

New quotients of the d -dimensional Veronesean dual hyperoval in $\mathsf{PG}(2d+1,2)$

Hiroaki Taniguchi Satoshi Yoshiara

Abstract

Let $d \ge 3$. For each $e \ge 1$, Thas and Van Maldeghem constructed a d-dimensional dual hyperoval in $\mathsf{PG}(d(d+3)/2, q)$ with $q = 2^e$, called the Veronesean dual hyperoval [5]. A quotient of the Veronesean dual hyperoval with ambient space $\mathsf{PG}(2d+1,q)$, denoted S_{σ} , is constructed in [3] and [4], using a generator σ of the Galois group $\operatorname{Gal}(\mathsf{GF}(q^{d+1})/\mathsf{GF}(q))$.

In this note, using the above generator σ for q = 2 and a *d*-dimensional vector subspace H of $\mathsf{GF}(2^{d+1})$ over $\mathsf{GF}(2)$, we construct a quotient $S_{\sigma,H}$ of the Veronesean dual hyperoval in $\mathsf{PG}(2d+1,2)$ in case d is even. Moreover, we prove the following: for generators σ and τ of the Galois group $\operatorname{Gal}(\mathsf{GF}(2^{d+1})/\mathsf{GF}(2))$,

- (1) S_{σ} above (for q = 2) is not isomorphic to $S_{\tau,H}$,
- (2) $S_{\sigma,H}$ is isomorphic to $S_{\sigma,H'}$ for any *d*-dimensional vector subspaces H and H' of $\mathsf{GF}(2^{d+1})$, and
- (3) $S_{\sigma,H}$ is isomorphic to $S_{\tau,H}$ if and only if $\sigma = \tau$ or $\sigma = \tau^{-1}$.

Hence, we construct many new non-isomorphic quotients of the Veronesean dual hyperoval in $\mathsf{PG}(2d+1,2).$

Keywords: dual hyperoval, Veronesean, quotient MSC 2000: 05Bxx, 05Exx, 51Exx

1. Introduction

Let *m* and *d* be integers with $m > d \ge 2$. For a prime power *q*, we denote by PG(m, q) an *m*-dimensional projective space over a finite field GF(q) with *q* elements. For a subset *W* of GF(q), we denote the set of non-zero elements of *W* by W^{\times} .



Throughout this note, we use the letter K to denote $GF(2^{d+1})$. We regard K and $K \times K = \{(x, y) \mid x, y \in K\}$ as vector spaces over GF(2) of dimension d + 1 and 2(d + 1) respectively. We sometimes identify $(K \times K) \setminus \{(0, 0)\}$ with PG(2d + 1, 2), regarding nonzero vectors of $K \times K$ as projective points of PG(2d + 1, 2).

The Galois group and the trace function for the extension $K/\mathsf{GF}(2)$ are denoted by $\operatorname{Gal}(K)$ and Tr, respectively, for short.

A family S of d-dimensional subspaces of PG(m, 2) is called a *d*-dimensional dual hyperoval in PG(m, 2) if it satisfies the following conditions:

- (D1) any two distinct members of S intersect in a projective point,
- (D2) any three mutually distinct members of S intersect trivially,
- (D3) the union of the members of S generates PG(m, 2), and
- (D4) there are exactly 2^{d+1} members of *S*.

The definition of higher dimensional dual hyperovals was first given by C. Huybrechts and A. Pasini in [2]. The space PG(m, 2) in (D3) above is called the *ambient space* of the dual hyperoval S. For d-dimensional dual hyperovals S_1 and S_2 in PG(m, 2), we say that S_1 is isomorphic to S_2 by a mapping Φ , if Φ is a linear automorphism of PG(m, 2) which sends the members of S_1 onto the members of S_2 .

In case d = 2, d-dimensional dual hyperovals over GF(2) are completely classified by Del Fra [1]. Hence, in this note, we assume that $d \ge 3$. We shall prove the following three theorems:

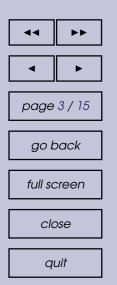
Theorem 1.1. Let σ be a generator of the Galois group Gal(K), and let $H := \{x \mid Tr(hx) = 0\}$ be a hyperplane of K for some $h \in K^{\times}$. For $s, t \in K$, define a vector b(s,t) of $K \times K$ by

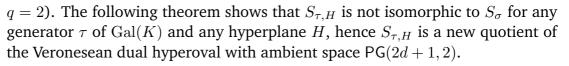
$$b(s,t) := \left(\operatorname{Tr}(ht)s^2 + st + \operatorname{Tr}(hs)t^2, s^{\sigma}t + st^{\sigma}\right).$$

Then, if d is even, the collection $S_{\sigma,H}$ of subsets $X(s) := \{b(s,t) \mid t \in K^{\times}\}$ of $\mathsf{PG}(2d+1,2) = (K \times K) \setminus \{(0,0)\}$ for $s \in K^{\times}$ together with the subset $X(\infty) := \{b(s,s) \mid s \in K^{\times}\}$ of $\mathsf{PG}(2d+1,2)$ is a d-dimensional dual hyperoval in $\mathsf{PG}(2d+1,2)$.

Theorem 1.2. The dual hyperoval $S_{\sigma,H}$ in PG(2d+1,2) with d even is a quotient of the Veronesean dual hyperoval in PG(d(d+3)/2,2).

In [3], for every $q = 2^e$ the first author constructed a quotient S_{σ} of the Veronesean dual hyperoval with ambient space PG(2d + 1, q) using a generator σ of the Galois group $Gal(GF(q^{d+1})/GF(q))$ (see Example 2.3 of this note in case





Theorem 1.3. Assume that d is even. Let σ and τ be generators of Gal(K), and let H and H' be hyperplanes of K. Then

- (1) The quotient S_{σ} is not isomorphic to $S_{\tau,H}$,
- (2) $S_{\sigma,H}$ is isomorphic $S_{\sigma,H'}$, and
- (3) $S_{\sigma,H}$ is isomorphic to $S_{\tau,H}$ if and only if $\sigma = \tau$ or $\sigma = \tau^{-1}$.

2. The construction of $S_{\sigma,H}$

We review a general construction of d-dimensional dual hyperovals in projective spaces over GF(2).

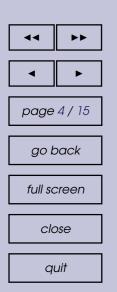
Let $n \ge d + 1$. We regard $\mathsf{GF}(2^n)$ and $\mathsf{GF}(2^n) \times \mathsf{GF}(2^n) = \{(x, y) \mid x, y \in \mathsf{GF}(2^n)\}$ as n and 2n-dimensional vector spaces over $\mathsf{GF}(2)$ respectively. Take a subspace W of $\mathsf{GF}(2^n)$ of dimension d + 1. Assume that a collection of vectors $b(s,t) \in \mathsf{GF}(2^n) \times \mathsf{GF}(2^n)$ for $s, t \in W^{\times}$ satisfies the following conditions:

- (B1) $b(s,s) = (s^2, 0)$ for each $s \in W^{\times}$,
- (B2) b(s,t) = b(t,s) for any $s, t \in W^{\times}$,
- (B3) $b(s,t) \neq (0,0)$ for any $s,t \in W^{\times}$,
- (B4) for $s, t, s', t' \in W^{\times}$, we have b(s, t) = b(s', t') if and only if $\{s, t\} = \{s', t'\}$,
- (B5) for each $s \in W^{\times}$, the subset $\{b(s,t) \mid t \in W^{\times}\} \cup \{(0,0)\}$ is a subspace of $\mathsf{GF}(2^n) \times \mathsf{GF}(2^n)$.

Then we can construct a dual hyperoval S in the following manner, although the dimension of its ambient space is not determined in general.

Proposition 2.1. Assume that b(s,t) $(s,t \in W^{\times})$ satisfy the above conditions (B1)–(B5). Inside $PG(2n - 1, 2) = (GF(2^n) \times GF(2^n)) \setminus \{(0,0)\}$, let us define subsets $X(s) := \{b(s,t) \mid t \in W^{\times}\}$ for $s \in W^{\times}$, and $X(\infty) := \{b(s,s) \mid s \in W^{\times}\}$. Then, X(s) and $X(\infty)$ are d-dimensional subspaces of PG(2n - 1, 2), and $S := \{X(s) \mid s \in W^{\times}\} \cup \{X(\infty)\}$ is a d-dimensional dual hyperoval.

Proof. By (B3), (B4) and (B5), the subset X(s) is a *d*-dimensional subspace of PG(2n - 1, 2) for each $s \in W^{\times}$. By (B1), the subset $X(\infty)$ is a *d*-dimensional subspace of PG(2n - 1, 2). For distinct $s, t \in W^{\times}$, we have $X(s) \cap X(t) = b(s, t)$ by (B2), (B3) and (B4). For $s \in W^{\times}$, $X(s) \cap X(\infty) = b(s, s)$ by (B1), (B3) and (B4). From these facts, no three mutually distinct members of *S* have a common



point. The cardinality |S| is equal to $|\{X(s) \mid s \in W^{\times}\}| + |\{X(\infty)\}| = 2^{d+1}$. Hence S is a d-dimensional dual hyperoval.

Example 2.2. Let e_i (i = 0, ..., d) be linearly independent vectors of $\mathsf{GF}(2^n)$. Choosing *n* to be sufficiently large, we may assume that the products $e_i e_j$ $(0 \le i \le j \le d)$ are linearly independent vectors of $\mathsf{GF}(2^n)$. Fix a generator σ of the Galois group $\mathsf{Gal}(\mathsf{GF}(2^n)/\mathsf{GF}(2))$. Then the vector subspace *W* of $\mathsf{GF}(2^n)$ (resp. R of $\mathsf{GF}(2^n) \times \mathsf{GF}(2^n)$) generated by e_i (i = 0, ..., d) (resp. $(e_i e_j, e_i^{\sigma} e_j + e_i e_j^{\sigma})$) $(0 \le i \le j \le d)$) is of dimension (d + 1) (resp. (d + 1)(d + 2)/2). We define b(s,t) for $s, t \in W$ by

$$b(s,t) := (st, s^{\sigma}t + st^{\sigma}).$$

Then b(s,t) for $s,t \in K^{\times}$ satisfy the conditions (B1)-(B5), and hence we have a d-dimensional dual hyperoval S in $\mathsf{PG}(d(d+3)/2,2) = \mathsf{PG}(R)$. See [3] and [7]. Yoshiara [7] proved that this S is isomorphic to the Veronesean dual hyperoval constructed by Thas and Van Maldeghem in [5]. We note that the b(s,t)'s satisfy the addition formula $b(s,t_1) + b(s,t_2) = b(s,t_1+t_2)$ for any $s,t_1,t_2 \in W$.

Example 2.3. Let σ be a generator of the Galois group Gal(K). In $K \times K$, let us define b(s,t) for $s,t \in K$ to be

$$b(s,t) := (st, s^{\sigma}t + st^{\sigma}).$$

Then, b(s,t) for $s,t \in K^{\times}$ satisfy the above conditions (B1)-(B5), and hence we have a *d*-dimensional dual hyperoval, denoted by S_{σ} , in PG(2d + 1, 2). See [3] and [7]. Yoshiara [7] proved that this S_{σ} is a quotient of the Veronesean dual hyperoval in PG(d(d+3)/2, 2). The vectors b(s,t) also satisfy the addition formula $b(s,t_1) + b(s,t_2) = b(s,t_1 + t_2)$ for $s,t_1,t_2 \in K$.

The proof of Theorem 1.1

In the rest of this section, we will establish Theorem 1.1, exploiting Proposition 2.1. Namely, we shall verify that the following vectors b(s,t) of $K \times K$ for $s, t \in K$ satisfy the conditions (B1)–(B5):

$$b(s,t) := \left(\operatorname{Tr}(ht)s^2 + st + \operatorname{Tr}(hs)t^2, s^{\sigma}t + st^{\sigma}\right),\tag{1}$$

where h is a fixed nonzero element of K and σ is a generator of the Galois group $\operatorname{Gal}(K)$. From definition (1), it is easy to see that b(s,t) = (0,0) if s = 0 or t = 0, and that the following addition formula holds: for any $s, t_1, t_2 \in K$, we have

$$b(s,t_1) + b(s,t_2) = b(s,t_1+t_2).$$
(2)

It is easy to verify the conditions (B1)–(B5), other than (B4). As for (B1), we have $b(s,s) = (\text{Tr}(hs)s^2 + s^2 + \text{Tr}(hs)s^2, 0) = (s^2, 0)$. The condition (B2) (even

quit

ACADEMIA PRESS when s = 0 or t = 0) is obviously satisfied in view of definition (1). As for (B3), if $s = t \in K^{\times}$ then $b(s, s) = (s^2, 0) \neq (0, 0)$ by (B1). On the other hand, if $s \neq t$, we have $s^{\sigma}t + st^{\sigma} \neq 0$, because 1 is the unique nonzero element of K fixed by a generator σ of the Galois group for K/GF(2). As $s^{\sigma}t + st^{\sigma}$ appears as the second component of b(s, t), we conclude that $b(s, t) \neq (0, 0)$ in this case as well. The condition (B5) follows from the addition formula (2).

In the rest of this section, we will verify (B4). For this purpose, take $s, t, s', t' \in K^{\times}$ satisfing b(s,t) = b(s',t'). Our end is to show that $\{s,t\} = \{s',t'\}$ under this assumption. We divide the cases according to the trace values $\operatorname{Tr}(hx)$ for x = s, t, s', t'.

We first consider the case where both $(\operatorname{Tr}(hs), \operatorname{Tr}(ht))$ and $(\operatorname{Tr}(hs'), \operatorname{Tr}(ht'))$ are not equal to (1, 1). Exchanging s for t (and s' for t') if necessary, we may assume that $\operatorname{Tr}(hs) = \operatorname{Tr}(hs') = 0$. Then the first component of b(s,t) is $\operatorname{Tr}(ht)s^2 + st$ (see definition (1)), which is written as s_1t_1 , if we set $s_1 := s$ and $t_1 := \operatorname{Tr}(ht)s + t$. The second component of b(s,t) is $s^{\sigma}t + st^{\sigma}$, which is written as $s_1^{\sigma}t_1 + s_1t_1^{\sigma}$. Similarly we have $b(s',t') = (s_2t_2, s_2^{\sigma}t_2 + s_2t_2^{\sigma})$, where $s_2 := s'$ and $t_2 := \operatorname{Tr}(ht')s' + t'$. Notice that none of s_i, t_i (i = 1, 2) is zero, because $b(s_i, t_i) = b(s, t) \neq (0, 0)$ (i = 1, 2) for $s, t \in K^{\times}$ by (B3). Thus we may apply the following fact (see e.g. [3]), which is straightforward to verify, using the fact that 1 is the unique nonzero element of K^{\times} fixed by σ .

Fact 2.4. Let $s_1, t_1, s_2, t_2 \in K^{\times}$. Then $(s_1t_1, s_1^{\sigma}t_1 + s_1t_1^{\sigma}) = (s_2t_2, s_2^{\sigma}t_2 + s_2t_2^{\sigma})$ if and only if $\{s_1, t_1\} = \{s_2, t_2\}$.

Then we have either $(s_2, t_2) = (s_1, t_1)$ or $(s_2, t_2) = (t_1, s_1)$. In the former case, we have s' = s and $\operatorname{Tr}(ht)s + t' = \operatorname{Tr}(ht')s + t$. From the latter equation, we have $\operatorname{Tr}(h(t+t'))s = t+t'$. Taking the trace of the product of h with the last equation, we have $0 = \operatorname{Tr}(h(t+t'))\operatorname{Tr}(hs) = \operatorname{Tr}(\operatorname{Tr}(h(t+t'))hs) = \operatorname{Tr}(h(t+t'))$ as $\operatorname{Tr}(hs) = 0$. Thus $\operatorname{Tr}(ht) = \operatorname{Tr}(ht')$ and t' = t. In the latter case, we have $s' = \operatorname{Tr}(ht)s + t$ and $s = \operatorname{Tr}(ht')s' + t'$. As $\operatorname{Tr}(hs) = \operatorname{Tr}(hs') = 0$, we have $0 = \operatorname{Tr}(ht)\operatorname{Tr}(hs) + \operatorname{Tr}(ht) = \operatorname{Tr}(ht)$ by taking the trace of the product of h with the former equation. Similarly, $0 = \operatorname{Tr}(ht')$ from the latter equation. Thus we have s' = t and s = t'. We established $\{s, t\} = \{s', t'\}$ in this case.

Hence we may assume that (Tr(hs), Tr(ht)) = (1, 1), exchanging (s, t) for (s', t') if necessary. Then the following three cases for (Tr(hs'), Tr(ht')) are remained to verify, exchanging s' for t' if necessary.

 $(\operatorname{Tr}(hs'), \operatorname{Tr}(ht')) = (1, 1), (0, 0) \text{ or } (1, 0).$

We will show that the first case is reduced to the case we already treated above. To see this, assume that Tr(hx) = 1 for all x = s, t, s', t'. Adding b(s, s') to the equation b(s,t) = b(s',t'), we have b(s,t+s') = b(s',t'+s) from the addition

formula (2). If t + s' = 0 or t' + s = 0, then we have (s', t') = (t, s) from this equation. Thus we may assume that none of s, t + s', s' and t' + s is zero. Now we have Tr(h(s)) = 1, Tr(h(s+t')) = 0, Tr(hs') = 1 and Tr(h(s+t')) = 0. Thus it follows from the conclusion of the above paragraph that we have $\{s, t + s'\} = \{s', t' + s\}$. As t' is nonzero, we have (s', t') = (s, t).

Similarly, we can reduce the second case above to the last case, by adding b(t,t') to b(s,t) = b(s',t'). In this case we have b(s+t',t) = b(s'+t,t') from the addition formula (2) with Tr(h(s+t')) = 1, Tr(ht) = 1, Tr(h(s'+t)) = 1 and Tr(ht') = 0.

Thus the last case above is the unique remaining case, where we have b(s,t) = b(s',t') for $s,t,s',t' \in K^{\times}$ with $\operatorname{Tr}(hs) = \operatorname{Tr}(ht) = \operatorname{Tr}(hs') = 1$ and $\operatorname{Tr}(ht') = 0$. Notice that up to here we did not use the assumption that d is even.

This case requires some technical calculations. To avoid somewhat cumbersome notation such as s', t', we replace the letters s, t, s', t' by u, ux, v and vyrespectively. With this notation, it suffices to show the following claim to verify (B4), and hence to complete the proof of Theorem 1.1. (Notice that the ambient space of $S_{\sigma,H}$ coincides with $K \times K$, as it contains $X(\infty) = \{(s^2, 0) \mid s \in K\}$ and K is spanned by $s^{\sigma}t + st^{\sigma}$ for $s, t \in K$; see the arguments in Lemma 3.3.)

Assume that *d* is even. For *u*, *x*, *v*, $x \in K^{\times}$ with $\operatorname{Tr}(hu) = \operatorname{Tr}(hxu) = \operatorname{Tr}(hv) = 1$ and $\operatorname{Tr}(hyv) = 0$, we have $b(u, xu) \neq b(v, yv)$.

This is obtained as a direct corollary of the following lemma, where we do not put any restrictions on xu and yv.

Lemma 2.5. Assume that d is even. If b(u, xu) = b(v, vy) for nonzero elements u, v, x and y of K with Tr(hu) = Tr(hv) = 1, then we have

 $\operatorname{Tr}(hxu) = \operatorname{Tr}(hyv).$

Proof. Assume b(u, xu) = b(v, yv) for $u, v, x, y \in K^{\times}$ with $\operatorname{Tr}(hu) = \operatorname{Tr}(hv) = 1$. If u = v, then 0 = b(u, xu) + b(u, yu) = b(u, (x + y)u) by equation (2), whence (B3) implies that (x + y)u = 0 and x = y. Thus the lemma holds in this case. In the following, we assume that $u \neq v$.

From the definition of b(s,t), the first and second components of b(u,xu) = b(v,yv) are respectively given by

$$a := \operatorname{Tr}(hxu)u^{2} + xu^{2} + x^{2}u^{2} = \operatorname{Tr}(hyv)v^{2} + yv^{2} + y^{2}v^{2} \text{ and}$$

$$c := x^{\sigma}u^{\sigma}u + xuu^{\sigma} = y^{\sigma}v^{\sigma}v + yvv^{\sigma}.$$

Thus $a/u^2 = \text{Tr}(hxu) + x + x^2$, $a/v^2 = \text{Tr}(hyv) + y + y^2$, $c/u^{\sigma+1} = x^{\sigma} + x$, and $c/v^{\sigma+1} = y^{\sigma} + y$. We easily have

$$c/u^{\sigma+1} + (c/u^{\sigma+1})^2 = a/u^2 + (a/u^2)^{\sigma},$$
(3)

$$c/v^{\sigma+1} + (c/v^{\sigma+1})^2 = a/v^2 + (a/v^2)^{\sigma},$$
(4)

since both sides of the equation coincide with $x + x^2 + x^{\sigma} + x^{2\sigma}$ in (3), and $y + y^2 + y^{\sigma} + y^{2\sigma}$ in (4). Let $\alpha := u^{\sigma-1} + v^{\sigma-1}$ and $\beta := u^{\sigma+1} + v^{\sigma+1}$. Since d+1 is odd and σ is a generator of the Galois group $\operatorname{Gal}(K)$, we can verify that $\alpha \neq 0$ and $\beta \neq 0$ in $\operatorname{GF}(2^{d+1})$ in the following manner: Assume to the contrary that $\alpha = 0$, then from $u^{\sigma}/u = v^{\sigma}/v$, we have $(u/v)^{\sigma} = (u/v)$, which implies that u = v, contradicting our assumption that $u \neq v$. If $\beta = 0$, then from $u^{\sigma}u = v^{\sigma}v$, we have $(u/v)^{-\sigma} = (u/v)$, hence $(u/v)^{\sigma^2} = (u/v)$. Since d + 1 is odd, σ^2 is a generator of the Galois group $\operatorname{Gal}(K)$, hence we have u/v = 1, that is, u = v, which also contradicts our assumption that $u \neq v$.

Adding (3) times $u^{2(\sigma+1)}$ and (4) times $v^{2(\sigma+1)}$, we have

$$c = [(u+v)^{2\sigma}/\beta]a + [(u+v)^2/\beta]a^{\sigma}.$$
(5)

Adding (3) times $u^{2(\sigma+1)}v^{\sigma+1}$ and (4) times $u^{\sigma+1}v^{2(\sigma+1)}$, we have

$$c^{2} = [(u^{\sigma+1}v^{\sigma+1}\alpha)/\beta]a + [(u^{2}v^{2}\alpha)/\beta]a^{\sigma}.$$
 (6)

Eliminating c from (5) and (6), we have

$$(u+v)^4 a^{2\sigma} + (u+v)^{4\sigma} a^2 + \alpha \beta (u^{\sigma+1} v^{\sigma+1} a + u^2 v^2 a^{\sigma}) = 0.$$
 (7)

Let us set $g := u^{\sigma+1}v^{\sigma+1}a + u^2v^2a^{\sigma}$. Then, from the defining equation of g, we have $a^{2\sigma} = (u^{2(\sigma+1)}v^{2(\sigma+1)}/u^4v^4)a^2 + (1/u^4v^4)g^2$. Using these g and $a^{2\sigma}$, we obtain from (7) that

$$(1/u + 1/v)^4 u^{2(\sigma+1)} v^{2(\sigma+1)} a^2 + (u+v)^{4\sigma} a^2 + (1/u + 1/v)^4 g^2 + \alpha \beta g = 0.$$
 (8)

We easily check that $(1/u + 1/v)^4 u^{2(\sigma+1)} v^{2(\sigma+1)} a^2 + (u+v)^{4\sigma} a^2 = (\alpha\beta)^2 a^2$. Using this equation, we finally have from (8) that

$$(1/u + 1/v)^4 g^2 + \alpha\beta g = \alpha^2\beta^2 a^2$$

Now, multiplying both sides of the equation by $(1/u + 1/v)^4/(\alpha^2\beta^2)$, we have

$$[(1/u + 1/v)^8/\alpha^2\beta^2]g^2 + [(1/u + 1/v)^4/\alpha\beta]g = (1/u + 1/v)^4a^2.$$

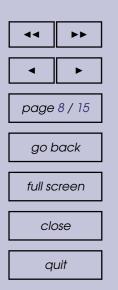
Hence we have $\text{Tr}((1/u + 1/v)^4 a^2) = 0$, that is, $\text{Tr}((1/u + 1/v)^2 a) = 0$, or equivalently $\text{Tr}(a/u^2) = \text{Tr}(a/v^2)$. Here we have

$$\operatorname{Tr}(a/u^2) = \operatorname{Tr}(\operatorname{Tr}(hxu) + x + x^2) = \operatorname{Tr}(hxu)\operatorname{Tr}(1) = \operatorname{Tr}(hxu)$$

as Tr(1) = d + 1 is odd. Similarly we have

$$Tr(a/v^2) = Tr(Tr(hyv) + y + y^2) = Tr(hyv)$$

Thus Lemma 2.5 is established.



3. Isomorphisms of some dual hyperovals

In this section, we study isomorphisms of the dimensional dual hyperovals constructed in Proposition 2.1, which satisfy the "addition formula" (equation (9)). We identify a nonzero vector of $K \times K$ with the projective point of $PG(K \times K) \cong$ PG(2d + 1, 2) spanned by it.

Proposition 3.1. For $i \in \{1,2\}$, let $S_i = \{X_i(t) \mid t \in K^{\times} \cup \{\infty\}\}$ be the *d*-dimensional dual hyperoval inside $PG(2d + 1, 2) \cong PG(K \times K)$ constructed in Proposition 2.1 from a collection $\{b_i(s,t) \mid s,t \in K^{\times}\}$ of vectors of $K \times K$ satisfying the conditions (B1)–(B5). Assume that $\{b_i(s,t) \mid s,t \in K^{\times}\}$ satisfies the following equations for all $s, t_1, t_2 \in K$:

$$b_i(s, t_1) + b_i(s, t_2) = b_i(s, t_1 + t_2).$$
 (9)

(In particular, $b_i(s, t) = 0$ if s = 0 or t = 0.)

Assume now that S_1 is isomorphic to S_2 by a map Φ on $K \times K$. Then there exists GF(2)-linear bijections F and L on K and a GF(2)-linear map G on K which satisfy the following:

- (a) $\Phi(x, y) = (F(x) + G(y), L(y))$ for all $x, y \in K$;
- (b) $\Phi(X_1(\infty)) = X_2(\infty)$ and $\Phi(X_1(s)) = X_2(\rho(s))$ for all $s \in K^{\times}$, where ρ is a bijection on K^{\times} given by $\rho(s) = F(s^2)^{1/2}$;
- (c) $\Phi(b_1(s,t)) = b_2(\rho(s), \rho(t))$ for all $s, t \in K^{\times}$.

Proof. By the construction given in Proposition 2.1,

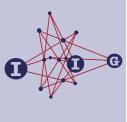
$$X_i(s) = \{b_i(s,t) \mid t \in K^{\times}\} \text{ for } s \in K^{\times} \text{ and}$$
$$X_i(\infty) = \{b_i(t,t) \mid t \in K^{\times}\}.$$

(Notice that we take d + 1 and $K \cong \mathsf{GF}(2^{d+1})$ respectively as n and W in Proposition 2.1.) From the definition of an isomorphism of dimensional dual hyperovals, the map Φ is a $\mathsf{GF}(2)$ -linear bijection on $K \times K$ which induces a bijection from the members $X_1(s)$ ($s \in K^{\times} \cup \{\infty\}$) of S_1 onto the members $X_2(s)$ ($s \in K^{\times} \cup \{\infty\}$) of S_2 . Thus there exist $\mathsf{GF}(2)$ -linear maps F, G, M and L on K such that

$$\Phi(x,y) = (F(x) + G(y), M(x) + L(y))$$
(10)

for all $x, y \in K$. Furthermore, there exists a bijection ρ on $K^{\times} \cup \{\infty\}$ which satisfies the following equation for all $t \in K^{\times} \cup \{\infty\}$:

$$\Phi(X_1(t)) = X_2(\rho(t)).$$
(11)



Take any distinct elements s and t of $K^{\times} \cup \{\infty\}$. As S_1 is a d-dimensional dual hyperoval, $X_1(s) \cap X_1(t)$ is a projective point. This point is mapped by Φ to a point contained in both $\Phi(X_1(s)) = X_2(\rho(s))$ and $\Phi(X_1(t)) = X_2(\rho(s))$. As S_2 is a d-dimensional dual hyperoval as well, $X_2(\rho(s)) \cap X_2(\rho(t))$ is a projective point. Hence for any $s, t \in K^{\times} \cup \{\infty\}$ with $s \neq t$, we have

$$\Phi(X_1(s) \cap X_1(t)) = X_2(\rho(s)) \cap X_2(\rho(t)).$$
(12)

For every distinct elements s, t in $K^{\times} \setminus \{\rho^{-1}(\infty)\}$, we have $X_1(s) \cap X_1(t) = b_1(s,t)$ and $X_2(\rho(s)) \cap X_2(\rho(t)) = b_2(\rho(s),\rho(t))$. Thus equation (12) implies

$$\Phi(b_1(s,t)) = b_2(\rho(s), \rho(t))$$
(13)

for every $s,t \in K^{\times} \setminus \{\rho^{-1}(\infty)\}$ with $s \neq t$. If $k := \rho^{-1}(\infty)$ lies in K^{\times} , then $X_1(k) \cap X_1(t) = b_1(k,t)$ and $X_2(\rho(k)) \cap X_2(\rho(t)) = X_2(\infty) \cap X_2(\rho(t)) = b_2(\rho(t),\rho(t))$ for any $t \in K^{\times} \setminus \{k\}$. Thus it follows from equation (12) that

$$\Phi(b_1(k,t)) = b_2(\rho(t), \rho(t))$$
(14)

for any $t \in K^{\times} \setminus \{\rho^{-1}(\infty)\}$, if $\rho^{-1}(\infty) \in K^{\times}$.

Next we shall show that $\rho(\infty) = \infty$. We will derive a contradiction, assuming that $\rho^{-1}(\infty) =: k$ lies in K^{\times} . Notice that $|K^{\times} \setminus \{k\}| = 2^{d+1} - 2 \ge 6$, as $d+1 \ge 3$. Fix an element *s* of $K^{\times} \setminus \{k\}$, and take an arbitrary element *t* in $K^{\times} \setminus \{k, s, s+k\}$. By the assumption (9) with i = 1, we have $b_1(t, k) + b_1(t, s) =$ $b_1(t, k + s)$. Applying the linear map Φ to both sides of this equation, we obtain $\Phi(b_1(t,k)) + \Phi(b_1(t,s)) = \Phi(b_1(t, k+s))$. As *t*, *s* and k + s are mutually distinct elements of $K^{\times} \setminus \{k\}$, we have $\Phi(b_1(t,s)) = b_2(\rho(t), \rho(s))$ and $\Phi(b_1(t, k+s)) =$ $b_2(\rho(t), \rho(k+s))$ by equation (13). On the other hand, $\Phi(b_1(t, k)) = b_2(\rho(t), \rho(t))$ by equation (14). Hence we obtain

$$b_2(\rho(t), \rho(t)) + b_2(\rho(t), \rho(s)) = b_2(\rho(t), \rho(k+s)).$$

Then the assumption (9) with i = 2 yields $b_2(\rho(t), \rho(s) + \rho(t) + \rho(k+s)) = 0$. As $\rho(t) \neq 0$, this implies

$$\rho(s) + \rho(t) + \rho(k+s) = 0.$$

Notice that this equation holds for any t in $K^{\times} \setminus \{k, s, k + s\}$. Thus we have $\rho(t_1) = \rho(t_2) = \rho(s) + \rho(s + k)$ for any elements t_1, t_2 of $K^{\times} \setminus \{k, s, k + s\}$. As $K^{\times} \setminus \{k, s, k + s\}$ contains $2^{d+1} - 4 \ge 2$ elements, this contradicts the bijectivity of ρ . Hence we established that $\rho(\infty) = \infty$.

It is now easy to verify the proposition. The claim (c) follows from equation (13), as $K^{\times} = K^{\times} \setminus \{\rho^{-1}(\infty)\}$. We also have $\Phi(X_1(\infty)) = X_2(\rho(\infty)) = X_2(\infty)$. Thus equation (12) implies that

$$\Phi((s^2, 0)) = \Phi(X_1(\infty) \cap X_1(s)) = X_2(\infty) \cap X_2(\rho(s)) = (\rho(s)^2, 0)$$

CADEMIA

for all $s \in K^{\times}$. Then it follows from equation (10) applied to $x = s^2$ and y = 0 that for any $s \in K^{\times}$ we have

$$F(s^2) = \rho(s)^2$$
 and $M(s^2) = 0$.

The claim (b) follows from the former equation above and the definition of ρ and the fact that $\rho(\infty) = \infty$. The latter equation above implies that M is the zero map. It follows from equation (10) that $\Phi(x, y) = (F(x) + G(y), L(y))$ for all $x, y \in K$. As Φ is a bijection, this implies that F and L are bijections on K. Thus the claim (a) is established.

Notice that both $S_1 = S_{\sigma}$ in Example 2.3 and $S_2 = S_{\sigma,H}$ in Theorem 1.1 are *d*-dimensional dual hyperovals in $PG(K \times K) = PG(2d + 1, 2)$ satisfying equation (9). To examine isomorphisms among these dimensional dual hyperovals, the following proposition turns out to be useful. It is worthwhile mentioning that this proposition about GF(2)-linear maps can be established using dimensional dual hyperovals.

Proposition 3.2. Let L and ρ be GF(2)-linear bijections on K. Assume that there exist generators σ and τ of the Galois group Gal(K) which satisfy

$$L(s^{\sigma}t + st^{\sigma}) = \rho(s)^{\tau}\rho(t) + \rho(s)\rho(t)^{\tau}$$
(15)

for all $s,t \in K^{\times}$. Then we have $\tau = \sigma$ or $\tau = \sigma^{-1}$. Moreover, there exists $\mu \in \text{Gal}(K)$ and $b \in K^{\times}$ such that $\rho(x) = bx^{\mu}$ for all $x \in K$.

Proof. First note that equation (15) holds even in cases s = 0 or t = 0, since L and ρ are linear. For $\alpha = \sigma$ or τ , we define S_{α} to be a collection $\{X_{\alpha}(t) \mid t \in K\}$ of subsets $X_{\alpha}(t) := \{(x, x^{\alpha}t + xt^{\alpha}) \mid x \in K\}$ of $K \times K$ for $t \in K$. By [6], S_{σ} and S_{τ} are *d*-dimensional dual hyperovals. Define a GF(2)-linear bijection Φ on $K \times K$ by

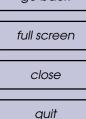
$$\Phi(x, y) = (\rho(x), L(y)).$$

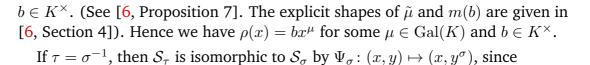
From the assumption (equation (15)), we have

$$(x, x^{\sigma}t + xt^{\sigma})^{\Phi} = \left(\rho(x), \rho(x)^{\tau}\rho(t) + \rho(x)\rho(t)^{\tau}\right) \in X_2(\rho(t)).$$

Thus Φ sends each $X_{\sigma}(t)$ to $X_{\tau}(\rho(t))$ ($t \in K$), whence it gives an isomorphism from S_{σ} to S_{τ} . Then, by [6, Proposition 11], we must have $\sigma = \tau$ or $\sigma = \tau^{-1}$.

Now, if $\tau = \sigma$, then $S_{\sigma} = S_{\tau}$ and Φ is an automorphism of S_{σ} stabilizing a *d*-subspace $X_{\sigma}(0) = X_{\tau}(0) = \{(x,0) \mid x \in K^{\times}\}$. Recall that the stabilizer of $X_{\sigma}(0)$ in $\operatorname{Aut}(S_{\sigma})$ is generated by the field automorphisms $\tilde{\mu} \colon (x,y) \mapsto (x^{\mu}, y^{\mu})$ for $\mu \in \operatorname{Gal}(K)$ and the multiplications $m(b) \colon (x, y) \mapsto (bx, b^{\sigma+1}y)$ for





$$\Psi_{\sigma}(X_{\tau}(t)) := \left\{ \left(x, (x^{\sigma^{-1}}t + xt^{\sigma^{-1}})^{\sigma} \right) \right\} = \left\{ (x, x^{\sigma}t + xt^{\sigma}) \right\} = X_{\sigma}(t).$$

Hence $\Psi_{\sigma} \circ \Phi \colon (x, y) \mapsto (\rho(x), L(y)^{\sigma})$ is an automorphism of \mathcal{S}_{σ} which stabilizes the *d*-subspace $X_{\sigma}(0)$. Then, by the conclusion in the above paragraph, we have $\rho(x) = bx^{\mu}$ for some $\mu \in \operatorname{Gal}(K)$ and $b \in K^{\times}$ in this case as well. \Box

The next lemma will be used in the proof of Theorem 1.3(1).

Lemma 3.3. For a hyperplane H_1 of $K \cong GF(2^{d+1})$ with $d \ge 4$ and a generator σ of the Galois group Gal(K), the subset $\{s^{\sigma}t + st^{\sigma} \mid s, t \in H_1\}$ spans K as a vector space over GF(2).

Proof. Take $\alpha \in K^{\times}$ with $H_1 = \{x \in K \mid \operatorname{Tr}(\alpha x) = 0\}$. Assume on the contrary that $X := \{s^{\sigma}t + st^{\sigma} \mid s, t \in H_1\}$ spans a proper subspace of K. Then X is contained in a hyperplane of K, and hence there is some $\beta \in K^{\times}$ such that $X \subset \{x \in K \mid \operatorname{Tr}(\beta x) = 0\}$. We have

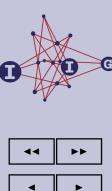
$$0 = \operatorname{Tr}(\beta(s^{\sigma}t + st^{\sigma})) = \operatorname{Tr}((\beta s^{\sigma} + \beta^{\sigma^{-1}}s^{\sigma^{-1}})t)$$

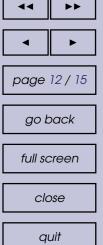
for all $t \in H_1$. Thus $\beta s^{\sigma} + \beta^{\sigma^{-1}} s^{\sigma^{-1}} = \varepsilon(s)\alpha$ for an element $\varepsilon(s)$ in GF(2) depending on $s \in H_1$. Then there exists a hyperplane K_1 of H_1 such that $\beta s^{\sigma} + \beta^{\sigma^{-1}} s^{\sigma^{-1}} = 0$ for all $s \in K_1$. The last equation for $s \in K_1^{\times}$ is equivalent to the condition that $s^{\sigma^2 - 1} = \beta^{1 - \sigma}$, which is equivalent to $s^{\sigma + 1} = \beta^{-1}$, because $\sigma - 1$ is bijective on K^{\times} for a generator σ of Gal(K). As this holds for every $s \in K_1^{\times}$, fixing an element $t \in K_1^{\times}$, we have $(s/t)^{\sigma+1} = \beta^{-1}/\beta^{-1} = 1$ for every $s \in K_1^{\times}$. Then σ^2 fixes s/t for every $s \in K_1$. Since σ is a generator of Gal(K), the subfield $L := \{x \in K \mid x^{\sigma^2} = x\}$ is a subfield of GF(2²). Thus we conclude that $2^{d-1} = |\{s/t \mid s \in K_1\}| \le |L| \le 4$, which contradicts the fact that $d \ge 4$.

4. $S_{\sigma,H}$ is a new quotient

In this section, we prove Theorem 1.2 and Theorem 1.3.

Proof of Theorem **1.2**. The Veronesean dual hyperoval is isomorphic to the dual hyperoval S in Example 2.2 by [7]. Thus we take the latter as a model of the Veronesean dual hyperoval, and denote it by S_V . As in Example 2.2, W denotes





a (d + 1)-dimensional vector subspace of $\mathsf{GF}(2^n)$ for sufficiently large n with a basis $\{e_0, e_1, \ldots, e_d\}$ such that $\{e_i e_j \mid 0 \le i \le j \le d\}$ are linearly independent. Moreover, R denotes the vector subspace of $\mathsf{GF}(2^n) \times \mathsf{GF}(2^n)$ spanned by $(e_i e_j, e_i^{\sigma} e_j + e_i e_j^{\sigma})$ for $1 \le i \le j \le n$. Then $\mathsf{PG}(R) = \mathsf{PG}(d(d+3)/2, 2)$ is the ambient space of S_V .

To distinguish S_V from $S_{\sigma,H}$, we denote b(s,t) in Example 2.2 by $b_V(s,t)$; namely $b_V(s,t) = (st, s^{\sigma}t + st^{\sigma})$ for $s,t \in W$. Thus S_V is constructed from $\{b_V(s,t) \mid s,t \in W^{\times}\}$ by the method in Proposition 2.1; namely, S_V is a collection of subspaces $X_V(t)$ for $t \in W^{\times} \cup \{\infty\}$, where $X_V(t) := \{b_V(s,t) \mid s \in W^{\times}\}$ $(t \in W^{\times})$ and $X_V(\infty) := \{b_V(s,s) \mid s \in W^{\times}\}$. We recall that $\{b_V(s,t)\}$ satisfies the addition formula (equation (9)): $b_V(s,t_1) + b_V(s,t_2) = b_V(s,t_1 + t_2)$ for $s, t_1, t_2 \in W$.

Choose a basis $\{\overline{e_0}, \ldots, \overline{e_d}\}$ for K over GF(2). To distinguish $S_{\sigma,H}$ from S_V , we denote b(s,t) in Theorem 1.1 by $b_H(s,t)$; namely

$$b_H(s,t) = \left(\operatorname{Tr}(hs)t^2 + st + \operatorname{Tr}(ht)s^2, s^{\sigma}t + st^{\sigma}\right).$$

We denote by $X_H(t)$ for $t \in K^{\times}$ (resp. $X_H(\infty)$) the subspace $\{b_H(s,t) \mid s \in K^{\times}\}$ (resp. $\{b_H(s,s) \mid s \in K^{\times}\}$). Then $S_{\sigma,H} = \{X_H(t) \mid t \in K^{\times} \cup \{\infty\}\}$. We recall that $\{b_H(s,t)\}$ satisfies the addition formula (equation (9)): $b_H(s,t_1) + b_H(s,t_2) = b_H(s,t_1+t_2)$ for $s, t_1, t_2 \in K$.

Note that $b_V(e_i, e_j) = (e_i e_j, e_i^{\sigma} e_j + e_i e_j^{\sigma})$ for $0 \le i \le j \le d$ are linearly independent over GF(2), since $\{e_i e_j \mid 0 \le i \le j \le d\}$ are linearly independent by assumption. Thus $b_V(e_i, e_j)$ ($0 \le i \le j \le d$) is a basis for the ambient space R of S_V . Hence there exists a GF(2)-linear map π from R to $K \times K$ which sends $b_V(e_i, e_j)$ to $b_H(\overline{e_i}, \overline{e_j})$ for $0 \le i \le j \le d$. There also exists a GF(2)-linear bijection κ from W to K sending e_i to $\overline{e_i}$ ($0 \le i \le d$). For any $s = \sum_{i=0}^d \alpha_i e_i$ ($\alpha_i \in \text{GF}(2)$) and $t = \sum_{i=0}^d \beta_j e_j$ ($\beta_j \in \text{GF}(2)$) in W, we have $b_V(s,t) = \sum_{i,j=0}^d \alpha_i \beta_j b_V(e_i, e_j)$ by the addition formula for S_V . From the addition formula for $S_{\sigma,H}$, we have

$$b_H(\kappa(s)) = b_H\left(\sum_{i=0}^d \alpha_i \kappa(e_i), \sum_{j=0}^d \beta_j \kappa(e_j)\right) = \sum_{i,j=0}^d \alpha_i \beta_j b_H(\overline{e_i}, \overline{e_j}).$$

As π is a GF(2)-linear map sending $b_V(e_i, e_j)$ to $b_H(\overline{e_i}, \overline{e_j})$ ($0 \le i \le j \le d$), we conclude that $\pi(b_V(s, t)) = b_H(s, t)$ for any $s, t \in W$. In particular, π bijectively maps $X_V(t)$ (resp. $X_V(\infty)$) onto $X_H(\overline{t})$ (resp. $X_H(\infty)$) for any $t \in W^{\times}$. Thus π gives a covering map of $S_{\sigma,H}$ by the Veronesean dual hyperoval S_V . \Box

Proof of Thorem **1.3**. Observe that $d \ge 4$, as d is even and $d \ge 3$. By Theorem **1.1**, we may define a d-dual hyperoval $S_{\tau,H}$ for a generator τ of the Galois group Gal(K) and a hyperplane H of K.

(1) Suppose that S_σ is isomorphic to S_{τ,H} by a mapping Φ for some generators σ and τ of Gal(K) and a hyperplane H of K. Choose h ∈ K[×] so that H = {x ∈ K | Tr(hx) = 0}. Define b₁(s,t) := (st, s^σt + st^σ) and b₂(s,t) := (Tr(ht)s² + st + Tr(hs)t², s^τt + st^τ) for s,t ∈ K. Then the addition formula (equation (9)) holds for both {b₁(s,t) | s,t ∈ K[×]} and {b₂(s,t) | s,t ∈ K[×]}. As S_σ and S_{τ,H} are constructed by the method in Proposition 2.1 from {b₁(s,t) | s,t ∈ K[×]} and {b₂(s,t) | s,t ∈ K[×]}, the assumptions of Proposition 3.1 are satisfied. We use the letters F, G and L to denote the GF(2)-linear maps on K in Proposition 3.1(a); namely, Φ(x,y) = (F(x) + G(y), L(y)) for all x, y ∈ K. From Proposition 3.1(a and c), the second component s^σt + st^σ of b₁(s,t) is mapped by L to the second component ρ(s)^τρ(t) + ρ(s)ρ(t)^τ of b₂(ρ(s), ρ(t)) = Φ(b₁(s,t)) for every s, t ∈ K[×], where ρ is a bijection given by ρ(x) = F(x²)^{1/2} (x ∈ K) by Proposition 3.1(b). Then it follows from Proposition 3.2 that ρ(x) = bx^μ (x ∈ K) for some b ∈ K[×] and μ ∈ Gal(K). In particular,

$$F(st) = \rho((st)^{1/2})^2 = b^2(st)^\mu = \rho(s)\rho(t)$$
(16)

for $s,t \in K^{\times}$. Comparing the first components of $b_1(s,t)$ and $\Phi(b_1(s,t)) = b_2(\rho(s),\rho(t))$, we have

$$F(st) + G(s^{\sigma}t + st^{\sigma}) = \operatorname{Tr}(h\rho(t))\rho(s)^{2} + \rho(s)\rho(t) + \operatorname{Tr}(h\rho(s))\rho(t)^{2}.$$

By equation (16), we then have

$$G(s^{\sigma}t + st^{\sigma}) = \operatorname{Tr}(h\rho(t))\rho(s)^{2} + \operatorname{Tr}(h\rho(s))\rho(t)^{2}$$
(17)

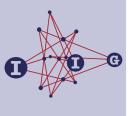
for every $s, t \in K^{\times}$. As *G* is linear, equation (17) holds for all $s, t \in K$. Notice that ρ is a GF(2)-linear bijection on *K* by the claims (a) and (b) of Proposition 3.1, whence $H_1 := \rho^{-1}(H)$ is a hyperplane of *K*. It follows from equation (17) that we have

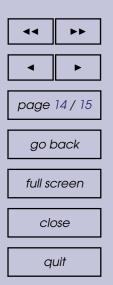
$$G(s^{\sigma}t + st^{\sigma}) = 0 \text{ for every } s, t \in H_1,$$
(18)

because $\rho(s)$ and $\rho(t)$ lie in *H* and hence

$$\operatorname{Tr}(h\rho(t))\rho(s)^2 + \operatorname{Tr}(h\rho(s))\rho(t)^2 = 0.$$

Now we apply Lemma 3.3 to conclude that $\{s^{\sigma}t + st^{\sigma} \mid s, t \in H_1\}$ spans K as a vector space over GF(2). (Note that $d \ge 4$.) This implies that G = 0 from equation (18). However, it then follows from equation (17) that $0 = \rho(s)^2 + \rho(t)^2$ and hence $\rho(s) = \rho(t)$ for every $s, t \in K \setminus H_1$. As $K \setminus H_1$ contains $2^d \ge 2$ elements, this contradicts the bijectivity of ρ .





(2) Choose α and b of K^{\times} satisfying $H = \{x \in K \mid \operatorname{Tr}((\alpha b)x) = 0\}$ and $H' = \{x \mid \operatorname{Tr}(\alpha x) = 0\}$. Define a GF(2)-linear bijection Φ on $K \times K$ by $\Phi(x, y) := (b^2 x, b^{\sigma+1} y)$. Then for any $s, t \in K$ we have

$$\begin{aligned} \Phi \big(\operatorname{Tr}((\alpha b)t)s^2 + st + \operatorname{Tr}((\alpha b)s)t^2, s^{\sigma}t + st^{\sigma} \big) \\ &= \big(\operatorname{Tr}((\alpha b)t)(bs)^2 + (bs)(bt) + \operatorname{Tr}((\alpha b)s)(bt)^2, (bs)^{\sigma}(bt) + (bs)(bt)^{\sigma} \big). \end{aligned}$$

Thus Φ induces an isomorphism from $S_{\sigma,H}$ with $S_{\sigma,H'}$.

(3) Let *h* be an element of K[×] with H = {x ∈ K | Tr(hx) = 0}. We first notice that the GF(2)-linear bijection on K×K given by Φ(x, y) := (x, y^{σ⁻¹}) (x, y ∈ K) induces an isomorphism between S_{σ,H} and S_{σ⁻¹,H}, because for s, t ∈ K we have

$$\Phi\left(\operatorname{Tr}(ht)s^{2} + st + \operatorname{Tr}(hs)t^{2}, s^{\sigma}t + st^{\sigma}\right)$$

= $\left(\operatorname{Tr}(ht)s^{2} + st + \operatorname{Tr}(hs)t^{2}, s^{\sigma^{-1}}t + st^{\sigma^{-1}}\right).$

Conversely, assume that $S_{\sigma,H} := \{X_{\sigma}(s) \mid s \in K^{\times} \cup \{\infty\}\}$ is isomorphic to $S_{\tau,H} := \{X_{\tau}(s) \mid s \in K^{\times} \cup \{\infty\}\}$ by a GF(2)-linear bijection on $K \times K$. Then there exists a bijection ρ on $K^{\times} \cup \{\infty\}$ such that $\Phi(X_{\sigma}(s)) = X_{\tau}(\rho(s))$ for all $s \in K^{\times} \cup \{\infty\}$. As we saw in the proof of Theorem 1.1, $S_{\mu,H}$ ($\mu \in$ $\{\sigma,\tau\}$) is constructed from the collection $\{b_{\mu}(s,t) \mid s,t \in K^{\times}\}$ of vectors $b_{\mu}(s,t) := (\text{Tr}(ht)s^2 + st + \text{Tr}(hs)t^2, s^{\mu}t + st^{\mu})$ satisfying the addition formula (equation (9)). Thus the assumptions of Proposition 3.1 are satisfied by $S_1 = S_{\sigma}$ and $S_2 = S_{\tau}$. Then it follows from Proposition 3.1(a and b) that $\rho(\infty) = \infty$ and there exist GF(2)-linear bijections F, L on K and a $\mathsf{GF}(2)$ -linear map G on K such that $\Phi(x,y) = (F(x) + G(y), L(y))$ for all $x, y \in K$. In particular, the second component y' of $\Phi(b_{\sigma}(s, t)) =: (x', y') \in$ $K \times K$ is equal to the image by L of the second component $s^{\sigma}t + st^{\sigma}$ of $b_{\sigma}(s,t)$. As $\Phi(b_{\sigma}(s,t)) = b_{\tau}(\rho(s),\rho(t))$ by Proposition 3.1(c), we conclude that $L(s^{\sigma}t + st^{\sigma}) = \rho(s)^{\tau}\rho(t) + \rho(s)\rho(t)^{\tau}$ for all $s, t \in K^{\times}$. Then it follows from Proposition 3.2 that $\tau = \sigma$ or $\tau = \sigma^{-1}$.

References

- [1] A. Del Fra, On *d*-dimensional dual hyperovals, *Geom. Dedicata* **79** (2000), 157–178.
- [2] C. Huybrechts and A. Pasini, Flag-transitive extensions of dual affine spaces, *Beiträge Algebra Geom.* 40 (1999), 503–532.

•• ••	
•	
page 15 / 15	
go back	
full screen	
close	
quit	

- [3] **H. Taniguchi**, On a family of dual hyperovals over GF(q) with q even, *European J. Combin.* **26** (2005), 195–199.
- [4] _____, On isomorphism problem of some dual hyperovals in PG(2d+1,q) with q even, *Graphs Combin.* **23** (2007), 455–465.
- [5] J. Thas and H. Van Maldeghem, Characterizations of the finite quadric Veroneseans $\mathcal{V}_n^{2^n}$, Q. J. Math. 55 (2004), 99–113.
- [6] **S. Yoshiara**, A family of *d*-dimensional dual hyperovals in PG(2d + 1, 2), *European J. Combin.* **20** (1999), 589–603.
- [7] _____, Notes on Taniguchi's dimensional dual hyperovals, *European J. Combin.* **28** (2007), 674–684.

Hiroaki Taniguchi

DEPARTMENT OF GENERAL EDUCATION, KAGAWA NATIONAL COLLEGE OF TECHNOLOGY,, 551 TAKUMA, KAGAWA, 769-1192 JAPAN

e-mail: taniguchi@dg.kagawa-nct.ac.jp

Satoshi Yoshiara

Department of Mathematics, Tokyo Woman's Christian University,, 2-6-1 Zempukuji, Suginamiku, Tokyo, 167-8585 Japan

e-mail: yoshiara@lab.twcu.ac.jp

