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Abstract

We prove Mühlherr’s twist conjecture for Coxeter systems (W,S) which

have no rank 3 subsystems of type 2-3-n or 2-4-n (n ≥ 3). In combination

with known results this finishes the solution of the isomorphism problem for

this class of groups. The condition on the diagram does not allow spherical

rank 3 subsystems, but our result covers “most” of the even Coxeter systems.

With respect to earlier contributions, we develop a geometric technique to

handle rank 2 twists, in particular rotation twists which occur in the even

case.
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1 Introduction

The twist conjecture (see [7] for details) is motivated by the isomorphism prob-

lem for Coxeter groups. In fact, a proof of this conjecture would yield a complete

solution. The conjecture has been proved for skew-angled Coxeter systems [8],

for chordal Coxeter systems [9] and for twist rigid Coxeter systems [4]. The

first two references use the decomposition of the Coxeter system as a graph of

groups. Although this approach turns out to be very efficient for the special

cases considered, it seems to be very difficult to generalize it to arbitrary di-

agrams. The main difficulty arises when there are local twists which do not

extend to global twists. The conditions required in those papers are designed to

have control over the local twists.

∗The author is supported by a scholarship of the JLU Gießen.
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In the present paper we follow a strategy which had been used for the right

angled case in [6]. Although the twist conjecture hasn’t been formulated when

that paper was written, its validity for the right-angled case is proved there.

The strategy is to introduce a distance matrix for a Coxeter generating set con-

sisting of reflections and to show that one can reduce it by elementary twists.

This works very well in the right-angled case, but it becomes considerably more

complicated if there are edges with finite labels in the diagram.

In this paper we prove the conjecture for diagrams which do not have certain

rank 3 diagrams, including the irreducible spherical ones. The exclusion of

those diagrams is essential to avoid higher rank twists, yet our condition does

not allow some other types of diagrams including C̃2 and G̃2, which is designed

to avoid technical details which become quite involved. However, although we

cover a large class of Coxeter systems here for which the twist conjecture is not

proved yet, our technique certainly needs substantial improvements in order

to treat the general case. Yet the methods we develop are the first to directly

handle rotation twists in a geometric way, using an approach which is derived

from [6]. While the skew-angled and chordal Coxeter systems allow this type

of twists as well, the works in [8] and [9] avoid this using Bass–Serre theory.

Here is our main result:

Main Theorem. Suppose that (W,S) is an irreducible non-spherical Coxeter sys-

tem of finite rank greater or equal 3, such that its diagram contains no subdia-

grams of type 3 nb b b for n ≥ 3 or 4 nb b b for n ≥ 4. If R ⊂ SW

is an irreducible sharp-angled Coxeter generating set for W , then R ∼t S.

We will later in Section 2.1 denote this condition on the diagram as con-

dition (E), referring to the original intention to handle even Coxeter groups.

The definition of sharp-angled can be reviewed in Section 2.2, the definition of

twist-equivalence ∼t can be found in Section 2.5.

Remark 1.1. It is worthwhile to mention that our result covers the skew-angled

Coxeter systems for which the twist conjecture was proved in [8].

In Section 2 we fix notation and recall definitions concerning the Cayley

graph of a Coxeter system and its roots and walls. Most of the properties stated

are taken from [8]. We also introduce longest reflections and their properties

(2.3) as well as two notions of separation (2.4) and recall the definition of twists

(2.5).

In Section 3 we give a characterization for a Coxeter generating set satisfying

our conditions to be geometric. This will act as a base of induction for our main

theorem. In the main part of this section we show that whenever neither a
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reflection in R nor a longest reflection separates two other reflections in R, the

set R is already geometric.

In Section 4 we prove our main theorem, distinguishing three different set-

tings of the positions of the walls in the Cayley graph. We show that in each case

we find a twist or a series of twists such that the resulting Coxeter generating

set has a reduced distance matrix. To do this we first prove some properties of

the distances in the Cayley graph and introduce interior separation, a stronger

notion of separation taking into consideration walls of longest reflections.

Acknowledgments. The author wants to thank Bernhard Mühlherr for his ideas

and his advice on this work. He also wants to thank the referee for making

many constructive suggestions which improved the presentation of the content

considerably.

2 Preliminaries

2.1 Coxeter matrices, systems, diagrams

Let I be a finite set. A Coxeter matrix over I is a symmetric matrix M =

(mij)i,j∈I with entries in N ∪ {∞} such that mii = 1 for all i ∈ I, mij ≥ 2

for all i 6= j ∈ I.

Given a Coxeter matrix M , (W,S) is a Coxeter system of type M if W is a

group, S = {si | i ∈ I} ⊂ W and 〈S | (sisj)
mij , i, j ∈ I〉 is a presentation

for W . For a Coxeter matrix M the Coxeter diagram is the undirected graph

Γ = (V,E) with V = I, E = {{i, j} | 2 < mij} and the labeling τ : E → N,

{i, j} 7→ mij . The rank of the diagram, of the Coxeter matrix, of the Coxeter

system is |I| = |S|. A group W is called a Coxeter group if there exists a subset

S ⊂ W such that (W,S) is a Coxeter system.

If W is a Coxeter group, R ⊂ W is universal if (〈R〉, R) is a Coxeter system. A

subset R is a Coxeter generating set if R is universal and 〈R〉 = W , i.e. if (W,R)

is a Coxeter system. A universal set R is irreducible, if there is no nontrivial

partition R = R1 ∪̇ R2 such that o(r1r2) = 2 holds for all ri ∈ Ri, i = 1, 2. If

R is Coxeter generating, it gives rise to a unique Coxeter matrix, justifying our

notion of the diagram of R. For the subsets S′ ⊂ S, S′ = {si | i ∈ J} the special

subgroups are WJ := 〈S′〉. In this case, S′ is a Coxeter generating set for WJ .

A diagram or subset J ⊂ I is spherical if the generated Coxeter group WJ is

finite. We say a diagram satisfies condition (E), if it does not contain subdia-

grams of type 3 nb b b or 4 nb b b for n ≥ 3.

Note that the diagram 3 nb b b is spherical for 2 ≤ n ≤ 5.
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Let R be a Coxeter generating set; for each J ⊂ R we set

J⊥ = {r ∈ R \ J | rj = jr for all j ∈ J}.

2.2 The Cayley graph, roots, walls, residues

Consider a Coxeter system (W,S) of type M over I. Then (C,P ) with C = W

and P = {{w,ws} | w ∈ W, s ∈ S} is an undirected graph. Let τ : P → S,

{w,ws} 7→ s be a labeling. If for all w ∈ W , P (w) = {e ∈ P | w ∈ e}
the restriction τ |P (w) is a bijection, then C = (C,P, τ) is the Cayley graph of

(W,S). The set C is the set of chambers, P the set of panels. We denote with

δ : C × C → N the distance function on the Cayley graph. For subsets A,B ⊂ C,

define δ(A,B) = min{δ(a, b) | a ∈ A, b ∈ B}. A gallery of length m, γ =

(c0, . . . , cm), in C is a path of length m in (C,P ), it is minimal if δ(c0, cm) = m.

We will sometimes identify a gallery with its set of chambers
⋃

0≤i≤m{ci}.

The group W acts on the chambers of C, denoted by w.c = wc ∈ C for w ∈ W .

Regarding this action we have (w.p)τ = pτ for p ∈ P , so τ is W -invariant.

Let r ∈ SW , Pr = {p ∈ P | r.p = p}. The graph (C, P \ Pr) has two

connected components (see [10, Proposition 2.6]), called the roots associated

to r. The set C(r) =
⋃

p∈Pr
p is the wall of r. For any chamber c ∈ C, H(r, c)

is the unique root associated to r containing c. For A ⊂ C, if A is contained

in one root, H(r,A) is the well-defined root associated to r containing A. If H

is a root associated to r, −H is the unique root associated to r not equal to H.

Therefore, if c ∈ C(r), then −H(r, c) = H(r, r.c). For r, s ∈ SW we define

δ(r, s) := δ(C(r), C(s)).

Now let c ∈ C, J ⊂ I. The set RJ(c) := cWJ is called a J -residue. A subset

A ⊂ C is called residue if it is a J -residue for some J ⊂ I. A residue A is

spherical if it is a J -residue and J is spherical. Let s, t ∈ SW , then we will

denote with As,t an arbitrary maximal spherical residue of the form R{s,t}(c),

i.e. a residue stabilized by 〈s, t〉. In particular, the existence of As,t implies that

the product st has finite order.

We will need some basic properties of roots, walls and residues. Geometric

versions of these statements can be found in [8], we will recall the results we

need. The following Lemma is a well known fact, for more details see [1].

Lemma 2.1 ([8, Lemma 2.3]). A subgroup U ≤ W is finite if and only if it

stabilizes a spherical residue.

Lemma 2.2 ([8, Lemma 2.6]). Let U ≤ W be finite, 〈U, {s}〉 be infinite for an

s ∈ SW . Then every spherical residue stabilized by U is contained in the same

unique root associated to s.
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In the situation of the previous lemma, the notation of H(s, U) for the root

containing all spherical residues stabilized by U is justified whenever U is finite,

〈s, U〉 is infinite. In particular, we will write H(s, t) := H(s, 〈t〉) if o(st) = ∞.

Note that since C(t) consists of chambers included in {t}-residues, we have

H(s, t) = H(s, C(t)).

Remark 2.3. For convenience with our notation, we write xw = wxw−1 for

x ∈ W for the action of W on W by conjugation.

Lemma 2.4 ([8, Lemma 3.1]). (a) W acts on the set of walls and on the set of

roots associated to r ∈ SW . Let w ∈ W , then w.C(r) = C(rw). If Hr is a

root associated to r, then w.Hr is a root associated to rw.

(b) A root H associated to an element r ∈ SW is convex.

Let U ≤ W . A subset F ⊂ C is a fundamental domain for U if C =
⋃̇

u∈Uu.F .

Let s, t ∈ SW and let Hs, Ht be roots associated to s, t. The set {Hs, Ht} is a

geometric pair if Hs ∩Ht is a fundamental domain for 〈s, t〉. Consider a set Φ of

roots, it is 2-geometric if each pair of roots in Φ is geometric, and geometric if it

is 2-geometric and
⋂

H∈Φ H 6= ∅. A pair {Hs, Ht} is weakly geometric if {Hs, Ht}
or {−Hs,−Ht} is a geometric pair. A set Φ of roots is weakly 2-geometric if each

pair of roots is weakly geometric. The set R ⊂ SW is geometric (2-geometric,

weakly 2-geometric) if there exists a set Φ(R) of roots associated to the elements

in R, such that Φ(R) is geometric (2-geometric, weakly 2-geometric). The set

R ⊂ SW is sharp-angled if all {s, t} ⊂ R are geometric. We note that if R is geo-

metric with geometric set of roots Φ(R), then F :=
⋂

H∈Φ(R) H is a fundamental

domain for 〈R〉 and C(r) ∩ F 6= ∅ for all r ∈ R.

The following is a summary of [8, Lemma 4.3, 4.4, 4.5]; we will make con-

stant use of these statements.

Lemma 2.5. Let R ⊂ SW be a sharp-angled Coxeter generating set, s, t ∈ R.

Then:

(a) If o(st) = 2, then {Hs, Ht} is a geometric pair for all roots Hs, Ht associated

to s, t.

(b) If 2 < o(st) < ∞ and Hs is a root associated to s, there is a unique root Ht

associated to t such that {Hs, Ht} is a geometric pair. Then {−Hs,−Ht} is

a geometric pair as well, {±Hs,∓Ht} is not geometric.

(c) If st has infinite order, there exist unique roots Hs, Ht associated to s, t

such that {Hs, Ht} is a geometric pair. Then −Hs ⊂ Ht, −Ht ⊂ Hs and

−Hs ∩ −Ht = ∅.



116 C.J. Weigel

We will denote the intersections of the geometric pairs in part (b) and (c)

of the previous lemma as the standard fundamental domains. Note that if st

has infinite order, the standard fundamental domain is uniquely determined, if

2 < o(st) < ∞, there are two standard fundamental domains F := Hs ∩Ht and

−F := −Hs ∩ −Ht for a geometric pair {Hs, Ht} and w{s,t}.F = −F holds for

the longest element w{s,t} in 〈s, t〉 (see Section 2.3 for details).

A generalization of part (c) of the previous lemma is the following:

Lemma 2.6. If R is universal, irreducible and non-spherical such that R is geo-

metric, then the geometric set of roots Φ(R) is unique.

Proof. This follows directly from Lemma 2.5 if two elements in R have infinite

order. If R is 2-spherical, we can make use of Proposition 7.2 in [3]. This yields

that if R \ {r} is spherical for an r ∈ R, such a geometric set is unique. Now we

can consider the smallest irreducible non-spherical set R̄ ⊂ R such that R̄ \ {r}
is spherical for some r ∈ R̄. For R̄ we already have a unique geometric set of

roots, therefore the geometric set of roots for R is unique. �

For the reader’s convenience, we will also repeat a useful property in skew-

angled Coxeter systems:

Lemma 2.7 ([8, Lemma 6.3]). Let R be universal, r, s, t ∈ R pairwise non-com-

muting elements. Then the product rsrt has infinite order.

2.3 Longest reflections and their basic properties

Consider a sharp-angled Coxeter generating set R ⊂ SW and a subset J =

{s, t} ⊂ R with 2 < o(st) < ∞. We have a length function on W with respect to

the generating set R and denote with wJ the longest element in 〈J〉. Define the

longest reflections st, ts in 〈J〉 as the elements of 〈J〉 ∩ SW of maximal length.

If o(st) is even, we define st to be the longest reflection commuting with s, ts
to be the longest reflection commuting with t. In this case we have st = wJs,

ts = wJ t. If o(st) is odd, we simply have st = ts = wJ .

Remark 2.8. Since the reflections st, ts are associated to the highest roots, the

notion of a highest reflection for st and ts is suggesting itself. We decided to de-

note them longest reflections, referring to the length function in W with respect

to the Coxeter generating set R.

Also note that, given two Coxeter generating sets R,R′ both containing J ,

the length functions on 〈J〉 with respect to R and with respect to R′ are equal.

We need the following properties of st, ts:
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Lemma 2.9. Let R ⊂ SW be a sharp-angled universal set satisfying (E). Let

J = {s, t} ⊂ R, 2 < o(st) < ∞. For all u ∈ R \ J such that J ∪ {u} is irreducible

o(ust) = o(uts) = ∞ holds.

Proof. This is a conclusion from [3, Corollary 9.5 and Lemma 9.8]. If the dia-

gram of {s, t, u} is a tree, the statement follows from Corollary 9.5. If it is not a

tree, this is Lemma 9.8. �

Remark 2.10. Note that (E) is critical for Lemma 2.9 to hold. In fact, (E) is the

weakest assumption one can make on a sharp-angled universal set R, such that

Lemma 2.9 still holds.

Proposition 2.11. Consider R as in Lemma 2.9. Let J = {s, t} with 2 < o(st) <

∞, u ∈ R \ J . The sets {u, st}, {u, ts} are sharp-angled.

Proof. If J ∪ {u} is irreducible, then o(ust) = ∞ = o(uts) holds by Lemma 2.9.

Thus we can consider the sets of roots {H(u, st), H(st, u)} and {H(u, ts), H(ts, u)}
associated to the sets {u, st}, {u, ts}. Define F = H(u, st) ∩ H(st, u) 6= ∅. Let

x ∈ 〈u, st〉, then F ∩ x.F = ∅ for x 6= 1W and
⋃

x∈〈u,st〉
x.F = C hold. The set

{u, st} is geometric, the same holds for {u, ts}.

If J ∪ {u} is reducible, this implies o(us) = o(ut) = 2. But then o(uts) =

o(ust) = 2 holds, let Hst , Hu arbitrary roots associated to st, u. For F = Hst∩Hu

we have u.F = Hst ∩ −Hu, st.F = −Hst ∩ Hu, ust.F = −Hst ∩ −Hu. So⋃
x∈〈u,st〉

x.F = C and x.F ∩F = ∅ for all x ∈ 〈u, st〉, x 6= 1W . The set {u, st} is

geometric, the same holds for {u, ts}. �

Lemma 2.12. Consider R as in Lemma 2.9. Let J = {s, t} ⊂ R, 2 < o(st) < ∞.

Consider u = u0, . . . , uk = v ∈ R \ (J ∪ J⊥), uiui+1 having finite order for

i = 0, . . . k − 1. The roots H(st, u), H(st, v) are well-defined and equal.

Proof. Because of Lemma 2.9, o(ust) = o(vst) = ∞ holds and H(st, u), H(st, v)

are well-defined. Furthermore stui has infinite order for i = 0, . . . , k. Assume

H(st, u) 6= H(st, v), then using [8, Lemma 4.6] we obtain a reflection uj such

that the product stuj has finite order, a contradiction. �

In the beginning of Section 4 we will state further properties on the order of

products of longest reflections.

2.4 Separating reflections and interiors

We extend the notion of separation used in [6] for right-angled Coxeter systems

to arbitrary sharp-angled Coxeter generating sets R ⊂ SW . Consider a sharp-

angled subset {s, u, v} ⊂ SW . We define s ∈ [u, v] and say s separates u and v if
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o(uv) = ∞, o(su), o(sv) > 2 and all roots Hs associated to s satisfy the following

condition: Let {Hu, Hv} be the unique geometric set of roots associated to u, v,

if {Hu, Hs} is geometric, then {Hv,−Hs} is geometric. In other words: uv has

infinite order and the set {s, u, v} is not geometric.

We will also need a slightly sharper notion of separation. We say that s

separates u and v reducibly, s ∈r [u, v], if s ∈ [u, v] and δ(us, v) < δ(u, v).

Remark 2.13. We will show later in Lemma 4.8, that the property δ(vu, w) <

δ(v, w) is sufficient for u ∈r [v, w].

We define for a sharp-angled Coxeter generating set R ⊂ SW the interior of R

to be the set R◦ := {r ∈ R | ∃s, t ∈ R : r ∈r [s, t]}. Define

R2 := {st ∈ RW | s, t ∈ R, 2 < o(st) < ∞}

to be the set of longest reflections. Due to Proposition 2.11 the sets {st, u, v}
are sharp-angled for all u, v ∈ R \ {s, t}, thus we can define the interior of R2 to

be the set R◦
2 := {st ∈ R2 | ∃u, v ∈ R \ {s, t} : st ∈ [u, v]}.

2.5 Twists

For a Coxeter generating set R and J,K,L ⊂ R satisfying

1. J is irreducible spherical,

2. o(kl) = ∞ for all k ∈ K, l ∈ L,

3. R = J ∪̇ J⊥ ∪̇ K ∪̇ L,

we say the pair (J, L) is R-admissible. For an R-admissible pair (J, L) define

T(J,L)(R) := J ∪̇ J⊥ ∪̇ K ∪̇ LwJ , called the twist of R by J .

Remark 2.14. If R is Coxeter generating, T(J,L)(R) is a Coxeter generating set

as well. See [2] for basic properties of twists as well as for a proof that T(J,L)(R)

is indeed Coxeter generating. Our condition (E) implies for admissible pairs

(J, L) that J either consists of one element or generates a finite dihedral group.

We will use the fact that in the case of |J | = 1 the diagram of T(J,L)(R) coincides

with the diagram of R, the same holds in the case J = {s, t}, o(st) even. It is

easy to see, that if R is sharp-angled, T(J,L)(R) is sharp-angled as well.

Two Coxeter generating sets R, R̄ are twist-equivalent, R ∼t R̄, if there exists

a series of Coxeter generating sets R = R0, . . . , Rm = R̄, such that Ri+1 is

a twist of Ri by some J ⊂ Ri for i = 0, . . . ,m − 1. The relation ∼t is an

equivalence relation on the set of sharp-angled Coxeter generating sets (cf. [2,

Chapter 4]).
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As we can interpret twists as operations on the diagram of a Coxeter group,

we will need that condition (E) is preserved by twists:

Lemma 2.15. Suppose R, R′ are Coxeter generating sets for W and (J, L) is an

R-admissible pair such that R′ = T(J,L)(R). Then R satisfies (E) if and only if R′

satisfies (E).

Proof. Assume R satisfies (E), consider an admissible pair (J, L). Following the

above remark, the diagram of R′ is the same as the diagram of R if |J | = 1

or J = {s, t} with o(st) even. The only remaining case is J = {s, t} and o(st)

odd. Let R = J ∪ J⊥ ∪ L ∪ K, and assume the diagram of R′ contains one of

the rank 3 diagrams in question, say U = {r1, r2, r3}. The set U cannot contain

elements from both K and L, since their product has infinite order. The diagram

of J ∪ J⊥ ∪ LwJ ⊂ R′ is the same as the one of J ∪ J⊥ ∪ LJ ⊂ R, J ∪ J⊥ being

wJ invariant. Therefore R′ satisfies (E), since R satisfies (E). By symmetry R′

satisfying (E) implies that R satisfies (E), which completes our proof. �

3 A characterization of geometric sets

In this section we will characterize geometric sets using the distances between

reflections. For this purpose we will introduce the distance matrix of a Coxeter

generating set, as already used in [6]. In particular we will show that R is

already conjugate to S if no element in R or no longest reflection in any rank 2

group separates any two fundamental reflections.

Definition 3.1. Say we have a Coxeter generating set R = {ri | i ∈ I} for a

finite I. Define the distance matrix D1(R) = (δ(ri, rj))i,j∈I . For two Coxeter

generating sets R = {ri | i ∈ I}, S = {si | i ∈ I} of same rank |I| we say

D1(R) < D1(S) if there is a permutation σ : (i, j) 7→ (i′, j′) in Sym(I × I) such

that δ(ri′ , rj′) ≤ δ(si, sj) for all i, j ∈ I, and δ(ri′ , rj′) < δ(si, sj) for at least one

pair (i, j).

We can use the distance matrix to characterize if a Coxeter generating set is

conjugate to S by adapting Lemma 2.8 from [6]:

Theorem 3.2. Suppose R ⊂ SW is a Coxeter generating set which is sharp-angled,

irreducible and non-spherical of finite rank at least 3. If R satisfies (E), the follow-

ing are equivalent:

(a) R is geometric;

(b) R◦ = ∅ and R◦
2 = ∅;
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(c) R is conjugate to S;

(d) D1(R) = 0.

For the definition of R◦, R◦
2, see Section 2.5. Almost all of the arguments to

prove this can be copied from [6], but the implication (b) ⇒ (a) does not follow

immediately. As a main step in this deduction, we will prove the following

proposition:

Proposition 3.3. Let (W,S) be a Coxeter system, R ⊂ SW a Coxeter generating

set for W such that R is irreducible, non-spherical, sharp-angled and the diagram

for (W,R) satisfies condition (E). If {r ∈ R | ∃u, v ∈ R : r ∈ [u, v]} = ∅ and

R◦
2 = ∅, then R is conjugate to S.

To show this, it suffices to show, under our conditions on R, the existence of

a weakly 2-geometric set of roots associated to R. We can then make use of [3,

Theorem 4.2]:

Theorem 3.4 ([3]). Any finite, universal and weakly 2-geometric set of reflections

is geometric.

Note that the above mentioned result can also be deduced from [5], as the

authors also pointed out in [3]. Yet the version cited is more applicable due to

the geometric language it uses.

We will prove that trees and chord-free circuits of arbitrary length in the

diagram yield geometric sets of roots if R satisfies {r ∈ R | ∃u, v ∈ R : r ∈
[u, v]} = ∅ and R◦

2 = ∅. Furthermore, for the rest of this section assume that

(W,S) is a Coxeter system and R ⊂ SW is a sharp-angled and universal set

which satisfies {r ∈ R | ∃u, v ∈ R : r ∈ [u, v]} = ∅ and R◦
2 = ∅.

Lemma 3.5. Let R be irreducible and non-spherical. Assume the diagram of R is a

tree. Let r ∈ R, and choose an arbitrary root Hr associated to r. Then there exists

a unique weakly 2-geometric set of roots Φ associated to R such that Hr ∈ Φ. In

particular, R is geometric.

Proof. Choose an arbitrary root Hr associated to r. Consider the distance d in

the diagram. We prove the lemma by induction on max{d(r, r′) | r′ ∈ R}. If the

maximal distance to r is 0, we are done, since R = {r}. Assume we have proved

the lemma for all R′ and r ∈ R′ satisfying max{d(r, r′) | r′ ∈ R′} = m and we

have a set R and an element r ∈ R satisfying max{d(r, r′) | r′ ∈ R} = m + 1.

So we can find a weakly 2-geometric set of roots Φ̄ associated to R̄ = {r̄ ∈ R |
d(r, r̄) ≤ m} containing Hr, using that the diagram of R̄ is also a tree. Consider

t ∈ R \ R̄. Since the diagram of R is a tree and R̄ is connected, there is exactly
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one t̄ ∈ R̄ such that o(tt̄) > 2 and o(tt′) = 2 for all other t′ ∈ R \{t}. In Φ̄ a root

Ht̄ associated to t̄ is contained, and there exists a unique root Ht associated to

t satisfying that {Ht, Ht̄} is a weakly geometric pair. Since o(tr′) = 2 for all

r′ ∈ R \ {t̄}, Φ̄ ∪ {Ht | t ∈ R \ R̄} is a weakly 2-geometric set for R containing

Hr. By Theorem 3.4, R is geometric. �

Definition 3.6. A diagram of a universal set R is a chord-free circuit of length

m + 1, if there is an indexing R = {r0, . . . rm} such that o(riri+1) > 2 for

i = 0, . . . ,m− 1, o(r0rm) > 2, and o(rirj) = 2 for all other i 6= j.

Lemma 3.7. Let R be irreducible and non-spherical. Assume the diagram of R is

a chord-free circuit of rank 5 or greater and does not contain irreducible spherical

rank 3 subdiagrams. Then R is geometric.

Proof. Denote R = {r0, . . . , rm} such that o(riri+1) > 2 for i = 0, . . . ,m− 1 and

o(rmr0) > 2, o(rirj) = 2 else.

The diagram of {r0, . . . , rm−1} is a tree, yielding with Lemma 2.6 a unique

geometric set of roots {H0, . . . , Hm−1}, where Hi is associated to ri. The

set {rm−3, rm−2, rm−1} is irreducible non-spherical, thus by Lemma 2.6 the

set {Hm−3, Hm−2, Hm−1} of associated roots is the unique geometric set of

roots and gives rise to a unique root Hm associated to rm such that the set

{Hm−3, Hm−2, Hm−1, Hm} is geometric. We have to show that H0, Hm is a

geometric pair, then the set {H0, . . . , Hm} is geometric.

Using the fact that {Hm−3, Hm−2, Hm−1, Hm} is unique geometric, by con-

sidering irreducible non-spherical sets whose diagrams are trees we get the fol-

lowing unique geometric sets of roots associated to the corresponding elements

in R:

{Hm−2, Hm−1, Hm}, {Hm−2, Hm−1, Hm, H ′
0}, {Hm−1, Hm, H ′

0},

{Hm−1, Hm, H ′
0, H

′
1}, {Hm, H ′

0, H
′
1}, {Hm, H ′

0, H
′
1, H

′
2}.

The last set is associated to {rm, r0, r1, r2}. Now {r0, r1, r2} is geometric with

unique geometric set {H0, H1, H2}, this shows Hi = H ′
i for i = 0, 1, 2 and in

particular {H0, Hm} is geometric. �

Lemma 3.8. Assume |R| = 3. Then R is geometric.

Proof. R is geometric by Lemma 2.5 if it is reducible. So let R be irreducible. If

R = {s, t, u} is 2-spherical, then it is geometric by [3]. Assume o(su) = ∞, then

there is a unique geometric pair of roots {Hs, Hu} associated to s, u. Assume

further all roots Ht associated to t satisfy that {Hs, Ht} is geometric, {Ht, Hu}
is not geometric. Then we already have t ∈ [s, u], contrary to our assumption
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on R. Thus, there must exist a root Ht such that {Hs, Ht, Hu} is 2-geometric

and thus geometric. �

For the next lemma we omit the properties {r ∈ R | ∃u, v ∈ R : r ∈ [u, v]} =

∅, R◦
2 = ∅ on R.

Lemma 3.9. Let s, t, u, v ∈ R. Let 2 < o(uv) < ∞, o(st) = ∞, s, t /∈ {u, v}⊥.

Let Hs, Ht, Hu, Hv be roots associated to s, t, u, v, such that the sets {Hs, Hu, Hv}
and {Ht,−Hu,−Hv} are geometric. Let F = Hu ∩Hv, F ′ = −Hu ∩ −Hv. Then

(a) C(s) ∩ F 6= ∅,

(b) H(uv, F ) = −H(uv, F
′),

(c) uv, vu ∈ [s, t].

Proof. For (a) we have that {Hs, Hu, Hv} is geometric, therefore Hs∩Hu∩Hv 6=
∅ and is a fundamental domain for 〈s, u, v〉. This fundamental domain contains

chambers of C(s), proving our first statement. For (b) we note that H(uv, F )

is well-defined. Furthermore we have F ′ = w{u,v}.F , which proves (b). Using

s, t /∈ {u, v}⊥, we gain o(uvs) = ∞ = o(uvt), therefore (b) yields H(uv, s) =

−H(uv, t) and (c) holds. �

Lemma 3.10. Let R be irreducible and non-spherical of rank 4 satisfying condi-

tion (E). Assume the diagram of R is a chord-free circuit. Then R is geometric.

Proof. The result is clear if R = {s, t, u, v} is 2-spherical by [3]. Say o(su) =

o(tv) = 2, since the diagram of R is a chord-free circuit and assume further

o(st) = ∞. If o(uv) = ∞ and o(tu), o(vs) are finite, the diagram is a chord-free

circuit in the sense of [8] and therefore geometric.

If o(tu), o(vs) are infinite as well, the diagram is right-angled. In this setting,

every pair {Hs, Hu} of roots associated to s, u is geometric, and we can make

the choice Hs := H(s, t) = H(s, v) and Hu := H(u, t) = H(u, v). The equality

H(s, t) = H(s, v) holds since o(tv) = 2 < ∞ and H(s, t) = H(s,At,v) = H(s, v)

for a spherical residue At,v stabilized by 〈t, v〉. In the same way we can choose

Ht := H(t, s) = H(t, u) and Hv := H(v, s) = H(v, u). The set {Hs, Ht, Hu, Hv}
is 2-geometric by construction. The intersection Hs ∩ Ht ∩ Hu ∩ Hv ∩ At,v

is not empty, since At,v ⊂ Hs ∩ Hu, furthermore At,v ∩ Ht ∩ Hv 6= ∅, and

{Hs, Ht, Hu, Hv} is geometric, thus R is geometric.

If o(tu) is finite, o(vs) infinite, consider v, s instead of s, t and t, u instead of

u, v. So we can assume o(st) = ∞ > o(uv).

In this case we have a unique geometric pair of roots {Hs, Ht} associated to

s, t. We denote Hu, Hv the unique roots associated to u, v such that {Hs, Ht, Hu}



Coxeter groups without small triangle subgroups 123

is geometric and {Hs, Ht, Hv} is geometric. Assume {Hu, Hv} is not a geomet-

ric pair. Then {Ht, Hu,−Hv} is 2-geometric as well as {Hs,−Hu, Hv}. If both

sets are geometric, we can use Lemma 3.9 and have uv, vu ∈ [s, t], in contra-

diction to R◦
2 = ∅. If both sets are 2-geometric but not geometric, the sets

{−Hs,−Hv, Hu}, {−Ht, Hv,−Hu} are each geometric, and the same argument

holds.

So assume {Hs, Hv,−Hu} and {−Ht, Hv,−Hu} are geometric. This is a con-

tradiction if o(tu) = ∞, since then −Hu cannot be part of a geometric pair

with any root associated to t, {Ht, Hu} is the only geometric pair associated to

these roots. So we assume o(tu) < ∞. Spherical rank 2 residues stabilized by

〈s, u〉 (say As,u), 〈u, v〉 (say Au,v) are contained in H(tu, Au,v) = H(tu, v) =

H(tu, s) = H(tu, As,u), else tu ∈ [s, v]. Now As,u, Au,v have nonempty inter-

section with both roots associated to u, therefore both residues have nonempty

intersection with one of the standard fundamental domains for the 〈t, u〉 ac-

tion. The reflection tu separates the two fundamental domains for this ac-

tion. If As,u, Au,v are separated by t, such that H(t, As,u) = −H(t, Au,v), they

have nonempty intersection with different fundamental domains and tu ∈ [s, v]

holds. So we have Ht = H(t, As,u) = H(t, Au,v). This contradicts the fact that

{−Ht, Hv,−Hu} is geometric, because this requires Au,v ⊂ −Ht.

Therefore Φ := {Hs, Ht, Hu, Hv} is a geometric set. �

Proof of Proposition 3.3. Choose an arbitrary reflection r ∈ R and a root Hr

associated to r. Consider an arbitrary reflection s ∈ R \ {r} and a path connect-

ing them in the diagram, say γs = (r = r0, . . . , rm = s). We define roots Hri

associated to ri, i > 0, inductively such that {Hri , Hri−1
} is a weakly geometric

pair. The root Hrm = Hs associated to s then does not depend on the choice of

the path γs, since all trees and chord-free circuits are geometric.

Since R is irreducible, we find for every s ∈ R a path γs connecting r and s

yielding a root Hs associated to s. The set Φ := {Hs | s ∈ R} is well-defined

and weakly 2-geometric, therefore R is geometric due to Theorem 3.4. �

The proven statement will allow us to characterize a geometric set by con-

sidering the sets {r ∈ R | ∃u, v ∈ R : r ∈ [u, v]} and R◦
2.

To complete the proof of the implication (b) ⇒ (a) in Theorem 3.2 we will

prove the useful property that {r ∈ R | ∃u, v ∈ R : r ∈ [u, v]} = ∅ if and only if

R◦ = ∅.

Definition 3.11. Let γ = (c0, . . . , cm) be a gallery in (C,P ). We say γ crosses

r ∈ SW , if there is an index 0 ≤ i < m such that H(r, ci) = −H(r, ci+1). In

this situation, {ci, ci+1} is a panel in Pr. It is easy to see that a minimal gallery

crossing r crosses r only once.
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Lemma 3.12. Let r, s, t ∈ SW . If a minimal gallery connecting C(s) to C(t)

crosses r, then δ(s, t) > δ(s, tr).

Proof. Let γ = (c0, . . . , cm) be this minimal gallery with c0 ∈ C(s), cm ∈ C(t),

i the index such that H(r, ci) = −H(r, ci+1). Then ci = r.ci+1 and γ =

(c0, . . . , ci = r.ci+1, . . . , r.cm) is a gallery of shorter length connecting C(s) to

C(tr). �

Lemma 3.13. Let R′ = {r0, . . . , rm} ⊂ SW and let {H0, . . . , Hm} be a set of roots

associated to the elements in R′. Assume D =
⋂m

i=0 Hi 6= ∅. If γ = (c0, . . . , cm) is

a gallery satisfying c0 /∈ D, cm ∈ D, then γ crosses one element in R′.

Proof. Assume not, then H(ri, c0) = H(ri, cm) for i = 0, . . . , rm. Since Hi =

H(ri, cm) for i = 0, . . . ,m, this yields c0 ∈
⋂m

i=0 Hi = D, contradicting our

assumptions. �

Lemma 3.14. Suppose we have a universal, sharp-angled set R ⊂ SW , {r, s, t} ⊂
R and r ∈ [s, t]. Then:

(a) If o(rs) = ∞ = o(rt), then δ(s, t) > δ(s, tr).

(b) If o(rs) < ∞ > o(rt), then δ(s, t) > δ(s, tr).

(c) If o(rs) < ∞ = o(rt), then δ(s, t) > δ(s, tr) or δ(r, t) > δ(r, ts).

Proof. Assertion (a) is obvious, since a minimal gallery connecting s, t crosses r.

For (b), if a minimal gallery emanating from s to t crosses r, we are done. Else

we can say that the minimal gallery γ = (c0, . . . , cm) with c0 ∈ C(s), cm ∈ C(t)

is included in a root Hr associated to r. We set {Hr, Hs} the geometric pair

associated to r, s such that γ ⊂ Hs and Ht the root associated to t such that

{Hs, Ht}, {−Hr, Ht} are geometric pairs. W.l.o.g. we can assume γ ⊂ Hr ∩Hs,

else exchange s and t.

We have cm ∈ Ht. Denote t′ = tr and let Ht′ = H(t′, cm). Then the pair

{r, t′} is geometric. Let H ′
t′ denote the root associated to t′ such that H ′

t′ =

H(t′, s). This is well-defined since o(st′) = ∞, using Lemma 2.7. Since H ′
t′ ∩Hr

is a fundamental domain for 〈r, t′〉 = 〈r, t〉 and C(s) ⊂ H ′
t′ , we can show H ′

t′ =

−Ht′ . Assume H ′
t′ = Ht′ , then cm ∈ C(t) ∩ H ′

t′ ∩ Hr = ∅, a contradiction. So

we find an index i < m satisfying ci ∈ H ′
t′ , ci+1 ∈ Ht′ and δ(s, tr) < δ(s, t).

For (c), let {Hr, Hs}, {−Hr,−Hs} be the geometric pairs of roots associ-

ated to r, s. Consider a minimal gallery γs = (c0, . . . , cm) from C(t) ∋ c0 to

C(s) ∋ cm. If it crosses r, then δ(s, t) > δ(s, tr). So assume γs does not

cross r. Furthermore we can assume that a minimal gallery γr = (c′0, . . . , c
′
k)

from C(t) to C(r) does not cross s, else δ(r, t) > δ(r, ts), as required. So we
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have δ(s, t) = m, δ(r, t) = k and we can assume k ≤ m. Then the gallery

r.γr = (r.c′0, . . . , r.c
′
k) connects C(tr) to C(r). If r.γr crosses s, we are done

since we find δ(tr, s) < k ≤ m = δ(s, t). Assume it does not cross s, then

C(tr) ⊂ F for a fundamental domain F = Hr ∩ Hs and a geometric pair

{Hr, Hs} associated to r, s, since r.c′0 ∈ F . But then {tr, r, s} are geometric,

and δ(t, s) = δ((tr)r, s) > δ(tr, s) holds. �

Corollary 3.15. Suppose we have R, {r, s, t} ⊂ R as in Lemma 3.14, r ∈ [s, t]. If

o(rs) < ∞ > o(rt) or o(rs) = ∞ = o(rt), then r ∈r [s, t]. If o(rs) < ∞ = o(rt),

r ∈r [s, t] or s ∈r [r, t].

Proof. This is immediate from Lemma 3.14 and the definition of reducible sep-

aration. �

Proof of Theorem 3.2. Assertion (a) implies the existence of a fundamental do-

main {c} for the W -action on C, c ∈ C(r) for all r ∈ R. This shows (a) ⇒
(d) and (a) ⇒ (c), the latter since c corresponds to an element w ∈ W and

R = Sw = wSw−1. The implication (b) ⇒ (a) follows from Proposition 3.3,

since R◦ = ∅ ⇔ {r ∈ R | ∃s, t ∈ R : r ∈ [s, t]} = ∅ by Corollary 3.15. If (c)

holds, R is geometric since S is geometric, so (c) ⇒ (a).

We show (d) ⇒ (b): Assume we have r ∈ R◦, then there exist s, t ∈ R such

that r ∈ [s, t], δ(sr, t) < δ(s, t) = 0, a contradiction. The same argument holds

if r′ ∈ [s, t] for an r′ ∈ R◦
2.

We proved (a) ⇔ (c); (a) ⇒ (d) ⇒ (b) ⇒ (a), thus the proposition holds. �

4 J -reductions

Throughout this section we will prove our main theorem using a reduction of

the distance matrix of R. The proof consists of the distinction of three cases,

dependent on the sets R◦
2 and R◦. These cases are described below. Recall from

Section 2.4 the definitions of R2 = {st ∈ RW | s, t ∈ R, 2 < o(st) < ∞},

R◦
2 = {st ∈ R2 | ∃u, v ∈ R \ {s, t} : st ∈ [u, v]}.

In this section we will always assume that R ⊂ SW is sharp-angled, universal,

irreducible and non-spherical of finite rank at least 3. We will also assume that

the diagram of R satisfies condition (E).

4.1 Proof of the main theorem

Proof of the Main Theorem. Let (W,S) be a Coxeter system, S irreducible non-

spherical satisfying (E), and let R be an irreducible, sharp-angled Coxeter gen-
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erating set. By considering the Cayley graph C of (W,R), we can switch the

roles of R and S. In [4, Corollary A.4] it is proved that if R is sharp-angled in

the Cayley graph of S, S is also sharp-angled in the Cayley graph of R. Thus

we can assume we have an arbitrary Coxeter system (W,S) and an irreducible

sharp-angled Coxeter generating set R satisfying (E).

We prove the theorem by induction on the entries in D1(R). If D1(R) = 0,

R is conjugate to S by Theorem 3.2.

So assume D1(R) > 0. Then by Theorem 3.2 R◦ 6= ∅ or R◦
2 6= ∅.

Case 1: If R◦
2 6= ∅, we will construct a sharp-angled Coxeter generating set R̄

in Section 4.4, resulting from R by a series of twists. We will show in Proposi-

tions 4.18 or 4.22 that R̄ satisfies D1(R̄) < D1(R).

Case 2: Assume R◦
2 = ∅ and there exist s, t ∈ R such that o(st) is even, Hs ∩

Ht = F is a standard fundamental domain for 〈s, t〉 and C(r) ⊂ H(st, F ) ∩
−H(ts, F ) for all r ∈ R \ ({s, t} ∪ {s, t}⊥). In Section 4.6 we will construct a

sharp-angled Coxeter generating set R̄, and we will show in Proposition 4.26

that D1(R̄) < D1(R) holds.

Case 3: Assume R◦
2 = ∅ and there do not exist s, t ∈ R as in Case 2. Then we

construct a sharp-angled Coxeter generating set R̄ in Section 4.5, which again

satisfies D1(R̄) < D1(R), this will be shown in Proposition 4.25.

In every case we can find a Coxeter generating set R̄, twist-equivalent to

R and satisfying D1(R̄) < D1(R). Furthermore R̄ satisfies condition (E) by

Lemma 2.15. Using the induction hypothesis now implies that R̄ is already

twist equivalent to S, this proves our theorem. �

Before we can continue to prove the three mentioned cases in the proof in

Sections 4.4 to 4.6, we will need some more properties of longest reflections.

We will also need a more precise understanding of the Case (c) in Lemma 3.14,

dependent on the order of the product rs. These will be stated in Section 4.2.

We will then in Section 4.3 introduce the notion of interior separation, a

notion stronger than reducible separation. This concept is useful for handling

the cases occurring in the proof of the main theorem.

Remark 4.1. A note on the figures, which will occasionally be used in this

section to illustrate some of the geometric ideas behind the technical proofs:

We will depict the Cayley graph as a circle in the style of the Poincaré disc

model for the hyperbolic plane, even though in general the Cayley graph does

not result from a tessellation of a hyperbolic space.

We will always depict reflections of the Coxeter generating set we are cur-

rently considering as solid lines, attached to the boundary of the circle. If the
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context requires a certain root to be chosen, we will emphasize the correspond-

ing half space with short solid lines emanating from the reflection line. Two

lines intersecting means the product of the corresponding reflections having

finite order, and infinite order otherwise. Conjugates of reflections will be rep-

resented by dashed lines, we will use this in particular for reflections resulting

from the application of a twist. We will mark the transition caused by a twist as

a dotted arrow.

Note that the figures’ sole purpose is to give a geometric intuition to the

methods we use, they are not part of our proofs.

4.2 Longest reflections and reducible separation

In the following part we will prove further properties of longest reflections and

their products. We need this in particular for Lemma 4.4, which is necessary to

handle rotation twists. Furthermore, we will give criteria for when separation

implies reducible separation, based on the results in Lemma 3.14.

Lemma 4.2. Assume st, uv ∈ R2. If stuv has finite order greater than 2, then

v = t or uv = ts. In particular 2 < o(stut) < ∞ implies o(st), o(tu) ∈ {3, 4}.

Proof. Assume {s, t} and {u, v} are disjoint, {s, t} 6⊂ {u, v}⊥. Using [3, Table 1,

p. 529], computing the product of the longest roots shows the following facts.

First, we have o(stuv) = ∞ if two of o(su), o(tu), o(sv), o(tv) are greater or

equal to 3, the diagram is not a tree.

Second, if only one of the above mentioned orders is ≥ 3, assume o(tu) ≥ 3,

and the diagram is a tree, then due to condition (E) our Lemma holds as well.

So the sets {s, t}, {u, v} are not disjoint, assume we have the set {s, t, u}.

We will calculate the orders of the longest reflections. If two of the orders of

st, tu, su are ≥ 5, then all longest reflections in different rank 2 sets have infinite

order, in particular we can assume that the diagram is not a tree. Furthermore,

if o(st), o(tu) are both odd, there is nothing to show, since st = ts. So assume

one of the orders, say o(st), is even. A calculation shows tstu, tsut have infinite

order, showing our lemma.

The last assertion follows from condition (E), if one of the orders, say o(st),

is less than 5, (E) implies o(su) ≥ 3. Then a calculation yields o(stut) = ∞
whenever o(ut) ≥ 5. �

Lemma 4.3. Let {s, t} 6= {u, v} and st, uv ∈ R2. Then {st, uv} is geometric, with

geometric pair {H(st, Au,v), H(uv, As,t)}.
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Proof. If o(stuv) = ∞ or st,uv commute, the statement clearly holds. So let

2 < o(stuv) < ∞, by Lemma 4.2 we know t = v. By Lemma 4.2 the order is

infinite in case o(st) ≥ 5 or o(tu) ≥ 5, so we can assume o(st), o(tu) being 3

or 4.

Then st = tst and ut = tut. Now {s, u} is geometric with geometric pair

of roots {H(s,At,u), H(u,As,t)}. Thus the pair {H(tst, t.At,u), H(tut, t.As,t)} is

geometric as well. Using that At,u, As,t are stabilized by t proves the lemma. �

Lemma 4.4. Assume R◦
2 6= ∅. Then we can find s, t ∈ R with st ∈ R◦

2 such that

either st has odd order or such that st has even order and there exists a root H

associated to st satisfying:

Whenever xy ∈ R◦
2 with |{x, y} ∩ {s, t}| = 1, then Ax,y ⊂ H.

Proof. Assume for st ∈ R◦
2 the setup of o(st) even and H a root associated to st

such that Ax,y ⊂ −H, Ax′,y′ ⊂ H for xy, x
′
y′ ∈ R◦

2 and |{x, y} ∩ {s, t}| = 1 =

|{x′, y′} ∩ {s, t}|. If st does not satisfy one of these criteria, the lemma already

holds.

Construct a maximal sequence (r0, . . . , rm) with ri ∈ R2 (not necessarily in

R◦
2) such that:

(1) If ri = uv, then o(uv) is even and uv ∈ R◦
2 or vu ∈ R◦

2 hold, for i =

0, . . . ,m;

(2) if ri = uv, ri+1 = u′
v′ , then |{u, v} ∩ {u′, v′}| = 1 for i = 0, . . . ,m− 1;

(3) if ri+1 = uv, then riuv, rivu have infinite order for i = 0, . . . ,m− 1;

(4) for 0 ≤ i < m, H(ri, Ai−1) = −H(ri, Ai+1).

Here Ai is a spherical residue stabilized by 〈u, v〉 for ri = uv and A−1 := Ax′,y′ .

We build the sequence such that r0 = st or r0 = ts, thus the sequence is

nonempty. The conditions (3) and (4) imply H(ri, rj) are defined and equal

for all j < i. Therefore, C(ri+1) ⊂
⋂i

j=1 H(rj , rj+1) and in particular this se-

quence is finite, since R2 is finite.

So assume rm = uv, and w.l.o.g. we can assume uv ∈ R◦
2. Set H = H(uv, rj)

for j < m. Now assume we have ab ∈ R◦
2 with |{a, b} ∩ {u, v}| = 1 and Aa,b ⊂

−H.

If o(ab) is odd, we are done, so let o(ab) be even. In case o(uvab) = ∞ =

o(uvba) the sequence (r0, . . . , rm, rm+1 = ab) satisfies (1)–(4), contradicting

the maximality of the sequence. In case one of o(uvab) or o(uvba) is finite, by

Lemma 4.2 the products vuab and vuba have infinite order. For the sequence

(r0, . . . , rm−1, r
′
m = vu, ab) the statements (1), (2) and (3) hold by definition,
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for (4) we already have H(uv, Aj) = −H(uv, Aa,b) for all j < m. The re-

flections uv, vu both separate the fundamental domains F := Hu ∩ Hv and

F ′ := −Hu ∩ −Hv for one choice of a geometric pair {Hu, Hv} associated to

u, v. Since ab intersects either u or v by (2) and the same holds for rm−1, ab and

rm−1 each have nonempty intersection with one of the fundamental domains F

or F ′. Since uv separates Aj and Aa,b these fundamental domains are different,

therefore H(vu, Aj) = −H(vu, Aa,b) holds as well. This contradicts the max-

imality of the sequence (r0, . . . , rm−1, uv), proving the existence of a longest

reflection uv ∈ R◦
2 and an associated root H such that Aa,b ⊂ H whenever we

have ab ∈ R◦
2 with |{a, b} ∩ {u, v}| = 1. �

Lemma 4.5. Let r, s, t ∈ R, r ∈ [s, t], o(rs) even and finite, o(rt) = ∞. If C(t)

is not contained in a fundamental domain H1 ∩H2 for roots associated to rs, sr,

every minimal gallery connecting C(t) and C(s) or C(t) and C(r) is contained in

H(rs, t) ∩H(sr, t).

Proof. Assume γ = (c0, . . . , cm) is a minimal gallery connecting C(t) ∋ c0 to

C(r) ∋ cm crossing rs. Then γ′ = (c0, . . . , ci = rs.ci+1, . . . , rs.cm) for some

index i is a gallery of length less than m connecting C(t) and C(r). So assume

γ crosses sr. The root H(r, t) contains a fundamental domain H1 ∩ H2 for

roots associated to rs, sr not containing C(t). So there is an index i such that

ci /∈ H1 ∩H2, ci+1 ∈ H1 ∩H2. Since C(r) has no chambers in this fundamental

domain, there is an index j > i satisfying cj ∈ H1 ∩H2, cj+1 /∈ H1 ∩H2. But γ

cannot cross sr twice, so by Lemma 3.13 it crosses rs, and we are done. �

Lemma 4.6. Assume Case (c) of Lemma 3.14 and rs having even order. Denote

with H1, H2 roots associated to rs, sr such that H1 ∩ H2 =: F is a fundamental

domain for 〈s, r〉 and such that H(s, F ) = H(s, t), H(r, F ) = H(r, t). Then:

(a) If C(t) ⊂ F , then δ(r, ts) < δ(r, t) and δ(s, tr) < δ(s, t).

(b) If C(t) ⊂ −H1 ∩H2, then δ(r, ts) < δ(r, t).

(c) If C(t) ⊂ H1 ∩ −H2, then δ(s, tr) < δ(s, t).

Proof. For (a), consider a minimal gallery γr = (c0, . . . , cm) emanating from

t to r. We have C(s) ∩ F = ∅ = C(r) ∩ F . Thus, γ must cross rs or sr by

Lemma 3.13 and cannot cross rs, since rsr = rrs holds. Since C(r) ∩ F = ∅,

there is an index i satisfying ci ∈ H2, ci+1 ∈ −H2. Consider the gallery s.γr =

(s.c0, . . . , s.ci, s.ci+1, . . . , s.cm), which is a minimal gallery connecting ts and rs.

So rs = rsr holds, yielding a gallery γ′ = (s.c0, . . . , s.ci = srs.ci+1, . . . , srs.cm)

of length less than m connecting sts to r. The same holds for a gallery emanat-

ing from t to s.
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In the case of (b) a minimal gallery connecting t and r crosses s, since C(r) ⊂
−H(s, t) ∪ H1 holds and a minimal gallery cannot cross rs. The same holds in

the case of (c). �

Lemma 4.7. Assume Case (c) of Lemma 3.14 and rs having odd order. If δ(t, r) ≤
δ(t, s), then δ(s, tr) < δ(s, t) and r ∈r [s, t] holds.

Proof. Let γ be a minimal gallery connecting C(s) to C(t). The result is im-

mediate, if γ crosses r. So assume γ does not cross r. Then r.γ is a gallery

connecting C(tr) to C(sr). Now we can have the situation of C(tr) being in

a standard fundamental domain Hr ∩ Hs for {r, s} and thus r.γ crosses s by

Lemma 3.13. Otherwise C(tr) is not contained in such a fundamental domain.

A minimal gallery γ′ connecting C(r) and C(t) cannot cross s due to our as-

sumption δ(t, r) ≤ δ(t, s). We conclude that r.γ′ emanates from C(r) to C(tr),

crosses s and the fact δ(t, r) ≤ δ(t, s) gives rise to a gallery of length less than

δ(t, r) connecting C(s) and C(tr), as required. �

Lemma 4.8. Let r, s, t ∈ R. Then δ(s, tr) < δ(s, t) holds if and only if r ∈r [s, t].

Proof. If r ∈r [s, t], δ(s, tr) < δ(s, t) holds by definition. So assume δ(s, tr) <

δ(s, t). Since δ(s, t) > δ(s, tr) ≥ 0, o(st) = ∞. Furthermore we can sup-

pose o(rs), o(rt) > 2, else δ(s, t) = δ(s, tr). Consider the geometric pair of

roots {Hs, Ht} associated to s, t. Assume there is a root Hr such that {Hr, Hs},

{Hr, Ht} is geometric, then the triple {Hr, Hs, Ht} is already geometric. Let

t′ = tr, then o(t′s) = ∞ and {H(t′, s),−Hr} is a geometric pair. Now H(s, t) =

H(s, t′) holds, and therefore we have r ∈ [s, t′]. Now we have δ(s, t′) < δ(s, t′
r
),

so by Corollary 3.15 we are in the situation o(rs) < ∞, o(rt) = o(rt′) = ∞,

else δ(s, t′) > δ(s, t′
r
) holds. Let F = Hs ∩ Ht be the fundamental domain of

〈r, s〉 containing C(t), then C(t′) ⊂ r.F . Now F ∪ r.F ⊂ H(rs, F ) ∩ H(sr, F )

and δ(r, t′) < δ(s, t′) holds. By Lemma 4.6 and Lemma 4.7 we have δ(s, t′) >

δ(s, t′
r
) = δ(s, t), a contradiction. �

4.3 Interior separation

Definition 4.9. Let r, s, t ∈ R, T ⊂ R2. For c ∈ C, set D(T, c) :=
⋂

t∈T H(t, c).

We have D(T, c) = C for T = ∅ and arbitrary c ∈ C. For D := D(T, c) define

CD(u) := C(u) ∩D for u ∈ SW .

We say r ∈D [s, t] if H(r, CD(s)), H(r, CD(t)) are well-defined (i.e. CD(s),

CD(t) are not empty and contained in a unique root associated to r) and they

satisfy H(r, CD(s)) = −H(r, CD(t)).
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Note that since D is convex, it contains any gallery from CD(s) to CD(t).

Since those are on two different sides of r if r ∈D [s, t], such a gallery crosses r,

and C(r) ∩D 6= ∅. If on the other hand a minimal gallery from CD(s) to CD(t)

in D crosses r and those roots are well-defined, r ∈D [s, t] holds.

Example 4.10. If r ∈ [s, t], with o(rs) = ∞ = o(rt) we have r ∈C [s, t]. Further-

more, if for x ∈ R2 we have a c ∈ C such that H(x, c) has nonempty intersection

with C(r), C(s), C(t), in particular if x commutes with r, s, t, for D = H(x, c)

we have r ∈D [s, t].

Now let r ∈ [s, t] such that o(r, s) < ∞ = o(rt). Define D = H(rs, t). Then

either r ∈D [s, t] or s ∈D [r, t] holds.

We will give a criterion on D for the roots H(r, CD(s)) to be well-defined.

Lemma 4.11. Let r, s ∈ R, T ⊂ R2, c ∈ C(r), D = D(T, c) such that C(s)∩D 6=
∅. If rs has infinite order, then H(r, CD(s)) exists. If 2 < o(rs) < ∞, H(r, CD(s))

exists if rs ∈ T or sr ∈ T .

Proof. If rs has infinite order, H(r, C(s)) exists and coincides with H(r, CD(s))

since CD(s) ⊂ C(s).

Now let 2 < o(rs) < ∞. If rs ∈ T or sr ∈ T , then assume there are chambers

c, d in CD(s) ⊂ C(s) with the property H(r, c) = −H(r, d). We can assume

that c, d are contained in opposite fundamental domains for the action of 〈r, s〉,
eventually considering s.c or s.d instead of c or d. So H(rs, c) = −H(rs, c

′), a

contradiction. Thus, CD(s) is contained in a unique root associated to r. �

Lemma 4.12. Let r, s, t ∈ R, D = D(T, c) such that r ∈D [s, t]. If o(rs) < ∞,

then rs ∈ T or sr ∈ T .

Proof. Since CD(s) is well-defined, CD(s) ⊂ H(t, d) for some d ∈ C and all

t ∈ T , furthermore CD(s) ∩ −H(r, CD(s)) = ∅ holds. Then there exists a u ∈ T

with the property H(u,CD(s)) = −H(u, cs) for all cs ∈ C(s) ∩ −H(r, CD(s)).

The product su therefore has finite order. The product ru has finite order as

well, assume not, then CD(s) ⊂ H(u, r), since C(r) ∩D 6= ∅, but H(u, r) does

not satisfy H(u,CD(s)) = −H(u, cs) for all cs ∈ C(s) ∩ −H(r, CD(s)). If ru =

ur, su = us both hold, both roots associated to u contain chambers in C(s) ∩
−H(r, CD(s)). So at least one of the orders must be greater than 2.

If o(ru) > 2, u ∈ {rx, xr} for some x ∈ R and since 2 < o(rs) < ∞ we get

o(su) = ∞ except for the case u ∈ {rs, sr}. If o(su) > 2, the same argument

holds, yielding rs ∈ T or sr ∈ T . �

Lemma 4.13. Let r, s ∈ R, D = D(T, c) such that H(r, CD(s)), H(s, CD(r))

exist. Then the pair {H(r, CD(s)), H(s, CD(r))} is geometric.
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Proof. The lemma is true if o(rs) is infinite or 2. Otherwise let x be a reflection in

{rs, sr} in T , which exists by Lemma 4.12. The root H(x,CD(s)) = H(x,CD(r))

contains a unique fundamental domain for the 〈r, s〉-action on C of the form

Hr ∩ Hs for some choice of geometric pair {Hr, Hs} associated to r, s, which

contains chambers from CD(s) and from CD(r). Therefore Hr = H(r, CD(s))

and Hs = H(s, CD(r)), proving the lemma. �

Lemma 4.14. Let r, s, t ∈ R, D = D(T, c) such that H(r, CD′(s)), H(r, CD′(t))

are defined. Let further T ′ ⊂ T , D′ = D(T ′, c), such that the roots H(r, CD′(s)),

H(r, CD′(t)) are defined. Then r ∈D [s, t] ⇔ r ∈D′ [s, t].

Proof. This results directly from D ⊂ D′ and CD(s) ⊂ CD′(s). �

The previous lemma allows us in particular for r ∈D [s, t] to retreat to the

case D = D(T, c) with T consisting of one element in rs, sr if the order o(rs) is

finite and one element from rt, tr, if o(rt) is finite.

Corollary 4.15. Let r, s, t ∈ R, D = D(T, c) such that r ∈D [s, t]. Then r ∈ [s, t].

Proof. It follows from Lemma 4.13 that we get two geometric pairs of roots

{H(r, CD(s)), H(s, CD(r))} and {H(r, CD(t)), H(t, CD(r))}. It suffices to show

o(st) = ∞, then we know H(t, CD(r)) = H(t, s) and H(s, CD(r)) = H(s, t)

since a minimal gallery connecting CD(s) to CD(t) crosses r.

If both orders rs, rt are infinite, there is nothing to show. If rs has finite

order, rt has infinite order, C(s) ⊂ H(r, CD(s)) ∪ −H(rs, CD(s)) and C(t) ⊂
H(rs, CD(s)) ∩ −H(r, CD(s)) hold. Thus there can be no spherical residue sta-

bilized by 〈s, t〉. Assume both orders rs, rt are finite. Let u ∈ {rs, sr} ∩ T ,

u′ ∈ {rt, tr} ∩ T , then

C(s) ⊂ (H(r, CD(s)) ∩H(u, t)) ∪ (−H(r, CD(s)) ∩ −H(u, t)),

C(t) ⊂ (H(r, CD(t)) ∩H(u′, s)) ∪ (−H(r, CD(t)) ∩ −H(u′, s))

hold, a spherical residue As,t stabilized by 〈s, t〉 is in the intersection of the two,

which is

(H(r, CD(s)) ∩H(u, t) ∩ −H(u′, s)) ∪ (H(r, CD(t)) ∩ −H(u, t) ∩H(u′, s)),

the union being disjoint. But (H(r, CD(s)) ∩ H(u, t) ∩ −H(u′, s)) contains no

panels stabilized by s, (H(r, CD(t) ∩ −H(u, t) ∩ H(u′, s)) contains no panels

stabilized by t, thus such a spherical residue cannot exist, proving o(st) = ∞.

�

Lemma 4.16. Let D = D(T, c), r, s, t ∈ R. Then r ∈D [s, t] implies r ∈r [s, t].
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Proof. Let r ∈D [s, t]. This implies CD(s), CD(t) are nonempty and in different

unique roots associated to r.

We know r ∈ [s, t] by Corollary 4.15. We have to show δ(s, t) > δ(s, tr) by

Lemma 4.8. This results directly from Lemma 3.14 for o(rs), o(rt) both infinite

or both finite.

In the case o(sr) even, o(rt) infinite we have rs ∈ T or sr ∈ T . The lemma

holds since minimal galleries between r, s, t never cross both longest reflections

in the even case by Lemma 4.5. We have yet to deal with the following case:

o(sr) < ∞ odd, o(rt) = ∞. If a minimal gallery γ between C(s), C(t) crosses r,

meaning γ ⊂ H(rs, t), we are done, so assume γ = (c0, . . . , cm), c0 ∈ C(s), cm ∈
C(t) does not cross r. Then it crosses rs. In particular, δ(s, t) > δ(r, t) holds,

else we find a gallery of length less than δ(r, t) connecting r, t. So we can use

Lemma 4.7 and have δ(s, tr) < δ(s, t), r ∈r [s, t] holds. �

4.4 {s, t}-reductions

Assume that R◦
2 6= ∅. This implies the rank of R being at least 4.

We consider the set J = {s, t} with st ∈ R◦
2. Recall the statement from

Lemma 4.4, that we can find st ∈ R◦
2 with o(st) odd or o(st) even and a

root H associated to st such that Ax,y ⊂ H whenever xy ∈ R◦
2 exists with

|{x, y} ∩ J | = 1.

First assume st having odd order. Since st ∈ R◦
2, we find u, v ∈ R with st ∈

[u, v]. We define sets Lv,Kv the following way: For r ∈ R \ (J ∪ J⊥) set r ∈ Lv

if H(st, r) = H(st, u), and set r ∈ Kv if H(st, r) = H(st, v). Since o(str) = ∞
for all r ∈ R \ (J ∪ J⊥), this construction yields R = J ∪̇ J⊥ ∪̇ Kv ∪̇ Lv. In

addition:

Lemma 4.17. The pair (J, Lv) defined as above is an R-admissible pair.

Proof. Since H(st, l) = −H(st, k) whenever l ∈ Lv, k ∈ Kv, we have st ∈ [l, k]

and o(lk) = ∞ holds for all such l, k. �

Proposition 4.18. Set R̄ := T(J,Lv)(R). Then D1(R̄) < D1(R).

Proof. For l ∈ Lv, k ∈ Kv a minimal gallery emanating from C(l) to C(k) crosses

st, yielding a shorter gallery emanating from C(lst) to C(k). Thus, δ(l, k) >

δ(lst , k) holds at least for the pair l = u, k = v. The relations in W yield sst = t,

tst = s. So we have for all l ∈ Lv: δ(l, s) = δ(lst , t), δ(l, t) = δ(lst , s). Then,

using a permutation mapping (l, s) to (l, t) and vice versa, we gain D1(R̄) <

D1(R). �
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Now assume o(st) is even, there exists a root H associated to st such that

Ax,y ⊂ H whenever xy exists with |{x, y} ∩ J | = 1 by Lemma 4.4. Let Hs, Ht

be roots associated to s, t such that Hs ∩Ht =: F is a fundamental domain and

H = H(st, F ). In case R◦
2 \ ({st, ts} ∪ {r ∈ R◦

2 | rst = str}) is empty, choose an

arbitrary geometric pair {Hs, Ht}.

We note that due to our assumptions on st, whenever we take uv ∈ R2,

|{u, v}∩J | = 1, with Au,v ⊂ −H, this yields C(r) ⊂ H(uv, F ) = H(uv, As,t) for

all r ∈ R\({u, v}∪{u, v}⊥), else uv ∈ [r, t] if s ∈ {u, v} or uv ∈ [r, s] if t ∈ {u, v}
in contradiction to our assumptions on st.

Define Ts = {st} ∪ {uv ∈ R2 | Au,v ⊂ −H, |{u, v} ∩ J | = 1}. Let c ∈ wJ .F ∩
C(s) ∩ C(t) and define Ds = D(Ts, c). Then for all r ∈ R satisfying C(r) ⊂
−H(st, F ) the intersection C(r) ∩Ds is nonempty and the roots H(s, CDs

(r)),

H(t, CDs
(r)) are defined by Lemma 4.11.

Now we define two sets Ls,Ks satisfying R = {s} ∪̇ s⊥ ∪̇ Ks ∪̇ Ls. For

r ∈ R \ ({s} ∪ s⊥), set r ∈ Ls if CDs
(r) 6= ∅ and s ∈Ds

[r, t]. Else r ∈ Ks.

Lemma 4.19. The pair ({s}, Ls) is an R-admissible pair.

Proof. Consider l ∈ Ls, k ∈ Ks. If CDs
(k) 6= ∅ we have s ∈Ds

[l, k]. This implies

s ∈r [l, k] by Lemma 4.16, o(lk) = ∞ holds and we are done. If CDs
(k) = ∅,

this implies C(k) ⊂ H(st, F ), and st ∈r [l, k] holds. Therefore o(lk) = ∞ holds

in all cases and ({s}, Ls) is an R-admissible pair. �

Set R′ := T({s},Ls)(R). Note that since o(lk) = ∞ for all l ∈ Ls, k ∈ Ks,

o(lsk) = ∞, this results from Lemma 2.7, or from the fact that the diagram is

not changed by a rank 1 twist. Furthermore for l ∈ Ls we have o(lt) = ∞ since

s ∈r [t, l], so o(lst) = ∞ as well. In consequence, the pair J ⊂ R′ and the

root H(ts, F ) still satisfy the property Ax,y ⊂ H(ts, F ) whenever xy exists with

|{x, y} ∩ J | = 1.

We apply the same for t. To be exact, we define

Tt = {ts} ∪ {uv ∈ R′
2 | Au,v ⊂ −H, |{u, v} ∩ J | = 1}

and set Dt = D(Tt, c). Again for all r ∈ R satisfying C(r) ⊂ −H(ts, F ) the

intersection C(r)∩Dt is nonempty and H(s, CDt
(r)), H(t, CDt

(r)) are defined.

Define Lt,Kt in the same manner. For r ∈ R′ \ ({t} ∪ {t}⊥) set r ∈ Lt if

CDt
(r) 6= ∅, r /∈ Ls

s and t ∈D′ [r, s]. Else r ∈ Kt.

Lemma 4.20. The pair ({t}, Lt) is an R′-admissible pair.

Proof. The proof copies from the proof of Lemma 4.19, except for l ∈ Lt, k ∈ Ls
s.

This case results from Lt ⊂ Ks, and as mentioned above o(lk) = ∞ follows from

Lemma 2.7 or the fact that rank 1 twists preserve the diagram. �
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Set R′′ := T({t},Lt)(R
′). Now define LJ ,KJ . For r ∈ R′′ \ (J ∪ J⊥) set

r ∈ LJ if C(r) ⊂ −H(st, F ) ∪ −H(ts, F ), else r ∈ KJ . Clearly (J, LJ ) is an

R′′-admissible pair and Ls
s ∪ Lt

t ⊂ LJ holds. We then define R̄ := T(J,LJ )(R
′′).

Remark 4.21. For the set KJ we have

KJ = {r ∈ R | C(r) ⊂ H(st, F ) ∩H(ts, F )} ⊂ Ks ∩Kt.

Define

L0 := {r ∈ R | CDs
(r) 6= ∅, s /∈D [t, r]} ∩ {r ∈ R′ | CDt

(r) 6= ∅, t /∈Dt
[s, r]}.

For r ∈ s⊥ one of r ∈ L0, r ∈ J⊥, r ∈ Kt or r ∈ Lt holds. If r ∈ Kt \ KJ ,

meaning C(r) ⊂ −H(ts, F ) and t /∈Dt
[s, r], either r ∈ Ks, and thus r ∈ L0

holds, or r ∈ Ls. Therefore we have:

R = J ∪̇ J⊥ ∪̇ Ls ∪̇ Lt ∪̇ L0 ∪̇ KJ ,

R′ = J ∪̇ J⊥ ∪̇ Ls
s ∪̇ Lt ∪̇ L0 ∪̇ KJ ,

R′′ = J ∪̇ J⊥ ∪̇ Ls
s ∪̇ Lt

t ∪̇ L0 ∪̇ KJ ,

R̄ = J ∪̇ J⊥ ∪̇ LswJ

s ∪̇ LtwJ

t ∪̇ LwJ

0 ∪̇ KJ

= J ∪̇ J⊥ ∪̇ Lst
s ∪̇ Lts

t ∪̇ LwJ

0 ∪̇ KJ .

The transition of R to R̄ in the case of st having order 4 is shown schematically

in Figure 1.

Proposition 4.22. The Coxeter generating set R̄ satisfies D1(R̄) < D1(R).

Proof. Distances to elements in J⊥ are preserved. The same holds for the dis-

tances from Ls to s, from Lt to t, from L0 and KJ to J . Since s ∈Ds
[l, t] for all

l ∈ Ls and t ∈Dt
[l′, s] for all l′ ∈ Lt, distances from Ls to t and from Lt to s are

reduced.

The sets Ls, KJ are separated by st, in the sense that each pair of elements

is separated by st, so δ(l, k) > δ(lst , k) holds for l ∈ Ls, k ∈ KJ by Lemma 3.12.

The same argument holds for Lt, KJ , which are separated by ts.

Assume we have l ∈ Ls, l′ ∈ L0. Then s ∈Ds
[l, l′] holds and δ(l, l′) >

δ(ls, l′) = δ(lst , l′wJ ). The same holds for l ∈ Lt, l
′ ∈ L0.

Let l ∈ Ls, l′ ∈ Lt. Then consider a minimal gallery γ = (c0, . . . , cm) of

length m, with c0 ∈ C(l), cm ∈ C(l′). Assume there are indices i, j such that

ci ∈ Hs, ci+1 ∈ −Hs, cj ∈ −Ht, cj+1 ∈ Ht, so we assume γ crosses s and t.

W.l.o.g. i < j. Then γ′ = (s.c0, . . . s.ci = ci+1, . . . , cj = t.cj+1, . . . , t.cm) is a

gallery of length m− 2 connecting C(ls) to C(l′
t
). We find

γ′′ := wJ .γ
′ = (st.c0, . . . , st.ci = wJ .ci+1, . . . , wJ .cj = ts.cj+1, . . . , ts.cm)
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Figure 1: {s,t}-reductions in the even case

is a gallery of length m− 2 connecting C(lst) to C(l′
ts), as required. Assume γ

does not cross s. This implies o(sl) < ∞, ls or sl ∈ Ts. Denote this reflection x

and set Dx = D({x, st}, c). We have s ∈Ds
[l, t] by construction of Ls. Conse-

quently s ∈Dx
[l, t] and s ∈Dx

[l, l′] since H(s, CDx
) = H(s, l′), hereby we gain

δ(ls, l′) < δ(l, l′). Due to t ∈Dt
[s, l′], t ∈Dt

[ls, l′] holds as well, since we have

δ(l, s) = 0 = δ(ls, s). This yields H(t, CDt
(s)) = H(t, CDt

(l)) = H(t, CDt
(ls))

and δ(ls, l′t) < δ(ls, l′) holds, as required.

Finally consider l ∈ L0, k ∈ KJ and a minimal gallery γ = (c0, . . . , cm),

c0 ∈ C(l), cm ∈ C(k). Clearly γ crosses st and ts. If it crosses s or t as well or

k commutes with s or t, wJ = sst = tts yields a shorter gallery emanating from

lwJ to k.

Now assume γ does not cross s and t and w.l.o.g. assume γ ⊂ Hs∩−Ht. The

other case, γ ⊂ −Hs ∩Ht, follows in the same manner substituting s and t. The

fact s /∈D [l, t] implies o(ls) < ∞, else γ crosses s. If l, s commute, we are done,

since γ crosses st, so assume o(ls) > 2.

In the case o(kt) = ∞, either C(k) ⊂ Ht, a contradiction to γ ⊂ −Ht, or

C(k) ⊂ −Ht. In the last case C(k) ⊂ H(st, F ) ∩H(ts, F ) implies C(k) ⊂ Hs =

−H(s, CDs
(l)). For Dx = D({ls}, c) we get s ∈Dx

[l, k], and δ(ls, k) < δ(l, k)

holds.

Now let 2 < o(kt) < ∞. Furthermore we can assume 2 < o(ks) < ∞ since

o(ks) = ∞ implies again s ∈Dx
[k, l]. Therefore the set {k, s, t} is geometric

with geometric set of roots {Hk, Hs, Ht}, since C(k) ⊂ H(st, F ) ∩ H(ts, F ).
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The root Hk associated to k satisfies Hk = H(k,As,t) = H(k, l). The pair

{H(s, CDs
(l)), H(l, CDs

(s))} is geometric by Lemma 4.13. For D := D({ls}, c)
the same holds. Since we can assume that Ds ⊂ D, we have H(l, CD(s)) =

H(l, As,t) = H(l, k) and H(s, CD(l)) = H(s, CD(t)) = −Hs yields s ∈ [l, k].

Now we can use Lemma 3.14 and have δ(ls, k) < δ(l, k), as required.

As a final step we need to show that there are at least two reflections whose

distance is reduced in R̄, using st ∈ R◦
2. If Ls or Lt is nonempty, the distance to

t or s is reduced. So assume they are empty, then L0 and KJ must be nonempty

and as shown above for l ∈ L0, k ∈ KJ the inequality δ(lwJ , k) < δ(l, k) holds.

�

4.5 r-reductions

We now assume that R satisfies R◦
2 = ∅ and R◦ 6= ∅. Throughout this section

we will also assume the following condition (∗) on R:

Consider an arbitrary pair s, t ∈ R, 2 < o(st) < ∞ even and u /∈ {s, t} ∪
{s, t}⊥. Denote with F := Hs∩Ht,−F := −Hs∩−Ht the standard fundamental

domains for the action of 〈s, t〉. Then either H(st, u) = H(st, F ) and H(ts, u) =

H(ts, F ) hold for all u ∈ R \ ({s, t} ∪ {s, t}⊥) or H(st, u) = H(st,−F ) and

H(ts, u) = H(ts,−F ) hold for all u ∈ R\ ({s, t}∪{s, t}⊥). In other words, C(u)

is not contained in the fundamental domain generated by the geometric pair of

roots associated to {st, ts}.

Since we further require R◦
2 to be empty, then all u /∈ {s, t} ∪ {s, t}⊥ are on

the same side of st, ts. Also we have {s, t} ∪ {s, t}⊥ 6= R, since R is irreducible.

So we see that such a u always exists.

Define T := R2. The intersection

D =
⋂

2<o(st)<∞,

u/∈{s,t}∪{s,t}⊥

H(st, u)

is nonempty, and for a c ∈ D we have D = D(T, c). Furthermore, CD(r) 6= ∅ for

all r ∈ R due to (∗) and H(r′, CD(r)) is defined for all r, r′ ∈ R with rr′ 6= r′r.

Lemma 4.23. If R◦ 6= ∅, there exist r, s, t ∈ R such that r ∈D [s, t].

Proof. The assumption R◦ 6= ∅ yields r, s, t such that r ∈r [s, t]. The roots

H(r, CD(s)), H(r, CD(t)) are well-defined, and r ∈D [s, t] holds if o(rs), o(st)

are both infinite. If they are both finite and a minimal gallery between C(s),

C(t) does not cross r, it is easy to see that it crosses rs or rt. We conclude that

every gallery not crossing rs or rt crosses r, proving r ∈D [s, t].
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Consider the case o(rs) < ∞, o(rt) = ∞. Let D′ = D({rs, sr}, c). If the

minimal gallery γ connecting CD′(s), CD′(t) crosses r or the minimal gallery

γ′ connecting CD′(r), CD′(t) crosses s, this yields r ∈D′ [s, t] or s ∈D′ [r, t]. If

neither γ nor γ′ cross r, s, the first chambers in γ, γ′ are not contained in the

fundamental domain F = H(r, CD′(s)) ∩ H(s, CD′(r)) ⊂ H(rs, c) ∩ H(sr, c)

by Lemma 3.13. Therefore, γ ⊂ −H(r, CD′(s)), γ′ ⊂ −H(s, CD′(r)) and

C(t) ⊂ −H(r, CD′(s)) ∩ −H(s, CD′(r)) = w{r,s}.F . But longest reflections sep-

arate the two standard fundamental domains, thus w{r,s}.F ∩ H(rs, c) = ∅, a

contradiction. �

Now let r ∈ R◦, s, t ∈ R such that r ∈D [s, t], these exist by Lemma 4.23. We

find an R-admissible pair ({r}, Lr) by defining Lr,Kr the following way. For

r′ ∈ R \ ({r} ∪ r⊥) we define r′ ∈ Lr ⇔ CD(r′) ⊂ H(r, CD(s)) and r′ ∈ Kr ⇔
CD(r′) ⊂ H(r, CD(t)). This yields a partition R = {r} ∪̇ r⊥ ∪̇ Lr ∪̇ Kr.

Lemma 4.24. ({r}, Lr) is an R-admissible pair.

Proof. Let l ∈ Lr, k ∈ Kr, then by construction r ∈D [l, k] and r ∈r [l, k] by

Lemma 4.16, thus o(lk) = ∞. Thus the pair ({r}, Lr) is admissible. �

Define for an r ∈ R◦ the set R̄ = T({r},Lr)(R). See Figure 2 for an example

of the above construction, with the property o(rs) < ∞ > o(rt). The longest re-

flections here give rise to a convex set D, which can be seen in the first depiction

as the space between the longest reflections sr, tr.

Figure 2: r-reductions using interior separation
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Proposition 4.25. The Coxeter generating set R̄ satisfies D1(R̄) < D1(R).

Proof. Let l ∈ Lt, k ∈ Kt, both sets are not empty since s ∈ Lt, t ∈ Kt. Then

r ∈D [l, k] and r ∈r [l, k] by Lemma 4.16. Thus, δ(lr, k) < δ(l, k). Distances to

r, r⊥ are preserved. �

4.6 r-reductions in an exceptional case

In order to reduce distances in every case, we have yet to deal with one case.

Assume we have R◦
2 = ∅ and R◦ 6= ∅. If we cannot apply a reduction as

constructed in Section 4.5, we can find J = {s, t}, 2 < o(st) < ∞ even, together

with a standard fundamental domain F = Hs ∩ Ht, such that we can find an

r ∈ R \ (J ∪ J⊥) satisfying C(r) ⊂ H(st, F ) ∩ −H(ts, F ). Since R◦
2 = ∅ and

o(r′st) = o(r′ts) = ∞ for all r′ ∈ R \ (J ∪ J⊥), we have C(r′) ⊂ H(st, F ) ∩
−H(ts, F ) for all r′ ∈ R \ (J ∪ J⊥). In particular, if r commutes with t, it

commutes with s as well.

Define Ls = R \ (J ∪ s⊥), Ks = {t}, then ({s}, Ls) is clearly an R-admissible

pair. Let R̄ = T({s},Ls). An example of the sets R and R̄ for a sample of reflec-

tions in Ls can be found in Figure 3.

Figure 3: r-reductions in an exceptional case

Proposition 4.26. The Coxeter generating set R̄ satisfies D1(R̄) < D1(R).

Proof. For l ∈ Ls δ(l
s, t) < δ(l, t) holds by Lemma 4.6. �
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[8] B. Mühlherr and R. Weidmann, Rigidity of skew-angled Coxeter groups,

Adv. Geom. 2 (2002), no. 4, 391–415.

[9] J. G. Ratcliffe and S. T. Tschantz, Chordal Coxeter groups, Geom. Dedi-

cata 136 (2008), 57–77.

[10] M. Ronan, Lectures on buildings, University of Chicago Press, Chicago, IL,

2009, updated and revised.

Christian J. Weigel

MATHEMATISCHES INSTITUT, JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN, ARNDTSTRASSE 2, 35392 GIES-
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