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Appendix: Finite prolongation in

RGD-systems

Bernhard Mühlherr

1. Introduction

In this appendix we give the proof of Proposition 2.17 of [4]. It is a consequence

of Theorem 4.5 below. The key step in our reasoning is based on a refinement of

the arguments in the proof of Theorem 1.5 in [5]. The latter says that the set of

chambers opposite a given chamber in a 2-spherical twin building is connected,

if this condition holds in all rank 2 residues. Our refinement consists of giving a

bound for the distance between two chambers in the set of opposite chambers

depending on their distance in the building. In order to do this we have to

strengthen the local condition on the rank two residues. This results in our

somewhat technical Condition (co)k below. It is almost always satisfied and

more explanations are given in the final section of this note.

2. Preliminaries

Let (W,S) be a Coxeter system and let ℓ : W → N be its associated length

function. Let B = (C, δ) be a building of type (W,S). For two chambers c, d ∈ C

we put ℓ(c, d) := ℓ(δ(c, d)).

Definition 2.1. A codistance on B is a mapping δ∗ : C → W such that the

following is satisfied for all s ∈ S and c ∈ C where w := δ∗(c).

(CD1) If d ∈ C is s-adjacent to c, then δ∗(d) ∈ {w,ws}.

(CD2) If ℓ(ws) = ℓ(w) + 1, then there exists a unique chamber d which is s-adja-

cent to c such that δ∗(d) = ws.

Let δ∗ be a codistance on B. Then we put δop∗ := {c ∈ C | δ∗(c) = 1W }.
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Lemma 2.2. Let B = (C, δ) be a building of type (W,S), let R be a spherical

residue of B and δ∗ a codistance on B.

Then there exists a unique chamber c ∈ R such that ℓ(δ∗(c)) = ℓ(δ∗(d))+ℓ(c, d)

for all d ∈ R.

Proof. This is [3, Proposition 6]. �

Definition 2.3. The unique chamber c of the previous lemma is called the pro-

jection of δ∗ onto R and it is denoted by projR δ∗.

3. Condition (lco)k

Definition 3.1. Let (W,S) be a spherical Coxeter system of rank 2 and B =

(C, δ) be a building of type (W,S).

We say that B satisfies Condition (co)k if the following holds for each chamber

c ∈ C:

If (d, e, f) is a gallery such that ℓ(c, d) ≥ ℓ(c, e) = ℓ(c, f) − 1, then

there exists a gallery (d = d0, d1, . . . , dm = f) such that m ≤ k and

such that ℓ(c, di) > ℓ(c, e) for all 1 ≤ i ≤ m.

Let (W,S) be a 2-spherical Coxeter system and let B = (C, δ) be a building of

type (W,S). We say that B satisfies Condition (lco)k if each rank 2 residue of B

satisfies Condition (co)k.

Convention 3.2. For the rest of this section (W,S) is a 2-spherical Coxeter

system and B = (C, δ) is a building of type (W,S) satisfying Condition (lco)k.

Moreover, δ∗ : C → W is a codistance on B and for each c ∈ C we set ℓ(c) :=

ℓ(δ∗(c)).

For a gallery γ = (c = c0, . . . , cn = d) we put m(γ) := max{ℓ(ci) | 0 ≤ i ≤ n}

and n(γ) := |{0 ≤ i ≤ n | ℓ(ci) = m(γ)}|.

Lemma 3.3. Suppose that c, d ∈ δ
op
∗ and that γ = (c = c0, . . . , cn = d) is a

gallery such that m(γ) > 0. Then there exists a gallery γ′ from c to d of length at

most n+ k such that m(γ′) ≤ m(γ) and such that the following hold.

(i) If n(γ) > 1 then n(γ′) = n(γ)− 1;

(ii) if n(γ) = 1, then m(γ′) = m(γ)− 1.

Proof. We can find an 0 < i < n such that m(γ) = ℓ(ci) = ℓ(ci+1) + 1.
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There exists a rank 2 residue R containing ci−1, ci and ci+1. Let e := projR δ∗.

Note that we have ℓ(ci−1) ≤ ℓ(ci) = ℓ(ci+1) + 1. By Lemma 2.2 we have

ℓ(e, ci−1) ≥ ℓ(e, ci) = ℓ(e, ci+1) − 1. Since B satisfies Condition (lco)k we can

find a gallery γ′′ = (ci−1 = d0, . . . , dm = ci+1) in R such that m ≤ k and such

that ℓ(e, dj) > ℓ(e, ci) for all 1 ≤ j ≤ m. Applying again Lemma 2.2, it follows

that ℓ(dj) < ℓ(ci) for all 1 ≤ j ≤ m. Now we obtain the desired gallery γ′ by

replacing the subgallery (ci−1, ci, ci+1) by γ′′ and we are done. �

Lemma 3.4. Let c, d ∈ δ
op
∗ and γ = (c = c0, . . . , cn = d) be a gallery such that

m(γ) > 0. Then there exists a gallery γ′ from c to d of length at most nk such that

m(γ′) = m(γ)− 1.

Proof. An obvious induction on n(γ) using the previous lemma shows that we

can find a gallery γ′ from c to d of length at most n + n(γ)k with m(γ′) =

m(γ)− 1. As n(γ) ≤ n− 1 the claim follows. �

Proposition 3.5. Let c, d ∈ δ
op
∗ and suppose that ℓ(c, d) = n. Then there exists a

gallery of length at most nkn from c to d in δ
op
∗ .

Proof. Let γ be a gallery from c, d of length n and let m := m(γ). Using the

previous lemma one shows by induction that there is a gallery in δ
op
∗ from c to

d of length at most nkm and as m ≤ n the claim follows. �

In the remainder of this section U is a group of isometries of B which preserve

the codistance δ∗. We fix a chamber c ∈ δ
op
∗ and let H denote its stabilizer in U .

Furthermore, for each s ∈ S we denote the stabilizer in U of the s-panel Ps

containing c by Us. Finally, we put X := ∪s∈SUs.

Lemma 3.6. Suppose that Us is transitive on δ
op
∗ ∩ Ps for each s ∈ S. Let u ∈ U

and 1 ≤ n ∈ N. Then u ∈ Xn if and only if there exists a gallery from c to u(c) in

δ
op
∗ of length at most n. In particular, 〈X〉 = U if and only if δ

op
∗ is connected.

Proof. The first statement follows by an obvious induction on n and the second

is consequence of the first. �

4. Moufang twin buildings

Throughout this section, let (W,S) be a 2-spherical Coxeter system and let B =

(B+,B−, δ
∗) be a twin building of type (W,S). We recall that this means that

Bǫ = (Cǫ, δǫ) is a building of type (W,S) and that we have a twinning δ∗ :

(C+ × C−) ∪ (C− × C+) → W .
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Two chambers x ∈ C+, y ∈ C− are called opposite if δ∗(x, y) = 1W and for a

chamber c ∈ Cǫ we denote the set of chambers in C−ǫ which are opposite to c

by cop.

The following is immediate from the definitions:

Lemma 4.1. Let ǫ ∈ {+,−} and c ∈ Cǫ. Then the mapping δ∗c : C−ǫ → W is a

codistance on B−ǫ and cop = (δ∗c )
op.

Further conventions for this section. The twin building B = (B+,B−, δ
∗) is

a 2-spherical Moufang twin building and it satisfies Condition (lco)k. Moreover

(c+.c−) is a pair of opposite chambers and Σ is the unique twin apartment

containing them both. Moreover, we put δ∗ǫ := δ∗cǫ ; hence δ∗ǫ is a codistance on

B−ǫ for ǫ ∈ {+,−}.

We let Φ := Φ(Σ) be the denote the set of roots of Σ and for ǫ ∈ {+,−}

we let Φǫ denote the set of roots in Φ which contain cǫ. Finally, we a have an

RGD-sytem (G, (Uα)α∈Φ) acting on B such that the Uα are mapped onto the

corresponding root-groups of B.

For ǫ ∈ {+.−} we let Bǫ denote the stabilizer of cǫ in G and we set H :=

B+ ∩ B−. We put Uǫ := 〈Uα | α ∈ Φǫ〉 and remark that Uǫ fixes cǫ. For s ∈ S

we denote the stabilizer in Uǫ of the s panel containing c−ǫ by U ǫ
s . Finally, we

put Xǫ =
⋃

s∈S U ǫ
s for ǫ ∈ {+,−}. and X := X+ ∪ X−. We remark that the

subgroup H normalizes the set Xǫ for ǫ ∈ {+,−} and hence also the set X.

Lemma 4.2. For ǫ ∈ {+,−} the following hold:

(i) For each s ∈ S the stabilzer in Uǫ of the s-panel of c−ǫ coincides with U ǫ
s ;

(ii) the group Uǫ is sharply transitive on the set of chambers opposite to cǫ ;

(iii) we have Uǫ = 〈U ǫ
s | s ∈ S〉.

Proof. Assertions (i) are (ii) are basic facts for arbitrary RGD-systems. Condi-

tion (lco)k implies Condition (lco) of [5] (see the final section of this appendix)

and hence the set of chambers opposite cǫ is connected by Theorem 1.5 in that

paper. Assertion (iii) follows now from Lemma 3.6. �

As a further consequence of Lemma 3.6 we obtain the following.

Proposition 4.3. Let b ∈ Bǫ and n := ℓ(c−ǫ, b(c−ǫ)). Then b ∈ X
f(n)
ǫ H where

f(n) = nkn.

Lemma 4.4. If g ∈ Xn, then ℓ(c+, g(c+)) + ℓ(c−, g(c−)) ≤ n.

Proof. This follows by an easy induction on n. �
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Theorem 4.5. Let f : N → N be defined by n 7→ nkn. Then

B+B− ∩Xn ⊆ (U+ ∩X
f(n)
+ )(H ∩X

f(n)
+ XnX

f(n)
−

)(U− ∩X
f(n)
−

).

Proof. Let n ∈ N and suppose that g ∈ B+B− ∩Xn. Let b+ ∈ B+ and b− ∈ B−

be such that g = b+b− and observe that g(c−) = b+(c−). As g ∈ Xn we have

ℓ(c+, g(c+)) + ℓ(c−, g(c−)) ≤ n by Lemma 4.4, and therefore ℓ(c−, b+(c−)) =

ℓ(c−, g(c−)) ≤ n.

As ℓ(c−, b+(c−)) ≤ n it follows from Proposition 4.3 that b+ ∈ X
f(n)
+ H. Now

we put d+ := b−(c+) and observe that b+(d+) = g(c+) and in particular that

ℓ(c+, d+) = ℓ(b+(c+), b+(d+)) = ℓ(c+, g(c+)) ≤ n. Applying again Proposi-

tion 4.3 we see that also b− ∈ X
f(n)
−

H. Since H normalizes Xǫ for ǫ ∈ {+,−}

we see that g ∈ X
f(n)
+ HX

f(n)
−

. For ǫ ∈ {+,−} let xǫ ∈ X
f(n)
ǫ and h ∈ H be such

that g = x+hx−. Since g ∈ Xn it follows that h ∈ X
f(n)
+ XnX

f(n)
−

which finishes

the proof. �

5. Condition (co)k for spherical buildings of rank 2

Throughout this section (W,S) is a spherical Coxeter system of rank 2, the order

of W is 2m ≥ 4 and B = (C, δ) is a thick building of type (W,S). Hence B is a

generalized m-gon.

Definition 5.1. We say that B satisfies Condition (co) if the set of chambers

opposite to a chamber is connected; we say that B satisfies Condition (dco) if

the following is satisfied for each chamber c ∈ C: Any two chambers opposite

c can be joined by a gallery of length at most d in the set of chambers opposite

to c. In other words, the diameter of cop is at most d.

It is immediate that (dco) implies (co)d+2m. Thus, in order to check, whether

B satisfies Condition (co)k for some k it is sufficient to show that there is a

natural number d such that B satisfies Condition (dco).

Lemma 5.2. The following hold.

(i) If m = 2, then B satisfies Condition (2co);

(ii) if m = 3, then B satisfies Condition (4co);

(iii) if m = 4 and B is not the building B2(2), then B satisfies Condition (8co).

Proof. Assertions (i) and (ii) are straightforward. Assertion (iii) can be deduced

from the arguments given in the proof of [6, Proposition 1.7.15]. �
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For m > 4 there are free constructions by Abramenko ([1, Proposition 9 in

Section II.2]) which show that one cannot expect similar results without fur-

ther assumptions. His construction could probably even be modified to con-

struct polygons satifying Condition (co) without satisfying (dco) for any d ∈ N.

Since we are only interested in twin buildings associated with RGD-systems,

all rank 2 residues are Moufang. Thus, in view of the lemma above, we are left

with the Moufang hexagons and Moufang octagons. In [2] it is shown that they

satisfy Condition (co) in almost all cases. A natural strategy to establish (dco)

for the Moufang hexagons and octagons is to analyze the proofs of Condition

(co) for those polygons given in [2]. P. Abramenko and H. Van Maldeghem are

convinced that this is indeed possible. They expect that Moufang hexagons with

Condition (co) satisfy Condition (12co); apparently the octagons are a bit more

complicated. The author thanks them for providing these informations about

this question.
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[4] T. Hartnick, R. Köhl, A. Mars, On topological twin buildings and topolog-

ical split Kac–Moody groups, Innov. Incidence Geom. 13 (2013), 1–71.
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