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Orthogonal polar spaces and unitals

Markus Stroppel

Abstract

We use the fact that certain classical unitals contain affine parts of orthogo-

nal polar spaces in order to determine their full groups of automorphisms.

Keywords: hermitian form, quadratic form, polar space, unital, quaternion field, affine

generalized quadrangle, affine polar space, automorphism.
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1. Introduction

We investigate a connection between suitable unitals and quadrics. This connec-

tion helps to determine the full group of automorphisms for hermitian unitals

over commutative fields, or over quaternion fields if the form is trace-valued and

the involution is the standard one, see Theorem 8.1 below. Thus our present ap-

proach extends the results in [14], where the characteristic two case and some

of the non-commutative cases have been left open.

One of our tools will be the reconstruction of a hermitian form on a vector

space V from its restriction to the diagonal {(v, v) | v ∈ V }, cf. Section 4; here

we extend an old result by Jacobson [8], see Remark 4.4.

2. Hermitian forms and unitals

Let K be a (not necessarily commutative) field, and let σ : K → K : x → x be an

involution: that is, an additive map with the properties xy = yx and x = x. In

general, the set of fixed points of σ is not closed under multiplication. However,

we will consider a special case:
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Assumptions 2.1. We will assume throughout that the norm N(x) := xx and

trace T (x) := x+x are contained in the center Z of K, for each x ∈ K. Then the

norms and traces lie in the subfield F := {z ∈ Z | z = z} of Z, and the degree

of the extension Z/F is at most 2. We also assume σ 6= id.

Let k be a non-degenerate σ-hermitian form of Witt index 1 on some left vec-

tor space W of dimension 3 over K. Moreover, assume that k is trace-valued

(“tracique” in the sense of [4, I § 10]), i.e., k (v, v) is a trace (and thus lies in F

by our assumption) for all v. By a suitable choice of coordinates we iden-

tify W with the space K3 of rows with 3 entries from K such that k is given

by k ((a, b, c), (x, y, z)) = ay + bx+ cz , see Remark 2.5 below.

Definition 2.2. We put U :=
{
Kv | v ∈ K3 r {0}, k(v, v) = 0

}
. For each se-

cant ℓ (i.e., each line ℓ of the projective plane over K meeting U in more than

one point) we call the set bℓ := {X ∈ U | X lies on ℓ} a block of U and denote

by B the set of all these blocks. The incidence geometry (U,B) is called the

(hermitian) unital corresponding to σ.

Example 2.3. The line S joining K(1, 0, 0) and K(0, 1, 0) induces on U the block

bS = {K(x, 1, 0) | x = −x} ∪ {K(1, 0, 0)}.

Remark 2.4. The norm N(x) := xx is a multiplicative quadratic form over F :

in fact, using N(y) ∈ F ≤ Z we compute N(xy) = (xy)(xy) = xyyx =

xxyy = N(x)N(y). Thus (K,N) is an associative composition algebra over F ,

cf. [9, Thm. 7.5, p. 444]. By the generalized Hurwitz Theorem (see [9, p. 447,

p. 450]), the field K is either commutative, or a quaternion field over F , and

the involution σ is the standard involution of the composition algebra (fixing F

pointwise, and inducing −id on Pu(K) := 1⊥). If K is commutative, we deal

with a separable quadratic extension K/F , and σ generates the Galois group.

Remark 2.5. The assumption on the explicit formula for k means no loss of

generality: in fact, there exists a non-trivial vector u with k(u, u) = 0 because k

has Witt index 1, we find v such that k(u, v) 6= 0 because the form is non-

degenerate, and we may pick w ∈ {u, v}⊥ to obtain a basis u, v, w for the vector

space. With respect to this basis, we have k ((a, b, c), (x, y, z)) = ay + bx + csz,

with s = k(w,w) 6= 0. Our assumption that k is trace-valued yields s ∈ F .

Since we are only interested in geometries described by the orthogonality

relation defined by k, we may (and will) replace k by ks−1 (and v by s−1v) to

obtain that k has the form that we assume in Assumptions 2.1. Note that the

form ks−1 is still σ-hermitian, because s is fixed by σ and belongs to the center

of K.

Remark 2.6. Our assumption that norms and traces lie in the center is a weaker

form of the condition that the fixed points of σ lie in the center of K. The latter

condition would exclude non-commutative fields with characteristic 2.
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If charK 6= 2 or if K is commutative then every hermitian form is trace-

valued. Over each quaternion field with characteristic 2 suitable choices of s in

Remark 2.5 yield hermitian forms (with respect to the standard involution) that

are trace-valued and also forms that are not; see [5, p. 73]. The set U defined

in Definition 2.2 is contained in a line if the form is not trace-valued.

3. Semi-similitudes

Let D ≤ E be (not necessarily commutative) fields, and assume that there exists

an anti-automorphism ϕ of D such that ϕ2 = id (we allow ϕ = id here). Let V

be a left vector space over E; we denote by DV the vector space over D obtained

by restricting the choice of scalars. Consider a semilinear map α : V → V with

companion µ ∈ Aut (E), i.e., such that (xv + w)α = xµxα + wα holds for all

x ∈ E and all v, w ∈ V . Note that α will be a semilinear endomorphism of DV

only if D is invariant under µ.

Consider a non-degenerate ϕ-hermitian form d : DV × DV → D. The map

α : V → V is called a semi-similitude of d if there exist γ ∈ Aut (D) and s ∈ D×

such that d(vα, wα) = d(v, w)γs holds for all v, w ∈ V . Using non-degeneracy

of d one easily sees that α is additive.

Lemma 3.1. Let α : V → V be semilinear with companion µ ∈ Aut (E). If there

exist γ ∈ Aut (D) and s ∈ D× such that d(vα, wα) = d(v, w)γs holds for all

v, w ∈ V (i.e., if α is a semi-similitude of d : DV × DV → D) then Dµ = D and

the restriction of µ to D equals γ.

Proof. Pick v ∈ V r {0}. The semi-similitude α maps Dv = v⊥⊥ onto (vα)⊥⊥ =

Dvα. Now xµvα = (xv)α ∈ Dvα yields xµ ∈ D for each x ∈ D. Comparing

d((xv)α, wα) = d(xv,w)γs = xγd(v, w)γs and d((xv)α, wα) = d(xµvα, wα) =

xµd(vα, wα) = xµd(v, w)γs we obtain xγ = xµ. �

4. Recovering hermitian forms

We will study affine polar spaces later on; these will be obtained by an inter-

pretation of K2 as affine space over a subfield of K. For a discussion of the

extendibility of automorphisms of the affine polar space to the unital, we need

some basic information about hermitian forms over quaternion fields or sep-

arable quadratic extensions. The core of our method dates back to [8], see

Remark 4.4.



I I G

◭◭ ◮◮

◭ ◮

page 4 / 13

go back

full screen

close

quit

ACADEMIA

PRESS

Proposition 4.2 and Lemma 4.3 of the present section will be used below in

Lemma 5.9 in order to reconstruct the hermitian form k.

Lemma 4.1. Let K be either a quaternion field or a separable quadratic exten-

sion over F . For each c ∈ K r F with T (c) = 1 we have c − c 6= 0. Putting

jc := (c− c)−1 we obtain that ϕ : x 7→ T (x) − jc c T (x) + jc T (c x) describes the

orthogonal projection from K onto F⊕Fc. If K is commutative this means ϕ = id.

If K is not commutative we choose p ∈ {1, c}⊥r{0} and obtain xϕ+p−1(p x)ϕ = x

for each x ∈ K.

Proof. The polar form βN is not degenerate on C := F + Fc, and K is the

orthogonal direct sum of C and C⊥. For any p ∈ C⊥r {0} we have C⊥ = pC =

Cp. The relations c = 1 − c and p ⊥ C imply pu = up for each u ∈ C. Now

straightforward computations yield the formulae, as claimed. �

Proposition 4.2. Let V be a vector space over some quaternion field H, and let

h : V × V → H be a non-degenerate σ-hermitian form. Consider the quadratic

map1 v 7→ h(v, v) and the corresponding polar form

f(v, w) = h(v, w) + h(w, v) = h(v, w) + h(v, w) = T (h(v, w)).

As in Lemma 4.1 we choose c ∈ H with T (c) = 1 and p ∈ {1, c}⊥ r {0}, and put

jc := (c− c)−1.

(a) For all v, w ∈ V we have

h(v, w) = f(v, w)− jc c f(v, w) + jc f(c v, w)

+ p−1
(
f(p v, w)− jc c f(p v, w) + jc f(c p v, w)

)
.

(b) The form f is non-degenerate.

(c) Every H-semilinear semi-similitude α ∈ ΓO (f) is a semi-similitude of h.

Explicitly, assume that there exist some γ ∈ Aut (F ) and s ∈ F× such that

f(vα, wα) = f(v, w)γs and let µ be the companion automorphism of α.

Then µ induces γ on F and h(vα, wα) = h(v, w)µs.

Proof. The first assertion follows from Lemma 4.1 and the observation

h(v, w) = h(v, w)ϕ + p−1(p h(v, w))ϕ

= f(v, w)− jc c f(v, w) + jc f(c v, w)

+ p−1
(
f(p v, w)− jc c f(p v, w) + jc f(c p v, w)

)
.

1 In general, the range of this quadratic map will consist of the set of fixed points of σ, and will

not be contained in the center of H. However, the values of the polar form lie in F by Assump-

tions 2.1.
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If f were degenerate we would find w ∈ V r {0} such that f(v, w) = 0 holds

for all v ∈ V . Then f(c v, w) = 0 = f(p v, w) = f(c p v, w) yields h(v, w) = 0 for

all v ∈ V , contradicting the fact that h is non-degenerate.

In order to prove assertion (c), let α ∈ ΓO (f) be H-semilinear. The com-

panion µ leaves F invariant and restricts to γ on F , see Lemma 3.1. Using

Lemma 4.1 together with the fact that the pair (cµ, pµ) satisfies the conditions

imposed on (c, p) we see that h(vα, wα) = h(v, w)µs, as claimed. �

Lemma 4.3. Let G be a commutative field, and let g : V ×V → G be a σ-hermitian

form. Consider the quadratic form v 7→ g(v, v) and the corresponding polar form

f(v, w) = g(v, w) + g(w, v). As in Lemma 4.1 we choose c ∈ GrF with c = 1+ c

and put jc := (c− c)−1.

(a) For all v, w ∈ V , we have g(v, w) = f(v, w)− jc c f(v, w) + jc f(c v, w).

(b) Every G-semilinear semi-similitude α of f is a semi-similitude of g; explicitly,

we have g(vα, wα) = g(v, w)γs if f(vα, wα) = f(v, w)γs.

Proof. The first assertion follows from Lemma 4.1 and the observation that

g(v, w)ϕ = f(v, w)− jc c f(v, w) + jc f(c v, w).

The companion automorphism γ of α is an automorphism of G that leaves F

invariant, thus it normalizes (and then centralizes) the Galois group {id, σ} of

the extension G/F . Now another straightforward calculation yields the last

assertion, in each one of the cases. �

Remark 4.4. Let H be a quaternion field with charH 6= 2. Then [8, p. 266]

contains an alternative to Lemma 4.1 and Lemma 4.3, as follows.

For every nontrivial pure element p1 and every p2 ∈ {1, p1}
⊥ r {0}, we have

p1p2 = −p2p1 and p1p2 ∈ {1, p1, p2}
⊥ r {0}. We call (p1, p2) a Hamilton pair.

If a ∈ Pu(H)r {0} then the F -linear endomorphism σa : x 7→ a−1xa of H is

the reflection with axis a⊥. For each Hamilton pair (p1, p2), we obtain −2 idH =

σ1 − σp1
− σp2

− σp1p2
. Finally, we have for all v, w ∈ V :

2h(v, w) = f(v, w) + p−1

1
f(p

1
v, w) + p−1

2
f(p

2
v, w) + (p

1
p
2
)−1f(p

1
p
2
v, w) .

5. Affine quadrics

We resume notation from Assumptions 2.1 and consider the affine plane ob-

tained by deleting the points on some line S from the projective plane over K;

we want to take a secant for S. By Witt’s Theorem the unitary group PU (k) acts

two-transitively on U . Thus it acts transitively on the set B of blocks and we may

without loss of generality assume S = K(1, 0, 0) +K(0, 1, 0) as in Example 2.3.
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Passing to inhomogeneous coordinates, we will identify the point K(x, y, 1)

with (x, y) ∈ K2. This affine plane also carries the richer structure of an affine

space

A :=
(
K2,

{
a+ Fv | a ∈ K2, v ∈ K2

r {0}
})

over the smaller (and commutative) field F , which will be utilized in the se-

quel. The dimension of this affine space is dimF (K
2) = 2 dimF K ∈ {4, 8}, see

Remark 2.4.

The projective hull P of A may be described by homogeneous coordinates

F (x, y, s), with x, y ∈ K and s ∈ F . We will identify the hyperplane A∞ := PrA

at infinity with the projective space consisting of all F -subspaces of S.

We interpret the affine part U r bS of the unital in terms of A:

Lemma 5.1. (a) The set A := U r bS = {(x, y) | xy + yx+ 1 = 0} is the affine

part of the quadric Q described by the quadratic form

q : K2 × F → F : (x, y, s) 7→ k
(
(x, y, s), (x, y, s)

)

= xy + xy + s2 = xy + yx+ s2 ,

with polar form βq ((x, y, s), (u, v, t)) = xv + vx+ yu+ uy + 2st.

(b) For all v, w ∈ K2 × F , we obtain q(v) = k(v, v) and

βq (v, w) = k(v, w) + k(w, v) = k(v, w) + k(v, w) .

The restriction q|S is non-degenerate; its Witt index is dimF K. �

Lemma 5.2. Every block b of the unital that meets bS induces an affine sub-

space Xb of A such that the completion of Xb in P is totally singular with respect

to q. That subspace either is a line (if K is commutative) or has dimension 3 (if K

is a quaternion field).

Proof. Let K(a, b, 1) and K(x, y, 1) be affine points on a block of the unital;

then ab + ba + 1 = 0 = xy + yx + 1. The joining line K(a, b, 1) ⊕ K(x, y, 1)

meets S in the point K(a−x, b−y, 0). This point belongs to the unital precisely

if 0 = (a−x)(b− y)+(b−y)(a− x) = ab+ba+xy+yx−(ay+ya+bx+xb). This

yields ay + ya+ bx+ xb = ab+ ba+ xy + yx = −2, and βq ((a, x, 1), (b, y, 1)) =

ay + ya+ bx+ xb+ 2 = 0.

We have thus proved that any two affine points on the considered block are

orthogonal with respect to βq. Since points on the unital are singular, this means

that the affine part of the block is contained in a totally singular subspace.

Conversely, the affine part of this subspace is contained in the quadric (and thus

in the unital), and coincides with the affine part of the block. �
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In general, only a partial converse of Lemma 5.2 is true:

Lemma 5.3. Let T be a line of P that is totally singular with respect to q. Then

the intersection of T with A is contained in a unique block of the unital that meets

the block bS .

Proof. Let (a, b) and (x, y) be two affine points that span T . Then we have

ab+ ba+ 1 = q(a, b, 1) = 0 = q(x, y, 1) = xy + yx+ 1 and 0 = q(a− x, b− y, 0)

because the space T is totally singular. The line K(a, b, 1) ⊕ K(x, y, 1) joining

the two points in the projective plane over K meets the line S in the point

K(a− x, b− y, 0). This point belongs to the unital, and all affine points of T lie

in the block induced by K(a, b, 1) +K(x, y, 0), as claimed. �

Definition 5.4. We use the polar space Q (consisting of all totally singular

subspaces of K2×F , with respect to q) in order to gain a deeper understanding

of the unital. The affine part of Q will be denoted by A.

If (and only if) K is commutative, this affine part of the quadric forms an

affine quadrangle with respect to a full weak subquadrangle: the maximal sin-

gular subspaces are lines. See [11] for an axiomatization of that class of ge-

ometries; cf. also [13] and [12]. We will denote the set of nonempty affine

restrictions of maximal totally singular subspaces (with respect to q) by M.

Remark 5.5. The lines in Q are maximal totally singular subspaces if, and only

if, the field K is commutative (i.e., if dimF K = 2). In that case (A,BS) is equal

to (A,M). If K is not commutative, pick two affine points a, b ∈ Q that span a

totally singular line ℓ. Then the orthogonal space ℓ⊥ has F -dimension greater

than 3, and contains affine points of Q that do not belong to the block of the

unital that joins a and b. This shows that, in the non-commutative case, not

every element of M is induced by a block of the unital.

We collect our results so far:

Theorem 5.6. (a) The quadratic form q is non-degenerate; its Witt index equals

dimF K ∈ {2, 4}.

(b) The stabilizer Aut (U,B)bS acts faithfully by automorphisms of (A,M).

(c) If K is commutative then the affine part A of Q consists of the affine subspaces

(in A) of the blocks of U that meet the block S.

(d) If K is not commutative then there are totally singular subspaces whose affine

part is not contained in any block of the unital.

Proof. The quadratic form q is non-degenerate because no point belongs to ev-

ery totally singular subspace. From Lemma 5.2 and Lemma 5.3 we know that
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each element of the stabilizer induces a permutation of the point set A∩U of the

affine polar space A such that collinearity in A is preserved. The elements of M

are just the maximal sets of pairwise collinear points in A. This proves (b); the

rest is clear from Lemma 5.1, Lemma 5.2, Lemma 5.3 and Remark 5.5. �

Remark 5.7. Theorem 5.6 has been known in the finite (and necessarily com-

mutative) case. In fact, Buekenhout [1] used the converse, observing that an

affine quadric in a suitable finite projective space could be interpreted as a unital

in a translation plane.

We want to apply Proposition 4.2 and Lemma 4.3 in order to reconstruct the

hermitian form k. To this end, we have to extend the forms from K2 × F or

K2 × {0} to K3.

Definition 5.8. For v := (a, b, c) and w := (x, y, z) ∈ K3 we put q̃(v) :=

k(v, v) = ab+ba+cc and obtain the polar form βq̃ : (v, w) 7→ k(v, w)+k(w, v) =

ay + yā+ bx+ xb+ cz + zc.

Writing q′(a, b) := q(a, b, 0) and k′((a, b), (x, y)) := k((a, b, 0), (x, y, 0)), we

find q(v) = q′(a, b) + cc and k(v, w) = k′((a, b), (x, y)) + cz.

Lemma 5.9. The forms q, q′ and βq, βq′ are restrictions of q̃ and βq̃, respectively.

(a) Each semi-similitude of q leaving S invariant induces a semi-similitude of q′.

(b) Let α′ be a semi-similitude of q′, satisfying q′(uα′

) = q′(u)γs. The formula

(u, z)α := (uα′

, zγt) defines a semi-similitude α of q if, and only if, we have

t ∈ F and t2 = s. In this case, the formula defining α (for z ∈ F ) extends to

the definition of a semi-similitude α̃ of q̃.

(c) In particular, the factor s is a square in F whenever α′ is obtained as the

restriction of a semi-similitude of q or of q̃.

(d) If the restriction α′ of a semi-similitude α is K-semilinear then α allows a

unique extension to a semi-similitude α̃ of k, and α̃ leaves K(0, 0, 1) and

(0, 0, 1)⊥ = K2 × {0} invariant.

Proof. The first assertion is obvious, the second one is checked by comparing

q(u, z)γs = q′(u)γs+ (zz)γs

and

q(uα′

, zγt) = q′(u)γs+ zγ t t zγ = q′(u)γs+ zγ zγ t2 :

we use that σ centralizes every automorphism of K that leaves F invariant.

Now the third assertion is clear, and the last assertion follows by an application

of Proposition 4.2 and Lemma 4.3. �
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6. Automorphisms of affine polar spaces

The following is shown in [2, 2.7]:

Proposition 6.1. Every isomorphism between affine parts Aj = Qj r Hj of po-

lar spaces Q1 and Q2 of rank at least 2 (obtained by deleting geometric hyper-

planes H1 and H2, respectively) extends uniquely to an isomorphism between the

polar spaces. �

By Proposition 6.1 every automorphism of A extends to a unique element

of Aut (Q). If K is not commutative then the polar space Q can be recovered

from the system M of all affine maximal totally singular subspaces:

Lemma 6.2. Every automorphism of (A,M) extends uniquely to an automor-

phism of the polar space Q defined by q.

Proof. We claim that for each totally singular subspace T of Q there is a set MT

of maximal totally singular subspaces such that A ∩ T =
⋂

X∈MT
(A ∩X).

In order to see this, choose first2 a subspace V ≤ K2×F such that K2 × F =

(K2 × F )⊥ ⊕ V and T ≤ V ; this is possible because the quadratic form is

not degenerate. Now one may take MT as the set of all maximal totally sin-

gular subspaces contained in T⊥ ∩ V . The radical of T⊥ ∩ V is just T , and

MT /T := {X/T | X ∈ MT } is the set of all maximal totally singular subspaces

of Z := (T⊥ ∩ V )/T , with respect to the induced quadratic form q|Z . As the

polar form βq|Z is non-degenerate, we have {0} = rad
(
βq|Z

)
≥

⋂
X∈MT

X/T ,

and T =
⋂

X∈MT
X follows. Consequently, every automorphism of (A,M) is

an automorphism of the affine polar space A. The extension to Q exists by

Proposition 6.1. �

Consider a non-degenerate quadratic or hermitian form of Witt index at

least 2 on a vector space V with 5 ≤ dimV < ∞. Then every automorphism

of the corresponding polar space is induced by a semi-similitude, cf. [6, 8.1.5].

Therefore, we have:

Corollary 6.3. Every automorphism of (A,M) is induced by a semi-similitude

of q that leaves A∞ invariant. �

2 This precaution is necessary if charK = 2 because then βq is degenerate; cf. [4, § 16].
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7. Extending automorphisms of the quadric

The points at infinity for the affine plane over K are obtained by identifying

those points that belong to the same orbit under multiplication (from the left)

with elements of K×. Let Σ denote the group of automorphisms of the projec-

tive space P induced by maps of the form (x, y, z) 7→ (mx,my, z), with m ∈ K×.

Then the Σ-orbits are the classes [X]∼ with respect to the equivalence relation ∼

given by F (a, b, 0) ∼ F (x, y, 0) ⇐⇒ ∃m ∈ K× : F (a, b, 0) = F (mx,my, 0) .

Theorem 7.1. An element γ ∈ Aut (A) induces an automorphism of the unital

(U,B) if, and only if, it normalizes Σ. In particular, not every automorphism of

(U r bS , B
S) extends to an automorphism of (U,B).

Proof. Recall from Proposition 6.1 and Corollary 6.3 that γ is induced by a

semi-similitude of q, that is, by an element of ΓO (q). Assume first that γ nor-

malizes Σ. Then γ respects the relation ∼ on A∞. Thus the action of γ ex-

tends to an action on the projective plane over K, induced by a K-semilinear

map in ΓO (q̃). According to Proposition 4.2, this semilinear map is a semi-

similitude of the hermitian form f . Thus it leaves U invariant, and respects the

blocks because these (apart from bS) are obtained by joining a point of A with

[X]∼ < A∞, for some X ∈ Q ∩ A∞.

Now assume that γ induces an automorphism of the unital. Then γ preserves

the relation ∼. This means that the group γ−1Σγ has the same orbits as Σ

on K2×{0}. We also know that γ−1Σγ is induced by a subgroup of O(q′)×{id}

because the latter is a normal subgroup of Aut (A), cf. Corollary 6.3. Looking

at the images of F (1, 0, 0), F (0, 1, 0) and F (1, y, 0) under an arbitrary element

ϕ ∈ γ−1Σγ we find that ϕ is induced by a map of the form (x, y, z) 7→ (xα, yβ , z),

where α and β are F -linear bijections of K such that

∀s ∈ K× ∀y ∈ K ∃t ∈ K× : (sα, (sy)β) = (t, ty) .

Specializing y = 1, we find α = β. Considering the general case again, we

obtain sαt = (st)α for all s, t ∈ K. This means that α centralizes the multipli-

cations by elements of K from the right. Thus α is contained in the group of

multiplications by elements of K× from the left, see [10, 4.4, Lemma 2]. We

have proved that γ normalizes Σ. �

Example 7.2. There is no chance to reconstruct the relation ∼ inside the affine

part of the polar space: Let α be an F -linear bijection of K. Since K×{0}×{0}

and {0} × K × {0} are totally singular subspaces of S, there exists a unique

F -linear bijection α̂ such that (x, y, 0) 7→ (xα, yα̂, 0) gives an element α′ ∈ O(q′).

For a suitable choice of α, we find that α′ does not preserve the equivalence

relation ∼. We give explicit examples:
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(1) Let G be commutative with charG 6= 2, and pick j ∈ G× with j = −j (for

instance, consider G = C and F = R, with j2 = −1). Then the map α

given by (u + vj)α = u + v + vj is a linear bijection, we have (u + vj)α̂ =

u + uj−1 + vj, and (1, 1, 0)α
′

= (1, 1 + j−1, 0) ∼ (j, j, 0)α
′

= (1 + j, j, 0)

would imply j−1 = −2, contradicting the fact that j does not belong to F .

(2) Consider a quaternion field H with charH 6= 2, and pick a Hamilton pair

(p1, p2), cf. Remark 4.4. Put (x0 + x1p1 + x2p2 + x3p1p2)
α := x0 + x1 +

x1p1 + x2p2 + x3p1p2, then (x0 + x1p1 + x2p2 + x3p1p2)
α̂ = x0 + x0p

−1

1
+

x1p1 + x2p2 + x3p1p2, and α′ does not preserve the relation ∼, as before.

8. Automorphisms of the unital

From Theorem 5.6(b) we know that every automorphism ϕ of (U,B) that leaves

bS invariant induces an automorphism of (A,M). Since the action of ϕ on A

extends to a unique action on (U,B) and to a unique action on the polar space Q

(cf. Lemma 6.2), we have an injective group homomorphism ϕ 7→ ϕ̂ from the

stabilizer Aut (U,B)bS into the stabilizer Aut (Q)Q∞

.

From Corollary 6.3 we know that Aut (Q)Q∞

is induced by the stabilizer of S

in the group ΓO (q), which in turn induces the group ΓO (q′) on S. According to

Theorem 7.1, the image of Aut (U,B)bS under the homomorphism ̂ induces

the normalizer of Σ in ΓO (q′). This normalizer consists of the K-semilinear

semi-similitudes of q′, and these extend to semi-similitudes of the hermitian

form k by Lemma 4.3, cf. Lemma 5.9.

Since the group of (semi-)similitudes of the hermitian form k acts transitively

on the set B of blocks of the unital, the full group of automorphisms of the

unital is obtained as the product of PU (k) and the stabilizer of bS . As we have

just seen, this stabilizer is induced by semi-similitudes, and we have proved the

following.

Theorem 8.1. Every automorphism of the unital is induced by a semi-similitude

of the hermitian form; we have Aut (U,B) = PΓU (k). �

A translation with center p of a unital is an automorphism fixing every block

through p. The group T generated by all translations is called the little projective

group of the unital.

Corollary 8.2. The little projective group T is normal in Aut (U,B), and the latter

acts faithfully by conjugation on T. Thus Aut (U,B) is embedded in Aut (T). �

Remark 8.3. Once we know Aut (U,B) = PΓU (k) it is easy to compute the

translations with center p; they form a subgroup of the (abelian) group of ela-

tions with center p and axis p⊥ in the projective plane over K. Thus T is the
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group generated by all transvections in PU (k). One knows (see [3, Thm. 1])

that T is a simple group.

If charK 6= 2 there is a direct argument (cf. [14, 3.2, 1.5]) which yields

that T is perfect, and an application of Iwasawa’s Lemma [7] shows that T is a

simple group.
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