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New quotients of the d-dimensional

Veronesean dual hyperoval in PG(2d + 1, 2)

Hiroaki Taniguchi Satoshi Yoshiara

Abstract

Let d ≥ 3. For each e ≥ 1, Thas and Van Maldeghem constructed a

d-dimensional dual hyperoval in PG(d(d + 3)/2, q) with q = 2e, called the

Veronesean dual hyperoval [5]. A quotient of the Veronesean dual hyper-

oval with ambient space PG(2d + 1, q), denoted Sσ, is constructed in [3]

and [4], using a generator σ of the Galois group Gal(GF(qd+1)/GF(q)).

In this note, using the above generator σ for q = 2 and a d-dimensional

vector subspace H of GF(2d+1) over GF(2), we construct a quotient Sσ,H

of the Veronesean dual hyperoval in PG(2d + 1, 2) in case d is even. More-

over, we prove the following: for generators σ and τ of the Galois group

Gal(GF(2d+1)/GF(2)),

(1) Sσ above (for q = 2) is not isomorphic to Sτ,H ,

(2) Sσ,H is isomorphic to S
σ,H

′ for any d-dimensional vector subspaces H

and H
′

of GF(2d+1), and

(3) Sσ,H is isomorphic to Sτ,H if and only if σ = τ or σ = τ−1.

Hence, we construct many new non-isomorphic quotients of the Veronesean

dual hyperoval in PG(2d+ 1, 2).

Keywords: dual hyperoval, Veronesean, quotient
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1. Introduction

Let m and d be integers with m > d ≥ 2. For a prime power q, we denote

by PG(m, q) an m-dimensional projective space over a finite field GF(q) with q

elements. For a subset W of GF(q), we denote the set of non-zero elements of

W by W×.
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Throughout this note, we use the letter K to denote GF(2d+1). We regard

K and K × K = {(x, y) | x, y ∈ K} as vector spaces over GF(2) of dimen-

sion d + 1 and 2(d + 1) respectively. We sometimes identify (K ×K) \ {(0, 0)}

with PG(2d+ 1, 2), regarding nonzero vectors of K ×K as projective points of

PG(2d+ 1, 2).

The Galois group and the trace function for the extension K/GF(2) are de-

noted by Gal(K) and Tr, respectively, for short.

A family S of d-dimensional subspaces of PG(m, 2) is called a d-dimensional

dual hyperoval in PG(m, 2) if it satisfies the following conditions:

(D1) any two distinct members of S intersect in a projective point,

(D2) any three mutually distinct members of S intersect trivially,

(D3) the union of the members of S generates PG(m, 2), and

(D4) there are exactly 2d+1 members of S.

The definition of higher dimensional dual hyperovals was first given by C. Huy-

brechts and A. Pasini in [2]. The space PG(m, 2) in (D3) above is called the

ambient space of the dual hyperoval S. For d-dimensional dual hyperovals S1

and S2 in PG(m, 2), we say that S1 is isomorphic to S2 by a mapping Φ, if Φ

is a linear automorphism of PG(m, 2) which sends the members of S1 onto the

members of S2.

In case d = 2, d-dimensional dual hyperovals over GF(2) are completely

classified by Del Fra [1]. Hence, in this note, we assume that d ≥ 3. We shall

prove the following three theorems:

Theorem 1.1. Let σ be a generator of the Galois group Gal(K), and let H := {x |

Tr(hx) = 0} be a hyperplane of K for some h ∈ K×. For s, t ∈ K, define a vector

b(s, t) of K ×K by

b(s, t) :=
(

Tr(ht)s2 + st+Tr(hs)t2, sσt+ stσ
)

.

Then, if d is even, the collection Sσ,H of subsets X(s) := {b(s, t) | t ∈ K×}

of PG(2d + 1, 2) = (K × K) \ {(0, 0)} for s ∈ K× together with the subset

X(∞) := {b(s, s) | s ∈ K×} of PG(2d+1, 2) is a d-dimensional dual hyperoval in

PG(2d+ 1, 2).

Theorem 1.2. The dual hyperoval Sσ,H in PG(2d+1, 2) with d even is a quotient

of the Veronesean dual hyperoval in PG(d(d+ 3)/2, 2).

In [3], for every q = 2e the first author constructed a quotient Sσ of the

Veronesean dual hyperoval with ambient space PG(2d+ 1, q) using a generator

σ of the Galois group Gal(GF(qd+1)/GF(q)) (see Example 2.3 of this note in case
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q = 2). The following theorem shows that Sτ,H is not isomorphic to Sσ for any

generator τ of Gal(K) and any hyperplane H, hence Sτ,H is a new quotient of

the Veronesean dual hyperoval with ambient space PG(2d+ 1, 2).

Theorem 1.3. Assume that d is even. Let σ and τ be generators of Gal(K), and

let H and H
′

be hyperplanes of K. Then

(1) The quotient Sσ is not isomorphic to Sτ,H ,

(2) Sσ,H is isomorphic Sσ,H′ , and

(3) Sσ,H is isomorphic to Sτ,H if and only if σ = τ or σ = τ−1.

2. The construction of Sσ,H

We review a general construction of d-dimensional dual hyperovals in projective

spaces over GF(2).

Let n ≥ d + 1. We regard GF(2n) and GF(2n) × GF(2n) = {(x, y) | x, y ∈

GF(2n)} as n and 2n-dimensional vector spaces over GF(2) respectively. Take a

subspace W of GF(2n) of dimension d + 1. Assume that a collection of vectors

b(s, t) ∈ GF(2n)× GF(2n) for s, t ∈ W× satisfies the following conditions:

(B1) b(s, s) = (s2, 0) for each s ∈ W×,

(B2) b(s, t) = b(t, s) for any s, t ∈ W×,

(B3) b(s, t) 6= (0, 0) for any s, t ∈ W×,

(B4) for s, t, s′, t′ ∈ W×, we have b(s, t) = b(s
′

, t
′

) if and only if {s, t} = {s
′

, t
′

},

(B5) for each s ∈ W×, the subset {b(s, t) | t ∈ W×} ∪ {(0, 0)} is a subspace of

GF(2n)× GF(2n).

Then we can construct a dual hyperoval S in the following manner, although

the dimension of its ambient space is not determined in general.

Proposition 2.1. Assume that b(s, t) (s, t ∈ W×) satisfy the above conditions

(B1)–(B5). Inside PG(2n − 1, 2) = (GF(2n) × GF(2n)) \ {(0, 0)}, let us define

subsets X(s) := {b(s, t) | t ∈ W×} for s ∈ W×, and X(∞) := {b(s, s) | s ∈

W×}. Then, X(s) and X(∞) are d-dimensional subspaces of PG(2n − 1, 2), and

S := {X(s) | s ∈ W×} ∪ {X(∞)} is a d-dimensional dual hyperoval.

Proof. By (B3), (B4) and (B5), the subset X(s) is a d-dimensional subspace of

PG(2n − 1, 2) for each s ∈ W×. By (B1), the subset X(∞) is a d-dimensional

subspace of PG(2n− 1, 2). For distinct s, t ∈ W×, we have X(s)∩X(t) = b(s, t)

by (B2), (B3) and (B4). For s ∈ W×, X(s) ∩X(∞) = b(s, s) by (B1), (B3) and

(B4). From these facts, no three mutually distinct members of S have a common



I I G

◭◭ ◮◮

◭ ◮

page 4 / 15

go back

full screen

close

quit

ACADEMIA

PRESS

point. The cardinality |S| is equal to |{X(s) | s ∈ W×}| + |{X(∞)}| = 2d+1.

Hence S is a d-dimensional dual hyperoval. �

Example 2.2. Let ei (i = 0, . . . , d) be linearly independent vectors of GF(2n).

Choosing n to be sufficiently large, we may assume that the products eiej (0 ≤

i ≤ j ≤ d) are linearly independent vectors of GF(2n). Fix a generator σ of the

Galois group Gal(GF(2n)/GF(2)). Then the vector subspace W of GF(2n) (resp.

R of GF(2n) × GF(2n)) generated by ei (i = 0, . . . , d) (resp. (eiej , e
σ
i ej + eie

σ
j )

(0 ≤ i ≤ j ≤ d)) is of dimension (d + 1) (resp. (d + 1)(d + 2)/2). We define

b(s, t) for s, t ∈ W by

b(s, t) := (st, sσt+ stσ).

Then b(s, t) for s, t ∈ K× satisfy the conditions (B1)–(B5), and hence we have a

d-dimensional dual hyperoval S in PG(d(d+3)/2, 2) = PG(R). See [3] and [7].

Yoshiara [7] proved that this S is isomorphic to the Veronesean dual hyperoval

constructed by Thas and Van Maldeghem in [5]. We note that the b(s, t)’s satisfy

the addition formula b(s, t1) + b(s, t2) = b(s, t1 + t2) for any s, t1, t2 ∈ W .

Example 2.3. Let σ be a generator of the Galois group Gal(K). In K ×K, let

us define b(s, t) for s, t ∈ K to be

b(s, t) := (st, sσt+ stσ).

Then, b(s, t) for s, t ∈ K× satisfy the above conditions (B1)–(B5), and hence

we have a d-dimensional dual hyperoval, denoted by Sσ, in PG(2d + 1, 2). See

[3] and [7]. Yoshiara [7] proved that this Sσ is a quotient of the Veronesean

dual hyperoval in PG(d(d+ 3)/2, 2). The vectors b(s, t) also satisfy the addition

formula b(s, t1) + b(s, t2) = b(s, t1 + t2) for s, t1, t2 ∈ K.

The proof of Theorem 1.1

In the rest of this section, we will establish Theorem 1.1, exploiting Proposi-

tion 2.1. Namely, we shall verify that the following vectors b(s, t) of K ×K for

s, t ∈ K satisfy the conditions (B1)–(B5):

b(s, t) :=
(

Tr(ht)s2 + st+Tr(hs)t2, sσt+ stσ
)

, (1)

where h is a fixed nonzero element of K and σ is a generator of the Galois

group Gal(K). From definition (1), it is easy to see that b(s, t) = (0, 0) if s = 0

or t = 0, and that the following addition formula holds: for any s, t1, t2 ∈ K,

we have

b(s, t1) + b(s, t2) = b(s, t1 + t2). (2)

It is easy to verify the conditions (B1)–(B5), other than (B4). As for (B1), we

have b(s, s) = (Tr(hs)s2 + s2 +Tr(hs)s2, 0) = (s2, 0). The condition (B2) (even
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when s = 0 or t = 0) is obviously satisfied in view of definition (1). As for (B3),

if s = t ∈ K× then b(s, s) = (s2, 0) 6= (0, 0) by (B1). On the other hand, if s 6= t,

we have sσt+ stσ 6= 0, because 1 is the unique nonzero element of K fixed by a

generator σ of the Galois group for K/GF(2). As sσt+stσ appears as the second

component of b(s, t), we conclude that b(s, t) 6= (0, 0) in this case as well. The

condition (B5) follows from the addition formula (2).

In the rest of this section, we will verify (B4). For this purpose, take s, t, s′, t′ ∈

K× satisfing b(s, t) = b(s′, t′). Our end is to show that {s, t} = {s′, t′} under

this assumption. We divide the cases according to the trace values Tr(hx) for

x = s, t, s′, t′.

We first consider the case where both (Tr(hs),Tr(ht)) and (Tr(hs′),Tr(ht′))

are not equal to (1, 1). Exchanging s for t (and s′ for t′) if necessary, we may

assume that Tr(hs) = Tr(hs′) = 0. Then the first component of b(s, t) is

Tr(ht)s2 + st (see definition (1)), which is written as s1t1, if we set s1 := s

and t1 := Tr(ht)s + t. The second component of b(s, t) is sσt + stσ, which is

written as sσ1 t1 + s1t
σ
1 . Similarly we have b(s′, t′) = (s2t2, s

σ
2 t2 + s2t

σ
2 ), where

s2 := s′ and t2 := Tr(ht′)s′ + t′. Notice that none of si, ti (i = 1, 2) is zero,

because b(si, ti) = b(s, t) 6= (0, 0) (i = 1, 2) for s, t ∈ K× by (B3). Thus we may

apply the following fact (see e.g. [3]), which is straightforward to verify, using

the fact that 1 is the unique nonzero element of K× fixed by σ.

Fact 2.4. Let s1, t1, s2, t2 ∈ K×. Then (s1t1, s
σ
1 t1 + s1t

σ
1 ) = (s2t2, s

σ
2 t2 + s2t

σ
2 ) if

and only if {s1, t1} = {s2, t2}.

Then we have either (s2, t2) = (s1, t1) or (s2, t2) = (t1, s1). In the former

case, we have s′ = s and Tr(ht)s + t′ = Tr(ht′)s + t. From the latter equation,

we have Tr(h(t+ t′))s = t+ t′. Taking the trace of the product of h with the last

equation, we have 0 = Tr(h(t+ t′)) Tr(hs) = Tr(Tr(h(t+ t′))hs) = Tr(h(t+ t′))

as Tr(hs) = 0. Thus Tr(ht) = Tr(ht′) and t′ = t. In the latter case, we have

s′ = Tr(ht)s + t and s = Tr(ht′)s′ + t′. As Tr(hs) = Tr(hs′) = 0, we have

0 = Tr(ht) Tr(hs)+Tr(ht) = Tr(ht) by taking the trace of the product of h with

the former equation. Similarly, 0 = Tr(ht′) from the latter equation. Thus we

have s′ = t and s = t′. We established {s, t} = {s′, t′} in this case.

Hence we may assume that (Tr(hs),Tr(ht)) = (1, 1), exchanging (s, t) for

(s′, t′) if necessary. Then the following three cases for (Tr(hs′),Tr(ht′)) are

remained to verify, exchanging s′ for t′ if necessary.

(Tr(hs′),Tr(ht′)) = (1, 1), (0, 0) or (1, 0).

We will show that the first case is reduced to the case we already treated above.

To see this, assume that Tr(hx) = 1 for all x = s, t, s′, t′. Adding b(s, s′) to the

equation b(s, t) = b(s′, t′), we have b(s, t + s′) = b(s′, t′ + s) from the addition
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formula (2). If t + s′ = 0 or t′ + s = 0, then we have (s′, t′) = (t, s) from this

equation. Thus we may assume that none of s, t+ s′, s′ and t′ + s is zero. Now

we have Tr(h(s)) = 1, Tr(h(s+ t′)) = 0, Tr(hs′) = 1 and Tr(h(s+ t′)) = 0. Thus

it follows from the conclusion of the above paragraph that we have {s, t+ s′} =

{s′, t′ + s}. As t′ is nonzero, we have (s′, t′) = (s, t).

Similarly, we can reduce the second case above to the last case, by adding

b(t, t′) to b(s, t) = b(s′, t′). In this case we have b(s+ t′, t) = b(s′+ t, t′) from the

addition formula (2) with Tr(h(s + t′)) = 1, Tr(ht) = 1, Tr(h(s′ + t)) = 1 and

Tr(ht′) = 0.

Thus the last case above is the unique remaining case, where we have b(s, t) =

b(s′, t′) for s, t, s′, t′ ∈ K× with Tr(hs) = Tr(ht) = Tr(hs′) = 1 and Tr(ht′) = 0.

Notice that up to here we did not use the assumption that d is even.

This case requires some technical calculations. To avoid somewhat cumber-

some notation such as s′, t′, we replace the letters s, t, s′, t′ by u, ux, v and vy

respectively. With this notation, it suffices to show the following claim to verify

(B4), and hence to complete the proof of Theorem 1.1. (Notice that the ambient

space of Sσ,H coincides with K × K, as it contains X(∞) = {(s2, 0) | s ∈ K}

and K is spanned by sσt+ stσ for s, t ∈ K; see the arguments in Lemma 3.3.)

Assume that d is even. For u, x, v, x ∈ K× with Tr(hu) = Tr(hxu) =

Tr(hv) = 1 and Tr(hyv) = 0, we have b(u, xu) 6= b(v, yv).

This is obtained as a direct corollary of the following lemma, where we do not

put any restrictions on xu and yv.

Lemma 2.5. Assume that d is even. If b(u, xu) = b(v, vy) for nonzero elements u,

v, x and y of K with Tr(hu) = Tr(hv) = 1, then we have

Tr(hxu) = Tr(hyv).

Proof. Assume b(u, xu) = b(v, yv) for u, v, x, y ∈ K× with Tr(hu) = Tr(hv) = 1.

If u = v, then 0 = b(u, xu) + b(u, yu) = b(u, (x + y)u) by equation (2), whence

(B3) implies that (x+ y)u = 0 and x = y. Thus the lemma holds in this case. In

the following, we assume that u 6= v.

From the definition of b(s, t), the first and second components of b(u, xu) =

b(v, yv) are respectively given by

a := Tr(hxu)u2 + xu2 + x2u2 = Tr(hyv)v2 + yv2 + y2v2 and

c := xσuσu+ xuuσ = yσvσv + yvvσ.
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Thus a/u2 = Tr(hxu) + x+ x2, a/v2 = Tr(hyv) + y + y2, c/uσ+1 = xσ + x, and

c/vσ+1 = yσ + y. We easily have

c/uσ+1 + (c/uσ+1)2 = a/u2 + (a/u2)σ, (3)

c/vσ+1 + (c/vσ+1)2 = a/v2 + (a/v2)σ, (4)

since both sides of the equation coincide with x + x2 + xσ + x2σ in (3), and

y+y2+yσ+y2σ in (4). Let α := uσ−1+vσ−1 and β := uσ+1+vσ+1. Since d+1

is odd and σ is a generator of the Galois group Gal(K), we can verify that α 6= 0

and β 6= 0 in GF(2d+1) in the following manner: Assume to the contrary that

α = 0, then from uσ/u = vσ/v, we have (u/v)σ = (u/v), which implies that

u = v, contradicting our assumption that u 6= v. If β = 0, then from uσu = vσv,

we have (u/v)−σ = (u/v), hence (u/v)σ
2

= (u/v). Since d + 1 is odd, σ2 is a

generator of the Galois group Gal(K), hence we have u/v = 1, that is, u = v,

which also contradicts our assumption that u 6= v.

Adding (3) times u2(σ+1) and (4) times v2(σ+1), we have

c = [(u+ v)2σ/β]a+ [(u+ v)2/β]aσ. (5)

Adding (3) times u2(σ+1)vσ+1 and (4) times uσ+1v2(σ+1), we have

c2 = [(uσ+1vσ+1α)/β]a+ [(u2v2α)/β]aσ. (6)

Eliminating c from (5) and (6), we have

(u+ v)4a2σ + (u+ v)4σa2 + αβ(uσ+1vσ+1a+ u2v2aσ) = 0. (7)

Let us set g := uσ+1vσ+1a+ u2v2aσ. Then, from the defining equation of g, we

have a2σ = (u2(σ+1)v2(σ+1)/u4v4)a2 + (1/u4v4)g2. Using these g and a2σ, we

obtain from (7) that

(1/u+ 1/v)4u2(σ+1)v2(σ+1)a2 + (u+ v)4σa2 + (1/u+ 1/v)4g2 + αβg = 0. (8)

We easily check that (1/u + 1/v)4u2(σ+1)v2(σ+1)a2 + (u + v)4σa2 = (αβ)2a2.

Using this equation, we finally have from (8) that

(1/u+ 1/v)4g2 + αβg = α2β2a2.

Now, multiplying both sides of the equation by (1/u+ 1/v)4/(α2β2), we have

[(1/u+ 1/v)8/α2β2]g2 + [(1/u+ 1/v)4/αβ]g = (1/u+ 1/v)4a2.

Hence we have Tr((1/u + 1/v)4a2) = 0, that is, Tr((1/u + 1/v)2a) = 0, or

equivalently Tr(a/u2) = Tr(a/v2). Here we have

Tr(a/u2) = Tr(Tr(hxu) + x+ x2) = Tr(hxu) Tr(1) = Tr(hxu),

as Tr(1) = d+ 1 is odd. Similarly we have

Tr(a/v2) = Tr(Tr(hyv) + y + y2) = Tr(hyv).

Thus Lemma 2.5 is established. �



I I G

◭◭ ◮◮

◭ ◮

page 8 / 15

go back

full screen

close

quit

ACADEMIA

PRESS

3. Isomorphisms of some dual hyperovals

In this section, we study isomorphisms of the dimensional dual hyperovals con-

structed in Proposition 2.1, which satisfy the “addition formula” (equation (9)).

We identify a nonzero vector of K×K with the projective point of PG(K×K) ∼=
PG(2d+ 1, 2) spanned by it.

Proposition 3.1. For i ∈ {1, 2}, let Si = {Xi(t) | t ∈ K× ∪ {∞}} be the

d-dimensional dual hyperoval inside PG(2d + 1, 2) ∼= PG(K × K) constructed

in Proposition 2.1 from a collection {bi(s, t) | s, t ∈ K×} of vectors of K × K

satisfying the conditions (B1)–(B5). Assume that {bi(s, t) | s, t ∈ K×} satisfies

the following equations for all s, t1, t2 ∈ K:

bi(s, t1) + bi(s, t2) = bi(s, t1 + t2). (9)

(In particular, bi(s, t) = 0 if s = 0 or t = 0.)

Assume now that S1 is isomorphic to S2 by a map Φ on K × K. Then there

exists GF(2)-linear bijections F and L on K and a GF(2)-linear map G on K which

satisfy the following:

(a) Φ(x, y) = (F (x) +G(y), L(y)) for all x, y ∈ K;

(b) Φ(X1(∞)) = X2(∞) and Φ(X1(s)) = X2(ρ(s)) for all s ∈ K×, where ρ is a

bijection on K× given by ρ(s) = F (s2)1/2;

(c) Φ(b1(s, t)) = b2(ρ(s), ρ(t)) for all s, t ∈ K×.

Proof. By the construction given in Proposition 2.1,

Xi(s) = {bi(s, t) | t ∈ K×} for s ∈ K× and

Xi(∞) = {bi(t, t) | t ∈ K×}.

(Notice that we take d + 1 and K ∼= GF(2d+1) respectively as n and W in

Proposition 2.1.) From the definition of an isomorphism of dimensional dual

hyperovals, the map Φ is a GF(2)-linear bijection on K × K which induces a

bijection from the members X1(s) (s ∈ K× ∪ {∞}) of S1 onto the members

X2(s) (s ∈ K× ∪ {∞}) of S2. Thus there exist GF(2)-linear maps F , G, M and

L on K such that

Φ(x, y) =
(

F (x) +G(y),M(x) + L(y)
)

(10)

for all x, y ∈ K. Furthermore, there exists a bijection ρ on K× ∪ {∞} which

satisfies the following equation for all t ∈ K× ∪ {∞}:

Φ(X1(t)) = X2(ρ(t)). (11)
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Take any distinct elements s and t of K× ∪ {∞}. As S1 is a d-dimensional

dual hyperoval, X1(s) ∩X1(t) is a projective point. This point is mapped by Φ

to a point contained in both Φ(X1(s)) = X2(ρ(s)) and Φ(X1(t)) = X2(ρ(s)). As

S2 is a d-dimensional dual hyperoval as well, X2(ρ(s))∩X2(ρ(t)) is a projective

point. Hence for any s, t ∈ K× ∪ {∞} with s 6= t, we have

Φ(X1(s) ∩X1(t)) = X2(ρ(s)) ∩X2(ρ(t)). (12)

For every distinct elements s, t in K× \ {ρ−1(∞)}, we have X1(s) ∩ X1(t) =

b1(s, t) and X2(ρ(s)) ∩X2(ρ(t)) = b2(ρ(s), ρ(t)). Thus equation (12) implies

Φ(b1(s, t)) = b2(ρ(s), ρ(t)) (13)

for every s, t ∈ K× \ {ρ−1(∞)} with s 6= t. If k := ρ−1(∞) lies in K×,

then X1(k) ∩ X1(t) = b1(k, t) and X2(ρ(k)) ∩ X2(ρ(t)) = X2(∞) ∩ X2(ρ(t)) =

b2(ρ(t), ρ(t)) for any t ∈ K× \ {k}. Thus it follows from equation (12) that

Φ(b1(k, t)) = b2(ρ(t), ρ(t)) (14)

for any t ∈ K× \ {ρ−1(∞)}, if ρ−1(∞) ∈ K×.

Next we shall show that ρ(∞) = ∞. We will derive a contradiction, assuming

that ρ−1(∞) =: k lies in K×. Notice that |K× \ {k}| = 2d+1 − 2 ≥ 6, as

d + 1 ≥ 3. Fix an element s of K× \ {k}, and take an arbitrary element t in

K× \{k, s, s+k}. By the assumption (9) with i = 1, we have b1(t, k)+b1(t, s) =

b1(t, k+ s). Applying the linear map Φ to both sides of this equation, we obtain

Φ(b1(t, k)) +Φ(b1(t, s)) = Φ(b1(t, k+ s)). As t, s and k+ s are mutually distinct

elements of K× \ {k}, we have Φ(b1(t, s)) = b2(ρ(t), ρ(s)) and Φ(b1(t, k + s)) =

b2(ρ(t), ρ(k+s)) by equation (13). On the other hand, Φ(b1(t, k)) = b2(ρ(t), ρ(t))

by equation (14). Hence we obtain

b2(ρ(t), ρ(t)) + b2(ρ(t), ρ(s)) = b2(ρ(t), ρ(k + s)).

Then the assumption (9) with i = 2 yields b2(ρ(t), ρ(s) + ρ(t) + ρ(k + s)) = 0.

As ρ(t) 6= 0, this implies

ρ(s) + ρ(t) + ρ(k + s) = 0.

Notice that this equation holds for any t in K× \ {k, s, k + s}. Thus we have

ρ(t1) = ρ(t2) = ρ(s) + ρ(s+ k) for any elements t1, t2 of K× \ {k, s, k + s}. As

K× \ {k, s, k+ s} contains 2d+1− 4 ≥ 2 elements, this contradicts the bijectivity

of ρ. Hence we established that ρ(∞) = ∞.

It is now easy to verify the proposition. The claim (c) follows from equa-

tion (13), as K× = K× \ {ρ−1(∞)}. We also have Φ(X1(∞)) = X2(ρ(∞)) =

X2(∞). Thus equation (12) implies that

Φ((s2, 0)) = Φ(X1(∞) ∩X1(s)) = X2(∞) ∩X2(ρ(s)) = (ρ(s)2, 0)
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for all s ∈ K×. Then it follows from equation (10) applied to x = s2 and y = 0

that for any s ∈ K× we have

F (s2) = ρ(s)2 and M(s2) = 0.

The claim (b) follows from the former equation above and the definition of ρ

and the fact that ρ(∞) = ∞. The latter equation above implies that M is the

zero map. It follows from equation (10) that Φ(x, y) = (F (x) +G(y), L(y)) for

all x, y ∈ K. As Φ is a bijection, this implies that F and L are bijections on K.

Thus the claim (a) is established. �

Notice that both S1 = Sσ in Example 2.3 and S2 = Sσ,H in Theorem 1.1 are

d-dimensional dual hyperovals in PG(K ×K) = PG(2d + 1, 2) satisfying equa-

tion (9). To examine isomorphisms among these dimensional dual hyperovals,

the following proposition turns out to be useful. It is worthwhile mentioning

that this proposition about GF(2)-linear maps can be established using dimen-

sional dual hyperovals.

Proposition 3.2. Let L and ρ be GF(2)-linear bijections on K. Assume that there

exist generators σ and τ of the Galois group Gal(K) which satisfy

L(sσt+ stσ) = ρ(s)τρ(t) + ρ(s)ρ(t)τ (15)

for all s, t ∈ K×. Then we have τ = σ or τ = σ−1. Moreover, there exists

µ ∈ Gal(K) and b ∈ K× such that ρ(x) = bxµ for all x ∈ K.

Proof. First note that equation (15) holds even in cases s = 0 or t = 0, since L

and ρ are linear. For α = σ or τ , we define Sα to be a collection {Xα(t) | t ∈ K}

of subsets Xα(t) := {(x, xαt + xtα) | x ∈ K} of K × K for t ∈ K. By [6], Sσ

and Sτ are d-dimensional dual hyperovals. Define a GF(2)-linear bijection Φ on

K ×K by

Φ(x, y) = (ρ(x), L(y)).

From the assumption (equation (15)), we have

(x, xσt+ xtσ)Φ =
(

ρ(x), ρ(x)τρ(t) + ρ(x)ρ(t)τ
)

∈ X2(ρ(t)).

Thus Φ sends each Xσ(t) to Xτ (ρ(t)) (t ∈ K), whence it gives an isomorpshism

from Sσ to Sτ . Then, by [6, Proposition 11], we must have σ = τ or σ = τ−1.

Now, if τ = σ, then Sσ = Sτ and Φ is an automorphism of Sσ stabiliz-

ing a d-subspace Xσ(0) = Xτ (0) = {(x, 0) | x ∈ K×}. Recall that the stabi-

lizer of Xσ(0) in Aut(Sσ) is generated by the field automorphisms µ̃ : (x, y) 7→

(xµ, yµ) for µ ∈ Gal(K) and the multiplications m(b) : (x, y) 7→ (bx, bσ+1y) for
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b ∈ K×. (See [6, Proposition 7]. The explicit shapes of µ̃ and m(b) are given in

[6, Section 4]). Hence we have ρ(x) = bxµ for some µ ∈ Gal(K) and b ∈ K×.

If τ = σ−1, then Sτ is isomorphic to Sσ by Ψσ : (x, y) 7→ (x, yσ), since

Ψσ(Xτ (t)) :=
{(

x, (xσ−1

t+ xtσ
−1

)σ
)}

=
{

(x, xσt+ xtσ)
}

= Xσ(t).

Hence Ψσ ◦Φ: (x, y) 7→ (ρ(x), L(y)σ) is an automorphism of Sσ which stabilizes

the d-subspace Xσ(0). Then, by the conclusion in the above paragraph, we have

ρ(x) = bxµ for some µ ∈ Gal(K) and b ∈ K× in this case as well. �

The next lemma will be used in the proof of Theorem 1.3(1).

Lemma 3.3. For a hyperplane H1 of K ∼= GF(2d+1) with d ≥ 4 and a generator σ

of the Galois group Gal(K), the subset {sσt+ stσ | s, t ∈ H1} spans K as a vector

space over GF(2).

Proof. Take α ∈ K× with H1 = {x ∈ K | Tr(αx) = 0}. Assume on the contrary

that X := {sσt + stσ | s, t ∈ H1} spans a proper subspace of K. Then X is

contained in a hyperplane of K, and hence there is some β ∈ K× such that

X ⊂ {x ∈ K | Tr(βx) = 0}. We have

0 = Tr(β(sσt+ stσ)) = Tr
(

(βsσ + βσ−1

sσ
−1

)t
)

for all t ∈ H1. Thus βsσ + βσ−1

sσ
−1

= ε(s)α for an element ε(s) in GF(2)

depending on s ∈ H1. Then there exists a hyperplane K1 of H1 such that

βsσ + βσ−1

sσ
−1

= 0 for all s ∈ K1. The last equation for s ∈ K×

1 is equivalent

to the condition that sσ
2
−1 = β1−σ, which is equivalent to sσ+1 = β−1, because

σ − 1 is bijective on K× for a generator σ of Gal(K). As this holds for every

s ∈ K×

1 , fixing an element t ∈ K×

1 , we have (s/t)σ+1 = β−1/β−1 = 1 for

every s ∈ K×

1 . Then σ2 fixes s/t for every s ∈ K1. Since σ is a generator of

Gal(K), the subfield L := {x ∈ K | xσ2

= x} is a subfield of GF(22). Thus we

conclude that 2d−1 = |{s/t | s ∈ K1}| ≤ |L| ≤ 4, which contradicts the fact that

d ≥ 4. �

4. Sσ,H is a new quotient

In this section, we prove Theorem 1.2 and Theorem 1.3.

Proof of Theorem 1.2. The Veronesean dual hyperoval is isomorphic to the dual

hyperoval S in Example 2.2 by [7]. Thus we take the latter as a model of the

Veronesean dual hyperoval, and denote it by SV . As in Example 2.2, W denotes
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a (d + 1)-dimensional vector subspace of GF(2n) for sufficiently large n with

a basis {e0, e1, . . . , ed} such that {eiej | 0 ≤ i ≤ j ≤ d} are linearly indepen-

dent. Moreover, R denotes the vector subspace of GF(2n)× GF(2n) spanned by

(eiej , e
σ
i ej + eie

σ
j ) for 1 ≤ i ≤ j ≤ n. Then PG(R) = PG(d(d + 3)/2, 2) is the

ambient space of SV .

To distinguish SV from Sσ,H , we denote b(s, t) in Example 2.2 by bV (s, t);

namely bV (s, t) = (st, sσt + stσ) for s, t ∈ W . Thus SV is constructed from

{bV (s, t) | s, t ∈ W×} by the method in Proposition 2.1; namely, SV is a collec-

tion of subspaces XV (t) for t ∈ W×∪{∞}, where XV (t) := {bV (s, t) | s ∈ W×}

(t ∈ W×) and XV (∞) := {bV (s, s) | s ∈ W×}. We recall that {bV (s, t)} satisfies

the addition formula (equation (9)): bV (s, t1) + bV (s, t2) = bV (s, t1 + t2) for

s, t1, t2 ∈ W .

Choose a basis {e0, . . . , ed} for K over GF(2). To distinguish Sσ,H from SV ,

we denote b(s, t) in Theorem 1.1 by bH(s, t); namely

bH(s, t) =
(

Tr(hs)t2 + st+Tr(ht)s2, sσt+ stσ
)

.

We denote by XH(t) for t ∈ K× (resp. XH(∞)) the subspace {bH(s, t) | s ∈

K×} (resp. {bH(s, s) | s ∈ K×}). Then Sσ,H = {XH(t) | t ∈ K× ∪ {∞}}. We

recall that {bH(s, t)} satisfies the addition formula (equation (9)): bH(s, t1) +

bH(s, t2) = bH(s, t1 + t2) for s, t1, t2 ∈ K.

Note that bV (ei, ej) = (eiej , e
σ
i ej + eie

σ
j ) for 0 ≤ i ≤ j ≤ d are linearly in-

dependent over GF(2), since {eiej | 0 ≤ i ≤ j ≤ d} are linearly independent

by assumption. Thus bV (ei, ej) (0 ≤ i ≤ j ≤ d) is a basis for the ambient

space R of SV . Hence there exists a GF(2)-linear map π from R to K × K

which sends bV (ei, ej) to bH(ei, ej) for 0 ≤ i ≤ j ≤ d. There also exists a

GF(2)-linear bijection κ from W to K sending ei to ei (0 ≤ i ≤ d). For any

s =
∑d

i=0 αiei (αi ∈ GF(2)) and t =
∑d

i=0 βjej (βj ∈ GF(2)) in W , we have

bV (s, t) =
∑d

i,j=0 αiβjbV (ei, ej) by the addition formula for SV . From the addi-

tion formula for Sσ,H , we have

bH
(

κ(s)
)

= bH

(

d
∑

i=0

αiκ(ei),
d

∑

j=0

βjκ(ej)
)

=
d

∑

i,j=0

αiβjbH(ei, ej).

As π is a GF(2)-linear map sending bV (ei, ej) to bH(ei, ej) (0 ≤ i ≤ j ≤ d), we

conclude that π(bV (s, t)) = bH(s, t) for any s, t ∈ W . In particular, π bijectively

maps XV (t) (resp. XV (∞)) onto XH(t) (resp. XH(∞)) for any t ∈ W×. Thus

π gives a covering map of Sσ,H by the Veronesean dual hyperoval SV . �

Proof of Thorem 1.3. Observe that d ≥ 4, as d is even and d ≥ 3. By Theo-

rem 1.1, we may define a d-dual hyperoval Sτ,H for a generator τ of the Galois

group Gal(K) and a hyperplane H of K.
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(1) Suppose that Sσ is isomorphic to Sτ,H by a mapping Φ for some genera-

tors σ and τ of Gal(K) and a hyperplane H of K. Choose h ∈ K× so

that H = {x ∈ K | Tr(hx) = 0}. Define b1(s, t) := (st, sσt + stσ) and

b2(s, t) := (Tr(ht)s2 + st + Tr(hs)t2, sτ t + stτ ) for s, t ∈ K. Then the

addition formula (equation (9)) holds for both {b1(s, t) | s, t ∈ K×} and

{b2(s, t) | s, t ∈ K×}. As Sσ and Sτ,H are constructed by the method

in Proposition 2.1 from {b1(s, t) | s, t ∈ K×} and {b2(s, t) | s, t ∈ K×},

the assumptions of Proposition 3.1 are satisfied. We use the letters F ,

G and L to denote the GF(2)-linear maps on K in Proposition 3.1(a);

namely, Φ(x, y) = (F (x) + G(y), L(y)) for all x, y ∈ K. From Proposi-

tion 3.1(a and c), the second component sσt+stσ of b1(s, t) is mapped by L

to the second component ρ(s)τρ(t)+ρ(s)ρ(t)τ of b2(ρ(s), ρ(t)) = Φ(b1(s, t))

for every s, t ∈ K×, where ρ is a bijection given by ρ(x) = F (x2)1/2 (x ∈ K)

by Proposition 3.1(b). Then it follows from Proposition 3.2 that ρ(x) = bxµ

(x ∈ K) for some b ∈ K× and µ ∈ Gal(K). In particular,

F (st) = ρ((st)1/2)2 = b2(st)µ = ρ(s)ρ(t) (16)

for s, t ∈ K×. Comparing the first components of b1(s, t) and Φ(b1(s, t)) =

b2(ρ(s), ρ(t)), we have

F (st) +G(sσt+ stσ) = Tr(hρ(t))ρ(s)2 + ρ(s)ρ(t) + Tr(hρ(s))ρ(t)2.

By equation (16), we then have

G(sσt+ stσ) = Tr(hρ(t))ρ(s)2 +Tr(hρ(s))ρ(t)2 (17)

for every s, t ∈ K×. As G is linear, equation (17) holds for all s, t ∈ K.

Notice that ρ is a GF(2)-linear bijection on K by the claims (a) and (b) of

Proposition 3.1, whence H1 := ρ−1(H) is a hyperplane of K. It follows

from equation (17) that we have

G(sσt+ stσ) = 0 for every s, t ∈ H1, (18)

because ρ(s) and ρ(t) lie in H and hence

Tr(hρ(t))ρ(s)2 +Tr(hρ(s))ρ(t)2 = 0.

Now we apply Lemma 3.3 to conclude that {sσt + stσ | s, t ∈ H1} spans

K as a vector space over GF(2). (Note that d ≥ 4.) This implies that

G = 0 from equation (18). However, it then follows from equation (17)

that 0 = ρ(s)2 + ρ(t)2 and hence ρ(s) = ρ(t) for every s, t ∈ K \ H1. As

K \H1 contains 2d ≥ 2 elements, this contradicts the bijectivity of ρ.
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(2) Choose α and b of K× satisfying H = {x ∈ K | Tr((αb)x) = 0} and

H
′

= {x | Tr(αx) = 0}. Define a GF(2)-linear bijection Φ on K × K by

Φ(x, y) := (b2x, bσ+1y). Then for any s, t ∈ K we have

Φ
(

Tr((αb)t)s2 + st+Tr((αb)s)t2, sσt+ stσ
)

=
(

Tr((αb)t)(bs)2 + (bs)(bt) + Tr((αb)s)(bt)2, (bs)σ(bt) + (bs)(bt)σ
)

.

Thus Φ induces an isomorphism from Sσ,H with Sσ,H′ .

(3) Let h be an element of K× with H = {x ∈ K | Tr(hx) = 0}. We first

notice that the GF(2)-linear bijection on K×K given by Φ(x, y) := (x, yσ
−1

)

(x, y ∈ K) induces an isomorphism between Sσ,H and Sσ−1,H , because for

s, t ∈ K we have

Φ
(

Tr(ht)s2 + st+Tr(hs)t2, sσt+ stσ
)

=
(

Tr(ht)s2 + st+Tr(hs)t2, sσ
−1

t+ stσ
−1)

.

Conversely, assume that Sσ,H := {Xσ(s) | s ∈ K× ∪ {∞}} is isomorphic

to Sτ,H := {Xτ (s) | s ∈ K× ∪ {∞}} by a GF(2)-linear bijection on K ×K.

Then there exists a bijection ρ on K×∪{∞} such that Φ(Xσ(s)) = Xτ (ρ(s))

for all s ∈ K× ∪ {∞}. As we saw in the proof of Theorem 1.1, Sµ,H (µ ∈

{σ, τ}) is constructed from the collection {bµ(s, t) | s, t ∈ K×} of vectors

bµ(s, t) := (Tr(ht)s2+st+Tr(hs)t2, sµt+stµ) satisfying the addition formula

(equation (9)). Thus the assumptions of Proposition 3.1 are satisfied by

S1 = Sσ and S2 = Sτ . Then it follows from Proposition 3.1(a and b)

that ρ(∞) = ∞ and there exist GF(2)-linear bijections F , L on K and a

GF(2)-linear map G on K such that Φ(x, y) = (F (x) + G(y), L(y)) for all

x, y ∈ K. In particular, the second component y′ of Φ(bσ(s, t)) =: (x′, y′) ∈

K × K is equal to the image by L of the second component sσt + stσ of

bσ(s, t). As Φ(bσ(s, t)) = bτ (ρ(s), ρ(t)) by Proposition 3.1(c), we conclude

that L(sσt + stσ) = ρ(s)τρ(t) + ρ(s)ρ(t)τ for all s, t ∈ K×. Then it follows

from Proposition 3.2 that τ = σ or τ = σ−1. �
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