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Abstract

We construct a rank 3 geometry Γ(O′
N) over the diagram a a a

1 10 1

c 8 5 8

whose automorphism group is the O’Nan sporadic simple group. The max-

imal parabolic subgroups are the Janko group J1, 2 × S5 and the Mathieu

group M11. Our construction is based on a convenient amalgam of known

geometries of rank 2 for J1 and M11 extracted from the subgroup lattice

of O′
N .
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1 Introduction

We provide a construction of a rank 3 coset geometry Γ(O′N) for O’Nan’s spo-

radic simple group O′N over the type set I = {0, 1, 2}. The geometry Γ(O′N)

belongs to the diagram

0 1 2i i ic 8 5 8

1 10 1

The construction is based on a convenient amalgam of known rank 2 coset

geometries for the sporadic groups J1 and M11, and on a theorem due to

Aschbacher [1]. We prove that Γ(O′N) is flag-transitive, residually connected,

residually weakly primitive, locally 2-transitive and that it satisfies the inter-

section property in rank 2. Finally we prove that the automorphism group of
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the geometry Γ(O′N) is O′N , using a study of the truncation of Γ(O′N) on its

elements of type in {0, 1}.

The paper is organized as follows. In section 2 we give the basic definitions

needed to understand this paper. Then we state a theorem due to Aschbacher

used later to prove that the geometry Γ(O′N) is flag-transitive. In section 3, we

introduce a characterization of the Janko group J1 due to Perkel [13] using the

Livingstone graph. Then we construct the geometry Γ(O′N) in section 4. In the

next three sections, we study properties of Γ(O′N) and finally, in section 8, we

prove that its automorphism group Aut(Γ(O′N)) is O′N .

2 A theorem of Aschbacher

Following [4, Chapter 3, §3], a geometry is a 4-tuple (X, ∗, t, I) with X a set

of elements, ∗ a binary, reflexive and symmetric relation on X called incidence,

I a set of types, and t : X → I a surjective map, called the type function, which

assigns a type to each element of X. Moreover the incidence relation satisfies

the following condition: given x, y ∈ X such that x∗y and t(x) = t(y), it follows

that x = y. Finally, every maximal set of pairwise incident elements contains

one element of each type.

In [15, 16], Tits introduces and develops the concept of a coset geometry.

Given a group G and a family F = {Gi | i ∈ I} of subgroups of G, where

I is a finite set, define Γ(G,F) to be the pregeometry over I as follows. For

i ∈ I the set of elements of type i is the set of right cosets of Gi in G. Two

elements Gig and Gjh are incident, and we write Gig ∗Gjh for that, if and only

if Gig ∩Gjh 6= ∅. Clearly, G acts as a group of automorphisms of Γ(G,F) under

right multiplication.

Following Tits, Aschbacher [1] studied the interaction between incidence ge-

ometries and groups. He studies a useful criterion so as to determine whether

a coset geometry with a string diagram is flag-transitive. In order to state and

to apply easily this criterion, we introduce some notation used in [1]. Let G

and F = {Gi | i ∈ I} be as above. For J ⊆ I, let GJ = ∩j∈JGj . We set

SJ = {Gj | j ∈ J}, FJ = {GJ∪{i} | i ∈ I − J} and Γ(J) = Γ(GJ ,FJ). Ob-

viously, SJ is a flag of type J in Γ(G,F). A diagram on I in the sense of [1]

is a tuple D = {DJ | J ⊆ I, |J | = 2} such that DJ is a nonempty family of

geometries on J . The graph of D is the undirected graph with vertex set I and

i adjacent to j if J = {i, j} is of order 2 and some member of DJ is not a

generalized digon. The diagram D(G,F) of Γ(G,F) is the diagram on I with

D(G,F)J = {Γ(I−J)}. A graph on I is a string if we can order I = {0, 1, . . . , n}
so that the edges of the graph are {i, i+ 1}, 0 ≤ i < n.
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Now comes the result of Aschbacher.

Lemma 2.1 ([1, Main theorem]). Let G be a group and let F = {Gi | i ∈ I} be

a family of subgroups of G. Assume

(a) for each subset J of I of corank at least 2, GJ = 〈GJ∪{i} | i ∈ I − J〉, and

(b) the connected components of the graph of D(G,F) are strings.

Then

(1) G is flag-transitive on Γ(G,F).

(2) Γ(G,F) is residually connected.

(3) For each J ⊆ I, the map

(GJ∪{i})z 7→ Giz, i ∈ I − J, z ∈ GJ

is an isomorphism of Γ(J) and the residue of SJ .

3 The Livingstone graph

The Livingstone graph was first described in [11] as an 11-regular graph of 266

vertices on which J1 acts flag-transitively. This graph motivated further work

consisting of constructions and characterizations as in [3, 13, 17]. We provide

the characterization of the Livingstone graph given in [13].

3.1 Perkel’s characterization

Let L be a connected, finite, regular undirected graph of girth 5 on a set Ω of

vertices, with automorphism group G ∼= Aut(L), satisfying the following four

properties:

1. the valency of L is 11;

2. for any x ∈ Ω, the point stabilizer in G is isomorphic to the simple group

L2(11);

3. for some path (x, y, z) of length 2, x, y, z ∈ Ω (x 6= z), Gxyz fixes a pen-

tagon (a circuit of length 5) containing (x, y, z);

4. the vertices and edges fixed by an involution of Gxyz constitute a con-

nected subgraph of L.

Then L is a distance regular graph of 266 vertices with G ∼= J1.
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3.2 The Livingstone graph as a coset geometry

In [3, Chapter 11, §7], Brouwer, et al. provide a construction of the Livingstone

graph as a coset geometry for J1 as follows. Let F ∼= J1. This group possesses

exactly one conjugacy class of subgroups isomorphic to L2(11), and one con-

jugacy class of involutions. The centralizer of an involution is isomorphic to

2×A5. Now choose a subgroup L < F isomorphic to L2(11) and an involution

i ∈ F such that L2(11) ∩ CF (i) = A5 (there are 11 such involutions) and set

C := CF (i). Define the coset geometry Γ(J1) = Γ(F, {L,C}) with Borel sub-

group isomorphic to A5. Then the underlying incidence geometry L is precisely

the Livingstone graph. It is a regular distance transitive graph of degree 11 with

V (L) = 266 and E(L) = 1463. The distance distribution diagram of the graph

L is provided in Figure 1.
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1 11 110 132 12
11 1 10 1

4
6 5

5
1 11

Figure 1: The distance distribution diagram of L

The coset geometry Γ(J1) is flag-transitive, firm, residually connected, resid-

ually weakly primitive, locally 2-transitive and satisfies the intersection property.

We provide the Buekenhout diagram of the dual geometry of Γ(J1) in Figure 2

(see Gottschalk and Leemans [6] or Leemans [10, Geometry 2.7]).

1 0i i8 5 8

10 1

1463 266

2×A5 L2(11)

B = A5

Figure 2: The dual diagram of Γ(J1).

4 Construction of a rank 3 coset geometry for O′
N

The maximal subgroups of O′N are known (see [14, 18, 19]). This group has,

among others, one conjugacy class of subgroups isomorphic to J1 and two con-

jugacy classes of subgroups isomorphic to M11 that are fused under the action

of AutO′N = O′N : 2. The residually weakly primitive and locally 2-transitive
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coset geometries for M11 are known (see Leemans [10] and Dehon et al. [5]).

Exactly one of those geometries has a Borel subgroup isomorphic to A5. We call

it Γ(M11). Its underlying incidence structure is a complete graph on 12 vertices

and it belongs to the Buekenhout diagram of Figure 3.

i ic

1 10

12 66

L2(11) S5 = 2 : A5

B = A5

Figure 3: The diagram of Γ(M11).

Since Γ(M11) has a maximal parabolic subgroup isomorphic to L2(11), we

see that Γ(J1) and Γ(M11) might be residues of a residually weakly primitive

and locally 2-transitive rank 3 geometry Γ(O′N) for O′N .

Theorem 4.1. The O’Nan group contains a boolean lattice Ψ of subgroups as in

Figure 4, in which all inclusions are maximal except the inclusion of 2×S5 in O′N .

There are exactly two such lattices in O′N up to conjugacy. These two classes of

boolean lattices are fused in Aut(O′N).
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B = A5

Figure 4: The Boolean lattice Ψ of Γ(O′N).

Proof. Let Λ denote the subgroup lattice of O′N available in [9]. There exists

a unique class of conjugate subgroups isomorphic to J1 in O′N = G. This

is class number 6 in Λ. Let J1 ∼= G0 < G. There is exactly one conjugacy

class of subgroups isomorphic to L2(11) in O′N . This is class number 119 in Λ.

Moreover, J1 possesses exactly one conjugacy class of subgroups isomorphic to

L2(11) and exactly one conjugacy class of subgroups isomorphic to 2×A5 (class

number 277 in Λ). Let G02 < G0 and G01 < G0 be isomorphic respectively
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to L2(11) and 2 × A5. J1 has two conjugacy classes of subgroups isomorphic

to A5. Only one of them has subgroups that are contained simultaneously in

a subgroup isomorphic to L2(11) and in a subgroup isomorphic to 2 × A5. It

corresponds to class number 370 in Λ. Let A5
∼= B = G01 ∩G02.

There are two conjugacy classes of subgroups isomorphic to M11 in O′N :

they are classes number 23 and 24 in Λ. These classes are fused in Aut(O′N)

= O′N : 2. In M11, there is exactly one conjugacy class of subgroups isomorphic

to L2(11). Choose M11
∼= G2 < G in any of the two conjugacy classes (without

loss of generality, say class 23), such that G02 < G2. Now let S5
∼= G12 < G2 be

such that B < G12. Hence, G12 is a subgroup of class 278 in Λ. Indeed, there

are two classes of subgroups isomorphic to 2×S5 in O′N , but only class number

278 is in class 23 of subgroups isomorphic to M11.

The subgroups G01 and G12 share a unique common minimal overgroup G1.

This subgroup is isomorphic to 2 × S5 and belongs to class number 212 in Λ.

Moreover, G12 has exactly two other minimal overgroups. They are isomorphic

to M11 and thus they are themselves maximal subgroups of G. Since they do not

contain G01, we see that the subgroups G01 and G12 generate G1 or G itself. We

claim that they generate G1. By way of contradiction, suppose they generate G.

Since G01 ∩ G12 = B ∼= A5, there would exist a thin rank 2 geometry for O′N

with a Borel B ∼= A5. Consequently, B E G, i.e. O′N would have a normal

subgroup isomorphic to A5, a contradiction.

In conclusion, the choice of a conjugacy class of subgroups M11 determines

uniquely the boolean lattice Ψ of Figure 4. �

Theorem 4.2. The boolean lattice Ψ of Figure 4 determines a coset geometry

Γ(O′N) over the Buekenhout diagram of Figure 5: Γ(O′N) is flag-transitive, firm,

residually connected, residually weakly primitive, locally 2-transitive and satis-

fies the intersection property in rank 2 residues as defined in Leemans [10] and

Pasini [12].

0 1 2i i ic 8 5 8

1 10 1

2 624 832 1 920 064 608 58 183 776

J1 2× S5 M11

B = A5

Figure 5: The diagram of Γ(O′N)

Proof. The boolean lattice Ψ of Figure 4 provides us with G = O′N and a family

of subgroups F = {G0, G1, G2}. Observe that GJ = 〈GJ∪{i} : i ∈ I − J〉 for
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every J ⊆ I, |J | ≥ 2 since all inclusions of subgroups in Ψ are maximal except

the inclusion G1 < G. Furthermore the geometries Γ0 = (G0, {G01, G02}) and

Γ2 = (G2, {G02, G12}) are the geometries Γ(J1) and Γ(M11) and belong to the

Buekenhout diagrams of Figure 2 and Figure 3 respectively, while the geome-

try Γ1 = (G1, {G01, G12}) is obviously a generalized digon. Consequently the

diagram D of Γ(O′N) = (G, {G0, G1, G2}), in the sense of Aschbacher [1], is a

string diagram. By Lemma 2.1, Γ(O′N) is a flag-transitive and residually con-

nected geometry. We deduce the Buekenhout diagram of Γ(O′N) as it is drawn

in Figure 5 by amalgamating the Buekenhout diagrams of Γ0 and Γ2.

Moreover Γ(O′N) is residually weakly primitive because all inclusions of

parabolic subgroups are maximal except the inclusion G1 < G. Clearly, it is

firm and it satisfies the intersection property in rank 2. Finally, it is locally

2-transitive as all of its rank 2 residues are. �

5 The line graph of the Livingstone graph

Let G = (V,E) be a graph with vertex set V and edge set E. We define the

line graph of G as the graph L(G) = (E,X) which represents the adjacencies

between the edges of G (see Harary [7, Chapter 8]). In other words, the vertex

set of L(G) is the edge set E of G; two vertices of L(G) are joined by an edge if

and only if the corresponding edges in G share a common vertex in G.

We require the next characterization of line graphs in the development of

section 7.

Lemma 5.1 ([7, Theorem 8.4]). A graph is a line graph if and only if its edges

can be partitioned into complete subgraphs in such a way that no vertex lies in

more than two of the subgraphs.

Given a line graph L(G) and a partition P as in Lemma 5.1, we recover the

original graph G in a natural way: the vertex set of G is the set P ; two vertices

of G are now joined by an edge if and only if the corresponding cliques share a

vertex in L(G).

Accordingly, the line graph L(L) of the Livingstone graph L is a graph of

1463 vertices. Each vertex lies in exactly two cliques of 11 points and there

are 266 11-cliques in L(L). The associated incidence geometry of rank 2 is a

flag-transitive geometry that belongs to the diagram of Figure 6. Let us observe

that J1 acts on the set of 11-cliques and on the set of vertices of L(L) (with

incidence provided by symmetrized inclusion) in the same way as it acts on the

Livingstone graph.
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vertex edgei i9 3 10

1 19

1463 14630

Figure 6: The diagram of L(L).

6 Two graphs on 1463 vertices on which J1 acts

flag-transitively

Using MAGMA, it can be checked that there are exactly two nonisomorphic flag-

transitive coset geometries Γ1(J1) and Γ2(J1) for J1 of rank 2 with parabolic

subgroups G0 = 2 × A5 and G1 = D12 and with Borel subgroup isomorphic

to S3. They belong to the Buekenhout diagrams given in Figure 7.

0 1i i9 3 10

1 19

1463 14630

2×A5 D12

B = S3

Figure 7.a: The diagram of Γ1(J1).

0 1i i8 3 8

1 19

1463 14630

2×A5 D12

B = S3

Figure 7.b: The diagram of Γ2(J1).

Figure 7: Two nonisomorphic geometries with same parabolic subgroups

We readily see that Γ1(J1) is the line graph of the Livingstone graph that we

discussed in Section 5. The geometry Γ2(J1) is a graph of degree 20 with 1463

vertices and 14630 edges.

7 A graph extension involving the line graph of the

Livingstone graph

The truncation T of Γ(O′N) on its elements of type in {0, 1} is a graph whose

vertices are the elements of type 0 of Γ(O′N) and whose edges are the elements

of type 1 of Γ(O′N). Every edge is incident to 2 vertices in Γ(O′N) and every

vertex is incident to 1463 edges as a consequence of Theorem 4.2.
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The vertices of T correspond to the cosets of H = J1 in G = O′N . Since J1
is a maximal subgroup of G, the action of G on the vertices of T is primitive.

Using MAGMA [2], we determine that 35 orbits appear when we fix a vertex p.

They are distributed as follows:

1 + 14633 + 5852 + 125402 + 219452 + 292605 + 585202 + 8778012 + 1755607.

There are 3 orbits of size 1463, say Ω1, Ω2 and Ω3. Given q1 ∈ Ω1, q2 ∈ Ω2

and q3 ∈ Ω3, we obtain that, up to relabelling, StabG{p, q1} ∼= StabG{p, q2}
∼= 2 × S5 and StabG{p, q3} ∼= 4 × A5. However, StabG{p, q1} and StabG{p, q2}
are not conjugate in G. In order to distinguish two subgroups isomorphic to

2 × S5 that belong to two different conjugacy classes of subgroups in G, we

denote a subgroup of the class corresponding to the 1-elements of Γ(O′N) by

(2× S5)A (according to the construction of Γ(O′N) in section 4, it corresponds

to conjugacy class number 212 in Λ) and the other by (2× S5)B (it corresponds

to conjugacy class number 213 in Λ).

Let us denote by p⊥ = (Vp, Ep) the induced subgraph on the neighborhood

of p in T . Using MAGMA, we build p⊥ in the following way. Start with the set Vp

of points of Ω1 and an empty edge set Ep. For each (unordered) pair of points

{x, y} of Vp, if StabG{x, y} = (2× S5)A then add {x, y} to the edge set Ep. We

eventually determine that p⊥ is 40-regular and that |Ep| = 29260 = 2 × 14630.

The clique number of p⊥ is 11 and it occurs that p⊥ has exactly 266 such cliques.

Let us denote by E1

p the set of edges of p⊥ occuring in at least one 11-clique. We

check that each vertex of p⊥ is in exactly 2 cliques of 11 points. Consequently,

by Theorem 5.1, the graph (Vp, E
1

p) is isomorphic to L(L) = Γ1(J1). Let us now

consider the set E2

p = Ep − E1

p . The resulting graph (Vp, E
2

p) is isomorphic to

Γ2(J1). The set of edges of p⊥ is thus the disjoint union of the edge sets of

Γ1(J1) and Γ2(J1).

Intuitively, we can think of the induced subgraph on the neighborhood of a

point of T as a superposition of the graphs Γ1(J1) and Γ2(J1).

Theorem 7.1. The automorphism group of the graph T is isomorphic to O′N .

Proof. Let T denote the automorphism group Aut T of T . Let p be a vertex of T ,

let Tp denote StabT p and let T (p) denote the orbit of p. By the orbit-stabilizer

theorem, |T | = |Tp| × |T (p)|. The automorphism group P of p⊥ is isomorphic

to J1 and P ≤ Tp. By contradiction, suppose that the inclusion is strict. Let

S = StabT [p
⊥ ∪ p] denote the pointwise stabilizer of p⊥ ∪ p in T . Since P 6= Tp,

we have that S is nontrivial. Let q ∈ p⊥. By the developments of sections 6

and 7, we know that q⊥ ∼= p⊥ and |p⊥ ∩ q⊥| = 40. Moreover, those 40 vertices

are fixed. Using MAGMA, it is checked easily that if we fix pointwise a vertex of

q⊥ and its neighborhood in q⊥, then q⊥ is fixed pointwise. Therefore, if p and
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p⊥ are pointwise fixed, all vertices at distance 2 from p are fixed as well, and,

repeating the same argument, we show that all vertices are fixed. Hence S is

trivial, a contradiction.

This means that fixing pointwise a vertex p and its neighborhood p⊥ in T
implies that the set of points of T at distance 2 from p is fixed pointwise. It

follows that T itself is fixed pointwise. Consequently, P = Tp and thus J1 ∼= Tp.

Now we conclude:

|T | = |Tp| × |T (p)|

= |J1| ×
|O′N |

|J1|

= |O′N |.

By the developments of section 2, the O’Nan group acts as an automorphism

group on T and thus G ≤ T . Since |O′N | = |T |, we have O′N ∼= G = T . �

8 Automorphism group of Γ(O′
N)

In order to prove the next theorem, we introduce the following notation. The

incidence graph of Γ(O′N) is a tripartite graph X = (X, ∗) with X = X0 ⊔X1 ⊔
X2 where Xi is the set of elements of Γ(O′N) of type i, and ∗ is the incidence

relation inherited from Γ(O′N).

Theorem 8.1. The automorphism group of the geometry Γ(O′N) is isomorphic

to O′N .

Proof. We apply the same strategy as in the proof of Theorem 7.1. First, let us

observe that Ξ := AutX = AutΓ(O′N).

Let us consider a vertex j of X0 and denote by j⊥ the induced subgraph in

X on the neighborhood of j. This graph corresponds to the incidence graph of

the residue in Γ(O′N) of j. It is readily seen that j⊥ is therefore the incidence

graph of the Livingstone graph whose automorphism group is J ∼= J1. Conse-

quently, J ≤ Ξj . By way of contradiction, assume the inclusion is strict. Let

S = StabΞ[j
⊥ ∪ j] denote the pointwise stabilizer of j⊥ ∪ j in Ξ. Since J 6= Ξj ,

we have that S is nontrivial. Observe that the induced subgraph X01 in X on

the vertices of X0 and X1 is isomorphic to the incidence graph of T . By Theo-

rem 7.1, if we fix pointwise j and j⊥ in X01, then all the vertices of X01 are fixed.

It follows that the vertices of X2 are pointwise fixed. Indeed, the truncation T12

of Γ(O′N) on its elements of type {1, 2} is a graph whose vertices correspond to

the elements of X2 and whose edges correspond to the elements of X1. Since
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all the edges of this graph are fixed, it follows that all of its vertices are fixed

because T12 is not a generalized digon.

We conclude by applying the orbit-stabilizer theorem:

|Ξ| = |Ξj | × |Ξ(j)|

= |J1| ×
|O′N |

|J1|

= |O′N |

and thus Ξ ∼= O′N . �

9 Final remark

Buekenhout1 observed that the geometry Γ(O′N) is a truncation of a rank 5 ge-

ometry due to Ivanov and Shpectorov [8]. This observation leads to upcoming

work of Buekenhout and the author.
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