|s|"'s- Az and ¢ maps L, onto the set

{(€+ Ax, [s| 7 s (Is| * €+ p(|s])-Ar) | € €R A ¢ € PuO}.

Writing r instead of Arx, we obtain for L, the equation y = s ¢ x as claimed.
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Part B. The construction in Theorem 3.1 always yields a topological Cartesian

field.

Obviously, the multiplication OxQ — O : (a,x) — a ¢ x is continuous. By

[18, (43.6)] it suffices, therefore, to show that for a # b the maps

Aap T —aox+box and pep:xr—T0a—20b

are bijections of Q. For each x € O we write x = |z|z; = { + 1.

D

2)

3)

4)

5)

6)

7)

For ¢ = |c| ¢; € O the equation y, (z) = c has a unique solution: in fact, by
taking norms in O, we get the condition

(lzl o =zl 8)* + p(l2])* [a = b [* = |cf”.

The left hand side is monotone in |x| since (R, +, %) is a topological Cartesian
field and therefore r» — r x o — r x (3 is either a continuous bijection of R or
constant. Consequently, |x| is uniquely determined by ¢, in particular, ¢ = 0
implies z = 0. In all other cases, = can be obtained from |z| and ¢. (Note
that z1 (|z| * o — |z]| * B+ p(|z])(a — b) )1 = ¢1.)

Injectivity of A\, means —aoz+boxr = —aoy+boy=a=>bV z =y, and
this is equivalent to injectivity of x, , .

In order to obtain surjectivity, we will show in the next steps that

limy o0 Agp(z) = 00 (M

in the one-point compactification O of O, i.e., that Aa,p has a continuous
injective extension to Q. Such an extension is necessarily a homeomorphism,
cf. also [18, (51.19)].

Condition (}) is true in the Cartesian field (R, +, ). Hence |a| < |b| implies
lime o0 (]b] ¥ & — |a| * &) = o0.
It can easily be seen that (}) holds in each of the following cases:
CLZO\/b:O, |a|:|b|, CL1::|:b1.

If (1) is not true in general, then there is a sequence x,, such that lim, . x, =
oo and for some a,b € O with |a| < |b| the sequence )\, ;(x,) is bounded.
Here

Aap(2) = br([b] + &, + p(|6]) - 1) — ax(laf * & + p(lal) - v.) -

Suppose that the sequence ¢, is bounded. Then lim, .. & = oo, and 6)
yields lim, . (|a| * &)(|b] * £&,)~' = a;'b;. This is a positive number of
norm 1. Hence a; = b; contrary to step 5). An analogous argument shows
that the £, are unbounded. Therefore we may assume that the £, as well as
the ¢, converge to co in 0.
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8)

9)

The problem can be reduced to the 2-dimensional case as follows: we have
a"1'b ¢ R by step 5). The automorphism group of O is transitive on the
sphere {r € O | 1> = —1} in PuQ, and we can arrange that a;b; = ¢ € C.
Write each element x € Q as x = 2/ 4+ 2" with 2’ € C and 2” € C*, the
orthogonal complement of C in Q. Then

A1 Aap(T) =

c([o] + &) —lal x & + (cp(bl)—p(lal)) - xs + (cp(|b])=p(lal)) - v’
is a bounded sequence. Hence also the sequence (cp(|b])—p(|a])) -1 € C*
is bounded and therefore lim, _, ., r,, = oo by step 7).

Let ¢ = p + iq with p?> + ¢> = 1 and put r, = i7n,. Taking conjugates if
necessary and selecting suitable subsequences, the possibilities can be re-
duced to lim, .., 7, = +oo and the following cases: lim, ., &, = +oo or
lim, o, & = —oo. The sequence

p (b * &)—lal * & — qp(b]) n, +14 (g (|b] * &) +pp(Jb]) m — p(la]) m0)

is bounded, and so are the real and the imaginary part and the following
linear combinations of these:

b % & — p(laf * &) — g p(lal) n (1
and ¢ (la| * &) + (p([b]) —pp(lal)) no - (2)
Since p(]b]) — pp(|a]) > 0, boundedness of (2) implies lim, ., ¢§, = —o0,

but then the sequence (1) would not be bounded. This proves the claim of
Part B.

Part C. Consider a projective plane P coordinatized by a topological Cartesian
field Oo = (O, +, ¢) as described in Theorem 3.1. It remains to show that Aut P
contains a group A fixing exactly two points such that dim A > 35.

D
2)

Obviously, {(z,y) — (x + ¢, y+d) |c € PuO,d € O} <Tand dim T > 15.

The maps (z,y) — (Az, By) of OxO such that A, B € Spin,R and identi-
cally B(s-z) = Bs-Ax form a group T of automorphisms of the Moufang
plane, they satisfy A1 = 1 and hence fix the set Rx{0}, cf. A), step 9) or
[18, (17.14)]. The involution (z,y) — (z, —y) is a reflection in T},;. Conse-
quently, T 2 Spin,R acts faithfully on {0} xO and induces on Pu@x{0} the
group SO~R. It follows that

B(sox) = Bsi(|s| &+ p(]s|) - Axr) = Bs o Ax.

Therefore T < Aut P, the group A = TT fixes exactly the points u, v, and
dim A = 36. 0
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Theorem 3.3 (Automorphism groups). Assume that the plane P satisfies the
hypotheses of Theorem 1.1 with dim A > 35 and let ¥ = Aut P be the full auto-
morphism group, X! its connected component. If P is not the classical Moufang
plane, then

(a) dimX < 40 and each of the two fixed points of A is also a fixed point of L.
Any subgroup T 22 Spin,R of ¥ fixes some point a ¢ uwv.

(b) If dim ¥ = 39, then P is a translation plane.

(c) The plane P is a translation plane if, and only if, it can be coordinatized
by a quasi-field Q¢ as in Theorem 3.1 where * is the ordinary multiplication
of the reals. In this case dimYX = 39 if, and only if, p is a multiplicative
homomorphism; otherwise dim ¥ = 38.

If P is not a translation plane, then the following holds:

(d) dim¥ < 38 and ¥ = TTZ, where Z denotes the centralizer of T in ¥.

(e) dimX = 38 if, and only if, P can be coordinatized by a Cartesian field QO as
in Theorem 3.1 where

rs (s>0)
rxs= for some v > 0,
Ir|7rs (s <0)

and p : [0,00) — [0, 00) is a multiplicative homomorphism.

Proof. (a) If dim¥ > 40, then P can be coordinatized by a mutation of the
octonions and ¥ has no subgroup Spin-R, see [18, (82.29) and (87.7)]. We
use the same notation as in the proof of Theorem 3.1. If W # W for some
o€ ¥, then ¥:A > dimW°" > 7 and dim¥ > 43. Hence W* = W.
The group T < A acts effectively on W and each point z € W \ {u, v} has
an orbit 2T ~ S;. Therefore v* € {u,v}, or again dim¥ > 43. If some
o € ¥ interchanges u and v, then P is a translation plane. Consider a
Levi complement ¥ in a maximal compact subgroup of Y. All such groups
are conjugate in X!, see [18, (93.10) and (94.28)]. Therefore, ¥ contains
conjugates of T and of T7. The first acts effectively on the pencil £, =
R, the second induces a group SO;R on £,. The central involutions in
these groups are reflections with centers v and u respectively, their axes
are W-invariant, or else ¥ would contain translations by the dual of [18,
(23.20)]. Consequently, W fixes some point a ¢ W, and the kernel W, of
the action of W on £, is finite by [18, (81.20)]. It follows that V¥ is almost
simple (cf. step 18) above) and has a proper subgroup Spin-R. The list [18,
(95.10)] shows that dimV¥ = 28 and then dim¥ > 44, a contradiction.
Therefore ¥ fixes v and v. If Spin;R = T < %, then the central involution
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(b)

(o)
@

(e)

in T is a reflection and T fixes its axis X. Any action of the group T
on a space X homeomorphic to R® is equivalent to a linear action ([18,
(96.36)]). Hence T has a fixed point a € X.

Wehave T <V := Zal and dim V < 24. Put X=VNCs T. The representation
of T on the Lie algebra of V shows that V =TX. The group X acts effec-
tively on the two-dimensional plane £ of the fixed elements of a subgroup
A = Gy of T. By [18, (32.10)] and the dimension formula, dim X < 2,
dimV = 23, and dima* = 16. Since the centralizer of Spin,R in GLgR is
isomorphic to R* (cf. [18, (95.10)]), the action of V on av has a kernel
Vi of positive dimension. By the dual of [18, (61.20b)] it follows that
dim T[u] = 8.

See [18, (82.5)].

For each o € ¥ there is some 7 € T! such that a°7 is T-invariant, cf. step 5)
of the proof of Theorem 3.1. Put o7 = w!. It follows that T* <V. Since
V =7TX and all Levi complements in a connected group are conjugate (cf.
[18, (94.28¢c)]), we have T« = T. Each automorphism of T is an inner
automorphism (see [20, 6.]). Consequently, w € TZ.

Consider A < T and the subplane £ consisting of the fixed elements of A
as in step 7) of the proof of Theorem 3.1. Suppose that dim ¥~ = 38. Then
dimZ = 2 by part (d), and dim Cs A = 3 as A also centralizes the vertical
translations of £. Moreover, Csa A contains the central reflection o« € T
(with axis au). It follows from () that CsA acts effectively on £. By as-
sumption, P is not a translation plane; hence x is not the ordinary multipli-
cation and £ is not classical. All planes £ admitting a 3-dimensional group
are known explicitly; this classification is summarized in [18, (38.1)], de-
tails are given in [18, §§ 34-37]. As the group fixes the points v and v, the
results just mentioned show that £ is a plane over a Cartesian field of the
kind described in [18, (37.3)], which includes the Moulton planes. The re-
flection o induces on £ the map (z,y) — (z, —y). This is a collineation of £
if and only if (—s) * x = —(s*z) holds identically in R. An easy calculation
shows that the multiplication * of [18, (37.3)] has indeed the form given in
(e), cf. also [18, (37.4 and 6)]. In particular, £ is not a Moulton plane. Note
that the product « is associative whenever the right or the middle factor is
positive.

The group Z! induces on £ the maps (z,y) — ((r * x)-s,y-s) with r, s > 0.
It can easily be seen that (z,y) — (z-s,y-s), s<0, x,y € O yields always
an automorphism of P. An element ( € Z which induces on £ a map
(z,y) — (r * z,y) has necessarily the form (z,y) — (¢.(x),y) because T
acts irreducibly on Tp,; = R®. This means that ¢ is a homology with axis
av. Hence ((z,y) = (r o x,y). This map is a collineation if and only if
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ao(rox)=(aor)oxforall a,z € O. Equivalently (since |a| * r = |ar|),

lal + (r+ &) + p(lal)p(r)x = (laf + ) x & + p(|ar|) .

Thus p is multiplicative. Conversely, the conditions in (e) imply dimZ = 2
and hence dim ¥ = 38. If p is not multiplicative, then dim ¥ = 37. O

The case dim ¥ = 37. With the same notation as before, we have dim ¥~ = 37
if and only if CsA acts on £ as a 2-dimensional group with 2 fixed points. All
planes over a proper Cartesian field (R, +, *) admitting such a group have been
described. They depend on the choice of some suitable real functions rather
than a few real parameters. By [18, (32.8)], a quasi-field (R, +, %) is in fact a
field; therefore, £ is not a translation plane. Only the Cartesian fields of those
planes £ can be used which admit a reflection with an axis au. The connected
component " of Cs A is isomorphic to R? or to the linear group

Ly :={(t—at+b):R—R|a>0}.

In the first case, I, fixes each line of £ through the point u, because I' contains
all translations of £ with center v. As £ is not a translation plane, I,,, induces a
one-parameter group of homologies of £ with center « and a common axis. The
point a may be chosen on this axis; then I' fixes exactly the elements u, v, av, uv
of £, and av is the axis of the elements of I,,,. The planes £ of this type have
been determined by Groh [4], cf. [10, 2.7.11.3].

Homologies of £ with axis av have the form ~, : (z,y) — (r * z,y). The
group [, coincides with the connected component Z! of Z = Cs T because Z
fixes the axis au of the unique central involution oo € T, and we have Z! < T
and dimZ = diml,,. An element (. € Cs T which induces on £ the homology
v, fixes necessarily each point on the line av because the centralizer of the
representation of T on R® consists of real dilatations. Consequently ¢, can be
written as (z,y) — (rox,y), and the product ¢ is associative whenever the
middle factor is a positive real number. The latter condition reduces to the
identity p(r x s) = p(r)p(s) for r,s > 0. An admissible multiplication * and a
homeomorphism p yield a plane P with dim X > 37 if and only if p satisfies this
identity.

If I & Lo, there are the following possibilities:

(a) T acts transitively on the set of points not on uv,
(b) T fixes exactly two points and two lines,
(c) T fixes exactly two lines and more than two points, or dually

(¢) T fixes exactly the points u and v and more than two lines through v.
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(b)

Planes with a group I satisfying (a) have been studied by Groh [3], cf. [10,
2.7.5.2]. Those planes £ which are symmetric with respect to a horizontal
line can be described in the half-plane (0,00)xR as follows: Let L be the
graph of a strictly convex continuous function f: (0,00) — R such that

lim, o f(z) = 00, limy e f(x) = —00, lim,_o f'(z) =0.

Then the images of L under the maps (x,y) — (rz,ry+b), r € R*, b € R
together with the horizontals and verticals are the lines of an affine plane
of type (a). This can easily be translated into a representation in R? by
means of a Cartesian field Rx. In the latter representation I' contains a one-
parameter subgroup of maps v, : (x,y) — (¢:(z), e'y) acting transitively on
the X -axis. A line of slope s is mapped by v; onto a line of slope o;(s). The
fact that +, is a collineation of £ is equivalent to the identity

e' (s x) = 01(s) * pu(x) — a1(s) * @1 (0). Q)

It remains to find a necessary and sufficient condition for ~, to be induced
by a map (; of Q% in Z. (Note that again I, is the connected component
of Z = CsT since Z! < T,, and both groups are homeomorphic to R.)
From ¢; € Cs T it follows that ¢; has the form (z,y) — (¢ (&) + "'z, e'y).
Expressing the fact that the line y = s ¢ x is mapped to a line

ey =co(p(&) +er) —d

yields the condition

e'ls| ™ s(Is| € + p(lsl) x) = lel " e(lel * e(€) — lef * 2 (0) + ™ p(lc]) ¥).

If 0 < s €R, then |s| = s and ¢ = 0¢(|s|) = |¢|; comparison of the pure compo-
nents of the condition above gives

e'p(Is|) = e p(o(|s])) - ()

In general, we obtain in the same way that ef|s|~1s p(|s]) =|c| tcerp(|c]|),
which by (1) means |s|~tse~ p(os(]s])) = |c|"Lcep(|c|). Passing to abso-
lute values, one obtains |c| = o;(|s|) and then |s|~'s = |c| !¢, so that finally
c = o4(]s])|s|~!s. Because of (x) and (), the condition above is then satis-
fied.

We remark that x # 1, or else o4(s) = s for all s > 0 and then also for
all s < 0, and £ would be a translation plane. In particular, p is uniquely
determined by £.

The classification of these planes has been obtained by Schellhammer [19],
cf. [10, 2.7.11.4]. For each multiplication * defining such a plane there



exists a one-parameter group of automorphisms ~y, : (z,y) — (p¢(x), e'y) of

£ fixing a and mapping a line of slope s to a line of slope o:(s), where

. " =~ e!(s x x) =04(s) * ¢¢(x). An extension of v, to a map (; € Cs T has again the
form (x,y) — (¢¢(€) + e"'r, e'y). As before, this is a collineation of P if and

only if condition (1) holds. Each pair of an admissible multiplication * and

page 21/ 23 . . . o . .
a homeomorphism p which satisfies (i) yields a plane P with dim ¥ > 37.

go back (c) The description of the possible planes £ is due to Pohl [9], cf. [10, 2.7.11.5].

The same calculations as in case (b) lead once more to condition (f). By
full screen assumption there is some slope » > 0 such that o,(r) =r. It follows that

k=1 and then oy(|s|) =|s| for each s. As TT, < V, the central involution

close a € T (with axis au) commutes with the maps ~;. Consequently, ~; also

fixes the negative real slopes, and I, induces homologies of £. Thus, planes

quit with dim ¥ > 37 can be obtained in case (c) if and only if I fixes the line uv

pointwise; there is no condition on the homeomorphism p. The orbits of I,
in £ are rays beginning at the origin in the real affine plane. It follows that £
can be described by a Cartesian field multiplication of the form s*xz = sz for
x>0and s*x=pu(s)x for x <0, where p : R ~ R with u(—s)= — pu(s) and
p(1) = 1. Planes of this kind have been called generalized Moulton planes.

(¢) Though the planes £ are dual to those of case (c), the conclusions are not
because of the different roles of the central reflection a € T. As in the pre-
vious cases, the conditions e (s * x) = 04(s) * ¢, () and (}) must be satisfied.
In case (¢) we may assume that (1) =1. Then we obtain o,(s) =e's for
all s€ R, and (}) reduces to the condition that p is a multiplicative homo-
morphism.

Examples are given by the multiplications

s*x:{m (@<1) (m > 0).
s(lsime +1—|s™) (2> 1),

In fact, p;(x) =z for z <1and ¢;(x) =e ™z +1—e ™ for z > 1.

Thus in each of the cases there are large families of planes P with a group of
dimension 37 fixing exactly two points and the line joining them.
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