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Abstract

We prove that a two-spherical split Kac–Moody group over a local field natu-

rally provides a topological twin building in the sense of [27]. This existence

result and the local-to-global principle for twin building topologies com-

bined with the theory of Moufang foundations as introduced and studied by

Mühlherr, Ronan, and Tits allows one to immediately obtain a classification

of two-spherical split Moufang topological twin buildings whose underlying

Coxeter diagram contains no loop and no isolated vertices.

1 Introduction

The objective of topological geometry is to study (incidence) geometries, whose

underlying sets are equipped with a topology with respect to which the natu-

ral geometric operations are continuous. Among the most prominent examples

are the compact projective planes, i.e., projective planes whose point and line

sets are compact Hausdorff spaces such that the maps that assign to two dis-

tinct points the unique line joining them and to two distinct lines the unique

point incident to both are continuous maps. A detailled account on connected

compact projective planes can be found in [38].

The gate property of Tits buildings ([1, Section 4.9]) and the resulting pro-

jection maps between opposite panels generalize these geometric operations of

joining points and intersecting lines in projective planes, thus leading to the con-

cept of compact generalized polygons and, more generally, topological (spher-

ical) buildings; see [5, 26]. Various subclasses of these topological geometries

have been classified, see for example [5, 15, 16, 38].

∗né Gramlich
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An important extension of the class of spherical buildings is given by the class

of twin buildings [45]. By definition, a twin building consists of a pair of (possi-

bly non-spherical) buildings together with a codistance function (or twinning),

which allows one to define the notion of opposition and (co-)projections from

one half of the twin building to the other, extending the corresponding notions

in the spherical case. While spherical twin buildings are just another way of

looking at spherical buildings ([45, Proposition 1]), in the non-spherical case it

is a very rigid property for a building to be part of a twin building. The existence

of co-projections in twin buildings opens the door for the development of a the-

ory of topological twin buildings, by requiring co-projections to be continuous.

In order to be able to develop a rich theory, it seems necessary to maintain some

compactness assumption, for instance compactness of the panels. In the spher-

ical case this assumption is equivalent to compactness of the whole building,

whereas in the non-spherical case it is not.

An axiomatic definition of topological twin buildings along the lines just de-

scribed was first given by Kramer in [27], where he provides a geometric under-

pinning for the proof of Bott periodicity in [29], which was based on a some-

what ad hoc notion of a topological BN-pair. While the article [27] describes in

detail an explicit model of the twin building associated with a loop group, the

theory is developed in an abstract way which is independent of the existence

of such a model and hence does not rely on the underlying twin building being

affine.

At the time of writing of [27] examples of non-discrete, non-affine, non-

spherical topological twin buildings were not well-understood—although in

principle available through work by Kac and Peterson [23] and by Tits [44].

During the last decade the theory of Kac–Moody groups (Rémy [34]) and their

group topologies (Glöckner, Hartnick, Köhl [13]) has been developed to a point

where many such examples can be described without problem.

The purpose of the present article is twofold: on the one hand, to show that

the examples of twin buildings associated with two-spherical split Kac–Moody

group over local fields are indeed topological twin buildings in the sense of

Kramer; on the other hand, to revisit and extend the general theory in light

of these new examples up to the point necessary to obtain partial classification

results. An important feature of our presentation is that we treat the connected

and the totally disconnected case as well as the characteristic 0 and the positive

characteristic case largely simultaneously.

The idea to use group topologies on certain Kac–Moody groups to construct

new examples of topological twin buidlings was already suggested in the first

author’s master thesis [19], where also a group-theoretic criterion for twin

building topologies based on the theory of RGD systems is stated (see [19, Sec-
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tion 4.2]). However, carrying out this program—even in the case of complex

Kac–Moody groups—became only possible after some rather technical insights

concerning direct limit topologies had been obtained in [13]. Using a minor

variation of the results from [13] it is straight-forward to carry out the program

suggested in [19] for Kac–Moody groups over any local field of characteristic 0,

and to associate with every such group a topological twin building. Finally, us-

ing additional techniques from [34] one can extend the result to local fields of

positive characteristics. One thereby arrives at the following result:

Theorem 1. LetG be a two-spherical simply connected split Kac–Moody group over

a local field and let τKP be the Kac–Peterson topology on G. Then the associated

twin building endowed with the quotient topology is a strong topological twin

building.

If the local field equals the field of real or of complex numbers, then G is con-

nected, otherwise totally disconnected.

Theorem 1 provides a rich supply of topological twin buildings; for defini-

tions we refer to Section 3.1 and to Definition 3.21. In the course of the proof

of Theorem 1 we will explicitly construct and study the Kac–Peterson topology;

we refer to Definition 7.8 and Remark 7.12 for its definition, to [24, Section 4G]

for its original appearance and to [28] (where it is called the analytic topology)

and to [13] for subsequent discussions in the literature.

Following the latter, we will provide a universal characterization of the Kac–

Peterson topology in the general case. We emphasize that in case of a non-

spherical Kac–Moody group G the Kac–Peterson topology is kω, but not locally

compact and not metrizable; cf. Proposition 7.21 and Remark 7.28. In case of

a spherical Kac–Moody group, the Kac–Peterson topology coincides with the Lie

group topology; cf. Corollary 7.16 and Remark 7.24. Furthermore, the subspace

topology induced on bounded subgroups turns these into algebraic Lie groups;

cf. Corollary 7.30.

The hypothesis in Theorem 1 that the Kac–Moody group be two-spherical

stems from Proposition 7.31. That result has been announced in [24, Sec-

tion 4G] without the requirement that the Kac–Moody group be two-spherical.

However, to the best of our knowledge there is no published proof of that state-

ment available in the literature. Our own proof, which is based on a combi-

natorial argument by Mühlherr given in the appendix, unfortunately requires

two-sphericity.

It is natural to ask whether a classification of topological twin buildings is

possible under some natural conditions, mimicking known classification results

in the spherical case. We will provide such a classification result in the following

restricted setting: Let us call a topological twin building k-split, if all its rank two
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residues are compact Moufang polygons and its rank one residues (considered

as topological Moufang sets) are projective lines over k. We say that a k-split

topological twin building is of tree type if the underlying Coxeter diagram is a

tree. In particular, such twin buildings are two-spherical and Moufang.

Given a k-split topological twin building of tree type we can associate a

Dynkin diagram in the usual way, using the fact that rank two residues are

either generalized triangles or quadrangles or hexagons. Given a topological

twin building ∆ we denote by D(∆) the associated Dynkin diagram. With this

notation understood our classification result can be formulated as follows:

Theorem 2. Let k be a local field. Then the map [∆] 7→ [D(∆)] induces a bijection

between isomorphism classes of k-split topological twin buildings of tree type and

isomorphism classes of simply connected simple {3, 4, 6}-labelled graphs, where

edges labelled 4 or 6 are directed.

Note that the classification of abstract k-split twin buildings over fields is

based on the theory of abstract foundations as developed by Mühlherr [30],

Mühlherr–Ronan [32], Ronan–Tits [36]. The uniqueness part of our classifica-

tion result is based on a topological formulation of this theory (cf. Theorem 4.6),

whereas the existence part is a direct consequence of Theorem 1.

Using the concept of normal coverings of Coxeter diagrams from [30] it is

actually possible to extend Theorem 2 to k-split topological twin buildings of

arbitrary type, but we refrain from doing so in the present article. We sim-

ply note that for arbitrary diagrams the Moufang foundation will not uniquely

determine the twin building, so the precise classification statement becomes

necessarily more complicated (cf. also the discussion on page 32 before Theo-

rem 4.6).

This article is organized as follows: In Section 2 we recall basic definitions

concerning twin buildings and RGD systems. We then establish a couple of

basic combinatorial properties of twin buildings. The main original result of

that section (which stems from the first author’s master thesis [19]) is Theo-

rem 2.22, where we provide an explicit formula for co-projections in the twin

building associated with an RGD system in terms of group data. In Section 3

we introduce topological twin buildings and develop their basic point-set topo-

logical properties. Our main contribution in that section is the local-to-global

result Theorem 3.15, which was previously only known in the spherical case.

Our proof is based on the concept of Bott–Samelson desingularizations of Schu-

bert varieties taken from [27]. Section 4 applies this local-to-global result to

establish the uniqueness part of Theorem 2 (cf. Corollary 4.10). We then di-

gress in Section 5 to re-visit [25, 26, 27], [19, Theorem 3.3.10] and to discuss

the topology of connected topological twin buildings. The main result here is
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Theorem 5.3, which is a topological version of the Solomon–Tits theorem. The

remainder of the article is then devoted to the explicit construction of topolog-

ical twin buildings. In Section 6 we develop the theory of topological groups

with RGD system. In particular, we provide a list of conditions on the topology

of such a group, which guarantee that the associated twin building becomes a

topological twin building when equipped with the quotient topology (see The-

orem 6.7). In Section 7 this result is applied to the case of split Kac–Moody

groups over a local field. We use the Kac–Peterson topology on these groups in

order to establish Theorem 1 and the existence part of Theorem 2. We close with

some remarks concerning closure relations in Kac–Moody symmetric spaces.
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2 Twin buildings and RGD systems

2.1 Twin buildings and their combinatorics

Buildings can be studied from the point of view of simplicial complexes (as done

in [42]) or, equivalently, from the point of view of chamber systems (as intro-

duced in [43]). The book [1] is a comprehensive introduction into the theory

of buildings that explains both concepts in detail, also including the theory of

twin buildings.

In the present article we will study twin building topologies using the cham-

ber system approach to buildings. Throughout this article we reserve the letters

(W,S) to denote a Coxeter system, which is always assumed to be of finite rank

|S|. We then denote by ≤ the associated Bruhat order and by l = lS the associ-

ated length function on W . Given J ⊂ S we denote by WJ the subgroup of W
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generated by J .

Definition 2.1. Let (W,S) be a Coxeter system. A building of type (W,S) is a

pair (∆, δ) consisting of a set of chambers ∆ together with a distance function

δ : ∆×∆ →W satisfying the following axioms, where x, y ∈ ∆ and δ(x, y) = w:

(Bu1) w = 1 if and only if x = y,

(Bu2) if z ∈ ∆ such that δ(y, z) = s ∈ S, then δ(x, z) ∈ {ws,w}. If additionally

l(ws) > l(w), then δ(x, z) = ws.

(Bu3) If s ∈ S, there exists z ∈ ∆ such that δ(y, z) = s and δ(x, z) = ws.

A building is called spherical if W is finite. If ∆ is spherical, then c, d ∈ ∆ are

called opposite, if δ(c, d) = w0, where w0 denotes the longest element of (W,S).

For every c ∈ ∆ and every subset S′ ⊆ S we define the S′-residue RS′(c) to

be

RS′(c) := {d ∈ ∆ | δ(c, d) ∈WS′ = 〈s | s ∈ S′〉};

the collection of all S′-residues in ∆ will be denoted ResS′(∆).

Remark 2.2. Using the above definition, a building of rank one is simply a set

without further structure. In order to be able to develop a meaningful theory for

such buildings, one has to require additional properties, such as the existence

of a prescribed rank one group of automorphisms; cf. [10, 41]. In the present

article we will not deal with this situation and therefore only study buildings

whose Coxeter systems/Dynkin diagrams do not admit isolated points.

Lemma 2.3 ([1, Lemma 5.16 and Corollary 5.30]). Any residue of a building ∆

is again a building. For any S′ ⊆ S the elements of ResS′(∆) partition ∆.

The building ∆ will be called k-spherical if all residues of rank ≤ k are spher-

ical buildings. Every building is one-spherical, and a building of type (W,S)

is |S|-spherical if and only if it is spherical. For our purposes the class of two-

spherical buildings will play a key role.

The role residues of rank or co-rank one play is a particularly important one.

Those of rank one, i.e., the elements of Pans(∆) := Res{s}(∆) are called s-pan-

els; as a convention, we write Ps(c) instead of R{s}(c). The residues of co-rank

one, i.e., the elements of Vs := ResS\{s}(∆) are called s-vertices. There is a

canonical embedding

ι : ∆ →֒
∏

s∈S

Vs

c 7→
(

RS\{s}(c)
)

s∈S
,
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which, from the simplicial complexes point of view on buildings, simply maps a

maximal simplex onto the tuple consisting of its vertices.

A building is thin, if each panel contains exactly two elements, and thick, if

each panel contains at least three elements. For a given chamber c and a residue

R there exists a unique chamber d ∈ R such that

l(δ(c, d)) = min{l(δ(c, x)) | x ∈ R},

see [1, Proposition 5.34]. This chamber d is called the projection of c onto R

and is denoted by projR(c).

Example 2.4. Let (W,S) be a Coxeter system. Then ∆ :=W and

δ : ∆×∆ →W : (x, y) 7→ x−1y

yields a (thin) building of type (W,S), denoted by ∆(W,S). For any three

chambers x, y, z ∈ ∆ one has δ(x, z) = x−1z = x−1yy−1z = δ(x, y)δ(y, z); see

also [1, Lemma 5.55]. Any thin building of type (W,S) is isometric to ∆(W,S),

cf. [1, Exercise 4.12].

Let ∆ be a building of type (W,S). A subset of ∆ which is isometric to

∆(W,S) is called an apartment of ∆.

Definition 2.5. A twin building of type (W,S) is a triple ((∆+, δ+), (∆−, δ−), δ
∗)

consisting of two buildings (∆+, δ+) and (∆−, δ−) of type (W,S) and a codis-

tance function δ∗ : (∆+ × ∆−) ∪ (∆− × ∆+) → W subject to the following

conditions, where x ∈ ∆±, y ∈ ∆∓ and δ∗(x, y) = w:

(Tw1) δ∗(y, x) = w−1,

(Tw2) if z ∈ ∆∓ such that δ∓(y, z) = s ∈ S, and l(ws) < l(w), then δ∗(x, z) =

ws, and

(Tw3) if s ∈ S, then there exists z ∈ ∆∓ such that δ∓(y, z) = s and δ∗(x, z) =

ws.

A twin building is called spherical, resp. k-spherical if both of its halves have the

corresponding property.

Morphisms of twin buildings are defined as follows:

Definition 2.6. For j ∈ {1, 2} let ∆(j) = ((∆
(j)
+ , δ

(j)
+ ), (∆

(j)
− , δ

(j)
− ), δ∗,(j)) be twin

buildings such that the type (W (1), S(1)) is a sub-Coxeter system of the type

(W (2), S(2)). A morphism ϕ : ∆(1) → ∆(2) is an isometry

ϕ : ∆
(1)
+ ∪∆

(1)
− → ∆

(2)
+ ∪∆

(2)
− ,

i.e., a map that preserves distances and codistances.
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Example 2.7. Let (W,S) be any Coxeter system and let ∆± := W and δ± as

in Example 2.4. Moreover, define δ∗ : (∆+ × ∆−) ∪ (∆− × ∆+) → W by

δ∗(v, w) := v−1w. Then ((∆+, δ+), (∆−, δ−), δ
∗) is a thin twin building, and

any thin twin building of type (W,S) is isometric to this twin building, cf. [1,

Exercise 5.164]. In this case the distance and the codistance function are related

by the formula

δ∗(x, z) = x−1z = x−1yy−1z = δ∗(x, y)δ∓(y, z), x ∈ ∆±, y, z ∈ ∆∓;

see also [1, Lemma 5.173(4)].

A subset of a twin building isomorphic to a thin twin building is called a

twin apartment. Twin apartments can be described efficiently via the notion of

opposition. Here two chambers c ∈ ∆±, d ∈ ∆∓ are called opposite, if δ∗(c, d) =

1. Every pair of opposite chambers is contained in a unique twin apartment by

[1, Proposition 5.179(1)]. Conversely, a pair of apartments (Σ+,Σ−) forms a

twin apartment if and only if each chamber in Σ± is opposite to exactly one

chamber of Σ∓; cf. [1, Proposition 5.173(5)].

The notion of opposition can be extended to residues by calling two residues

opposite, if they have the same type and contain a pair of opposite chambers.

Any pair of opposite residues is a twin building with respect to the restrictions

of the distance and co-distance functions, cf. [1, Exercise 5.166].

Given a spherical residue R ⊆ ∆± and a chamber c ∈ ∆∓, there exists a

unique chamber d ∈ R such that δ∗(c, d) is maximal in the set δ∗(c,R) with

respect to the Bruhat order, cf. [1, Lemma 5.149]. This chamber d is called the

co-projection of c onto R and is denoted by proj∗R(c).

Given a chamber c ∈ ∆± and an element w ∈W we denote by

Ew(c) := {d ∈ ∆± | δε(c, d) = w ∈W},

E∗
w(c) := {d ∈ ∆∓ | δ∗(c, d) = w ∈W}

the Schubert cell, respectively, co-Schubert cell of radius w and centre c. The sets

E≤w(c), E<w(c), E
∗
≤w(c), E

∗
<w(c) are defined accordingly. E≤w(c) and E∗

≤w(c)

are called Schubert varieties, respectively, co-Schubert varieties. Moreover, we

define

∆w := {(c, d) ∈ (∆+ ×∆−) ∪ (∆− ×∆+) | δ
∗(c, d) = w}.

The following combinatorial observations concerning twin buildings are quite

useful.

Lemma 2.8. Let ∆ be a twin building, let s, t ∈ S be distinct, let c1, c2 ∈ ∆+

such that δ+(c1, c2) = s, and let d ∈ ∆− such that {(c1, d), (c2, d)} ⊂ ∆1. Then

proj∗Pt(d)
(c1) = proj∗Pt(d)

(c2).
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Proof. Let a1 := proj∗Pt(d)
(c1). Then δ∗(c1, a1) = t, whence δ∗(c2, a1) ∈ {t, st} by

[1, Lemma 5.139]. On the other hand, δ∗(c2, d) = 1 and, thus, δ∗(c2, a1) ∈ {1, t}
by [1, Lemma 5.139]. We conclude δ∗(c2, a1) = t and so proj∗Pt(d)

(c1) = a1 =

proj∗Pt(d)
(c2). �

Lemma 2.9 ([1, Lemma 5.156]). Let ∆ be a thick twin building. Then for every

pair c1, c2 ∈ ∆± there exists d ∈ ∆∓ such that {(c1, d), (c2, d)} ⊂ ∆1.

Let c ∈ ∆± be a chamber and let Σ be a twin apartment of ∆ containing

c. Then the map ρ = ρc,Σ : ∆ → Σ which fixes c pointwise and maps every

twin apartment containing c isometrically onto Σ is called the retraction onto Σ

centred at c.

Since every two chambers are contained in a common twin apartment ([1,

Proposition 5.179(3)]), the retraction ρ preserves distances from c. Moreover,

ρ is distance-decreasing, i.e., δ(ρ(d), ρ(e)) ≤ δ(d, e) for any two chambers d, e ∈
∆, where δ is to be interpreted as δ+, δ− or δ∗, whichever one makes sense.

Lemma 2.10 ([1, Lemma 5.140(1)]). Let c ∈ ∆±, d, e ∈ ∆∓ be chambers, let

δ∗(c, d) = w, and let δ∓(d, e) = v. Then δ∗(c, e) = wv′, where v′ is a subexpression

of v.

Proof. Let ρ = ρc,Σ be the retraction map onto some twin apartment Σ contain-

ing c. Then δ∗(c, ρ(d)) = δ∗(c, d) = w as ρ preserves distances from c. Since ρ is

distance-decreasing, one has δ∓(ρ(d), ρ(e)) ≤ v. We conclude

δ∗(c, e) = δ∗(c, ρ(e))

2.7
= δ∗(c, ρ(d))δ∓(ρ(d), ρ(e)) ∈ {wv′ | v′ ≤ v}. �

Lemma 2.11. Let ∆ be a thick twin building, let 1 6= w = s1 · · · sk ∈ W be

reduced, and let c± ∈ ∆± be opposite chambers. Then there exists a chamber

d ∈ ∆− with δ∗(c+, d) = 1 and δ∗(E∗
w(c−), d) = {sk}.

Proof. By the definition of co-projections (see above or [1, Lemma 5.149]) there

is a unique chamber a ∈ Ps1(c−) such that δ∗(c+, a) = s1. Since ∆ is thick,

there exists a1 ∈ Ps1(c−)\{c−, a}. Then δ∗(c+, a1) = 1 and, by axiom (Tw2),

for all x ∈ E∗
w(c−) one has δ∗(a1, x) = s2 · · · sk. By induction we obtain a

gallery a1, . . . , ak−1 such that δ∗(c+, ai) = 1 and such that for all x ∈ E∗
w(c−)

one has δ∗(ai, x) = si+1 · · · sk. Thus the chamber d := ak−1 has the desired

properties. �
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2.2 Twin buildings from RGD systems

A group G acts by isometries on a twin building ∆ = ((∆+, δ+), (∆−, δ−), δ
∗)

if it acts on each half and preserves the distances and the codistance. A twin

building is called homogeneous if it admits a group action by isometries which

is transitive on each half.

In this section we describe a class of homogeneous twin buildings using group

theory. For the necessary background information on reflection groups and their

associated root systems we refer to [1, Sections 1.5, 3.4] or to [22]. For more

details on RGD systems we strongly recommend to consult [1, Chapters 7, 8]

or [8].

Definition 2.12. Let G be a group and let {Uα}α∈Φ be a family of subgroups of

G, indexed by some root system Φ of type (W,S), let Φ+ be a subset of positive

roots, and let T be a subgroup of G. The triple (G, {Uα}α∈Φ, T ) is called an RGD

system of type (W,S) if it satisfies the following assertions.

(RGD0) For each root α ∈ Φ, one has Uα 6= {1}.

(RGD1) For each prenilpotent pair {α, β} ⊆ Φ of distinct roots, one has

[Uα, Uβ ] ⊆ 〈Uγ | γ ∈]α, β[〉.

(Cf. [1, Sections 8.5.2, 8.5.3] for a definition of a prenilpotent pair, the

“closed” interval [α, β] and the “open” interval ]α, β[.)

(RGD2) For each s ∈ S there exists a function µs : Uαs
\{1} → G such that

for all u ∈ Uαs
\{1} and α ∈ Φ one has µs(u) ∈ U−αs

uU−αs
and

µs(u)Uαµs(u)
−1 = Us(α).

(RGD3) For each s ∈ S one has U−αs
* U+ := 〈Uα | α ∈ Φ+〉.

(RGD4) G = T.〈Uα | α ∈ Φ〉.

(RGD5) The group T normalises every Uα.

The tuple ({Uα}α∈Φ, T ) is called a root group datum, the Uα are called the root

subgroups, and the Gα := 〈U±α〉 are called the rank one subgroups.

Occasionally, for pairwise distinct simple roots α1, . . . , αr, we use the nota-

tion Gα1,...,αr
for the group generated by Gα1

∪· · ·∪Gαr
. These groups are then

referred to as fundamental rank r subgroups.

A root group datum ({Uα}α∈Φ, T ) is called F-locally split if T is abelian and

if there is a field F such that Gα
∼= (P)SL2(F) and {Uα, U−α} is isomorphic to
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the canonical root group datum of (P)SL2(F). The RGD system is called centred

if G is generated by its root subgroups, i.e., if G = 〈Uα | α ∈ Φ〉.

Root group data give rise to BN-pairs in the sense of the following definition:

Definition 2.13. Let G be a group and let B,N be subgroups of G. The pair

(B,N) is called a BN-pair for G, if G is generated by B and N , the intersection

T := B ∩N is normal in N , and the quotient group W := N/T admits a set of

generating involutions S such that

(BN1) for all w ∈W and s ∈ S one has wBs ⊆ BwsB ∪BwB, and

(BN2) sBs * B for each s ∈ S.

Two BN-pairs (B+, N) and (B−, N) of the same group G satisfying B+ ∩ N =

B− ∩N yield a twin BN-pair (B+, B−, N), if the following additional assertions

hold:

(TBN1) for ε ∈ {+,−} and all w ∈ W , s ∈ S such that l(sw) < l(w), one has

BεsBεwB−ε = BεswB−ε, and

(TBN2) for each s ∈ S one has B+s ∩B− = ∅.

If B,N is a BN-pair for G and S is as above then the quadruple (G,B,N, S)

is called a Tits system with Weyl group W . The notion of a twin Tits system

(G,B+, B−, N, S) is defined accordingly. We remark that the pair (W,S) is a

Coxeter system; cf. [1, Theorem 6.56(1)].

A group G with a BN-pair admits a Bruhat decomposition G =
⊔

w∈W BwB,

cf. [1, Theorems 6.17 and 6.56(1)], and a group G with a twin BN-pair admits

a Birkhoff decomposition G =
⊔

w∈W BεwB−ε, cf. [1, Proposition 6.81]. The

groups B+, B− and their conjugates are called Borel subgroups.

Important examples arise from root group data:

Proposition 2.14 ([1, Theorem 8.80]). Let G be a group with a root group

datum ({Uα}α∈Φ, T ) of type (W,S) and for each s ∈ S let µs : Uαs
\{1} →

U−αs
Uαs

U−αs
be the map provided by (RGD2). Then the groups

N := T.〈µs(u) | u ∈ Uα\{1}, s ∈ S〉,

B+ := T.U+,

B− := T.U−

yield a twin BN-pair (B+, B−, N) of the group G.
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Definition 2.15. Let G be a group with a root group datum ({Uα}α∈Φ, T ) of

type (W,S), let (B+, B−, N) be the associated twin BN-pair and let Π ⊂ Φ be a

set of simple roots. We say that the root group datum has the finite prolongation

property if the following holds: For every finite sequence (α1, . . . , αn) ∈ (Π ∪
−Π)n there exists a finite prolongation (α1, . . . , αN ) ∈ (Π ∪ −Π)N such that

B+B− ∩ (Uα1
· · ·Uαn

)

⊂ (U+ ∩ (Uα1
· · ·UαN

)) · (T ∩ (Uα1
· · ·UαN

)) · (U− ∩ (Uα1
· · ·UαN

)).

For a twin Tits system (G,B+, B−, N, S) with Weyl group W define ∆± :=

G/B±. Given gB±, hB± ∈ ∆± using the Bruhat decomposition let

δ±(gB±, hB±) := w ∈W if and only if B±g
−1hB± = B±wB±.

Similarly using the Birkhoff decomposition instead, given gB± ∈ ∆± and hB∓ ∈
∆∓ let

δ∗(gB±, hB∓) := w ∈W if and only if B±g
−1hB∓ = B±wB∓.

Then ((∆+, δ+), (∆−, δ−), δ
∗) is a twin building of type (W,S), see [1, Theo-

rem 6.56 and Definition 6.82].

Definition 2.16. The above twin building is denoted

∆(G,B+, B−, N, S) := ((∆+, δ+), (∆−, δ−), δ
∗)

and is referred to as the twin building associated with the twin Tits system

(G,B+, B−, N, S). Moreover, if the twin Tits system arises from an RGD sys-

tem ({Uα}α∈Φ, T ), then the associated twin building will also be denoted by

∆(G, {Uα}α∈Φ, T ).

The following observation is due to Bernhard Mühlherr. It relies on the prop-

erty (dco) for Moufang polygons, cf. [31, Definition 5.1]: For d ∈ N, a Moufang

polygons admits property (dco) if, given an arbitrary chamber c, any pair of

chambers opposite c can be joined by a gallery of length at most d consisting of

chambers opposite c only.

Proposition 2.17. Every two-spherical root group datum for which there exists

d ∈ N such that each residue of rank two of the associated twin building satisfies

(dco) has the finite prolongation property.

For infinite fields F, this in particular applies to any F-locally split two-spherical

root group datum without generalized octagons as residues.
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Proof. The first statement is [31, Theorem 4.5]; it suffices to define αn+1, . . . , αN

in such a way that it contains any sequence of length n(2(d+16)n+1) of positive

or negative simple roots, cf. [31, Section 5].

The second statement follows from [31, Lemma 5.2] and the comment there-

after. �

2.3 A formula for co-projections onto panels

Let G be a group with root group datum ({Uα}α∈Φ, T ) and let

∆ := ∆(G, {Uα}α∈Φ, T ) = ((∆+, δ+), (∆−, δ−), δ
∗)

be the associated twin building. The goal of this section is to derive a formula

for co-projections (cf. [1, Lemma 5.149]) onto panels of ∆ in terms of the group

structure of G.

Lemma 2.18. Let B+, B− be the opposite Borel subgroups provided by Proposi-

tion 2.14, let c− be the chamber of ∆− fixed by B−, let c ∈ ∆+ be a chamber, and

let δ∗(c−, c) = w. Then B−.c = B−wB+. In particular, B−.c is represented by

a unique double coset of the Birkhoff decomposition and every such double coset

corresponds to a B−-orbit.

Proof. The first statement is evident, as δ∗(B−, gB+) = δ∗(c−, c) = w if and

only if B−.c = B−gB+ = B−wB+. By [1, Lemma 6.70] the group B− acts

transitively on the chambers at codistance w from c−, which implies the second

statement. �

Lemma 2.19. For each w ∈W one has w−1B+wB− ⊆ B+B−.

Proof. We proceed by an induction on l(w). As the case l(w) = 0 is trivial, we

may assume l(w) > 0. Then there exist s ∈ S, w′ ∈ W such that w = sw′ and

l(w) = l(w′) + 1. For x ∈ B+wB− we have sx ∈ B+sB+wB−
(TBN1)
= B+swB− =

B+w
′B−. Therefore, by induction, w−1x = w′−1

sx ∈ w′−1
B+w

′B− ⊆ B+B−.

�

Remark 2.20. The multiplication map

m : U+ × T × U− → B+B− : (u+, t, u−) 7→ u+tu−

is bijective by [1, Section 8.8]. Therefore also

ψ : B− →֒ B+B− → U+\B+B−

b− 7→ U+b−
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is a bijection and allows one to define a map

π : B+B− → B−

x 7→ ψ−1(U+x).

Finally, for w ∈W , Lemma 2.19 allows one to define

ρw : B+wB− → B−

x 7→ π(w−1x).

Proposition 2.21. Let x ∈ B+wB−. Then x ∈ B+wρw(x).

Proof. By the Birkhoff decomposition of G there exist uε ∈ Uε, w ∈ W , t ∈ T

such that x = u+wtu−. Since w−1u+w ∈ U+U−, there exist u1ε ∈ Uε ∩ w
−1U+w

such that w−1u+w = u1+u
1
−, whence x = ww−1u+wtu− = wu1+u

1
−tu−. Thus

w−1x = u1+u
1
−tu−, so ρw(x) = u1−tu−, and therefore x = wu1+ρw(x). As u1+ ∈

U+ ∩ w−1U+w, there exists u2 ∈ U+ such that u1+ = w−1u2w. We conclude

x = wu1+ρw(x) = u2wρw(x) ∈ B+wρw(x). �

We can now establish an explicit formula for co-projections onto panels:

Theorem 2.22 ([19, Theorem 4.3.5]). Let (G, {Uα}α∈Φ) be an RGD system, let

∆ be the associated twin building, let (W,S) be the associated Weyl group, let

c+ = gB+ ∈ ∆+, let c− = hB− ∈ ∆−, let δ∗(c+, c−) = w ∈ W , and let s ∈ S

such that l(ws) > l(w). Then

proj∗Ps(c−)(c+) = hρw(g
−1h)−1sB−.

Proof. One needs to prove that

δ∗(gB+, hρw(g
−1h)−1sB−) = ws

and

δ−(hB−, hρw(g
−1h)−1sB−) = s.

Since δ∗(gB+, hB−) = w, we have g−1h ∈ B+wB−. Proposition 2.21 allows us

to conclude that there exists b+ ∈ B+ such that g−1h = b+wρw(g
−1h), whence

g−1 = b+wρw(g
−1h)h−1. Therefore

g−1hρw(g
−1h)−1s = b+wρw(g

−1h)h−1hρw(g
−1h)−1s = b+ws ∈ B+wsB−,

which shows that δ∗(gB+, hρw(g
−1h)−1sB−) = ws. Similarly,

h−1hρw(g
−1h)−1s = ρw(g

−1h)−1s ∈ B−sB−,

and so δ−(hB−, hρw(g
−1h)−1sB−) = s. �
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Corollary 2.23 ([19, Corollary 4.3.6]). Let (G, {Uα}α∈Φ) be an RGD system,

let ∆ be the associated twin building, let (W,S) be the associated Weyl group, let

c+ = gB+ ∈ ∆+, and let c− = hB− ∈ ∆−. If δ∗(c+, c−) = 1 ∈ W , then for each

s ∈ S one has

proj∗Ps(c−)(c+) = hπ(g−1h)−1sB−.

Proof. This follows from Theorem 2.22, as ρ1 = π. �

In Sections 3 and 7 we will use these projection formulae in order to derive

the continuity of co-projections; in that context the following observation will

become important:

Lemma 2.24. Let τ be a group topology on G and equip T , U± and B+B− with

the subspace topologies. Assume that the continuous bijection m : U+×T ×U− →
B+B− : (u+, t, u−) 7→ u+tu− is open, i.e., a homeomorphism. Then the map ρw
introduced in Remark 2.20 is continuous for every w ∈W .

Proof. If m is open, also ψ is open and, therefore, π and ρw are continuous; cf.

Remark 2.20. �

3 Topological twin buildings

3.1 Axioms for topological twin buildings

Throughout this section let ∆ = ((∆+, δ+), (∆−, δ−), δ
∗) be a thick twin build-

ing of type (W,S). In order to avoid pathologies we will always assume that

the Coxeter diagram of (W,S) has no isolated vertices. By a topology τ on ∆

we will always mean a pair of topologies τ± on ∆±. Given such topologies we

equip the set ∆+ ∪∆− with the direct sum topology, i.e. ∆+ and ∆− are clopen

subsets of ∆+ ∪∆−.

We recall that a space X is the direct limit of subspaces Xi, denoted X =

lim→Xi, if (a) X =
⋃

iXi and (b) U ⊂ X is open if and only if U ∩Xi is open

for all i.

Definition 3.1. Let ∆ be a thick twin building (of type (W,S) without isolated

vertices in the Coxeter diagram) and τ a topology on ∆. Then the pair (∆, τ) is

called a topological twin building if it satisfies the following axioms:

(TTB1) τ is a Hausdorff topology.
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(TTB2) For each s ∈ S and each c ∈ ∆± the map

E∗
1 (c) → ∆+ ∪∆−

d 7→ proj∗Ps(c)
(d)

is continuous.

(TTB3) There exist chambers c± ∈ ∆± such that

∆± = lim
→
E≤w(c±).

(TTB4) For each s ∈ S there exists a compact panel P ∈ Pans(∆±).

A morphism of topological twin buildings is a morphism of the underlying twin

buildings that, additionally, is continuous with respect to the twin building

topologies.

Our definition of a topological twin building is chosen in such a way that it

assumes only a minimal set of axioms which we need to develop a non-trivial

theory. Our definition is slightly different from Linus Kramer’s original definition

[27, p. 169]. Depending on the applications one has in mind one may want to

add further axioms. We discuss various possible alternative axiomatizations in

Section 3.5 below.

3.2 Basic point-set topology of topological twin buildings

In this section we investigate basic point-set topological properties of topological

twin buildings. Initially we will not make use of the compactness assumption

(TTB4); the results in this section will hold for every thick twin building ∆ =

((∆+, δ+), (∆−, δ−), δ
∗), which is endowed with a topology satisfying axioms

(TTB1), (TTB2), and (TTB3).

Lemma 3.2. Let c± ∈ ∆± be opposite chambers and let w ∈W \ {1}. Then there

exists an open neighbourhood U of c+ in ∆+, which does not intersect E∗
w(c−).

Proof. Fix a reduced expression w = s1 · · · sk with sj ∈ S. By Lemma 2.11 there

exists d− ∈ ∆− with δ∗(c+, d−) = 1 and δ∗(x, d−) = sk for all x ∈ E∗
w(c−). For

every d′ ∈ Psk(d−) \ {d−, proj
∗
Psk

(d−)(c+)} we have

{c+} ∪ E
∗
w(c−) ⊂ E∗

1 (d
′).

By (TTB2) the restriction of proj∗Psk
(d′) defines a continuous map

f : E∗
1 (d

′) → Psk(d
′) = Psk(d−).
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Therefore the lemma follows from the fact that Psk(d
′) is Hausdorff, (TTB1),

and that E∗
w(c−) ⊆ f−1(d−). �

Proposition 3.3. For every c ∈ ∆± the co-Schubert cell E∗
1 (c) is open.

Proof. By symmetry we may assume c ∈ ∆−. By (TTB3) it suffices to show that

for c0 ∈ ∆+ the set E∗
1 (c) is relatively open in E≤w(c0) for all w ∈ W , i.e.,

any c+ ∈ E≤w(c0) ∩ E∗
1 (c) is an interior point. By Lemma 2.10 the function

δ∗(·, c) takes only finitely many values on E≤w(c0), and for each non-trivial

value wj Lemma 3.2 produces an open neighbourhood Uj of c+ in ∆+ with

Uj ∩E
∗
wj

(c) = ∅. Then E≤w(c0)∩
⋂

Uj is an open subset of E≤w(c0) containing

c+ and contained in E∗
1 (c), i.e., c+ is an interior point of E≤w(c0) ∩ E

∗
1 (c). �

As a first application we deduce:

Lemma 3.4. Let J ⊂ S. Then every J -residue in ∆± is closed.

Proof. We will prove that for a J -residue R ⊂ ∆+ the set ∆+\R is open by

showing that an arbitrary c ∈ ∆+\R is an interior point. Let d ∈ R so that

δ+(d, c) 6∈ 〈J〉, let (Σ+,Σ−) be a twin apartment that contains both c and d, and

denote by e the unique chamber in Σ− ∩ E∗
1 (c). For every f ∈ R we have

δ∗(f, e)
2.10
∈ 〈J〉δ∗(d, e)

2.7
= 〈J〉δ+(d, c)δ

∗(c, e) = 〈J〉δ+(d, c),

whence there exists s ∈ S\J with δ∗(f, e) ≥ s for all f ∈ R. This shows

c ∈ E∗
1 (e) ⊂ ∆+\R, i.e., by Proposition 3.3 c is an interior point of ∆+\R. �

Given a panel P ⊂ ∆± and a chamber c ∈ P we denote by P× = P×
c the

pointed panel P \ {c}. A pointed panel is open in its ambient panel by (TTB1).

Proposition 3.5. Let P ⊂ ∆± and Q ⊂ ∆∓ be opposite panels. Then the map

c 7→ proj∗Q(c) restricts to a homeomorphism p∗PQ : P → Q.

Proof. By [1, Proposition 5.152] the maps p∗PQ and p∗QP are mutually inverse

bijections. Hence it remains only to establish their continuity. For this let c ∈ P

and d := p∗PQ(c) ∈ Q its projection. Then P×
c ⊂ E∗

1 (d), whence the restriction

of p∗PQ to P×
c is continuous by (TTB2). Since the open subsets {P×

c | c ∈ P}
cover P , this implies continuity of p∗PQ. �

Combining this with Lemma 2.9 we obtain:

Corollary 3.6. Panels of the same type are pairwise homeomorphic.
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In particular, we deduce that —in the presence of axioms (TTB1), (TTB2)

and (TTB3)— axiom (TTB4) is equivalent to the following, a priori stronger,

axiom:

(TTB4+) For each s ∈ S every panel P ∈ Pans(∆±) is compact.

As another application of the corollary we now define a functor type from the

category of pointed topological twin buildings of a fixed type (W,S) to the cat-

egory of topological spaces as follows: Given a topological twin building ∆ we

set

type(∆, c) :=
⋃

s∈S

Ps(c)

and refer to type(∆, c) as the topological type of the twin building ∆ at c. Ev-

ery based morphism ϕ of (pointed) topological twin buildings then induces a

continuous map type(ϕ) between the corresponding topological types by re-

striction. Corollary 3.6 ensures that, up to homeomorphism, type(∆, c) does

not depend on the choice of the basepoint c. The local-to-global principle estab-

lished in Section 3.4 below shows that the topology of ∆ is uniquely determined

by its topological type.

As another application of Proposition 3.3 we show:

Proposition 3.7. Let ∆ be a twin building with a topology τ and ∆′ a pair of

opposite residues in ∆.

(i) ∆′ is a twin building with respect to the restricted distance and codistance.

(ii) If (∆, τ) satisfies (TTB1), (TTB2), (TTB3), then so does (∆′, τ |∆′).

(iii) If (∆, τ) is a topological twin building, then so is (∆′, τ |∆′).

Proof. For (i) see e.g. [1, Exercise 5.166]. For (ii) and (iii) observe first that

axioms (TTB1) and (TTB2) descend from ∆ to arbitrary subsets, while (TTB3)

descends to arbitrary closed subsets. By Lemma 3.4 it descends in particular

to ∆′. Finally, if (∆, τ) is a topological twin building, then it satisfies not only

(TTB4) but also (TTB4+), and this property obviously descends to (∆′, τ |∆′).

�

3.3 Gallery spaces and Bott–Samelson desingularizations

In this section we provide tools that will allow us to study the global point-

set topology of topological twin buildings. Throughout this section we fix a

topological twin building (∆, τ).
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For a reduced word s1 · · · sk ∈ W define a gallery of type (s1, . . . , sk) as a

tuple (c0, . . . , ck) ∈ (∆±)
k+1 satisfying ci ∈ Pansi(ci−1) for i = 1, . . . , k. The

chamber c0 ∈ ∆± is called the initial chamber of the gallery. The set of all gal-

leries of type (s1, . . . , sk) with initial chamber c0 is denoted by Gall(s1, . . . , sk; c0);

it is endowed with the subspace topology induced from (∆±)
k+1.

The natural projection and stammering maps allow one to pass between dif-

ferent gallery spaces:

πs1,...,sk;c0 : Gall(s1, . . . , sk; c0) → Gall(s1, . . . , sk−1; c0)

(c0, . . . , ck) 7→ (c0, . . . , ck−1),

ss1,...,sk;c0 : Gall(s1, . . . , sk−1; c0) → Gall(s1, . . . , sk; c0)

(c0, . . . , ck−1) 7→ (c0, . . . , ck−1, ck−1).

The following observation of Linus Kramer’s provides a key insight into the

topological structure of topological twin buildings. Recall from Corollary 3.6

that panels of the same type are pairwise homeomorphic.

Proposition 3.8 ([27, p. 170, 171]). For every c0 ∈ ∆± , the gallery space

Gall(s1, . . . , sk; c0) is a locally trivial fibre bundle over Gall(s1, . . . , sk−1; c0) with

fibre Psk(c0) via πs1,...,sk;c0 . The stammering map ss1,...,sk;c0 defines a global sec-

tion of this bundle.

Proof. By symmetry we may assume c0 ∈ ∆+. For each e ∈ ∆− define

Ue := {(c0, . . . , ck−1) ∈ Gall(s1, . . . , sk−1; c0) | ck−1 ∈ E∗
1 (e)}.

By Proposition 3.3, the family (Ue)e∈∆− provides an open covering of the gallery

space Gall(s1, . . . , sk−1; c0). By Proposition 3.5, for each e ∈ ∆− the map

he : Ue × Psk(e) → π−1
s1,...,sk;c0

(Ue)

(c0, . . . , ck−1, d) 7→ (c0, . . . , ck−1, proj
∗
Psk

(ck−1)
(d)) (3.1)

is a homeomorphism, which in view of Corollary 3.6 provides the desired local

trivialization. The final claim is obvious. �

Remark 3.9. By (TTB4) and Corollary 3.6 panels are compact, thus so are the

gallery spaces by Proposition 3.8. Hence for each reduced word s1 · · · sk the

(surjective) endpoint map

ps1,...,sk;c0 : Gall(s1, . . . , sk; c0) → E≤s1···sk(c0)

(c0, . . . , ck) 7→ ck

is a quotient map by (TTB1).
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This remark implies:

Corollary 3.10. Schubert varieties —in particular, spherical residues— are com-

pact.

The corollary has important consequences for the point-set topology of topo-

logical twin buildings.

Definition 3.11. A Hausdorff topological space X is called a kω space if there

exists a countable ascending sequence K1 ⊆ K2 ⊆ · · · ⊆ X of compact sets such

that X is the direct limit of the Kn, i.e., X =
⋃

n∈NKn and such that U ⊆ X is

open if and only if U ∩Kn is open in Kn for each n with respect to the subspace

topology.

We refer the reader to [11] for an overview over the theory of kω spaces; the

benefits of the theory of kω spaces for studying twin buildings and Kac–Moody

groups are clearly visible in [13]. Key properties of kω spaces for the present

article are:

Proposition 3.12 ([11], [13, Proposition 4.2]). Each σ-compact locally compact

Hausdorff space is kω. Moreover, the category of kω spaces is closed under tak-

ing closed subspaces, finite products, Hausdorff quotients and countable disjoint

unions. Every kω space is paracompact, Lindelöf and normal.

Corollary 3.13. Each half of a topological twin building is a kω space, in particu-

lar paracompact, Lindelöf and normal. It is compact if and only if it is spherical.

Proof. The first statement follows from Proposition 3.12, Corollary 3.10 and

(TTB3), whereas the second statement then follows from the fact that a closed

subset of a direct limit of compact spaces is compact if and only if it is already

contained in one of the compact spaces. �

In fact, if c± are as in (TTB3) then the sequences (E≤w(c±))w∈W are explicit

kω-sequences for ∆±. It then follows from the general theory of kω spaces

that a sequence (Kn) ⊂ ∆± is a kω-sequence for ∆± if and only if each Kn is

compact and for every w ∈ W there exists n ∈ N such that E≤w(c±) ⊂ Kn. In

particular, we deduce that in the presence of axioms (TTB1), (TTB2), (TTB4),

axiom (TTB3) is equivalent to the following strengthened version:

(TTB3+) For every chamber c± ∈ ∆±,

∆± = lim
→
E≤w(c±).
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In other words, in the definition of a topological twin building the choices made

in axioms (TTB3) and (TTB4) are inessential. Note that Corollary 3.13 is based

on the interplay of axioms (TTB3) and (TTB4).

Another example for this interplay is provided by the following proposition:

Proposition 3.14. Let (∆, τ) be a topological twin building whose panels are

discrete. Then ∆ itself is discrete.

Proof. By assumption all panels are discrete and compact, hence finite. Conse-

quently, Schubert varieties are finite and Hausdorff, hence discrete. Therefore

the proposition follows from (TTB3). �

This proposition allows one to locally characterize discrete topological twin

buildings. Such local-to-global results are the topic of the next section.

3.4 A local-to-global principle

Using the tools developed in the preceding section we derive a local-to-global

principle for topological twin buildings. Recall that the type functor associates

with every morphism of topological twin buildings a continuous map between

the topological types, a concept which is meaningful by Corollary 3.6.

We intend to show that this property characterizes morphisms of topological

twin buildings among all twin building morphisms.

More precisely, let ∆(1),∆(2) be topological twin buildings and let ϕ : ∆(1) →
∆(2) be a morphism of the underlying abstract twin buildings. Choose c ∈ ∆

(1)
± ;

then the map

typec(ϕ) :
⋃

s∈S

Ps(c) →
⋃

s∈S

Ps(ϕ(c))

between the topological types of the ∆(j) can still be defined, but need not be

continuous.

Now we have:

Theorem 3.15 (Local-to-global principle for twin building topologies). Let ∆(1)

and ∆(2) be topological twin buildings, let ϕ : ∆(1) → ∆(2) be a morphism of the

underlying twin buildings, and let c ∈ ∆
(1)
± . Then ϕ is continuous if and only if

typec(ϕ) is continuous.

In the spherical case the above local-to-global result was first proved in [3,

Proposition 3.5] using a coordinatization procedure which, however, is not

available in the general case. (Observe that the coordinatization given in [27]

provides coordinates on Schubert cells rather than co-Schubert cells.)
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Proof. Assume that typec(ϕ) is continuous. Since ϕ is a morphism, for arbitrary

opposite panels P and Q of ∆(1) one has

ϕ ◦ p∗PQ = p∗ϕ(P )ϕ(Q) ◦ ϕ,

where p∗PQ : P → Q and p∗ϕ(P )ϕ(Q) : ϕ(P ) → ϕ(Q) are the projection homeo-

morphisms from Proposition 3.5. By Lemma 2.9 and the continuity of typec(ϕ)

this implies that for each panel P of ∆(1) the restriction ϕ|P is continuous. This

shows that the statement that typec(ϕ) be continuous is in fact independent of

c ∈ ∆±.

For an arbitrary reduced word s1 · · · sk ∈W the morphism ϕ induces a map

ϕs1,...,sk;c : Gall(s1, . . . , sk; c) → Gall(s1, . . . , sk;ϕ(c)).

We will prove by induction on k that ϕs1,...,sk;c is continuous. For k = 0 there

is nothing to show, so we immediately turn to the case k > 0. Then by Proposi-

tion 3.3 the sets

Ue := {(c, c1 . . . , ck−1) ∈ Gall(s1, . . . , sk−1; c) | ck−1 ∈ E∗
1 (e)}

provide an open covering of Gall(s1, . . . , sk−1;ϕ(c)) (cf. the proof of Proposi-

tion 3.8). The homeomorphisms he and hϕ(e) from (3.1) on page 19 yield a

commuting diagram

Ue × Psk(e)
he

//

ϕ|Ue
×ϕ|Psk

(e)

��

π−1
s1,...,sk;c

(Ue)

ϕ
|π−1

s1,...,sk;c(Ue)

��

Uϕ(e) × Psk(ϕ(e))
hϕ(e)

// π−1
s1,...,sk;ϕ(c)(Uϕ(e)).

The left vertical arrow is continuous, because ϕ|Ue
is continuous by the induc-

tion hypothesis and ϕ|Psk
(e) is continuous by continuity of typee(ϕ) as shown

above. Therefore also the right vertical arrow is continuous. Since the sets

π−1
s1,...,sk;c

(Ue) form an open covering of Gall(s1, . . . , sk; c), this implies continu-

ity of the map ϕs1,...,sk;c.

By Remark 3.9 the endpoint map ps1,...,sk;c : Gall(s1, . . . , sk; c) → E≤s1···sk(c)

is a quotient map, so that ϕ|E≤s1···sk
(c) is continuous.

Therefore ϕ is continuous by (TTB3). �

Corollary 3.16. Let ∆ be a topological twin building and let ϕ be an automor-

phism of the underlying twin building. If, for each type s ∈ S, there exists a panel

Ps of type s such that ϕ|Ps
is continuous, then ϕ is a homeomorphism.
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Proof. Continuity of ϕ is immediate by (the proof of) Theorem 3.15. By axioms

(TTB1) and (TTB4) and Corollary 3.6, each ϕ|Ps
: Ps → ϕ(Ps) is a bijective quo-

tient map, i.e., open. Hence also continuity of ϕ−1 follows from Theorem 3.15,

and ϕ is a homeomorphism. �

3.5 The axioms revisited

We have seen that a reasonably deep theory of twin building topologies can be

developed assuming only the axioms (TTB1), (TTB2), (TTB3), (TTB4) given

above. On the other hand, these axioms seem to be of fundamental importance

in order to be able to develop a meaningful theory.

Axiom (TTB2) is the core axiom underlying —in an explicit or implicit1

way— all approaches to topological geometry: The geometric operations should

be continuous on reasonable domains. We have chosen the weakest possible

formulation which requires projections between opposite panels to be only sep-

arately continuous in each variable. In certain situations it is advantageous to

assume joint continuity of such projections, or even joint continuity for projec-

tion between chambers of fixed, but possibly non-trivial, codistance. One would

then replace (TTB2) by one of the following stronger axioms:

(TTB2+) For each s ∈ S the map

ps : ∆1 → ∆+ ∪∆−

(c, d) 7→ proj∗Ps(c)
(d)

is continuous.

(TTB2++) For each s ∈ S and w ∈W the map

ps : ∆w → ∆+ ∪∆−

(c, d) 7→ proj∗Ps(c)
(d)

is continuous.

We prefer to use the weakest possible axiom as part of our definition and to

assume these additional properties only when needed.

The Hausdorff axiom (TTB1) is standard in topological geometry.

The purpose of the compactness axiom (TTB4) is less obvious, and it seems

tempting to try to develop at least the basic theory without it. However, all

1As pointed out in [27], in the case of spherical topological building one can actually deduce

these continuity properties by making sufficiently strong compactness assumptions and using an

open mapping theorem. However, this approach is clearly limited to compact situations.
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attempts to develop a sufficiently rich theory in order to allow meaningful ap-

plications have failed so far, even in the case of spherical buildings of rank two.

We thus cannot avoid (TTB4) at this point.

Axiom (TTB3) has no counterpart in classical topological geometry and so

requires some justification. Let us call a pair (∆, τ) a weak topological twin

building if it satisfies (TTB1), (TTB2) and (TTB4).

As we have seen above in Section 3.3, after choosing base points c± ∈ ∆± the

corresponding combinatorial Schubert cells still yield a canonical topological

cell structure on (∆, τ). It is thus natural to refine the topology τ by passing to

the weak topology

τ ′ := {U ⊂ ∆+ ∪∆− |U ∩ (E≤w(c+) ∪ E≤w(c−)) ∈ τ |E≤w(c+)∪E≤w(c−)}

with respect to this cell decomposition.

We refer to (∆, τ ′) as the Schubert completion of (∆, τ) and call two weak

topological twin buildings Schubert equivalent if their Schubert completions co-

incide.

Schubert equivalent weak topological twin buildings have homeomorphic

Schubert varieties, while their topology at infinity may be different; for the

purposes of classification it seems unnatural to distinguish between them.

Moreover we observe the following:

Proposition 3.17. If (∆, τ) is a weak topological twin building, then its Schubert

completion (∆, τ ′) is a topological twin building.

Proof. Firstly, since τ ′ refines τ , the Schubert completion (∆, τ ′) inherits (TTB1).

Also, (TTB3) holds by definition. As for (TTB4), assume P ∈ Pans(∆±) is com-

pact with respect to τ . Let {Uα} ⊂ τ ′|P be a covering of P and choose w

sufficiently large so that P ⊂ E≤w(c±). Then {Uα} = {Uα ∩ E≤w(c±)} ⊂ τ |P ,

whence there exists a finite subcovering, showing that (P, τ ′|P ) is also compact.

It remains to establish (TTB2). For this, fix s ∈ S and c ∈ ∆+∪∆−. Then the

map ϕs,c : E∗
1 (c) → ∆+ ∪ ∆− given by d 7→ proj∗Ps(c)

(d) takes values in Ps(c).

Given base chambers c± ∈ ∆± we can choose w ∈ W so that Ps(c) ⊂ E :=

E≤w(c+) ∪ E≤w(c−). We then obtain for all A ⊂ ∆+ ∪∆−,

ϕ−1
s,c(A) = ϕ−1

s,c(A ∩ E). (3.2)

Now, if U ∈ τ ′, then by definition there exists V ∈ τ such that U ∩ E = V ∩ E.

Since ϕs,c is τ -continuous we then deduce from (3.2) that

ϕ−1
s,c(U) = ϕ−1

s,c(U ∩ E) = ϕ−1
s,c(V ∩ E) = ϕ−1

s,c(V ) ∈ τ ⊂ τ ′,

which shows τ ′-continuity of ϕs,c and thereby establishes (TTB2). �



On topological twin buildings and split Kac–Moody groups 25

Corollary 3.18. Every Schubert equivalence class of weak topological twin build-

ings has a unique representative which is a topological twin building.

This corollary is the reason why we allow ourselves to include (TTB3) into

our definition.

Remark 3.19. It is common practice in homotopy theory to replace a topology

by its compactly generated counterpart. Schubert completion provides a re-

topologization procedure which is similar in flavour.

However, we should warn the reader that we do not know whether this pro-

cedure preserves the homotopy type. For example, our proof of the topological

Solomon–Tits theorem in Section 5.3 relies crucially on (TTB3), and it is not

clear to us whether this assumption can be dropped.

Having justified the necessity of our axioms, we should also mention some

axioms which we do not assume, but other authors might find desirable. The

following is a non-exhaustive list of such properties; throughout we equip the

spaces Res±J —and, in particular, the vertex sets V±
s — with the quotient topol-

ogy with respect to the canonical map ∆± → Res±J . We then equip the product
∏

V±
s with the product topology.

(TTB1+) The vertex sets V±
s , s ∈ S, are Hausdorff.

(TTB5) The set ∆1 = {(c, d) ∈ (∆+×∆−)∪ (∆−×∆+) | δ
∗(c, d) = 1} of opposite

chambers is open.

(TTB6) For every s ∈ S the canonical map ∆± → V±
s is open.

(TTB6+) For every J ⊂ S the canonical map ∆± → Res±J is open.

(TTB7) The diagonal embedding (see page 6)

ι : ∆± →֒
∏

s∈S

V±
s

c 7→
(

RS\{s}(c)
)

s∈S

is open and, hence, a homeomorphism onto its image.

For example, Linus Kramer’s original definition of a topological twin building2

involves the axioms (TTB1+), (TTB2+), (TTB4+) and (TTB7). The relevance

of Axiom (TTB7) is that it allows one to pass freely between the simplicial com-

plex picture and the chamber system picture of twin buildings in a topological

2We note Kramer formulates these axioms in terms of the simplicial complex approach to build-

ings; in view of the examples we have in mind, it appeared convenient to us to reformulate the

theory in the language of chamber systems. A detailled discussion of the two approaches—the

simplicial complex one and the chamber system one—can be found in [1].
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context. From the simplicial point of view, it seems indeed more natural to start

from a topology on the vertices and to induce a topology on chambers, rather

than the other way round. On the other hand, for the theory presented here,

(TTB7) is not strictly needed.

The above axioms are actually not quite independent:

Proposition 3.20. Let τ be a topology on a twin building ∆.

(i) (TTB1+) implies (TTB1).

(ii) (TTB2++) implies (TTB2+) implies (TTB2).

(iii) (TTB6) and (TTB6+) are equivalent.

(iv) If (∆, τ) is a topological twin building, then (TTB6) implies that the space

Res±J (and in particular the vertex spaces Vs) are T1.

(v) If (∆, τ) is a topological twin building, then (TTB1+) and (TTB6) imply

(TTB7).

Proof. (i) If (TTB1+) holds and ι denotes the continuous injection from (TTB7),

then ι(∆±) ⊂
∏

V±
s are Hausdorff. Since ι is continuous, it follows that ∆± are

Hausdorff as well.

(ii) and the implication (TTB6+)=⇒(TTB6) in (iii) are obvious. For the

converse, let J = {s1, . . . , sn} and U ⊂ ∆± open. Denote by π(U) the image

of U under the projection onto Res±J and by πj(U) ⊂ Res±J the preimage of

the image of U in Vsj . Then (TTB6) implies that the πj(U) are open, whence

π(U) =
⋂

πj(U) is open.

In order to show (iv), we fix J ⊂ S and let R1, R2 be distinct J -residues

in ∆±. Since ∆± is normal by Proposition 3.12 and R1, R2 are closed by

Lemma 3.4, there exist open neighbourhoods U1 and U2 separating R1 and

R2 in ∆±. By (iii) we know that (TTB6+) holds, hence the images π(U1) and

π(U2) in Res±J are open. Now R1 ∈ π(U1) and R2 6∈ π(U1) (and vice versa for

U2), hence (iv) follows.

Concerning (v) we first observe that the map ι is continuous by definition of

the quotient topology. By Corollary 3.10, the Schubert varieties E≤w(c
±) ⊂ ∆±

are compact, whence mapped homeomorphically by ι by (TTB1+). Now, using

(TTB1+) and 3.12, each of the spaces Vs itself is kω. Since in the category of kω
spaces direct limits and finite products commute (cf. [12, Proposition 3.3], [13,

Proposition 4.7]), the image of ι is the direct limit of the images of the Schubert

varieties, and so the claim follows. �

There might be further relations between the axioms. For example, we do not

know whether the argument in (iv) can be refined to show that (TTB6) implies
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(TTB1+). Also, we suspect that it might be possible to derive (TTB5) from the

other axioms (cf. the argument in Proposition 6.6 and Theorem 6.7).

Definition 3.21. A topological twin building is called a strong topological twin

building if it satisfies the additional axioms (TTB1+), (TTB2+), (TTB5), (TTB6)

—and hence also (TTB6+) and (TTB7).

Note that in a strong topological twin buildings the residue spaces Res±J (and

in particular the vertex spaces Vs) are kω, since they are Hausdorff quotients

of ∆±. Moreover, by (TTB7) we can identify chambers of a strong topological

twin building with the corresponding collections of vertices.

3.6 Algebraic operations

By [15, Proposition 1.1] punctured panels in a generalized polygon carry a mul-

tiplication operation, which can be defined in elementary geometric terms, i.e.

by intersecting lines and connecting points. The following proposition provides

an extension to the twin building case:

Proposition 3.22. Let (∆, τ) be a strong topological twin building, let c± be oppo-

site chambers, let r, s ∈ S with 3 ≤ mrs ≤ ∞, let 0+ := proj∗Pr(c+)(c−) and 0− :=

proj∗Ps(c−)(c+), and let Pr(c+)
× := Pr(c+)\{c+} and Ps(c−)

× := Ps(c−)\{c−}.

For each choice 1− ∈ Ps(c−)
×\{0−}, there exists a continuous map

• : Pr(c+)
× × Ps(c−)

× → Pr(c+)
×

with the following properties:

(i) For all c ∈ ∆+ we have c • 0− = 0+ and c • 1− = c.

(ii) For every c′ ∈ Ps(c−)
× \ {0−} the map c 7→ c • c′ is a homeomorphism of

Pr(c+)
×.

In case (∆, τ) is two-spherical, one reduces the proof of Proposition 3.22

to the situation of generalized polygons as follows: Suppose (∆, τ) is a two-

spherical topological twin building satisfying (TTB7). Then, by Corollary 3.10,

the residues of rank two are compact polygons in the sense of [26], and one can

use the argument presented there. Thus, in this case, in fact axioms (TTB1–4)

and (TTB7) suffice in order to deduce the conclusion of Proposition 3.22.

Below we present a proof that does not assume two-sphericity, but uses ax-

ioms (TTB2+), (TTB5) and (TTB6+) in addition to axioms (TTB1–4).

The following lemma extracts the place where these axioms enter the picture:
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Lemma 3.23. For every s ∈ S the map

∆〈s〉 → ∆+ ∪∆−

{P, c} 7→ proj∗P (c)

is continuous, where

∆〈s〉 := {(P, c) ∈ Pans(∆+)×∆− | δ∗(P, c) ∈ 〈s〉}

∪ {(c, P ) ∈ ∆+ × Pans(∆−) | δ
∗(c, P ) ∈ 〈s〉}.

Proof. The quotient map

(∆+ ×∆−) ∪ (∆− ×∆+) → (Pans(∆+)×∆−) ∪ (∆+ × Pans(∆−))

is open by (TTB6+), and so is its restriction ∆1 → ∆〈s〉 to the open subset ∆1

by (TTB5). By (Tw3) this restricted map is surjective, so the claim follows from

(TTB2+). �

The remainder of the proof only uses (TTB2+) and the standard axioms:

Proof of Proposition 3.22. Note that Pr(1−) is opposite to Pr(c+). For d+ :=

proj∗Ps(c+)(c−), the panel Pr(d+) is opposite to Pr(1−), because 1− 6= c− =

proj∗Ps(c−)(d+), i.e., 1− is opposite to d+. Define

g : Pr(c+)
× × Ps(c−)

× → ∆−

(x, y) 7→ proj∗Pr(y)
◦ proj∗Pr(d+) ◦ proj

∗
Pr(1−)(x),

• : Pr(c+)
× × Ps(c−)

× → Pr(c+)
×

(x, y) 7→ proj∗Pr(c+) ◦ proj
∗
Pr(y)

◦ proj∗Pr(d+) ◦ proj
∗
Pr(1−)(x)

= proj∗Pr(c+)(g(x, y)).

Note that the fact x • y ∈ Pr(c+)
× requires a proof that we will provide below.

As Pr(d+) is opposite to Pr(y) for all y ∈ Ps(c−)
× = Ps(c−)\{proj

∗
Ps(c−)(d+)},

by Proposition 3.5 and Lemma 2.8 the map

g(·, y) : Pr(c+)
× → Pr(y)\{proj

∗
Pr(y)

(d+)}

is a homeomorphism for every y ∈ Ps(c−)
×.

The codistances between elements of Pr(0−) and of Pr(c+) lie in the set

{s, rs, sr, rsr}. Since rsr 6= s, the panels Pr(0−) and Pr(c+) are not parallel

and, thus, the chamber x • 0− ∈ Pr(c+) is independent of x. In fact, x • 0−
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equals the unique element in Pr(c+) for which there exists a chamber in Pr(0−)

at codistance rsr, i.e., x • 0− = 0+ ∈ Pr(c+)
× for all x ∈ Pr(c+)

×.

For y ∈ Ps(c−)
×\{0−} the panels Pr(y) and Pr(c+) are parallel, and so

Lemma 2.8 implies

proj∗Pr(c+) ◦ proj
∗
Pr(y)

◦ proj∗Pr(d+) ◦ proj
∗
Pr(1−)(c+)

= proj∗Pr(c+) ◦ proj
∗
Pr(y)

(d+) = c+.

We conclude that for x ∈ Pr(c+)
× indeed x • y ∈ Pr(c+)

× and that Pr(c+)
× →

Pr(c+)
× : x 7→ x • y is a homeomorphism.

We compute g(x, 1−) = proj∗Pr(1−)◦proj
∗
Pr(d+)◦proj

∗
Pr(1−)(x) = proj∗Pr(1−)(x),

whence x • 1− = proj∗Pr(c+) ◦ proj
∗
Pr(1−)(x) = x.

It remains to prove continuity of •. Continuity of g follows immediately from

(TTB2+) and Lemma 3.23. It thus remains to show that proj∗Pr(c+) is continuous

on G := g(Pr(c+)
× × Ps(c−)

×). To this end we claim that the following hold:

(†) δ∗(c+, G) = {1, r, s};

(††) e ∈ G ∩ E∗
1 (d+) ⇒ proj∗Pr(c+)(e) = proj∗Pr(c+)(proj

∗
Ps(e)

(d+)).

Let us first show that these claims imply the proposition: By (†) the sets U1, U2

given by

U1 := G ∩ (E∗
1 (c+) ∪ E

∗
1 (0+)), U2 := G ∩ E∗

1 (d+)

form an open covering of G. It is immediate from (TTB2+) that proj∗Pr(c+) is

continuous on U1 and the map e 7→ proj∗Pr(c+)(proj
∗
Ps(e)

(d+)) is continuous on

U2. Thus continuity of proj∗Pr(c+) on all of G follows from (††), and we are left

with verifying our claims. As far as (†) is concerned, let (x, y) ∈ Pr(c+)
× ×

Ps(c−)
× and assume y 6= 0−. Since δ∗(c+, y) = 1 and δ(y, g(x, y)) ∈ 〈r〉 it then

follows that δ∗(c+, g(x, y)) ∈ 〈r〉. On the other hand, if y = 0−, then

proj∗Pr(c+)(g(x, y)) = x • y = 0+,

whence g(x, y) 6= proj∗Pr(0−)(0+) and δ∗(c+, g(x, y)) = s. To prove (††) we fix

e ∈ U2 and abbreviate a := proj∗Ps(e)
(d+). Since δ∗(e, c+) ∈ 〈s〉, we see that

b := proj∗Pr(c+)(e) is the unique element in Pr(c+) satisfying δ∗(b, e) ∈ r〈s〉. On

the other hand we had assumed δ∗(d+, e) = 1, which implies δ∗(d+, a) = s.

This in turn implies δ∗(c+, a) = 1, hence δ∗(proj∗Pr(c+)(a), a) = r and finally

δ∗(proj∗Pr(c+)(a), e) ∈ r〈s〉, showing proj∗Pr(c+)(a) = b and finishing the proof.

�
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4 Classification methods

4.1 The Moufang condition

In this section we approach the classification of topological twin buildings.

While abstract rank one buildings without further structure are not of any in-

terest, various obstacles towards a complete classification become apparent in

the context of rank two (twin) buildings of irreducible type.

Firstly, there is an apparent difference between twin trees and spherical rank

two (twin) buildings: While the latter admit a unique twinning by [45, Propo-

sition 1], the same pair of trees may instead admit many different twinnings by

[37, (1.1)].

In order to avoid problems arising from such non-uniqueness of twinnings,

we restrict our attention to buildings of two-spherical type (W,S). This means

that all rank two residues are assumed to be spherical or, equivalently, that there

are no tree residues.

A second obstacle is that the automorphism group of a given compact pro-

jective plane (e.g., parametrized by a locally compact connected topological

ternary field) may be small, so that a classification seems impossible. Thus, al-

ready in the classification of compact projective planes one has to assume some

homogeneity condition; cf. [38].

In order to obtain a class of topological twin buildings amenable to classifi-

cation we therefore further restrict ourselves to those that admit spherical rank

two residues which satisfy the Moufang condition. We refer the reader to [46]

for both an introduction to and a complete classification of such Moufang poly-

gons.

Definition 4.1. A topological twin building is called a Moufang topological twin

building if all its rank two residues are spherical and Moufang.

The hypotheses that all residues of rank two be spherical and Moufang al-

low one to apply the local-to-global machinery by Mühlherr and Ronan [32].

Note that the Moufang condition depends only on the underlying abstract twin

building, hence guarantees the existence of many abstract automorphisms, but

a priori not necessarily of any continuous automorphisms.

It turns out, however, that the topological automorphism group of a Moufang

topological twin building is automatically highly transitive; this follows from the

following argument which was pointed out to us by Linus Kramer.

Proposition 4.2. Let ∆ be a Moufang topological twin building. Then the topolog-

ical automorphism group Aut(∆) admits a subgroup with an RGD system that acts
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strongly transitively on ∆, i.e., transitively on the set of pairs of opposite chambers

of ∆.

Proof. By [1, Proposition 8.19 and Theorem 8.81] there exists a group with cen-

tred RGD system which acts strongly transitively on the abstract twin building

underlying ∆. We claim that this action is actually by homeomorphisms. In

order to prove this it suffices to show that each of the root groups acts by home-

omorphism. However, for each root group there exists a panel of each type on

which it acts trivially. This yields the desired conclusion by Corollary 3.16. �

4.2 Topological Moufang foundations

Under various conditions, Moufang twin buildings can be classified by local

data, so-called Moufang foundations, see [30, 33, 36]. A topological analogue

of foundations is provided by the following definition:

Definition 4.3. Let (W,S) be a two-spherical Coxeter system and denote by

E ⊂
(

S
2

)

the set of edges in the Coxeter graph of (W,S). A topological Moufang

foundation of type (W,S) is a triple

F = ({∆J | J ∈ E}, {cJ | J ∈ E}, {θjik | {i, j}, {j, k} ∈ E})

with the following properties:

(TMF1) Each ∆J is a topological Moufang polygon and cJ ∈ ∆J .

(TMF2) θijk : Panj(ci,j) → Panj(cj,k) is a base-point preserving homeomorphism

and an isomorphism of Moufang sets.

(TMF3) The θijk satisfy the cocycle condition θkjl ◦ θijk = θijl.

Key examples of topological Moufang foundations arise from Moufang topo-

logical twin buildings:

Example 4.4. Let ∆ be a Moufang topological twin building and c ∈ ∆+ ∪∆−

a base chamber. We then obtain a topological Moufang foundation by setting

∆J := ResJ(c), cJ := c and θjik the appropriate (co-)restriction of the identity

map of ∆.

The topological Moufang foundation from Example 4.4 will be denoted F(∆, c)

and called the collapse of ∆ along c. By Proposition 4.2, up to isomorphism the

foundation F(∆, c) associated with a Moufang topological twin building only

depends on ∆.

We thus denote its isomorphism class by [F(∆)].
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Definition 4.5. A topological twin building is said to globalize a topological

Moufang foundation F if there exists c ∈ ∆+ ∪ ∆− with F(∆, c) ∼= F ; the

foundation is then called integrable.

If one forgets about topologies in Definition 4.3 then one obtains the defini-

tion of an (abstract) Moufang foundation. Under our standing two-sphericity as-

sumption an integrable Moufang foundation determines the ambient twin build-

ing uniquely, provided the Coxeter diagram of the underlying type (W,S) has no

loops, see [33, p. 394] using [32, Theorem 1.3] and [35, Lemmas 5.1 and 5.2].

Theorem 3.15 allows one to promote this statement to the following topo-

logical version.

Theorem 4.6. Let (W,S) be a (two-spherical) Coxeter system whose associated

Coxeter diagram is a tree. Then every Moufang topological twin building of type

(W,S) is uniquely determined by its topological foundation.

We stress that we do not claim to be contributing to the solution of the prob-

lem that certain abstract Moufang foundations be integrable. We simply state

that an abstractly integrable Moufang foundation endowed with a topology as in

Definition 4.3 uniquely determines the topology on its (uniquely determined)

twin building.

Proof. By the aforementioned local-to-global machinery any continuous isomor-

phism of foundations extends to an isomorphism of abstract twin buildings. This

isomorphism is continuous, since its type is continuous (see Theorem 3.15). Ap-

plying the same argument to its inverse we see that it is a homeomorphism. �

In the sequel we will say that a Moufang topological building is of tree type

if it is of type (W,S) and the Coxeter diagram of (W,S) is a tree. We use

a similar terminology concerning foundations. By means of Theorem 4.6 the

classification of Moufang topological twin buildings of tree type is reduced to

the following two problems:

(1) Classify topological Moufang foundations of tree type.

(2) Decide which of these foundations are integrable.

For illustration we will carry out this programme for the class of split Moufang

topological twin buildings in the next section.

4.3 Split foundations and Dynkin diagrams

Throughout this section let k be a local field, i.e., a non-discrete locally compact

σ-compact Hausdorff topological field. Recall that an archimedean local field



On topological twin buildings and split Kac–Moody groups 33

is isomorphic to either R or C, whereas the non-archimedean local fields of

characteristic p, respectively 0, are fields of the form Fq((t)) where Fq is a finite

field, respectively finite extensions of Qp for some prime p ([47, I, §3]).

Definition 4.7. A topological Moufang foundation F = ({∆J | J ∈ E}, {cJ | J ∈
E}, {θjik | {i, j}, {j, k} ∈ E}) is called k-split if each rank one residue of each ∆J

(equipped with the induced topology) is isomorphic as a topological Moufang

set to the projective line over k in its natural topology. A Moufang topological

twin building is called k-split if some (hence any) of its foundations is k-split.

We remark that a foundation F as above is k-split if and only if all the ∆J

are isomorphic as compact polygons to either

(S-3) the compact projective plane over k;

(S-4) the compact generalized quadrangle associated with Sp4(k), or its dual;

(S-6) the compact generalized hexagon associated with the split algebraic group

of exceptional type G2 over k, or its dual.

If one replaces in Definition 4.7 the topological Mounfang foundation by an

abstract one, then one obtains the notion of an abstract k-split foundation.

Concerning such foundation we have the following result of Mühlherr–Van

Maldeghem:

Lemma 4.8 ([33, Proposition 2]). Let

F = ({∆J | J ∈ E}, {cJ | J ∈ E}, {θjik | {i, j}, {j, k} ∈ E})

be an abstract k-split Moufang foundation of tree type. Then F is uniquely deter-

mined by the list {∆J | J ∈ E}.

As an immediate consequence of Theorem 4.6 the lemma carries over to the

topological setting:

Corollary 4.9. A k-split Moufang topological twin building ∆ is uniquely deter-

mined by the collection {∆J | J ∈ E}.

In view of the lemma, we can visualize k-split foundations of tree type by

Dynkin trees. Here, by a Dynkin tree we understand an edge-labelled tree, where

edges are labelled 3, 4 or 6 and edges of label > 3 are given an orientation.

Given a k-split Moufang foundation with associated list {∆J | J ∈ E} we define

the associated Dynkin diagram as follows: The set of edges is the underlying

index set S of the foundation, and two vertices i, j are joint by an edge if J :=

(i, j) ∈ E; the labeling of the edge J is 3, 4 or 6 according whether ∆J is of type



34 T. Hartnick • R. Köhl • A. Mars

(S-3), (S-4) or (S-6) respectively; in the latter two cases the edge is oriented

towards the short root. Conversely, every Dynkin tree determines a unique

topological k-split Moufang foundation. We call the Dynkin tree topologically

k-integrable if this foundation is integrable.

We can summarize our discussion as follows:

Corollary 4.10. Let k be a local field. Then there is a bijection between k-split

Moufang topological twin buildings and topologically k-integrable Dynkin trees.

We will see in Corollary 7.32 below that, in fact, every Dynkin tree is topo-

logically k-integrable. For this we need to explicitly construct the corresponding

Moufang topological twin building, which we will achieve in Section 7.7 using

topological split Kac–Moody groups.

5 Connected topological twin buildings

5.1 A dichotomy: Connected vs. totally disconnected

In this section we will study (strong) topological twin buildings (∆, τ) for which

the halves (∆±, τ |∆±) are connected. By slight abuse of notation we call such a

building (∆, τ) a connected (strong) topological twin building. In a similar way

we also define the notion of a totally disconnected topological twin building. We

recall our standing assumption that there are no isolated vertices in the Coxeter

diagram of the underlying type (W,S). We say that a topological twin building

is of irreducible type if the underlying Coxeter diagram is connected.

Our goal is to establish the following dichotomy:

Proposition 5.1. Every two-spherical topological twin building of irreducible type

is either connected or totally disconnected.

Note that the irreducibility assumption is necessary, since the product of a

connected and a totally disconnected topological twin building is neither con-

nected nor totally disconnected.

Towards the proof of the proposition we first observe the following:

Lemma 5.2. Let (∆, τ) be a topological twin building.

(i) If all panels are connected, then ∆ is connected.

(ii) If all panels are totally disconnected, then ∆ is totally disconnected.
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Proof. If the panels are connected/totally disconnected, then the gallery spaces

are connected/totally disconnected by Proposition 3.8. In the former case it fol-

lows immediately that the Schubert varieties are connected. In the latter case

it follows that the set of non-stammering galleries of a given type is totally dis-

connected. Since this set is mapped homeomorphically onto the corresponding

Schubert cell, it follows that each Schubert cell is totally disconnected.

For each w ∈W and c ∈ ∆± one has

E≤w(c0) =
⋃

c∈E≤w(c0)

(Ew(c) ∩ E≤w(c0)).

The subsets Ew(c) ∩ E≤w(c0) are open in E≤w(c0) and totally disconnected,

hence the Schubert variety E≤w(c0) is totally disconnected itself.

The claim follows from the fact that direct limits of compact connected/totally

disconnected spaces are connected/totally disconnected. �

In view of Lemma 5.2, the proof of Proposition 5.1 follows from the corre-

sponding statement concerning topological generalized polygons:

Lemma 5.3. Let (∆, τ) be an irreducible spherical topological twin building of

rank two. Then either all panels are connected or all panels are totally discon-

nected.

Proof. See [26, 2.2.3], [17, Proposition 6.13]. �

We will provide many examples of connected, respectively totally discon-

nected Moufang topological twin buildings using split Kac–Moody groups over

archimedean, respectively non-archimedean local fields in Theorem 1 on page 64.

For the rest of this section we will focus on the connected case.

5.2 Smooth topological twin buildings

We will be interested in the following subclass of connected topological twin

buildings:

Definition 5.4. A connected topological twin building is called smooth if its

panels are finite-dimensional real manifolds.

Note that, by definition, a topological twin building is smooth if and only if

its rank two residues are smooth. In many situations, smoothness is automatic:

Proposition 5.5. Every connected Moufang topological twin building is smooth.
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Proof. By Lemma 5.2 a topological twin building (∆, τ) is connected if and only

if its rank two residues are connected. A topological twin building (∆, τ) is

smooth, if its rank two residues are. Since a Moufang topological twin build-

ing is two-spherical by definition, each of its rank two residues is compact

by Corollary 3.10. The claim therefore follows from the classification of flag-

homogeneous connected compact polygons in [15, 16]. �

Although we will not take advantage of this fact, let us briefly mention that

the assumptions of the proposition can be substantially weakened. By [15, The-

orem A] every flag-transitive compact connected polygon is Moufang. Therefore

by the extension theorem from [32] one has:

Corollary 5.6. Let (∆, τ) be a connected two-spherical topological twin building.

If the rank two residues have flag-transitive automorphism groups, then (∆, τ) is

smooth.

We do not know any natural condition on twin trees which guarantee smooth-

ness, hence we cannot extend Proposition 5.5 beyond the two-spherical case.

An important observation concerning smooth connected strong topological twin

buildings is that their panels are spheres:

Proposition 5.7 (cf. [15, Theorem 1.6], [25, Lemma 2.1], [26, Proposition

4.1.2]). Let (W,S) be a Coxeter system without isolated points and let ∆ be a

smooth connected strong topological twin building of type (W,S). Then each panel

of ∆ is a sphere.

Proof. Since compact connected manifolds of positive dimension do not admit

cutpoints, each punctured panel is connected. Let P ⊂ ∆+ be a panel of type

r and let c+ ∈ P , so that P = Pr(c+). By hypothesis there exists a type s ∈ S

such that mrs ≥ 3. For c− ∈ E∗
1 (c+) define 0+ := proj∗Pr(c+)(c−) and 0− :=

proj∗Ps(c−)(c+) and choose 1− ∈ Ps(c−)
× ∩ E∗

1 (c+). Proposition 3.22 provides a

continuous map

• : Pr(c+)
× × Ps(c−)

× → Pr(c+)
×.

Since Ps(c−)
× is a connected manifold, there exists a continuous path γ(t) from

1− to 0−. Then the map Ht(x) := x • γ(t) defines a pseudo-isotopic contraction

of Pr(c+)
× in the sense of [18, p. 186]. Therefore by [18, Theorem] there exists

n ∈ N such that Pr(c+)
× ∼= Rn and, thus, P = Pr(c+) ∼= Sn. �

Recall from Corollary 3.6 that panels of the same type are pairwise homeo-

morphic, so that the following definition is meaningful.

Definition 5.8. Let ∆ be a smooth connected strong topological twin building.

For each s ∈ S the number d(s) ∈ N denotes the dimension of an s-panel.
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Proposition 5.7 allows one to identify a CW structure on a smooth real twin

building and its geometric realization.

Proposition 5.9 ([27, Proposition 7.9], cf. [26, Theorem 4.1.3]). Let (∆, τ)

be a smooth connected strong topological twin building. Then the combinatorial

Schubert decomposition of the halves of ∆± with respect to base chambers c± are

CW decompositions. More precisely, there exists a CW structure on ∆± with the

following properties:

(i) if w ∈ W and w = s1 · · · sn is a reduced expression, then there exists a cell

of dimension d(w) := d(s1) + · · ·+ d(sn) with attaching map

ϕw : (Dd(w), Sd(w)−1) → (E≤w(c±), E<w(c±));

the corresponding open cell is the Schubert cell Ew(c±);

(ii) every cell is of the form ϕw for some w ∈W .

The proof of the proposition is based on the findings of Section 3.3 and the

following observation.

Lemma 5.10 ([26, Lemma 6.2.12]). Let p : E → B be an Sd-fibre bundle over

a CW complex B which admits a global section s : B → E. Then there exists a

unique CW structure on E with the following properties:

(i) s(B) is a subcomplex of E and s : B → s(B) is an isomorphism of CW

complexes.

(ii) Let Bk−1 be the (k − 1)-skeleton of B and µ : (Dk, Sk−1) → (B,Bk−1)

be a k-cell. Then there exists a unique (k + d)-cell µ̂ : (Dk+d, Sk+d−1) →
(E,Ek+d−1) with

µ̂(Dk+d) = p−1(µ(Dk)).

(iii) Every cell is either of type (i) or type (ii).

Proof of Proposition 5.9. Applying Lemma 5.10 to the Bott–Samelson desingu-

larization (see Proposition 3.8) yields a CW structure on each gallery space

Gall(s1, . . . , sk; c±) by induction on k, starting from the trivial CW structure of

the point. Composing the attaching maps with the respective endpoint maps

(Remark 3.9) one obtains a CW structure on Schubert varieties with centre c±;

by (TTB3) these patch together to a CW structure on ∆±. �

Remark 5.11 (cf. [25, Theorem]). Proposition 5.9 yields severe restrictions on

the possible values of the dimensions d(s), because d(w) has to be independent

of the reduced expression for w. For instance, d(·) is constant on subsets of S
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contained in a single W -conjugacy class, i.e., subsets of the connected compo-

nents of the subgraph of the Dynkin diagram containing the simple edges only,

as the dihedral group 〈s, t | s2 = t2 = (st)3 = 1〉 admits the relation sts = tst.

Another application of Proposition 5.9 concerns the geometric realizations

|∆±| of the two halves of the twin building, which are defined as follows: Let

∆ = ((∆+, δ+), (∆−, δ−), δ
∗) be a topological twin building of type (W,S) and

n := |S| − 1. Define the standard simplex and its faces as

N
n :=

{

v ∈ Rn+1 |
n+1
∑

i=1

vi = 1
}

,

respectively,

N
n[j] :=

{

v ∈ Rn+1 |
n+1
∑

i=1

vi = 1, vj = 0
}

, (j = 1, . . . , n+ 1).

Then the geometric realizations |∆±| of ∆± are given by the following construc-

tion: Enumerate S = {s1, . . . , sn+1}, equip ∆± × Nn with the product topology

and identify the jth faces of chambers which are contained in the same sj-panel.

In the sequel we will denote by q : ∆± × Nn → |∆±| the canonical quotient

maps.

If we equip Nn with the CW structure given by its faces, then the product CW

structure on ∆± × N descend to the geometric realizations |∆±|. Observe that

the subsets

|E|≤w(c) := q(E≤w(c)× N
n), |E|<w(c) := q(E<w(c)× N

n)

are subcomplexes of |∆±| for every w ∈ W and c ∈ ∆±. Since the inclusion of

a CW subcomplex is a cofibration (see e.g. [39, Theorem 7.12]), we obtain:

Corollary 5.12 (cf. [29, Theorem 2.22(c)]). For every w ∈ W and c ∈ ∆± the

inclusion |E|<w(c) →֒ |E|≤w(c) is a cofibration.

5.3 A topological Solomon–Tits theorem

The goal of this subsection is to establish the following topological variant of

the Solomon–Tits theorem:

Theorem 5.13 ([27, Corollary 7.11]). Let ∆ be a smooth connected strong topo-

logical twin building of type (W,S), whose Coxeter graph contains no isolated

points. Then |∆±| is a homotopy sphere of dimension d(w0)+ |S| − 1 if W is finite

and w0 ∈W is the longest word, and contractible if W is infinite.
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We start with some preliminary observations and reductions. By [11, 13]

direct limits in the category of kω spaces commute with finite products and with

quotient maps. We deduce that for any fixed chamber c ∈ ∆±,

|∆±| = lim
→

|E|≤w(c).

If W is infinite, we even obtain

|∆±| = lim
→

|E|<w(c). (5.1)

The key step in the proof of Theorem 5.13 is to show that for every non-maximal

w ∈W the quotient

Bw(c) := |E|≤w(c)/|E|<w(c)

is contractible.

Let us assume this for the moment and explain how to deduce Theorem 5.13:

We claim that our assumption implies that |E|<w(c) itself is always contractible,

even if w is maximal. Indeed, for l(w) ≤ 1 this is clear. Now let l := l(w) > 1 and

let w1, . . . , wN be the maximal elements with respect to the Bruhat order subject

to the condition wj < w. By induction hypothesis, |E|<wj
(c) is contractible

for every j = 1, . . . , N . Since wj < w, the wj are non-maximal, whence by

our assumption also |E|≤wj
(c)/|E|<wj

(c) is contractible for every j. In view of

Corollary 5.12 this implies that each of the sets |E|≤wj
(c) is contractible. Since

|E|≤wj
(c) ∩ |E|≤wl

(c) = |E|≤inf{wj ,wl}(c),

the same argument shows that finite intersections of the |E|≤wj
(c) are con-

tractible. Using Corollary 5.12 this implies

|E|<w(c) =

n
⋃

j=1

|E|≤wj
(c) ≃

n
∨

j=1

|E|≤wj
(c) ≃ {∗}

and, thus, establishes our claim.

In the infinite case we can combine our claim and (5.1) to deduce

|∆±| ≃ {∗};

if W is finite with longest word w0 then another application of Corollary 5.12

yields

|∆±| ∼= |E|≤w0
(c)/|E|<w0

(c) = Bw0
(c).

We have thus reduced the proof of Theorem 5.13 to the following lemma:

Lemma 5.14 ([27, Proposition 7.10], cf. [25, 2.10–2.15], [29, Theorem 2.16]).

Let w ∈ W . Then Bw(c) ≃ Sd(w)+|S|−1, if w is maximal; otherwise, Bw(c) is

contractible.



40 T. Hartnick • R. Köhl • A. Mars

Proof. We fix an enumeration S = {s1, . . . , sN} and for 1 ≤ i ≤ N denote by

N
N−1[i] :=

{

(t1, . . . , tN ) ∈ Rn |
N
∑

j=0

tj = 1, ti = 0
}

the ith face of the standard (N − 1)-simplex. We then denote by q : ∆± ×
NN−1 → |∆±| the quotient map given by identifying the i-th faces of si-adjacent

chambers. Furthermore we denote by π : |E|≤w(c) → Bw(c) the canonical

projection and set

p := π ◦ q|E≤w(c)×NN−1 : E≤w(c)× N
N−1 → Bw(c).

We observe that p maps all points in E<w(c)× NN−1 to the basepoint ∗ := p(c)

of Bw(c). In particular p factors through a map

p0 : E≤w(c)/E<w(c)× N
N−1 → Bw(c).

Since E≤w(c)×NN−1 is compact, the maps p and, consequently, p0 are quotient

maps.

CLAIM 1: If l(wsi) < l(w) then p(d, (tj)) = ∗ for all d ∈ Ew(c) and (tj) =

(t1, . . . , tN ) ∈ NN [i] with ti = 0.

Indeed, if l(wsi) < l(w) then there exists a reduced expression w = r1 · · · rM
with rj ∈ S, rM = si. Let (c = x0, x1, . . . , xM−1, xm = d) be a gallery of type

(r1, . . . , rM ). Then xM−1 ∈ Ewsi(c) ⊂ E<w(c). Since xm−1 and d share their ith

face in |E|≤w(c), the claim follows.

CLAIM 2: If d ∼i e for some d ∈ Ew(c) and e ∈ E≤w(c), then l(wsi) < l(w).

For e ∈ E<w(c) this is clear. Now assume d, e ∈ Ew(c) and l(wsi) = l(w)+1; take

a reduced expression (r1, . . . , rM ) for w and let (c = c0, . . . , cM = d) be a gallery

of this type. Then (c, . . . , cM−1, d, e) is of reduced type, whence l(δ(c, e)) < l(w),

contradicting the choice of e.

Now let I− := {i ∈ {1, . . . , N} | l(wsi) < l(w)} and

N
N−1[I−] :=

⋃

i∈I−

N
N−1[i].

By Claim 2 the map p0 maps the set

[c]× N
n−1 ∪ E≤w/E<w(c)× N

N−1[I−]

to ∗ and is one-to-one on the complement of this set. By Proposition 5.9 we also

have

E≤w(c)/E<w(c) ∼= Sd(w).
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Since p0 is a covering map, we obtain

Bw(c) ∼= p0(E≤w(c)/E<w(c)× N
N−1)

∼=
E≤w(c)/E<w(c)× NN−1

[c]× Nn−1 ∪ E≤w/E<w(c)× NN−1[I−]

∼= (Sd(w) × N
N−1)/({p} × N

N−1 ∪ Sd(w) × N
N−1[I−]).

If w is maximal, then I− = {1, . . . , N}, whence

Bw(c) ∼= (Sd(w) × N
N−1)/({p} × N

N−1 ∪ Sd(w) × ∂NN−1) ∼= Sd(w)+N−1.

Otherwise we can find i ∈ {1, . . . , N} \ I−; then we obtain a contracting homo-

topy

Ht : (S
d(w) × N

N−1)/({p} × N
N−1 ∪ Sd(w) × N

N−1[I−]) 	

by the formula

Ht([x, (t1, . . . , tN )]) := [x, ((1− t)t1, . . . ti + t(1− ti), . . . , (1− t)tN )]. �

6 Topological RGD systems and topological twin

buildings

We now turn to the problem of actually constructing (strong) topological twin

buildings. We start by studying topological RGD systems.

Throughout this section let G be a topological group with associated RGD

system ({Uα}α∈Φ, T ) and denote by ∆ = ∆(G, {Uα}α∈Φ, T ) the associated twin

building. We equip both halves ∆± of ∆ with the quotient topology induced

by G. The goal of this section is to give conditions on the topology of G which

guarantee that ∆ is a (strong) topological twin building.

6.1 Orbit closure relations

We will first be concerned with the question concerning the openness of the big

cells B+B− and B−B+. The quotient map G → G/B± allows one to relate

the big cell B∓B± in the building to the big cell B∓B± in the group: B∓B±

is open considered as a subset of G if and only if B∓B± is open considered as

a subset of ∆±. We conclude that for questions concerning the openness (and

closedness) of unions of B∓-B±-double cosets it is in fact irrelevant whether

one uses the group or the building topology. As our first important reduction

step we will establish the following result:
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Lemma 6.1. Let G, ∆, B± as above. If ∆ satisfies axioms (TTB1), (TTB2) and

(TTB3) and if the panels of ∆ are non-discrete, then B+B− and B−B+ are open

in G.

We will actually provide a more precise result: We will compute the closures

of arbitrary B−-B+ double cosets, culiminating in Theorem 6.4 below, that con-

tains Lemma 6.1 as a special case.

We begin with the following observation:

Proposition 6.2. Let c∓ ∈ ∆∓, d ∈ ∆±, let δ∗(c∓, d) = w, let B∓ be the Borel

subgroup associated to c∓, let B± be a Borel subgroup opposite B∓, and let v ∈W

such that w � v in the Bruhat order. Then there exists an open neighbourhood of

d in ∆± disjoint from B∓vB±.

Proof. Let Σ be a twin apartment containing d and c∓ and let w̃−1 ∈ StabG(Σ)

be a representative of w−1 that maps d to the chamber in Σ opposite c∓. Any

chamber x ∈ B∓vB± of ∆± satisfies δ∗(c∓, x) = v, so δ∗(w̃−1.c∓, w̃
−1.x) = v.

As δ∓(c∓, w̃
−1.c∓) = w−1, Lemma 2.10 allows us to conclude

δ∗(c∓, w̃
−1.x) ∈ {w1v | w1 is a subexpression of w−1}.

Hence, for X := w̃−1B∓vB±, the hypothesis w � v yields 1W /∈ δ∗(c∓, X).

Therefore, for each a ∈ δ∗(c∓, X), Lemma 3.2 provides an open neighbourhood

Ua of w̃−1.d which intersects E∗
a(c∓) trivially. As δ∗(c∓, X) is finite, the set

U :=
⋂

a∈δ∗(c∓,X)

Ua

is an open neighbourhood of w̃−1.d. Since X ⊆
⋃

a∈δ∗(c∓,X)E
∗
a(c∓), we more-

over have X ∩ U = ∅. Hence w̃.U is an open neighbourhood of d satisfying

B∓vB± ∩ w̃.U = ∅, as claimed. �

Lemma 6.3. Let w ∈ W , let s ∈ S, and assume that the panels of ∆ are non-

discrete.

(i) If l(ws) > l(w), then the following inclusions hold:

(a) B−wB+ ⊇ B−wsB+,

(b) B+wB− ⊇ B+wsB−.

(ii) If l(sw) > l(w), then the following inclusions hold:

(a) B−wB+ ⊇ B−swB+,

(b) B+wB− ⊇ B+swB−.
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Proof. (i) Let ε ∈ {+,−}. By Lemma 2.18 the orbits of B−ε on ∆ε are given

by the B−ε-Bε-double cosets B−εwBε, w ∈ W . Let c−ε be the funda-

mental chamber in ∆−ε and let c ∈ ∆ε such that that δ∗(c−ε, c) = w,

i.e., c is a representative of the B−ε-orbit B−εwBε in ∆ε. Let s ∈ S

such that l(ws) > l(w) and consider the s-panel Ps(c) around c. The

projection d := projPs(c)(c−ε) is the unique chamber of Ps(c) satisfying

δ∗(c−ε, d) = ws and the group StabB−ε
(Ps(c)) acts transitively on the set

Ps(c)\{d} of chambers distinct from d. Since Ps(c) is non-discrete, it fol-

lows that d is contained in Ps(c)\{d} and, thus, in B−εwBε.

We conclude that, for each s ∈ S such that l(ws) > l(w), the closure of

B−wB+ intersects the orbit B−εwsBε. Since this closure is a union of

orbits, one has for all s ∈ S with l(ws) > l(w)

B−εwBε ⊇ B−εwsBε.

(ii) As inversion in G is a homeomorphism, one has B−εwBε ⊇ B−εswBε if

and only if Bεw−1B−ε ⊇ Bεw
−1sB−ε. Hence the inequality l(w−1s) =

l(w−1s−1) = l(sw) > l(w) = l(w−1) allows one to immediately conclude

(ii) from (i). �

Now we can establish the following theorem, which contains Lemma 6.1 as

a special case:

Theorem 6.4. Let G be a topological group with RGD system ({Uα}α∈Φ, T ), let

∆ = ∆(G, {Uα}α∈Φ, T ) be the associated twin building, equip both halves ∆± of

∆ with the quotient topology, and assume that this twin building topology satisfies

axioms (TTB1), (TTB2) and (TTB3) and that panels of ∆ are non-discrete. Let W

be its Weyl group, let ≤ the Bruhat order of W , and let w ∈W . Then the following

hold:

(i)

B−wB+ =
⊔

w′≥w

B−w
′B+.

(ii) The smallest open union of B−-B+-double cosets containing B−wB+ is

⊔

w′≤w

B−w
′B+,

which consists of finitely many B−-B+-double cosets.

This theorem is essentially [24, Lemma 3.4]. A special case is [40, Theo-

rem 23 (p. 127)].
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Proof. (i) An induction using Lemma 6.3 shows that

B−wB+ ⊇
⊔

w′≥w

B−w
′B+.

Conversely, let x be an element of the complement

X :=
⊔

w′�w

B−w
′B+

of
⊔

w′≥w B−w
′B+. We will show that x lies in the interior of X. Let

n ∈ N be sufficiently large such that x ∈
⋃

l(v)≤nB+vB+. The intersec-

tion
(

⊔

w′≥w B−w
′B+

)

∩
(

⋃

l(v)≤nB+vB+

)

meets finitely many B−-B+-

double cosets. Let A ⊂ W be a finite set such that these double cosets

are given by the family {B−aB+}a∈A. For every a ∈ A, Proposition 6.2

provides an open neighbourhood Ua of x in G disjoint from B−aB+.

Then
⋂

a∈A Ua ∩
(

⋃

l(v)≤nB+vB+

)

is open in
⋃

l(v)≤nB+vB+, contains x

and intersects
⊔

w′≥w B−w
′B+ trivially. Thus, this intersection is an open

neighbourhood of x in X ∩
(

⋃

l(v)≤nB+vB+

)

, and hence x is an interior

point of X ∩
(

⋃

l(v)≤nB+vB+

)

. As x was arbitrary, we conclude that

X ∩
(

⋃

l(v)≤nB+vB+

)

is open in
⋃

l(v)≤nB+vB+ for each n ∈ N. By

axiom (TTB3) ∆+ = lim→

⋃

l(v)≤nB+vB+, and so X is open in ∆+ and,

thus, in G.

(ii) Define the finite set

Xw := {v ∈W | v � w, ∃s ∈ S such that sv ≤ w or vs ≤ w}.

Then, for any w′ ∈ W , one has w′ � w if and only if there exists v ∈ Xw

such that v ≤ w′. Hence, by (i),
⊔

w′≤w

B−w
′B+ = G \

⋃

x∈Xw

B−xB+.

Since
⋃

x∈Xw
B−xB+ is a finite union of closed sets, it is closed, and so its

complement,
⊔

w′≤w B−w
′B+, is open.

Moreover, if U is an arbitrary open union of B−-B+-double cosets contain-

ing B−wB+, then by (i) for each w′ ≤ w one necessarily has B−w
′B+ ⊆

U . �

Remark 6.5. Theorem 6.4 states that there exists a closed B−-B+-double coset

if and only if there exists a maximal element of W with respect to the Bruhat

order. This is the case if and only if W is spherical.
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6.2 A group-theoretic criterion for twin building topologies

As before, let G be a topological group with RGD system ({Uα}α∈Φ, T ) and

denote by ∆ the associated twin building. Our explicit projection formulae

(Theorem 2.22) immediately yield the following proposition:

Proposition 6.6. If the bijective product map m : U+×T ×U− → B+B− is open,

then ∆ satisfies (TTB2). If, moreover, B+B− is open in G, then ∆ also satisfies

(TTB2+) and (TTB5).

Proof. The set of pairs of chambers in G/B+ × G/B− at codistance 1 ∈ W is

equal to {(gB+, hB−) | g−1h ∈ B+B−}. Given s ∈ S, Theorem 2.22 implies

proj∗Ps(hB−)(gB+) = hρw(g
−1h)−1sB−. By Lemma 2.24 therefore ∆ satisfies

(TTB2).

If B+B− is open in G, then by continuity of multiplication and inversion the

set {(g, h) ∈ G×G | g−1h ∈ B+B−} is open in G×G. As the canonical quotient

mapG×G→ (G×G)/(B+×B−) is open, the set {(gB+, hB−) | g
−1h ∈ B+B−}

of opposite pairs of chambers is open in ∆+×∆− = G/B+×G/B−, i.e. (TTB5)

holds.

In this case the set B−B+/B+ × B+B−/B− ⊂ ∆+ × ∆− is open, whence

also O := (B−B+/B+ × B+B−/B−) ∩ ∆1 is open. Note that for (c, d) ∈ O

the chamber c is opposite the chamber c− := B− ∈ G/B−, as B−B+ is exactly

the set of chambers of ∆+ opposite c−. Therefore, by sharp transitivity of U−

on the chambers opposite c−, there exists a unique g(c,d) ∈ U− with g(c,d)(c) =

c+ := B+ ∈ G/B+. The resulting map νO : O 7→ U− : (c, d) 7→ g(c,d) is

continuous, since the map U−×T ×U+ → B−B+ : (u−, t, u+) 7→ u−tu+ is open

by hypothesis.

Considering the restriction ps|O : O → ∆+ ∪∆− : (c, d) 7→ proj∗Ps(c)
(d) of the

projection map from axiom (TTB2+) we compute

proj∗Ps(c)
(d) = g−1

(c,d)

(

proj∗Ps(g(c,d)(c))
(g(c,d)(d))

)

= νO(c, d)
−1

(

proj∗Ps(c+)(νO(c, d)(d))
)

.

Therefore (TTB2) and continuity of νO imply continuity of ps|O. Since, by the

strong transitivity of the action of G on ∆, the set ∆1 is covered by G-translates

of the open set O, the validity of (TTB2+) follows. �

Combining the proposition and Lemma 6.1 we obtain:

Theorem 6.7. Let G be a topological group with root group datum ({Uα}α∈Φ, T ),

let ∆ = ∆(G, {Uα}α∈Φ, T ) be the associated twin building, and equip both halves

with the quotient topology. Assume the following:
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(i) B± are closed.

(ii) G = lim→

(

⋃

l(w)≤nB+wB+

)

= lim→

(

⋃

l(w)≤nB−wB−

)

.

(iii) The multiplication map m : U+ × T × U− → B+B− is open.

(iv) Panels in ∆ are compact.

Then ∆ is a strong topological twin building, and the parabolic subgroups

P J
± := B±WJB (J ⊂ S)

are closed in G.

Proof. We first consider the axioms which follow immediately from our assump-

tions: (i) implies (TTB1), (ii) implies (TTB3) and (iv) implies (TTB4). Using

(iii) and the first part of Proposition 6.6 we deduce that also (TTB2) holds.

By Lemma 6.1 this implies that B+B− and B−B+ are open. Thus the second

part of Proposition 6.6 applies and shows that also (TTB2+) and (TTB5) hold.

(TTB6) follows from the general fact that given subgroups H1 < H2 of a topo-

logical group the canonical map π : G/H1 → G/H2 is open, since for an open

set UH1 ⊂ G/H1 the saturation π−1(π(UH1)) = UH2 =
⋃

UH1h2 is open as

the union of (open) translates. Finally, residues in ∆ are closed by Lemma 3.4,

whence their stabilizers, i.e., parabolic subgroups are closed, which in turn im-

plies (TTB1+). �

Remark 6.8. For an F-locally split root group datum there is an easy condition

which guarantees property (iv) above. Indeed, the panels of ∆ are homeomor-

phic to P1(F), the building of SL2(F). If F is Hausdorff, non-discrete, σ-compact

and locally compact, these are compact (cf. [38, Proposition 14.5 and Corol-

lary 14.7]).

7 Topological split Kac–Moody groups

In this section we return to the classification problem for k-split topological twin

buildings over a local field k, which we studied in Section 4.3. Our goal is to

show that every Dynkin tree is topologically k-integrable.

Our starting point is the observation that every Dynkin tree is abstractly k-in-

tegrable; in fact the corresponding twin building is the twin building of the

associated split Kac–Moody group. In view of this observation, our task is to

topologize the twin buildings of split Kac–Moody groups over local fields. We

will in fact topologize the Kac–Moody groups themselves and then apply the

criterion developed in Theorem 6.7 to obtain topological twin buildings.
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Along the way we develop a topological theory of Kac–Moody groups which

is of independent interest. In particular, we will revisit various results and tech-

niques developed and announced in [24].

7.1 Abstract split Kac–Moody groups

For the convenience of the reader let us start with the definition of a Kac–Moody

root datum.

Definition 7.1. A generalized Cartan matrix is a matrixA = (aij)1≤i,j≤n ∈ Zn×n

satisfying aii = 2, aij ≤ 0 for i 6= j, and aij = 0 if and only if aji = 0.

Let I = {1, . . . , n} and let A = (aij)1≤i,j≤n be a generalized Cartan matrix.

A quintuple D = (I, A,Λ, {ci}i∈I , {hi}i∈I) is called a Kac–Moody root datum if

Λ is a free Z-module, each ci is an element of Λ and each hi is in the Z-dual Λ∨

of Λ such that for all i, j ∈ I one has hi(cj) = aij .

Following [44, 3.6] to a Kac–Moody root datum D one associates a triple

F = (G, {ϕi}i∈I , η), where G is a group functor on the category of commutative

unital rings, the ϕi are maps SL2(R) → G(R), and η is a natural transformation

HomZ−alg(Z[Λ],−) → G such that the following assertions hold:

(KMG1) If F is a field, then the group G(F) is generated by the images of the ϕi

and η(F).

(KMG2) For all rings R the homomorphism η(R) : HomZ−alg(Z[Λ], R) → G(R)
is injective.

(KMG3) Given a ring R, i ∈ I and u ∈ R×, one has

ϕi

(

u 0

0 u−1

)

= η
(

λ 7→ uhi(λ)
)

.

(KMG4) If R is a ring, F is a field and ι : R → F is a monomorphism, then

G(ι) : G(R) → G(F) is a monomorphism as well.

(KMG5) If g is the complex Kac–Moody algebra of type A, then there exists a

homomorphism Ad : G(C) → Aut(g) such that

ker(Ad) ⊆ η(C)(HomZ−alg(Z[Λ],C))

and for a given z ∈ C one has

Ad

(

ϕi

(

1 z

0 1

))

= exp(adzei),

Ad

(

ϕi

(

1 0

z 1

))

= exp(ad−zfi);
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where {ei, fi} are part of a standard sl2-triple for the fundamental

Kac–Moody sub-Lie algebra corresponding to the simple root αi; fur-

thermore, for every homomorphism γ ∈ HomZ−alg(Z[Λ],C) one has

Ad(η(C)(γ))(ei) = γ(ci) · ei, Ad(η(C)(γ))(fi) = γ(−ci) · fi.

The Kac–Moody root datum D is called centred if the following stronger version

of (KMG1) is satisfied: If F is a field, then the group G(F) is generated by the

images of the ϕi.

For a given Kac–Moody root datum D the group GD(R) := G(R) is called a

split Kac–Moody group of type D over R.

The main result of [44] states that under some non-degeneracy assumptions

any functor defined on the category of fields satisfying the above axioms must

coincide with G.

A split Kac–Moody group over a field is an example of a group with an RGD

system by the following result.

Proposition 7.2 ([34, Proposition 8.4.1], [6, Lemma 1.4]). Let F be a field, let

D = (I, A,Λ, {ci}i∈I , {hi}i∈I) be a Kac–Moody root datum, and let GD(F) :=

G(F) be the corresponding split Kac–Moody group of type D over F. Then GD(F)
admits an RGD system as follows. Let M(A) be the associated Coxeter matrix of

type (W,S) and choose a set of simple roots Π = {αi | i ∈ I} such that the

reflection associated to αi is si ∈ S. Define the set of real roots as Φre := W.Π.

Given i ∈ I, let Uαi
and U−αi

be the respective images of the subgroups of strictly

upper, resp. strictly lower triangular matrices of the matrix group SL2(F) under

the map ϕi, and denote by T the image of η(F) in GD(F).

Then T =
⋂

α∈Φre NGD(F)(Uα),W ∼= NGD(F)(T )/T and (GD(F), {Uα}α∈Φre , T )

is an RGD system. �

In the sequel we refer to T as the standard maximal torus of GD(F). Note

that, since the matrix group SL2 over a field is generated by its subgroups of

strictly upper and strictly lower triangular matrices, the concept of being centred

coincides with the one introduced in Section 2.2.

Remark 7.3. In general the action of a split Kac–Moody group GD(F) on the

associated twin building will not be effective; however the kernel ZD(F) of

this action always equals the centre of GD(F), which in turn is contained in T

(cf. [34, Proposition 9.6.2]).

From now on we will reserve the letter G to denote a split Kac–Moody group

GD(F) over a field F. Note that Propositions 2.14 and 7.2 in particular imply
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thatG admits a twin BN-pair. Using Proposition 2.14 we introduce the following

additional notation.

For every k ≥ 0 we set

G±
k :=

⋃

l(w)≤k

B±wB±

and Gk := G+
k ∩ G−

k . For every k-tuple α = (α1, . . . , αk) ∈ Πk of simple roots

we will denote by

Gα := Gα1
· · ·Gαk

⊆ G

the subset of G consisting of products of the form

g = g1 · · · gk, gj ∈ Gαj
.

Note that as a special case we have Gα = G(α).

Similarly, we denote by TGα the image of T ×Gα under the product map.

Note that the set of indices carries a natural partial order: We write α ≤ β

provided α appears as an ordered subtuple of β; in this case there is an obvious

embedding Gα →֒ Gβ . We record the following inclusion relations for later use:

Proposition 7.4. Let B+, B− be the standard Borel subgroups of the adjoint form

of GD(F), let k ∈ N, and let α = (α1, . . . , αk) ∈ Πk. Then TGα ⊆ G+
k ∩G−

k .

Proof. We prove the result by induction on |α| = k. For k = 0 the claim follows

from the inclusion T ⊆ B+ ∩ B−, cf. Proposition 2.14. Let k > 0 and assume

that for all β with |β| < |α| the set TGβ is contained in G|β|. Hence, for α0 =

(α1, . . . , αk−1), the induction hypothesis yields TGα0
⊆ G|α0|. For ε ∈ {±}

we have Bruhat decompositions SL2(F) ∼= Gαk
= Bε

αk
∪ Bε

αk
sαk

Bε
αk

, where

Bε
αk

:= Bε ∩Gαk
. Hence

TGα = TGα0
·Gαk

⊆





⋃

l(w)≤k−1

BεwBε



 ·
(

Bε
αk

∪Bε
αk
sαk

Bε
αk

)

⊆





⋃

l(w)≤k−1

BεwBε



 · (Bε ∪Bεsαk
Bε)

(TBN1)

⊆
⋃

l(w)≤k−1

BεwBε ∪Bεwsαk
Bε

⊆
⋃

l(w)≤k

BεwBε.

The claim follows. �
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7.2 The centre and the adjoint representation

While there is a unique twin building associated with a given generalized Cartan

matrix A over a given field F, there exist several corresponding root group data

and hence several corresponding Kac–Moody groups, like in the spherical case;

an example to keep in mind are the groups SLn(F) and GLn(F). Their central

quotients PSLn(F) and PGLn(F) are isomorphic for F = C but distinct for

F = R. For the study of topological buildings arising from Kac–Moody groups

these differences do not matter much, but there are some subtleties.

Using the notation of Definition 7.1 and generalizing classical terminology in

the spherical case, a Kac–Moody root datum D will be called simply connected

if the set {hi | i ∈ I} is a Z-basis of Λ∨ and adjoint if the set {ci | i ∈ I} is

a Z-basis of Λ. We will also refer to the corresponding Kac–Moody groups as

simply connected or adjoint. For example, the algebraic group SLn is simply

connected and the algebraic group PGLn is adjoint in this sense.

In general, the centre of an adjoint Kac–Moody group will be trivial, whereas

the centre of a simply connected group is typically non-trivial. However, we

observe:

Lemma 7.5. The centre of a simply connected Kac–Moody group over an arbitrary

field F is finite.

Proof. Let G := GD(F) be a simply connected Kac–Moody group. Its centre is

contained in any of its maximal tori by [34, Proposition 9.6.2]. Moreover, also

by [34, Proposition 9.6.2], the centre of G equals the kernel of the adjoint rep-

resentation. To prove the claim it is therefore enough to show that the adjoint

representation induces an isogeny from a maximal torus T sc onto its image.

By [34, Definition 7.1.1] the group of characters Λ of a maximal torus of

a Kac–Moody group is a free abelian group of finite rank and by [34, 8.2.1]

the torus functor is defined as the group functor HomZ-alg(Z[Λ],−). By [34,

7.1.2] there exists a natural embedding Λad → Λsc of the group of characters

of an adjoint torus into the group of characters of a simply connected torus

of the same type. This yields an injective Z-algebra homomorphism Z[Λad] →
Z[Λsc], which in turn provides a surjective morphism HomZ-alg(Z[Λsc],−) →
HomZ-alg(Z[Λad],−). As the ranks of Λad and Λsc coincide, this implies that the

kernel of this morphism is 0-dimensional, i.e., finite. �

As before, let D be a root group datum associated with a generalized Cartan

matrix A, let F be a field of arbitrary characteristic, let G := GD(F) and let

Z := Z(G) the centre of G. We recall from [34, Section 7.3.1] how to construct
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a faithful representation of G/Z(G) starting from the complex Kac–Moody al-

gebra g associated to the generalized Cartan matrix A, which generalizes the

classical adjoint representation in the spherical case.

For this we denote by U := U(g) the universal enveloping algebra of g. For

each u ∈ U , let u[n] := (n!)−1un and
(

u
n

)

:= (n!)−1 · u · (u− 1) · · · · · (u− n+ 1).

Let Q :=
∑

α∈Π Zα be the free abelian group generated by the simple roots.

Then, as in [34, Section 7.3.1], the algebras U and g admit an abstract Q-grad-

ing by declaring ei and fi to be of degree αi and −αi, respectively, and extending

linearly.

With this notation, set U0 to be the subring of U generated by the elements

of degree 0 of the form
(

h
n

)

, where h ∈ h, n ∈ N. Moreover, define Uαi
and

U−αi
to be the subrings

∑

n∈N Ze[n]i and
∑

n∈N Zf [n]i , respectively. Let UZ be the

subring of U generated by U0 and {U±α | α ∈ Π}. Then UZ is a Z-form of U ,

i.e., the canonical map UZ ⊗Z C → U is a bijection, cf. [44, Section 4], [34,

Proposition 7.4.3].

This construction allows one to replace the field C with an arbitrary field F:

define UF := UZ ⊗Z F. Let Autfilt(UF) be the group of F-linear automorphisms

of UF which preserve the above Q-grading.

The resulting adjoint action of a Kac–Moody group has the following nice

properties.

Proposition 7.6 ([34, Proposition 9.5.2]). Let GD(F) be a split Kac–Moody

group over a field F and let T denote its standard maximal torus. Then there

exists a morphism of groups

Ad : GD(F) → Autfilt(UF)

which is characterized by the following axioms, where αi is a real root, r ∈ F and

h ∈ T :

(i) Ad(xαi
(r)) = exp(adei ⊗r) =

∑∞
n=0

(adei
)n

n! ⊗ rn,

(ii) Ad(T ) fixes U0,

(iii) Ad(h)(ei ⊗ r) = h∗(α∨
i )(ei ⊗ r).

The kernel of this representation coincides with the centre of the group GD(F). �

In the sequel we will often tacitly identify G/Z(G) with its image under the

adjoint representation and thereby considerG/Z(G) as a subgroup of Autfilt(UF).
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7.3 The Kac–Peterson topology I: kω-property

Given a local field F we are going to construct a group topology on every split

Kac–Moody group over F. Throughout we will imitate closely the arguments

given in [13, Section 6] for unitary forms of complex Kac–Moody groups. The

main difference is that we use the adjoint representation on the associative

algebra UF instead of the Kac–Moody Lie algebra. This will allow us to include

the case of positive characteristic as well.

Throughout we will reserve the letter F to denote a local field, the letter D
to denote a Kac–Moody root datum, and the letter G to denote the associated

Kac–Moody group G := GD(F). As above, we then denote by Z(G) the centre

of G and identify G/Z(G) with its image under the adjoint representation.

Our goal is to define a group topology on G that is induced by the topology

on F. We will actually provide two constructions of such a group topology on G

in Definitions 7.8 and 7.19 below. In Proposition 7.21, however, we will show

that these two topologies in fact coincide.

We equip the space Fn×n of (n×n) matrices over F with the product topology

and obtain a Hausdorff group topology OF on the open subset GLn(F). We also

obtain Hausdorff group topologies on SLn(F) < GLn(F) and the central quo-

tient PSLn(F), which we denote by the same letter OF. The rank one subgroups

Gα of G are isomorphic to SL2(F) or PSL2(F) and, hence, by this definition can

be considered as topological groups.

Starting from this topology on the rank one subgroups and the torus we now

give our first definition of a topology, which is inspired by a construction of Kac

and Peterson in the complex case [13, 23]. We start by defining topologies on

the pieces Gα introduced above in Section 7.1.

Definition 7.7. Let G be a split Kac–Moody group over a local field F and let

α = (α1, . . . , αk) ∈
⋃

l∈N Πl. Equip the torus T with its Lie group topology

τF and the rank one subgroups Gα1
, . . . , Gαk

with the topology OF. Then we

denote by τα the quotient topology on TGα with respect to the surjective map

pα : (T, τF)× (Gα1
,OF)× · · · × (Gαk

,OF) → TGα.

Note that the topological spaces (Gα, τα) introduced in Definition 7.7 form

a directed system with respect to the sub-tuple relation α ≤ β defined in Sec-

tion 7.1. Moreover, the set underlyingG is the ascending union (i.e. direct limit)

of the underlying directed system of sets.

Definition 7.8. The Kac–Peterson topology3 τKP onG is the direct limit topology

with respect to the directed system {(TGα, τα)}α.

3see Remark 7.12 for the relation to their original definition
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It is not obvious at all that this topology defines a group topology on G. The

main problem one encounters in establishing continuity of the multiplication is

that for general topological spaces Gi,

lim
→
Gi × lim

→
Gj 6∼= lim

→
(Gi ×Gj).

However, such an exchange of limits is possible provided the pieces Gi are kω
[13, Propositions 4.2, 4.7]. Our strategy for showing that τKP is a group topol-

ogy will thus be to establish the kω-property for certain subsets of (G, τKP ).

Once we can exchange direct limits and finite products freely, the proof be-

comes trivial. In order to establish the desired kω-property we will have to as-

sume F to be locally compact and σ-compact. Somewhat surprisingly, the hard-

est part in establishing the kω-property of τKP is to show that it is Hausdorff.

For this we need to use some topological properties of the adjoint representa-

tion, which we summarize in the following proposition. Here we topologize all

finite-dimensional F-vector spaces V ∼= Fn with the natural product topology

with respect to the locally compact topology of F and all corresponding general

linear groups GL(V ) with the topology OF defined above.

Proposition 7.9. Let F be a local field and let G be a split Kac–Moody group

over F. For each v ∈ UF there exists a family of subspaces {V v
α }α of UF with the

following properties:

(i) dimV v
α <∞.

(ii) The image of the orbit map TGα → UF : g 7→ g(v) is contained in V v
α .

(iii) The orbit map (TGα, τα) → (V v
α ,OF) : g 7→ g(v) is continuous.

(iv) If α ≤ β then V v
α ≤ V v

β
.

(v) V v
α is TGα1

-invariant, where α = (α1, α2, . . . , αk).

(vi) The kernel of the map ρα1
:= Ad|

GL(V v
α )

TGα1
: TGα1

→ GL(V v
α ) is contained

in Z(G).

(vii) The image of U±α1
⊂ Gα1

under ρα1
is a closed subgroup of (GL(V v

α ),OF).

Proof. By Proposition 7.6(ii) and (iii) we may disregard the finite-dimensional

torus T .

Let v1, . . . , vt ∈ UF and α ∈ Π. The Gauss algorithm/Bruhat decomposition

of the fundamental rank one subgroup Gα of G implies that the product map

Uα×U−α×Uα×U−α → Gα is surjective ([40, Lemma 24]). The adjoint action
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of uα(q) ∈ Uα ⊆ Gα on UF is given by Ad(uα(q)) =
∑∞

n=0

(

(adei
)n

n! ⊗ qn
)

, see

Proposition 7.6. Hence, by the Bruhat decomposition, the vector space

t
∑

i=1

∑

k,l,m,n∈N

〈(

(adeα)
k

k!
⊗ 1

)(

(adfα)
l

l!
⊗ 1

)(

(adeα)
m

m!
⊗ 1

)(

(adfα)
n

n!
⊗ 1

)

vi

〉

F

contains
∑t

i=1〈Gα.vi〉F. By construction this vector space is Ad|Gα
-invariant.

From the local nilpotency of adeα and adfα , we may conclude that the above

sum is finite and hence this vector space has finite dimension.

Using bases, this argument shows that each finite-dimensional subspace of

UF is contained in a Gα-invariant finite-dimensional subspace of UF.

It is therefore immediate from Proposition 7.6 that for v ∈ UF there exists a

family of subspaces {V v
α }α of UF such that (i), (ii), (iv), (v) hold.

Given a simple root α the corresponding rank one subgroup Gα falls in one

of three classes and we will choose gα ∈ Gα accordingly: If Gα
∼= PSL2(F),

then we let gα be an arbitrary non-trivial element. If Gα
∼= SL2(F) and −1 is

not in the centre of G, then we choose gα := −1. Finally, if Gα
∼= SL2(F) and

−1 is contained in the centre of G, then we choose gα different from ±1. In

any case there exists vα ∈ UF with Ad(gα)(vα) 6= vα. In the first two cases,

the orbit-stabilizer formula and the fact that gα is contained in any non-trivial

normal subgroup of Gα imply that Gα → UF : g 7→ g(vα) is injective. Therefore,

for any Gα-invariant subspace U of UF containing vα, the group homomorphism

ρ : Gα → GL(U) induced by the adjoint action is injective. In the third case, a

similar argument shows that the kernel is contained in the centre of G.

We have shown that for v ∈ UF there exists a family of subspaces {V v
α }α of UF

such that (i), (ii), (iv), (v), (vi) hold.

It remains to show that such a family also satisfies (iii) and (vii).

Applying Borel–Tits [4] to Gα1
and the Zariski closure of its image under ρα1

in GL(V v
α ) we conclude that ρα1

: Gα1
→ GL(V v

α ) is algebraic and, thus, ρα1
:

(Gα1
, τα1

) → (GL(V v
α ),OF) is continuous. It follows from an open mapping

theorem (cf. [13, Lemma 2.1]) that the subspace topology on ρα1
(Gα1

) is locally

compact. Therefore, by [20, Theorem II.5.11], the image ρα1
(Gα1

) is a closed

subgroup of (GL(V v
α ),OF ) and, hence, so are ρα1

(U±α1
). This establishes (vii).

Since ρα1
: (Gα1

, τα1
) → (GL(V v

α ),OF) is continuous, so is the orbit map

(Gα1
, τα1

) → (V v
α ,OF) : g 7→ g(v), i.e., we have shown (iii) for each 1-tuple α.

Decompose an arbitrary tuple α of length more than 1 as (α1, β). By induction

the orbit map (Gβ , τβ) → (V v

β
,OF) : g 7→ g(v) is continuous and, hence, so is

ϕ : (Gβ , τβ) → (V v
α ,OF) : g 7→ g(v) by (iv). Since the action ε : (GL(V v

α ),OF)×
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(V v
α ,OF) → (V v

α ,OF) is continuous, it follows that

ε ◦ (ρα1
× ϕ) : (Gα1

, τα1
)× (Gβ , τβ) → (V v

α ,OF) : (xα1
, xβ) → xα1

xβ(v)

is continuous. As Gα carries the quotient topology τα, this means that also

(Gα, τα) → (V v
α ,OF) : x 7→ x(v)

is continuous, proving (iii). �

Now we can deduce:

Proposition 7.10. Let F be a local field and let G = GD(F) be a split Kac–Moody

group over F. Then the Kac–Peterson topology is a kω group topology on G, which

is moreover independent of the choice of the system Π of simple roots.

Proof. To simplify the argument, we first assume that G has trivial centre. In a

second step we will then remove this assumption by an easy embedding argu-

ment.

Thus let G be centre-free and fix a k-tuple α = (α1, α2, . . . , αk) of simple

roots. Our first claim is that (TGα, τα) is Hausdorff. For this, let g 6= h ∈
Gα. Since G is centre-free there then exists v ∈ UF such that g(v) 6= h(v).

By Proposition 7.9(iii) there exists a finite-dimensional subspace V v
α of UF that

yields a continuous orbit map f : (TGα, τα) → (V v
α ,OF) : x 7→ x(v). Taking

preimages under f of suitable open neighbourhoods of g(v), resp. h(v) provides

disjoint open neighbourhoods of g and h. HenceGα is Hausdorff. It then follows

from [13, Proposition 4.2(d)] that the spaces (TGα, τα) are kω. Moreover, the

space (G, τKP ) is T1 as a direct limit of Hausdorff spaces.

Since the multiplication map TG(α1,...,αk) × TG(β1,...,βm) → TG(α1,...,βm) is

continuous and these pieces are kω, it follows from [13, Propositions 4.2, 4.7]

that multiplication on G is continuous with respect to τKP . A similar argument

shows that also inversion is continuous, whence (G, τKP ) is a topological group.

As a T1 topological group it is in fact Hausdorff, hence kω as a Hausdorff direct

limit of kω-spaces.

The indepence of the topology τKP of the choice of Π now follows from the

fact that up to conjugation there is a unique choice ([34, Theorem 10.4.2])

and the fact that conjugation in a topological group is a homeomorphism. This

finishes the proof in the case where G is centre-free.

For the general case, we observe that the above proof goes through provided

we are able to show that the pieces (TGα, τα) are Hausdorff. For this, in turn,

it suffices to embed them continuously into a Hausdorff topological space. We

will use an embedding into a centre-free Kac–Moody group of larger rank, which

generalizes the embedding of SLn(F) into PGLn+1(F).
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Given a simply connected Kac–Moody group GD(F) with simple roots Π,

then, for any non-empty subset Σ ⊆ Π, the group 〈Uα, U−α | α ∈ Σ〉 again is

a simply connected Kac–Moody group. If Π is irreducible and Σ is a proper

subset of Π, then the centre of 〈Uα, U−α | α ∈ Σ〉 intersects the centre of

GD(F) trivially. Therefore, by [34, Proposition 9.6.2], the corresponding centre-

free adjoint group GDad(F) contains the simply connected Kac–Moody group

〈Uα, U−α | α ∈ Σ〉 as a subgroup. This argument shows that each simply con-

nected Kac–Moody group can be embedded into an adjoint Kac–Moody group

whose type is obtained by adding one further vertex to each connected compo-

nent of the diagram. �

The following result is now an immediate consequence of Proposition 7.4:

Corollary 7.11. Let F be a local field, and let G be a split Kac–Moody group

over F. Then, with notation as in Proposition 7.4, (G, τKP ) is the direct limit of

each one of the following three directed systems:
⋃

k∈N

(G+
k , τKP |G+

k
),

⋃

k∈N

(G−
k , τKP |G−

k
),

⋃

k∈N

(G+
k ∩G−

k , τKP |G+
k
∩G−

k
).

Remark 7.12. If D is a centred Kac–Moody root datum and G = GD(F), then

the torus can be recovered from the root groups. Therefore, the Kac–Peterson

topology coincides with the final topology with respect to the directed system

(Gα, τα|Gα
)α. In this case, our definition of the Kac–Peterson topology is equiv-

alent to the one given in 7.8 is equivalent to the one given in [24, Section 4G]

using parametrizations of the root groups as follows.

Let F be a local field and G = GD(F) a centred Kac–Moody group. For each

simple root α, choose a parametrization x±α : F → U±α of the root groups. For

each finite sequence of positive or negative simple roots β = (β1, . . . , βk) denote

by

xβ : Fk → G : (t1, . . . , tk) 7→ xβ1
(t1) · · ·xβk

(tk)

the composition of the chosen parametrizations with the product map of G, and

let Uβ denote the image of xβ . As, by the Gauss algorithm/Bruhat decomposi-

tion, for each simple root α one has Gα = UαU−αUαU−α, the final topology on

G with respect to the maps xβ coincides with the Kac–Peterson topology.

In the non-centred case, one additionally has to prescribe the topology of the

torus. To this end, one classically realizes an n-dimensional split F-torus with

group of characters Λ ∼= Zn as the affine variety

{(a1, b1, . . . , an, bn) ∈ F2n | ∀1 ≤ i ≤ n : aibi = 1}.

The parametrization in order to obtain HomZ−alg(Z[Λ],F) is given by the map

that sends the ai to the free abelian generators of Λ and the bi to their inverses.
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An important tool in the study of the Kac–Peterson topology, which goes

back to the original work of Kac and Peterson (see [24, §2]), are weakly regular

functions in the sense of the following definition:

Definition 7.13. A function f : G→ F is called weakly regular, if f◦xβ : Fk → F

is a polynomial function for all β ∈ (Π∪−Π)k and all k ∈ N and f |T is a regular

function in the usual sense.

Note that for centred G the last condition is automatic; thus we recover the

original definition from [24, §2] in this case. The link between weakly regular

functions and the Kac–Peterson topology is provided by the following lemma:

Lemma 7.14. Every weakly regular function is continuous with respect to the

Kac–Peterson topology.

Proof. Let A ⊂ F be a closed subset and f : G→ F be a weakly regular function.

Then for each β = (β1, . . . , βk) ∈ (Π∪−Π)k the preimage (f ◦xβ)
−1(A) is closed

with respect to the Hausdorff topology on Fk, because polynomial functions are

continuous. As this set equals the preimage under xβ of f−1(A), its image in

Uβ1
Uβ2

· · ·Uβk
under xβ is closed. This shows that f−1(A) is closed, as τKP

equals the direct limit topology. �

7.4 Topology of spherical subgroups

We retain the notation of the preceding section. In particular, F denotes a local

field and G a split Kac–Moody group over F endowed with the Kac–Peterson

topology τKP . We also denote by ∆± the two halves of the associated twin

building. Before we can continue our study of this topology we need to identify

various closed subgroups.

We start with the following observation:

Proposition 7.15. The subgroups B± < G are closed with respect to τKP .

Proof. Observe that for v ∈ UF and v∗ ∈ (UF)
∗, the vector space dual of UF, the

map fv,v∗ : G→ F : g 7→ v∗(g(v)) is a weakly regular function, because adeα and

adfα are locally nilpotent (cf. the proof of Proposition 7.9). Denote by U≥0
F the

subspace of UF consisting of the non-negative vectors with respect to theQ-grad-

ing (cf. Section 7.2). Then, for each g ∈ G\B+ there exists a v ∈ U≥0
F such that

g(v) 6∈ U≥0
F . This means that there exists v∗ ∈ Ann(U≥0

F ), the annihilator of

U≥0
F in (UF)

∗, such that fv,v∗(g) 6= 0. We conclude that B+ is the set of common

zeros of the family of weakly regular functions (fv,v∗)
v∈U

≥0
F

,v∗∈Ann(U
≥0
F

)
. It then

follows from Lemma 7.14 that B+ is closed with respect to τKP . �
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The proposition implies in particular that the halves ∆± = G/B± are Haus-

dorff when equipped with the quotient topology with respect to τKP . We will

see in the next corollary that this has massive consequences for the topology

of spherical subgroups, i.e., fundamental subgroups of the form Gα1,...,αr
=

〈Gα1
, . . . , Gαr

〉 for spherical subsets {α1, . . . , αr} of the Coxeter system (W,S),

and their conjugates.

Note that in particular all rank one subgroups are spherical. Any spherical

subgroup carries a unique semisimple Lie group topology OF over the ground

field F.

Corollary 7.16. Let F be a local field and letG be a split Kac–Moody group over F.

Equip the halves ∆± of the associated twin building with the quotient topology with

respect to the Kac–Peterson topology. Then:

(i) ∆± are kω-spaces.

(ii) Panels in ∆± —and, more generally, spherical residues— are compact.

(iii) For every real root α the restriction of τKP to Gα coincides with OF.

(iv) If H is a spherical subgroup, then the restriction of τKP to H coincides with

its Lie group topology.

(v) Spherical subgroups are closed.

Proof. (i) This is immediate by Proposition 7.10, Proposition 7.15 and [13,

Proposition 4.2(d)].

(ii) The (continuous) action of the group (Gα,OF) on the twin building pre-

serves the panel Pα. Denote byBα < Gα the point stabilizer of a basepoint

in Pα, so that we obtain a continuous bijection between Gα/Bα and Pα.

The former is compact (see Remark 6.8) and the latter is Hausdorff by (i),

whence the latter is compact as it is a Hausdorff quotient of a compact

space. The same argument works for spherical residues.

(iii) Denote by τco the compact-open topology on Gα with respect to the action

on Pα. Then we have continuous maps

(Gα,OF) → (Gα, τKP ) → (Gα, τco).

However, we have OF = τco, so in fact all three topologies coincide.

(iv) Since the Lie group topology is precisely the compact-open topology with

respect to the action on the corresponding spherical residue, the same

argument as in (iii) applies.
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(v) By (iii) and (iv) the subgroups in question are locally compact, hence must

be closed by [20, Theorem II.5.11]. �

From this in turn we deduce:

Corollary 7.17. (i) For every root α the root group Uα is closed with respect

to τKP .

(ii) For every root α the canonical map F → (Uα, τKP |Uα
) is a homeomorphism.

(iii) T is closed with respect to τKP .

Proof. (i) and (ii) are immediate since Uα < Gα and τKP |Gα
is the Lie group

topology. (iii) then follows from (i) and T =
⋂

α∈Φre NG(Uα), cf. Proposi-

tion 7.2. �

Getting the analogous statement of (ii) for the torus is slightly more involved:

Proposition 7.18. Let G be a centre-free Kac–Moody group, i.e., a subgroup of an

adjoint Kac–Moody group, or a central quotient of a simply connected Kac–Moody

group. Then the map (T, τF) → (T, τKP |T ) is a homeomorphism. In particular, if

G is centred, then there exists a finite group F such that (T, τKP |T ) ∼= (F×)n/F .

Proof. Consider first the case that G is centre-free. By definition (T, τKP |T ) =
lim→(T, τα). It thus suffices to show that the continuous maps (T, τF) → (T, τα)

are open. Now Proposition 7.6 yields a finite-dimensional vector space V v
α

and a homomorphism (T, τα) → GL(V v
α ). Since G is assumed adjoint, this

homomorphism is actually injective. It remains to show only that the map

(T, τF) → (T, τα) → GL(V v
α ) is a homeomorphism onto its image.

By the explicit formulae, the map in question is algebraic, whence continuous

and has closed and, consequently, locally compact image. By the open mapping

theorem, this map is therefore open. This finishes the proof in the centre-free

case.

Now we consider the second case, where G is assumed to be a central quo-

tient of a simply connected Kac–Moody group. The same argument as in the

first case shows that τKP and τF coincide on the quotient Ad(T ). By Lemma 7.5,

this is a finite quotient, hence the proposition follows from standard topological

extension theory. �

7.5 Kac–Peterson topology II: Universality

At this point we have assembled enough information about the Kac–Peterson

topology to characterize it in terms of a universal property.
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Definition 7.19. Let F be a local field and let G be a split Kac–Moody group

over F. Then the universal topology τ on G is defined to be the final group

topology with respect to the maps

ϕα : SL2(F) → G, α ∈ Φre, η(F) : HomZ−alg(Z[Λ],F) → G,

where SL2(F) and HomZ−alg(Z[Λ],F) ∼= (F×)rk(Λ) are equipped with their Lie

group topologies.

Note that, as before, one obtains the same universal topology if one considers

simple roots α ∈ Π only.

Lemma 7.20 (cf. [13, Lemma 6.2]). Let F be a local field, let G be a split Kac–

Moody group, and let Π = {α1, . . . , αn} be a basis of simple roots of Φre. Then

the universal topology on G is the final group topology with respect to the maps

(ϕαi
)1≤i≤n and η(F).

Proof. It suffices to observe that for every real root α there exists w ∈ W and

αi ∈ Π such that α = w.αi, whence for any representative w̃ of w in G, one has

Gα = Gw.αi
= w̃Gαi

w̃−1. �

Again the universal topology can be defined for general topological fields,

but it is unclear to us whether it has any good properties in general; we do not

even know whether it is Hausdorff. However, over local fields we can show the

following:

Proposition 7.21. Assume F is a local field and that G is centre-free or a central

quotient of a simply connected Kac–Moody group. Then the universal topology and

the Kac–Peterson topology coincide. In particular, (G, τ) is Hausdorff and kω.

Proof. Since the inclusion maps Gα → (G, τKP ) are continuous, we obtain a

continuous map (G, τ) → (G, τKP ). It remains to show that this map is open.

In view of Corollary 7.16(iii), the topologies coincide on each Gα. Since mul-

tiplication is continuous, the map (Gα, τα) → (Gα, τ |Gα
) is continuous. On the

other hand the map

(Gα, τ |Gα
) → (Gα, τKP |Gα

) = (Gα, τα)

is continuous as the restriction of a continuous map. Altogether we have shown

that τ and τKP coincide on each Gα. It then follows that they coincide globally

and the subgroup of G generated by the root subgroups. The claim therefore

follows from Proposition 7.18. �
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In the two-spherical case we can reformulate the universal property of the

Kac–Peterson topology in the form of an amalgamation result that generalizes

[13, Theorem 6.20].

Theorem 7.22 (Topological Curtis–Tits Theorem). Let F be a local field and let

G be a two-spherical simply connected split Kac–Moody group. Let Φre be the

set of real roots and let Π be a basis of simple roots for Φre. For α, β ∈ Π, set

Gα := ϕα(SL2(F)) and Gαβ := 〈Gα ∪Gβ〉. Moreover, let ιαβ : Gα →֒ Gαβ be the

canonical inclusion morphisms.

Then the group (G, τKP ) is a universal enveloping group of the amalgam

{Gα, Gαβ ; ιαβ}

in the categories of

(i) abstract groups,

(ii) Hausdorff topological groups and

(iii) kω groups.

Proof. (i) This is the main result of [2].

(ii) By Lemma 7.20 and Proposition 7.21 the group (G, τKP ) is the direct

limit of the amalgam {Gα, Gαβ ; ιαβ} in the category of topological groups.

Since τKP is Hausdorff by Proposition 7.21 the claim follows.

(iii) By (ii), the claim follows from [13, Corollary 5.10]. �

In Theorem 7.22 the hypothesis of simple connectedness is important, since

otherwise the torus will not be the universal enveloping group of the amalgam

of the tori of ranks one and two. For their central quotients it is, of course,

possible to derive a compact presentation as well by incorporating the finite

group of toral relations manually (cf. Lemma 7.5).

We obtain:

Corollary 7.23. Central quotients of simply connected two-spherical split Kac–

Moody groups over local fields are compactly presented in the sense of [9, Defini-

tion 3.1].

Remark 7.24. We have seen in Corollary 7.16 that in the spherical case the Kac–

Peterson topology coincides with the Lie group topology. Thus Theorem 7.22

applies in particular to semisimple Lie groups over local fields. We emphasize

once more that in the non-spherical case it is not locally compact and, thus,

not metrizable, cf. Remark 7.28; see also [13, Example 6.14] for a detailed

discussion of group topologies on affine Kac–Moody groups.
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7.6 Topology of bounded and some non-spherical subgroups

We now return to the study of the topology of subgroups of G. Corollary 7.16

implies that (G, τKP ) induces the natural topology on the obvious finite-dimen-

sional pieces of G, the spherical subgroups. In this section we intend to under-

stand the topologies induced on some infinite-dimensional subgroups and on

the less obvious finite-dimensional pieces, the bounded subgroups.

Our first goal is to understand the groups U±. The key idea is to consider

them as colimits of finite-dimensional pieces. According to [8, Section 5.3,

Theorem and Corollary] the group U+ is the colimit U+ = lim→ Uw (in the

category of abstract groups) with respect to the Bruhat order of the groups

Uw = U+ ∩ wB−w
−1, w ∈ W . Moreover, by [8, Section 5.5, Lemma], for

each reduced rα1
· · · rαn

= w ∈ W for simple roots αi ∈ Π with β1 := α1 and

βi := rα1
· · · rαi−1

αi for 2 ≤ i ≤ n, the multiplication map

m : Uβ1
× · · · × Uβn

→ G : (x1, . . . , xn) 7→ x1 · · ·xn.

is a bijection onto Uw.

We warn the reader that the above product Uw is not to be confused with the

products Uα studied before. Unlike the αi, the βi are assumed to be all positive

and distinct and not necessarily simple.

Lemma 7.25. If Uβi
and Uw are equipped with the respective restrictions of τKP

and the product Uβ1
× · · · × Uβn

is equipped with the product topology, then m is

a homeomorphism onto its image Uw.

Proof. We are going to establish the lemma by induction on n, the case n = 1

being trivial. Now let n ≥ 2, assume that the claim holds for all products of

length at most n − 1, and consider Uw = Uβ1
· · ·Uβn

. We may assume that

G is irreducible. Then there exists a torus element t ∈ T whose conjugation

preserves the root group Uβ1
and contracts all other root groups Uβi

. We deduce

that if xi ∈ Uβi
and x = x1 · · ·xn, then

lim
n→∞

g−1tngxg−1t−ng = x1.

This shows that there is a continuous map

ϕ1 : X → Uβ1
× (Uβ2

· · ·Uβn
) : x 7→ (x1, x

−1
1 x).

By induction hypothesis, applied to gUβ2
· · ·Uβn

g−1 for some g ∈ NG(T ) with

gUβ2
g−1 a root subgroup for a simple root, we thus find a continuous map

ϕ : X → Uβ1
× · · · × Uβn

,

which is inverse to m. The claim follows. �
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There is a slight variant of the lemma, which incorporates the torus:

Lemma 7.26. If T , Uβi
and TUw are equipped with the respective restrictions of

τKP and the product T × Uβ1
× · · · × Uβn

is equipped with the product topology,

then the multiplication map

T × Uβ1
× · · · × Uβn

→ G : (t, x1, . . . , xn) 7→ tx1 · · ·xn.

is a homeomorphism onto its image TUw.

Proof. Since T ∩U+ = {1} and T is self-centralizing the same argument applies.

�

Lemma 7.26 and its obvious variant for the groups U−w = U− ∩ wB+w
−1,

w ∈ W , involving negative roots allow us to describe the subspace topologies

induced on B± by τKP as direct limit topologies.

Proposition 7.27. (i) (B±, τKP |B±) is a colimit B± = lim→ TU±w
∼= T ×U±

in the category of Hausdorff topological groups.

(ii) The multiplication map T × U± → B± is open.

(iii) U± are closed in B±, hence in G.

Proof. For (i) we need only to observe that each U±w is contained in some G∓
n

and that each element in the intersection B± ∩G∓
n can be written as a product

of elements contained in T and in U±w with l(w) ≤ n and apply Corollary 7.11.

Now (ii) and (iii) are immediate from (i). �

Remark 7.28. We conclude from Lemma 7.25 and Proposition 7.27 that in the

non-spherical case (G, τKP ) cannot be locally compact. Indeed, in this case the

closed subgroup U+ would be locally compact, which is absurd as it contains an

infinite-dimensional vector space, e.g. the direct limit lim→ Uwi
along an infinite

chain w1 < w2 < w3 < · · · with respect to the Bruhat order. Proposition 7.21

and [11, §21] therefore imply that (G, τKP ) is not metrizable and, in particular,

not Polish.

We conclude this section with an analysis of the topology of some further

subgroups of G. The following is a straighforward generalization of Proposi-

tion 7.15.

Proposition 7.29. Parabolic subgroups are closed.
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Proof. The proof is identical to the one given in Proposition 7.15. Let P be

a parabolic subgroup of positive sign and denote by UP
F the subspace of UF

spanned by the P -orbit of the subspace U≥0
F of the non-negative vectors with

respect to the Q-grading. Then, for each g ∈ G\P there exists a v ∈ UP
F such

that g(v) 6∈ UP
F . This means that there exists v∗ ∈ Ann(UP

F ) such that fv,v∗(g) 6=
0. We conclude that P is the set of common zeros of the family of weakly

regular functions (fv,v∗)v∈UP
F
,v∗∈Ann(UP

F
). It then follows from Lemma 7.14 that

P is closed with respect to τKP . �

Corollary 7.30. Bounded subgroups, i.e., intersections of spherical parabolics of

opposite signs, are algebraic Lie groups. Its Levi decomposition is a semi-direct

product of closed subgroups.

Proof. The fact that bounded subgroups are algebraic follows from [34, Sec-

tion 6.2], as does the existence of a Levi decomposition. A Levi factor is a spher-

ical subgroup and, hence, a (closed) Lie group by Corollary 7.16. A bounded

subgroup is closed by Proposition 7.29. Its unipotent radical is closed by [7,

Lemma 3.3, Proposition 3.6] plus Propositions 7.27 and 7.29.

If M is a maximal bounded subgroup, then it is either equal to its own Levi

subgroup (and there is nothing to prove), or by [7, Lemma 3.2, Lemma 3.3 and

its proof, Theorem 4.1] its unipotent radical equals a finite product of real root

subgroups, in fact a conjugate of some Uw, and hence is homeomorphic to a

finite-dimensional F-vector space by Lemma 7.25.

In order to prove the claim for M , it remains to show that it is a topological

product of one of its Levi factors L and its unipotent radical U . Multiplication

L × U → M is clearly continuous. In order to see that it is open it suffices to

show that the continuous map L→M →M/U ∼= L is open (where the latter is

endowed with the quotient topology). For this we observe that U can, as in the

proof of Lemma 7.25, be contracted by a torus element of M that centralizes L.

(We again may assume that G is irreducible.)

A non-maximal bounded subgroup is contained in a maximal one, and so the

Lie group and topological semi-direct product structure is inherited. �

7.7 The topological twin building of a split Kac–Moody group

The goal of this section is to establish the first main result of this paper:

Theorem 1. Let G be a two-spherical simply connected split Kac–Moody group

over a local field and let τKP be the Kac–Peterson topology on G. Then the associ-

ated twin building endowed with the quotient topology is a strong topological twin

building (cf. Definition 3.21).
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If the local field equals the field of real or of complex numbers, then G is con-

nected, otherwise totally disconnected.

The key observation is the following:

Proposition 7.31. Let F be a local field and let G be a two-spherical simply con-

nected split Kac–Moody group over F endowed with the Kac–Peterson topology.

Then the map m : U+ × T × U− → B+B− : (u+, t, u−) 7→ u+tu− is open.

This result has been announced in [24, Theorem 4], actually without the

restriction to the two-spherical case. This more general version would in fact

allow one to remove the requirement that G be two-spherical in the statement

of Theorem 1.

Proof of Proposition 7.31. Let α1, α2, . . . be a cofinal sequence with respect to

the sub-tuple relation. Proposition 2.17 implies that for each n ∈ N there exists

an m ∈ N with

B+B− ∩ Uα′ ⊆ (U+ ∩ Uα′′)(T ∩ Uα′′)(U− ∩ Uα′′),

where α′ = (α1, . . . , αn) and α′′ = (α1, . . . , αm). Conversely, for each m ∈ N
there exists an n ∈ N with

(U+ ∩ Uα′′)(T ∩ Uα′′)(U− ∩ Uα′′) ⊆ B+B− ∩ Uα′ .

We conclude that

B+B− = lim
→

(U+ ∩ Uα)(T ∩ Uα)(U− ∩ Uα).

Moreover, since U± = lim→ U± ∩ Uβ and T = lim→ T ∩ Uα, by [13, Proposi-

tion 4.7] one has

U+ × T × U− = lim
→

((U+ ∩ Uα)× (T ∩ Uα)× (U− ∩ Uα)) .

As each

mα : (U+ ∩ Uα)× (T ∩ Uα)× (U− ∩ Uα) → (U+ ∩ Uα)(T ∩ Uα)(U− ∩ Uα)

(u+, t, u−) 7→ u+tu−

is open, this implies that m : U+ × T × U− → B+B− : (u+, t, u−) 7→ u+tu− is

open. �

Now Theorem 1 is immediate:
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Proof of Theorem 1. Concerning the first part of Theorem 1 it suffices to estab-

lish the hypotheses of Theorem 6.7. Condition (iii) is precisely Proposition 7.31.

Since we have already established Condition (i) in Proposition 7.15, Condition

(ii) in Corollary 7.11 and Condition (iv) in Corollary 7.16, the first part of The-

orem 1 follows.

Concerning the second part we first note that the underlying roots groups

and the torus are connected if and only if k is archimedean. In the archimedean

case it then follows that the pieces TGα, and hence their limit G are connected.

In the non-archimedean case we see from Proposition 7.27 and Proposition 7.31

that the open subset B+B− is totally disconnected. This implies that G itself is

totally disconnected, finishing the proof. �

Note that the underlying topological foundation of the topological twin build-

ing of G is precisely the corresponding topological k-split foundation. This

shows:

Corollary 7.32. Let k be a local field. Then every Dynkin tree is topologically

k-integrable.

Proof. Let F be a topological k-split Moufang foundation corresponding to a

given Dynkin tree. By the main result of [30] there exists a (two-spherical)

split Kac–Moody group G = GD(k) such that the associated twin building glob-

alizes the abstract foundation underlying F . Equip G with the Kac–Petersen

topology and its twin building with the associated quotient topology. In view of

Theorem 1 this is a topological twin building. Since the topology on the root

subgroups Uα is the standard one by Corollary 7.16(iii), this topological twin

building realizes the given topological foundation. �

A combination of Corollary 7.32 and Corollary 4.10 now yields the second

main result of the present article:

Theorem 2. Let k be a local field. The maps [∆] 7→ [D(∆)] induces a bijection

between isomorphism classes of k-split topological twin buildings of tree type and

isomorphism classes of simply connected simple {3, 4, 6}-labelled graphs, where

edges labelled 4 or 6 are directed.

7.8 Kac–Moody symmetric spaces

We conclude with a couple of observations related to Kac–Moody symmetric

spaces using the theory of flips introduced in [14] and [21].
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Lemma 7.33. Let F be a field, let D be a centred Kac–Moody root datum, let

GD(F) be the corresponding split Kac–Moody group, let θ be a quasi-flip of the

Kac–Moody group such that θ(B+) = B−, let τθ : GD(F) → GD(F) : g 7→ θ(g)−1g

be the corresponding Lang map, let W be its Weyl group, let w ∈ W , and let

x ∈ GD(F). Then δ∗(θ(xB+), xB+) = w if and only if x ∈ τ−1
θ (B−wB+).

Proof. One has the following chain of equivalences:

δ∗(θ(xB+), xB+) = w ⇐⇒ B−θ(x)
−1xB+ = B−wB+

⇐⇒ θ(x)−1x ∈ B−wB+

⇐⇒ τθ(x) ∈ B−wB+

⇐⇒ x ∈ τ−1
θ (B−wB+). �

Theorem 7.34. Let F be a local field, let G be the adjoint form of a simply con-

nected split Kac–Moody group endowed with the Kac–Peterson topology τKP , let

W be its Weyl group, let θ be a continuous quasi-flip of G such that θ(B+) = B−,

and let Gθ := CG(θ) = FixG(θ). Moreover, for w ∈W , let

∆w := {c ∈ ∆+ | δ∗(θ(c), c) = w}.

Furthermore, let Cod(θ) := {w ∈W | ∆w 6= ∅}. Then the following hold:

(i) For w ∈ Cod(θ) one has

∆w =
⋃

w′≥w

∆w′ .

(ii) For w ∈ Cod(θ) the smallest open Gθ-invariant subset of ∆+ containing ∆w

is
⋃

w′≤w

∆w′ .

Proof. Using the quotient map q : G → ∆+ = G/B+, Lemma 7.33 states that

for each w ∈ W the set q(τ−1
θ (B−wB+)) equals ∆w. As θ is continuous, so is

the Lang map τθ : G → G : g 7→ θ(g)−1g, whence all claims follow immediately

from Theorem 6.4. �
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[3] R. Bödi and L. Kramer, On homomorphisms between generalized poly-

gons, Geom. Dedicata 58 (1995), 1–14.

[4] A. Borel and J. Tits, Homomorphismes abstraits de groupes algébriques
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M. Stroppel, Compact projective planes, de Gruyter Expositions in Mathe-

matics, vol. 21, Walter de Gruyter & Co., Berlin, 1995.

[39] E. H. Spanier, Algebraic topology, McGraw-Hill Book Company, New York,

1966.

[40] R. Steinberg, Lectures on Chevalley groups, Yale University, 1968,

mimeographed lecture notes.

[41] F. G. Timmesfeld, Abstract root subgroups and simple groups of Lie type,

Monographs in Mathematics, vol. 95, Birkhäuser Verlag, Basel, 2001.
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