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Abstract

In this paper I survey a number of recent results on projective and

Veronesean embeddings of orthogonal Grassmannians and propose a few

conjectures and problems.
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1. Organization of the paper

This paper consists four sections, besides the present one. Section 2 is a survey

of basic notions on projective and Veronesean embeddings and generating sets,

to be freely used in the rest of the paper. In Section 3 we recall the definition

of orthogonal Grassmannians and define two embeddings for each of them,

called the Grassmann and Weyl embedding, respectively. In the special case of

a dual polar space of type Bn those two embeddings are Veronesean and one

more Veronesean embedding can be defined, which we call the Veronese-spin

embedding. In Section 4 we compare the embeddings defined in Section 3: the

Veronese-spin embedding and the Weyl embedding of a dual polar space are

always isomorphic while the Grassmann and Weyl embeddings are isomorphic

when the underlying field has characteristic different from 2. In the case of

characteristic 2 things are more complicated. Most of Section 4 is devoted to a

discussion of that case. Section 5 is devoted to universality. Nearly all results

discussed in Sections 4 and 5 are taken from Cardinali and Pasini [9, 10, 11].

We will omit their proofs, referring the reader to [9, 10, 11] for them, but we

shall give short sketches of the proofs whenever it will be possible, so that the

reader can get at least a flavor of the arguments used in them.
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2. Basics on embeddings and generation

Throughout this section Γ = (P,L) is a point-line geometry, P is its set of points

and L its set of lines. We assume that the collinearity graph of Γ is connected,

that no two distinct lines of Γ meet in more than one point and every line of

Γ has at least three points. The second condition is necessary for Γ to admit a

projective or laxly projective embedding while the third condition is necessary

for the existence of a projective or Veronesean embedding. Connectedness is a

sensible requirement. Anyway, I don’t like disconnected objects.

2.1. Projective embeddings

Given Γ as above, a projective embedding of Γ in the projective space PG(V ) of

a vector space V is an injective mapping ε from the point-set P of Γ to the set

of points of PG(V ) such that ε maps every line of Γ surjectively onto a line of

PG(V ) and ε(P) spans PG(V ).

Henceforth we will freely switch from PG(V ) to V . In particular, we will

commit the abuse of regarding V instead of PG(V ) as the codomain of ε, thus

writing ε : Γ → V instead of ε : Γ → PG(V ). Accordingly, if p ∈ P we regard

ε(p) as a 1-dimensional subspace of V and we take the dimension of V as the

dimension dim(ε) of ε.

If F is the underlying division ring of V then we say that ε is defined over F,

also that ε is a projective F-embedding for short. If all projective embeddings of

Γ are defined over the same division ring F (as it is the case for all geometries

to be considered in this paper), then Γ is said to be defined over F.

Given two projective F-embeddings ε1 : Γ → V1 and ε2 : Γ → V2, a morphism

f : ε1 → ε2 from ε1 to ε2 is a semi-linear mapping f : V1 → V2 such that

ε2 = f · ε1. Note that, since 〈ε2(P)〉 = V2, the equality ε2 = f · ε1 forces

f : V1 → V2 to be surjective. If f is bijective then f is called an isomorphism.

When ε1 and ε2 are isomorphic we write ε1 ∼= ε2. Note that, if a morphism

f : ε1 → ε2 exists then f is uniquely determined by ε1 and ε2 modulo scalars

(see e.g. Pasini and Van Maldeghem [23, Proposition 9]; we warn that the

connectedness of Γ is essential to obtain this result). If a morphism exists from

ε1 to ε2 then we write ε1 ≥ ε2 and we say that ε2 is a morphic image of ε2. When

ε1 ≥ ε2 but ε1 6∼= ε2 we write ε1 > ε2.

Given an embedding ε : Γ → V , let K be a subspace of V satisfying the

following:

(Q1) if x, y ∈ P (possibly x = y) then 〈ε(x), ε(y)〉 ∩ K = 0. In particular

K ∩ ε(x) = 0 for every point x ∈ P.
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Then the function ε/K : Γ → V/K mapping x ∈ P to 〈ε(x),K〉/K is an embed-

ding of Γ in V/K and the canonical projection of V onto V/K is a morphism

from ε to ε/K. We call ε/K a quotient of ε. We also say that K defines a quotient

of ε. Note that (Q1) implies the following:

(Q2) For p ∈ P and l ∈ L, if p 6∈ l then ε(p) ∩ 〈ε(l),K〉 = 0.

This remark may look futile here, but in the next subsection it will appear in a

different light.

If f : V1 → V2 is a morphism from ε1 to ε2 then ker(f) defines a quotient of ε1
and ε2 ∼= ε1/ker(f). In view of this fact, we take the liberty to call ε2 a quotient

of ε1 (a proper quotient if ε1 6∼= ε2) thus taking the word ‘quotient’ as a synonym

of ‘morphic image’. We also call the morphism f : ε1 → ε2 the projection of ε1
onto ε2.

Following Kasikova and Shult [20], we say that a projective embedding of

Γ is relatively universal when it is not a proper quotient of any other projective

embedding of Γ. Every projective embedding ε of Γ admits a hull ε̃, uniquely

determined up to isomorphism by the following properties (Ronan [25]): ε̃ is

a projective embedding of Γ, ε is a quotient of ε̃ and we have ε̃ ≥ ε′ for every

projective embedding ε′ of Γ such that ε′ ≥ ε. Clearly, ε̃ is relatively universal.

A projective embedding is relatively universal if and only if it is its own hull.

The hull ε̃ of an embedding ε : Γ → V can be constructed as follows ([25]):

denote by F the set of flags of Γ, and consider the presheaf

(
{Vx}x∈P∪L, {ιp,l}(p,l)∈F

)
,

where if x ∈ P then Vx = ε(x), if x ∈ L then Vx = 〈ε(x)〉 = 〈∪p∈xVp〉 (=

∪p∈xVp) and ιp,l is the inclusion embedding of Vp in Vl, for every flag (p, l) ∈ F .

Let J be the subspace of ⊕x∈P∪Lε(x) spanned by the vectors v−ιp,l(v) for every

flag (p, l) ∈ F and every vector v ∈ ε(p). Put Ṽ = (⊕x∈P∪Lε(x))/J and define

the mapping ε̃ : Γ → Ṽ by the following clause: ε̃(p) = 〈ε(p), J〉/J for every

point p ∈ P. Then ε̃ is the hull of ε.

A projective F-embedding ε of Γ is absolutely universal if all projective F-em-

beddings of Γ are quotients of ε. The absolutely universal projective F-embed-

ding of Γ, if it exists, is uniquely determined up to isomorphisms. It is the hull

of all projective F-embeddings of Γ. Obviously, it is relatively universal. Up

to isomorphisms, it is the unique relatively universal F-embedding of Γ. So,

if we know that Γ admits the absolutely universal projective F-embedding we

may say that a given projective F-embedding of Γ is or is not universal, drop-

ping the adverbs ‘relatively’ or ‘absolutely’. We refer the reader to Kasikova and

Shult [20] for a very far-reaching sufficient condition for the existence of the

absolutely universal projective embedding.
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Given an embedding ε : Γ → V and an automorphism g of Γ, a lifting of g

through ε is a semi-linear mapping ε(g) : V → V such that ε(g) · ε = ε · g. The

lifting ε(g) of g, if it exists, is uniquely determined modulo scalars. Clearly, it

is invertible. Given a group G acting on Γ as a group of automorphisms, the

embedding ε is said to be G-homogeneous if for every g ∈ G the automorphism

of Γ induced by g lifts through ε to a semi-linear map of V .

If ε is absolutely universal then it is Aut(Γ)-homogeneous. Let ε1 and ε2 be

projective embeddings of Γ and f : ε1 → ε2 a morphism. Suppose that ε1 is

G-homogeneous for some G ≤ Aut(Γ) and ker(f) is stabilized by G. Then ε2 is

G-homogeneous.

2.2. Veronesean embeddings

Various definitions of Veronesean embeddings have appeared in the literature,

sometimes under different names. The reader may see [27] for one of them.

The underlying idea of each of those definitions is that lines are mapped onto

conics, or even plane arcs, but that idea can be worked out in different ways,

thus obtaining different definitions. We choose the following one.

Let Γ = (P,L) be a point line geometry satisfying the assumptions made at

the beginning of this section. A Veronesean embedding of Γ in (the projective

space PG(V ) of) a vector space V defined over a commutative division ring

(namely a field) F is an injective mapping ε from the point-set P of Γ to the set

of points of PG(V ) such that ε maps every line of Γ onto a non-singular conic

of PG(V ), for every line l ∈ L the projective plane spanned by the conic ε(l)

intersects the set ε(P) just in ε(l), and ε(P) spans PG(V ).

All definitions and conventions stated for projective embeddings in Subsec-

tion 2.1 can be rephrased for Veronesean embeddings word for word. In partic-

ular, we can still construct the hull ε̃ of ε starting from ({Vx}x∈P∪L, {ιp,l}(p,l)∈F )

where Vx = ε(x) when x ∈ P and Vx = 〈ε(x)〉 = 〈∪p∈xVx〉 when x ∈ L. As

before, for every flag (p, l) ∈ F the mapping ιp,l is the inclusion embedding of

Vp in Vl. Now ε(l) = {ε(p)}p∈l is a non-singular conic of the projective plane

PG(Vl) while in the previous subsection PG(Vl) is a projective line and ε(l) is

its set of points. However this difference has no effect on the construction of Ṽ

(see [22], where the hulls as defined here are called linear hulls).

We have claimed that all what is said in Subsection 2.1 for projective em-

beddings can be carried to Veronesean embeddings with nearly no modifica-

tion. This is true, but when dealing with quotients more precise remarks are

necessary. Indeed, certain situations can occur now that are not paralleled by

anything occurring for projective embeddings.

Given a Veronesean embedding ε : Γ → V , let K be a subspace of V satisfying
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conditions (Q1) and (Q2) of Subsection 2.1. Note that now we must assume

(Q2) in addition to (Q1), since in the present context (Q2) does not follow

from (Q1). (Examples where (Q1) holds but (Q2) fails to hold are easy to

construct.) By (Q1), the function ε/K mapping p ∈ P to 〈ε(p),K〉/K is an

injective mapping from P to the point-set of PG(V/K). By (Q2), given a point p

and a line l of Γ, if p 6∈ l then (ε/K)(p)∩〈(ε/K)(l)〉 = 0, no matter if 〈(ε/K)(l)〉
is 2- or 3-dimensional. Moreover 〈(ε/K)(P)〉 = V/K, since 〈ε(P)〉 = V by

assumption. Sticking to the terminology introduced in the previous subsection,

we still call ε/K a quotient of ε and we say that K defines a quotient of ε.

However, when the underlying field F of ε has characteristic 2 the embedding

ε/K might not be Veronesean, as we shall see in a few lines. Nevertheless, such

non-Veronesean quotients are worth of consideration.

Note firstly that ε/K is a Veronesean embedding whenever K also satisfies

the following:

(Q3) K ∩ 〈ε(l)〉 = 0 for every line l of Γ.

Indeed, if (Q3) holds then the canonical projection of V onto V/K induces an

isomorphism from 〈ε(l)〉 to 〈ε(l),K〉/K.

Condition (Q3) always holds when char(F) 6= 2. In this case ε/K is a Verone-

sean embedding.

Let char(F) = 2. Then K ∩〈ε(l)〉 might be non-trivial. This happens precisely

when K∩〈ε(l)〉 is the nucleus of the conic ε(l) in the projective plane PG(〈ε(l)〉).
Denote by nl the nucleus of ε(l), and suppose that K∩〈ε(l)〉 = nl for every line l

of Γ. Assume moreover that F is perfect. Then every line of PG(〈ε(l)〉) through

nl is tangent to ε(l). It follows that the canonical projection of V onto V/K

induces a bijection from the conic ε(l) to the set of points of the projective line

PG(〈ε(l),K〉/K) ∼= PG(〈ε(l)〉/nl). Thus, ε/K is a projective embedding.

Still assuming that char(F) = 2 and K ∩ 〈ε(l)〉 = nl for every line l, suppose

that F is non-perfect. In this case some of the lines of PG(〈ε(l)〉) through nl are

exterior to ε(l). The subspace PG(〈ε(l),K〉/K) of PG(V/K) is still a line but

ε/K induces an injective but non-surjective mapping from the set of points of l

to the set of points of PG(〈ε(l),K〉/K). Moreover, if l and m are distinct lines

of Γ then (ε/K)(l) and (ε/K)(m) are contained in distinct lines of PG(V/K).

We say that ε/K is a laxly projective embedding.

Finally, keeping the assumption that char(F) = 2, suppose that K∩〈ε(l)〉 = nl

for some but not all lines of Γ. In this case ε/K maps some lines of Γ into (or

onto, if F is perfect) lines of PG(V/K) while other lines of Γ are mapped by ε/K

onto non-singular conics of PG(V/K). In this case we say that ε/K is quasi-

Veronesean. We include Veronesean, projective and laxly projective embeddings



I I G

◭◭ ◮◮

◭ ◮

page 6 / 27

go back

full screen

close

quit

ACADEMIA

PRESS

in the class of quasi-Veronesean embeddings as borderline cases.

Remark 2.1. In the literature projective embeddings as defined in Subsec-

tion 2.1 are also called full projective embeddings while the embeddings that we

have called laxly projective are often called lax projective embeddings, also lax

embeddings for short (as in [29]). This terminology is used in contexts where

both full and lax embeddings must be considered. When all projective em-

beddings to consider are full people normally prefer to drop the word ‘full’,

thus calling them just ‘projective embeddings’, as we have done here. We have

replaced the adjective ‘lax’ with the adverb ‘laxly’ because, since a projective

embedding as defined in this paper is never lax, the phrase ‘lax projective em-

bedding’ would sound as an oxymoron. The phrase ‘laxly projective embedding’

sounds better.

Remark 2.2. Nothing is known on the existence of absolutely universal Verone-

sean embeddings except the following: if all lines of Γ = (P,L) have just three

points then Γ admits the absolutely universal Veronesean embedding, which can

be constructed as follows. Let Ṽ be an F2-vector space of dimension equal to

|P|. Then any bijection from P to a basis of Ṽ can be taken as the absolutely

universal Veronesean embedding of Γ.

The previous construction is admittedly too trivial to be interesting. Perhaps,

Veronesean embeddings of geometries with three points per line are devoid of

interest.

2.3. Subspaces and generation

With Γ = (P,L) as in the previous subsections, a subset S of P is a subspace of

Γ if S contains every line l of Γ for which |l ∩ S| ≥ 2. A subspace S is proper if

S 6= P. A proper subspace of Γ meeting every line of Γ non-trivially is called a

hyperplane of Γ.

Intersections of subspaces are still subspaces. So, given a set X of points

of Γ we can consider the span 〈X〉Γ of X in Γ, namely the smallest subspace

of Γ containing X, defined as the intersection of all subspaces containing X.

We say that X generates Γ if 〈S〉Γ = P. The generating rank grk(Γ) of Γ is

the minimum size of a generating set of Γ. Clearly, if Γ admits a projective

embedding then grk(Γ) ≥ dim(ε) for every projective embedding ε of Γ. In

particular, if dim(ε) = grk(Γ) < ∞ then ε is relatively universal.
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3. Embeddings of orthogonal Grassmannians

3.1. Grassmannians of the building of type Bn and their em-

beddings

For n ≥ 2 let V2n+1
∼= V (2n+1,F) be a (2n+1)-dimensional vector space over a

field F and q a non-singular quadratic form of V2n+1 with Witt index n ≥ 2. Let

Bn the building of type Bn associated to the pair (V2n+1, q), where the elements

of type k = 1, 2, . . . , n (k-elements for short) are the k-dimensional subspaces

of V2n+1 totally singular for q, with containment as the incidence relation. The

building Bn is described by the following Dynkin diagram, where the integers

written over the nodes of the diagram are the types:

(Bn) • • • ..... • • > •
1 2 3 n− 2 n− 1 n

For 1 ≤ k ≤ n, the k-shadow of a flag F of Bn is the set of k-elements incident

to F . The k-Grassmannian Bn,k of Bn is the point-line geometry defined as

follows. The points of Bn,k are the k-elements of Bn. When 1 < k < n the

lines of Bn,k are the k-shadows of the flags of Bn of type {k − 1, k + 1}. The

geometry Bn,1 is the polar space associated to Bn. Its lines are the 1-shadows of

the 2-elements of Bn. The geometry Bn,n is usually regarded as the dual of the

polar space Bn,1. Its lines are the n-shadows of the (n− 1)-elements of Bn. For

such an element X, let lX be its n-shadow. Then

lX = {Z | X ⊂ Z ⊂ X⊥, dim(Z) = n, Z totally singular}

where X⊥ is the orthogonal of X with respect to q. (Recall that X is an (n− 1)-

dimensional totally singular subspace of V2n+1.) The vector space X⊥/X is 3-di-

mensional and lX is a non-singular conic in the projective plane PG(X⊥/X).

Grassmann embeddings. For 1 ≤ k ≤ n let W2n+1,k := ∧kV2n+1 and let εgrn,k
be the mapping from the set of points of Bn,k to the set of points of PG(W2n+1,k)

defined by the following clause. Let X be a k-element of Bn and {v1, . . . , vk}
a basis of X regarded as a subspace of V2n+1. The 1-dimensional subspace

〈v1∧· · ·∧vk〉 of W2n+1,k does not depend on the choice of the basis {v1, . . . , vk}
of X. We put εgrn,k(X) = 〈v1 ∧ · · · ∧ vk〉. It is easy to see (and well known) that

this mapping is injective.

The mapping εgrn,1 is just the natural embedding of the polar space Bn,1 in

V2n+1. If 1 < k < n then εgrn,k is a projective embedding of Bn,k in the subspace

W gr
2n+1,k := 〈εgrn,k(Bn,k)〉 of W2n+1,k spanned by εgrn,k(Bn,k) (where we take the
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liberty of using the symbol Bn,k to denote also the point-set of the geometry

Bn,k). We call εgrn,k the Grassmann embedding of Bn,k.

Let k = n. If X is an (n − 1)-element of Bn then the set εgrn,n(lX) :=

{εgrn,n(Y )}Y ∈lX is a non-singular conic of PG(W2n+1,n). Moreover, if Y is an

n-element of Bn not containing X then 〈εgrn,n(lX)〉 ∩ εgrn,n(Y ) = 0. Thus, εgrn,n
is a Veronesean embedding of Bn,n in the subspace W gr

2n+1,n := 〈εgrn,n(Bn,n)〉 of

W2n+1,n spanned by εgrn (∆n). We call εgrn,n the Grassmann embedding of Bn,n.

The spin embedding. The geometry Bn,n also admits a projective embedding,

namely the spin embedding εspinn : Bn,n → V2n := V (2n,F). We refer the reader

to Buekenhout and Cameron [7] for a concise description of this embedding.

It is worth mentioning that when char(F) 6= 2 the embedding εspinn is relatively

universal (Blok and Brouwer [2]; also Cooperstein and Shult [15]). Hence it

is absolutely universal, since Bn,n admits the absolutely universal embedding

(Kasikova and Shult [20]).

The Veronese-spin embedding. Let ν2n be the usual quadratic Veronesean

map from V2n = V (2n,F) to V (
(
2n+1

2

)
,F), which maps a vector (x1, . . . , x2n) of

V2n onto the vector

(x2
1, . . . , x

2
2n , x1x2, . . . , x1x2n , x2x3, . . . , x2x2n , . . . , x2n−1x2n).

The mapping ν2n defines a Veronesean embedding of PG(V2n) in V (
(
2n+1

2

)
,F),

which we also denote by the symbol ν2n . The composition εvern := ν2n · εspinn is

a Veronesean embedding of Bn,n in a subspace W ver
n of V (

(
2n+1

2

)
,F). We call it

the Veronese-spin embedding of Bn,n.

Homogeneity. Let G := Spin(2n + 1,F), namely G is the universal Chevalley

group of type Bn defined over F. We recall that the adjoint group of type Bn

is G := SO(2n + 1,F) (= PSO(2n + 1,F)). If char(F) 6= 2 then G is a non-split

central extension of G by a group of order 2 while if char(F) = 2 then G = G.

Each of the embeddings εgrn,k, εspinn and εvern is G-homogeneous. The vector

space V2n , regarded as a G-module via εspinn , is called the spin module. We

shall denote this module by the symbol W spin
n . We call W ver

n = 〈εvern (Bn,n)〉 the

Veronese-spin module for G. We call W gr
2n+1,k a Grassmann module for G. When

char(F) 6= 2 the group G acts as G in W ver
n as well as in W gr

2n+1,k for every k, but

it acts faithfully in W spin
n .

Weyl embeddings. Let λ1, λ2, . . . , λn be the fundamental dominant weights

for the root system of type Bn, numbered in the usual way (see the picture at
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the beginning of this subsection). For λ = λ1, . . . , λn or λ = 2 · λn, let Vn(λ) be

the Weyl module with λ as the highest weight. An embedding εn,λ of Bn,k (for

λ = λk or k = n and λ = 2λn) can be created in Vn(λ) as follows. Let v0 be a

highest weight vector of Vn(λ). Then the G-orbit of 〈v0〉 corresponds to the set

of points of Bn,k and, if Pk is the minimal fundamental parabolic subgroup of

G of type k and L0 is the Pk-orbit of 〈v0〉, then the G-orbit of L0 corresponds to

the set of lines of Bn,k. If X0 is the k-element of Bn corresponding to 〈v0〉 then

εn,λ maps g(X0) to g(〈v0〉), for every g ∈ G. If λ = λk then εn,λ is projective.

In particular, it is well known that εn,λn
∼= εspinn , namely Vn(λn) ∼= W spin

n . On

the other hand, εn,2λn
is Veronesean, as one can see by computing L0 explicitly.

We denote the embedding εn,2λn
by the symbol εWn,n and we call it the Weyl

Veronesean embedding of Bn,n. We extend this notation to the case k < n: when

k < n we put εWn,k = εn,λk
and we call εWn,k the Weyl embedding of Bn,k.

We have dim(Vn(2λn)) =
(
2n+1

n

)
and dim(Vn(λk)) =

(
2n+1

k

)
when k < n, as

one can check by using the Weyl dimension formula (see e.g. Humphreys [19,

24.3]). Hence

Proposition 3.1. dim(εWn,k) =
(
2n+1

k

)
for k = 1, 2, . . . , n.

Moreover, the G-module W gr
2n+1,k is a homomorphic image of Vn(λ), where

λ = λk when k < n and λ = 2λn when k = n. (See Blok [1, section 9]; also

Carter [12]). In other words:

Proposition 3.2. εWn,k ≥ εgrn,k for k = 1, 2, . . . , n.

Symplectic embeddings. When F is a perfect field of characteristic 2 the

building Bn is isomorphic to the building of type Cn associated to a non-degen-

erate alternating form α on V2n := V (2n,F), the elements of Bn of type k being

now regarded as k-subspaces of V2n totally isotropic for α. Thus, we can also

define a projective embedding εSpn,k of Bn,k in a subspace of W2n,k :=
∧k

V2n,

which maps every totally isotropic k-subspace 〈v1, . . . , vk〉 of V2n onto the point

〈v1 ∧ · · · ∧ vk〉 of PG(W2n,k). This embedding is G-homogeneous (recall that

Spin(2n + 1,F) ∼= Sp(2n,F) when F is a perfect field of characteristic 2). We

call εSpn,k a symplectic embedding of Bn,k. We warn that the embedding εSpn,k is

projective for k = n too.

Obviously, εSpn,1 is the natural embedding of Bn,1 as a polar space of symplectic

type in V2n.

If k > 1 then W Sp
2n,k := 〈εSpn,k(∆k)〉 is a proper subspace of W2n,k. In fact

dim(W Sp
2n,k) =

(
2n
k

)
−

(
2n
k−2

)
while dim(W2n,k) =

(
2n
k

)
.

Let k = n > 2. Then the spin embedding εspinn is a proper quotient of εSpn,n
(Blok, Cardinali and De Bruyn [3]; also Cardinali and Lunardon [8]). Actually
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εspinn < εSpn,n, since dim(εSpn,n) =
(
2n
n

)
−

(
2n
n−2

)
> 2n = dim(εspinn ). When 2 < |F|

the embedding εSpn,n is the hull of εspinn (Cooperstein [13] for the finite case and

De Bruyn and Pasini [18] for the general case), hence it is universal. The case

F = F2 is exceptional. Indeed when F = F2 the universal projective embedding

of Bn,n has dimension equal to (2n+1)(2n−1+1)/3 >
(
2n
n

)
−
(

2n
n−2

)
= dim(εSpn,n)

(Li [21]; also Blokhuis and Brouwer [6]).

Finally, let n = 2. We have εSp2,1
∼= εspin2 < εSp2,2

∼= εgr2,1
∼= εW2,1.

3.2. Grassmannians of the building of type Dn and their em-

beddings

We denote by Dn the building of type Dn defined over F, where n ≥ 3. Note

that, given a non-singular quadratic form q+ of Witt index n in V2n = V (2n,F),

the non-trivial subspaces of V2n totally singular for q+, with their dimensions

taken as types, form a non-thick building Dn of Coxeter type Cn. The building

Dn is obtained from Dn by dropping the elements of type n−1 and partitioning

the set of n-elements in two families, marked by two distinct types, say (n, 0)

and (n, 1), where two elements X and Y of type (n, 0) and (n, 1) are declared

to be incident precisely when dim(X ∩ Y ) = n− 1.

(Dn) • • • ..... • •�
�

�
�

H
H

H
H

•

•

1 2 3 n− 3 n− 2
(n, 0)

(n, 1)

We allow n = 3. Recall that the Coxeter diagram D3 is the same as A3, but with

the usual types 1, 2, 3 replaced with (3, 0), 1 and (3, 1) respectively. In other

words, D3 = PG(3,F), the elements of D3 of type 1, (3, 0) and (3, 1) being

respectively the lines, the points and the planes of PG(3,F) (or lines, planes

and points, if we prefer so).

For k < n, the k-Grassmannian Dn,k of Dn is defined just in the same way

as the k-Grassmannian Bn,k of Bn. We put Dn,k := Dn,k and we call Dn,k the

k-Grassmannian of Dn.

The 1-Grassmannian Dn,1 of Dn is the polar space defined by q+ on V2n.

Regarded V2n as a hyperplane of V2n+1 = V (2n + 1,F), we can accordingly

regard Dn,1 as a hyperplane of the polar space Bn,1 (which is defined in V2n+1).

Similarly, Dn,k is the subgeometry induced by Bn,k on the set of k-subspaces

of V2n.

Note that the points of Dn,n−1 are the {(n, 0), (n, 1)}-flags of Dn while the

lines of Dn,n−1 correspond to flags of Dn of type {n−2, (n, 0)} or {n−2, (n, 1)}.



I I G

◭◭ ◮◮

◭ ◮

page 11 / 27

go back

full screen

close

quit

ACADEMIA

PRESS

In particular, D3,2 is the so-called root-subgroup geometry of SL(4,F), with the

point-plane flags of PG(3,F) as points and the line-plane and point-line flags of

PG(3,F) as lines.

Remark 3.3. When k = n− 1 the conventions adopted above are not so consis-

tent with the terminology commonly used in the literature. If we followed the

custom, we should rather call Dn,n−1 the {(n, 0), (n, 1)}-Grassmannian of Dn.

Moreover, the types (n, 0) and (n, 1) are usually replaced by n− 1 and n. How-

ever, in the context of this paper our slightly unusual conventions make life

easier.

Remark 3.4. Two more Grassmannians of Dn should be mentioned, which

cannot be regarded as Grassmannians of Dn, namely the (n, 0)- and (n, 1)-

Grassmannians, called half-spin geometries in the literature. We are not going to

discuss them in this paper, but we feel compelled to say at least a few words on

them. They are mutually isomorphic and can be constructed as follows. Con-

sider the (n, 0)-Grassmannian Dn,(n,0), to fix ideas. The points of Dn,(n,0) are

the elements of Dn of type (n, 0) while the elements of type n − 2 are taken

as lines. The geometry Dn,(n,0) admits a 2n−1-dimensional projective embed-

ding η, called the half-spin embedding (see e.g. Buekenhout and Cameron [7]).

Moreover, grk(Dn,(n,0)) = 2n−1 (Cooperstein and Shult [15]). Hence η is rela-

tively universal. Moreover, Dn,(n,0) admits the universal embedding (Kasikova

and Shult [20]). Hence η is absolutely universal.

Grassmann and Weyl embeddings. We have remarked that Dn,k is a sub-

geometry of Bn,k for k = 1, 2, . . . , n − 1. Accordingly, the Grassmann embed-

ding εgrn,k of Bn,k induces on Dn,k a projective embedding ηgrn,k in a subspace

W Sp
n,k := 〈ηgrn,k(Dn,k)〉 of W2n,k =

∧k
V2n. We call ηgrn,k the Grassmann embedding

of Dn,k.

Let µ1, . . . , µn−2, µn,0 and µn,1 be the fundamental dominant weights of the

root system of type Dn, corresponding to the nodes 1, 2, . . . , n − 2, (n, 0) and

(n, 1) of the Dn-diagram in the obvious way. Put µn−1 := µn,0 + µn,1. Then for

k = 1, 2, . . . , n − 1 the Weyl module Vn(µk) hosts a projective embedding ηWn,k
of Dn,k. We call ηWn,k the Weyl embedding of Dn,k. With the help of the Weyl

dimension formula we can check that dim(Vn(µk)) =
(
2n
k

)
. Therefore:

Proposition 3.5. dim(ηWn,k) =
(
2n
k

)
for k = 1, 2, . . . , n− 1.

An analogue of Proposition 3.2 also holds:

Proposition 3.6. ηWn,k ≥ ηgrn,k for k = 1, 2, . . . , n− 1.



I I G

◭◭ ◮◮

◭ ◮

page 12 / 27

go back

full screen

close

quit

ACADEMIA

PRESS

3.3. A list of the embeddings defined in this section

1. (Grassmann) εgrn,k : Bk,n → W gr
2n+1,k ⊆ W2n+1,k. Projective when k < n

and Veronesean when k = n. It is a quotient of εWn,k (item 4 of this list).

2. (Spin) εspinn : Bn,n → W spin
n = Vn(λn). Projective. Dimension equal to 2n.

3. (Veronese-spin) εvern : Bn,n → W ver
n ⊆ V (

(
2n+1

2

)
,F). Veronesean.

4. (Weyl) εWn,k : Bk,n → Vn(λ), with λ = λk for k < n and λ = 2 · λn when

k = n. Projective when k < n and Veronesean when k = n. In any case it

has dimension equal to
(
2n+1

k

)
.

5. (Symplectic) εSpn,k : Bn,k → W Sp
2n,k. It only exists when F is a perfect field of

characteristic 2. It is projective, with dimension equal to
(
2n
k

)
−
(

2n
k−2

)
.

6. (Grassmann) ηgrn,k : Dk,n → W gr
2n,k ⊆ W2n,k, k < n. Projective. It is a

quotient of ηWn,k (see below).

7. (Weyl) ηWn,k : Dk,n → Vn(µk), where k < n and µn−1 = µn,0 + µn,1.

Projective. Dimension equal to
(
2n
k

)
.

4. More on the previous embeddings

4.1. Grassmann and Weyl embeddings

It is well known that εgrn,1
∼= εWn,1 and ηgrn,1

∼= ηWn,1 for any choice of the field F.

So, throughout this subsection we assume k > 1.

Theorem 4.1. Let char(F) 6= 2. Then:

(1) εgrn,k
∼= εWn,k for every k = 2, 3, . . . , n.

(2) ηgrn,k
∼= ηWn,k for every k = 2, 3, . . . , n− 1.

Sketch of the proof. Both (1) and (2) can be proved by exploiting the fact that

the Weyl modules Vn(λ2), . . . , Vn(λn−1), Vn(2 · λn), Vn(µ1), . . . , Vn(µn−2) and

Vn(µn,0 + µn,1) are irreducible when char(F) 6= 2, but in [9] we have used a

different, more elementary argument to prove (1). The bulk of the proof given

in [9] is to show that if char(F) 6= 2 then the set of points of Bn,k is a gener-

ating set for the k-Grassmannian Gk of PG(V2n+1) ∼= PG(2n,F) in the sense of

Subsection 2.3. Having proved this, let γk be the natural embedding of Gk in

W2n+1,k, mapping every k-subspace 〈v1, . . . , vk〉 of V2n+1 onto 〈v1 ∧ · · · ∧ vk〉.
Then γk(Gk) spans W2n+1,k. Moreover γk induces εgrn,k on Bn,k. Therefore,
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since Bn,k generates Gk, the image of Bn,k by εgrn,k spans W2n+1,k. However

dim(W2n+1,k) =
(
2n+1

k

)
= dim(Vn(λ)) (where λ = λk if k < n and λ = 2λn

when k = n). Claim (1) follows. Claim (2) can be proved by the same argu-

ment used in [9] for (1), modulo a few little modifications. �

For the rest of this subsection we assume that char(F) = 2. We firstly consider

the building Bn. We recall that its elements are the subspaces of V2n+1 totally

singular for a given quadratic form q of Witt index n. As char(F) = 2, the radical

N0 of the sesquilinearization of q is 1-dimensional. We call N0 the nucleus of q.

We need to fix some notation. As in the sketch of the proof of Theorem 4.1,

we denote by Gk the k-Grassmannian of PG(V2n+1) and by γk the natural em-

bedding of Gk in W2n+1,k. Recall that Bn,k is contained in Gk and γk induces εgrn,k
on Bn,k. Given an element X of Bn of type k − 1 (recall that we have assumed

that k > 1) let Res+(X) be its upper residue, formed by the elements of Bn of

type k, k + 1, . . . , n incident to X. Then Res+(X) is the building of an orthogo-

nal polar space of rank n− k + 1 defined in X⊥/X. We denote this polar space

by Res+k (X). Let Gk(X) be the subspace of Gk formed by the k-subspaces of

V2n+1 that contain X and are contained in X⊥ and let W2n+1,k(X) be the sub-

space of W2n+1,k spanned by Gk(X). Then dim(W2n+1,k(X)) = 2(n−k+1)+1,

γk(Gk(X)) = PG(W2n+1,k(X)) and εgrn,k embeds Res+k (X) in W2n+1,k(X) as

the polar space associated to a non-singular quadratic form qX of W2n+1,k(X)

of Witt index n − k + 1. So, εgrn,k(Res
+
k (X)) spans W2n+1,k(X). Let NX be

the nucleus of qX and let N gr
n,k be the subspace of W2n+1,k spanned by the

1-dimensional subspaces NX for X a (k − 1)-element of Bn,k. Clearly, N gr
n,k

is contained in W gr
2n+1,k = 〈εgrn,k(Bn,k)〉 and it is stabilized by the group G

(= Spin(2n + 1,F)). Finally, we denote by ιgrn,k−1 the mapping sending every

point X of Bn,k−1 to NX . The following is proved in [9]:

Theorem 4.2. Let k > 1 and char(F) = 2. Then the following hold:

(1) The subspace N gr
n,k of W gr

2n+1,k defines a quotient of the embedding εgrn,k. We

have dim(W gr
2n+1,k/N

gr
n,k) =

(
2n
k

)
−

(
2n
k−2

)
. If F is perfect then εgrn,k/N

gr
n,k

∼=

εSpn,k. If F is non-perfect then εgrn,k/N
gr
n,k is projective when k < n and laxly

projective when k = n.

(2) The mapping ιgrn,k−1 is a projective embedding of Bn,k−1 in N gr
n,k. We have

dim(N gr
n,k) =

(
2n
k−1

)
−

(
2n
k−3

)
(with the usual convention that

(
2n
−1

)
= 0, when

k = 2). If F is perfect then ιgrn,k−1
∼= εSpn,k−1.

(3) dim(εgrn,k) =
(
2n+1

k

)
−

(
2n+1
k−2

)
.

Sketch of the proof. Claim (3) immediately follows from (1) and (2) (recall that

dim(εgrn,k) = dim(W gr
2n+1,k) by definition). As for (1) and (2), assume firstly that
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F is perfect. Under this assumption, claim (2) is obtained in [9] with the help of

straightforward calculations. As for (1), in [9] we firstly prove that N gr
n,k satisfies

(Q1) of Section 2. When k < n this is enough to conclude that εgrn,k/Nn,k is a

projective embedding. When k = n we also need (Q2), but this property is fairly

easy to prove. On the other hand, (Q3) fails to hold for any line of Bn,n. Hence

εgrn,n/N
gr
n,n is a projective embedding, as explained in Subsection 2.2. Finally,

the isomorphism εgrn,k/N
gr
n,k

∼= εSpn,k is proved by a direct algebraic argument.

Suppose now that F is non-perfect. Then we can replace Bn with a suitable

sub-building defined over F2. As F2 is perfect, claims (1) and (2) hold for that

sub-building. Turning back to Bn, we obtain the statements of (1) and (2) in

the non-perfect case. �

By (3) of Theorem 4.2 we immediately obtain the following:

Corollary 4.3. Let k > 1 and char(F) = 2. Then εgrn,k < εWn,k.

Let k > 1 and char(F) = 2. Let πn,k be the projection of εWn,k onto εgrn,k.

By Theorem 4.2, if k = 2 then dim(ker(πn,k)) = 1 while dim(ker(πn,k)) =

dim(Vn(λk−2)) when k > 2. Moreover dim(π−1
n,k(N

gr
n,k)) = dim(Vn(λk−1)). A

more clear picture is offered in [11], where the following is proved.

Theorem 4.4. Let k > 1 and char(F) = 2. Then π−1
n,k(N

gr
n,k)

∼= Vn(λk−1) (isomor-

phism of G-modules). Moreover, if k > 2 then ker(πn,k) ∼= Vn(λk−2).

Sketch of the proof. Put V := Vn(λk) when k < n and V = Vn(2λn) when k = n.

Let v0 be a highest weight vector of V , let L be the Lie algebra of G and A

the enveloping associative algebra of L. It is proved in [11] that an element

ak ∈ A exists such that A(ak(v0)) ∼= Vn(λk−1), with ak(v0) in the role of high-

est weight vector of Vn(λk−1). By the very same argument, with V replaced

by A(ak(v0)), an element ak−1 ∈ A exists such that A(ak−1ak(v0)) ∼= Vn(λk−2),

with the convention that Vn(λ0) (= Vn(λk−2) when k = 2) is the trivial 1-di-

mensional module. It turns out that πn,k(ak−1ak(v0)) = 0 and πn,k(ak(v0)) ∈
N gr

n,k. Hence A(ak−1ak(v0)) ⊆ ker(πn,k) and A(ak(v0)) ⊆ π−1
n,k(N

gr
n,k). We

know by Theorem 4.2 that dim(π−1
n,k(N

gr)) =
(
2n+1
k−1

)
= dim(Vn(λk−1)) and

dim(ker(πn,k)) = (πn,k) =
(
2n+1
k−2

)
= dim(Vn(λk−2)). Moreover A(ak−1ak(v0)) ⊆

ker(πn,k) and A(ak(v0)) ⊆ π−1
n,k(N

gr
n,k). By these inclusions and the isomor-

phisms A(ak−1ak(v0)) ∼= Vn(λk−2) and A(ak(v0)) ∼= Vn(λk−1) we obtain that

A(ak−1ak(v0)) = ker(πn,k) and A(ak(v0)) = π−1
n,k(N

gr
n,k), by comparing dimen-

sions. Hence π−1
n,k(N

gr
n,k)

∼= Vn(λk−1) and ker(πn,k) ∼= Vn(λk−2). �

Turning back to Theorem 4.2, that theorem also has the following interesting

consequence:
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Corollary 4.5. Let k < n and let F be a perfect field of characteristic 2. Then εSpn,k
is not universal. More explicitly, εSpn,k < εgrn,k.

Remark 4.6. The hypothesis that k < n is essential for the conclusion of Corol-

lary 4.5. Indeed, although εSpn,n is a proper quotient of εgrn,n, the latter is Verone-

sean rather than projective. So, the fact that εSpn,n is a quotient of εgrn,n in the

sense of Subsection 2.2 does not imply that εSpn,n is not universal. In fact, εSpn,n is

universal when 2 < |F| < ∞, as remarked at the end of Subsection 3.1.

Still assuming that char(F) = 2, we now turn to Dn. With q+ as in Subsec-

tion 3.2, the sesquilinearization α of the quadratic form q+ is a non-degenerate

alternating form of V2n. Let Cn be the building of type Cn associated to α.

Then, for every k = 1, 2, . . . , n−1, the k-Grassmannian Dn,k of Dn is a subspace

(Subsection 2.3) of the k-Grassmannian Cn,k of Cn. Let εSpn,k be the projective

embedding of Cn,k mapping every k-subspace 〈v1, . . . , vk〉 of V2n totally isotropic

for α onto the 1-dimensional subspace 〈v1 ∧ · · · ∧ vk〉 of W2n,k = ∧kV2n (com-

pare the definition of symplectic embeddings in Subsection 3.1, but note that

now Cn need not be isomorphic to Bn, since F might be non-perfect). It is well

known that εSpn,k is a projective embedding of Cn,k, dim(εSpn,k) =
(
2n
k

)
−
(

2n
k−2

)
and

εSpn,k induces ηgrn,k on Dn,k. Therefore dim(ηgrn,k) ≤
(
2n
k

)
−

(
2n
k−2

)
. Consequently,

ηgrn,k < ηWn,k. A sharper statement is proved in [9], namely the following.

Theorem 4.7. Let 1 < k < n and char(F) = 2. Then dim(ηgrn,k) =
(
2n
k

)
−

(
2n
k−2

)
.

Sketch of the proof. Suppose firstly that F is perfect. Let Gk be the k-Grass-

mannian of PG(V2n). Then both Dn,k and Cn,k are subgeometries of Gk. As

Dn,k ⊆ Cn,k, we have 〈Dn,k〉Gk
⊆ 〈Cn,k〉Gk

. The crucial step of the proof is to

prove the reverse inclusion 〈Cn,k〉Gk
⊆ 〈Dn,k〉Gk

. Having poved this, we obtain

that 〈Dn,k〉Gk
= 〈Cn,k〉Gk

and the statement of the theorem follows, recalling

that the natural embedding of Gk in W2n,k induces εSpn,k on Cn,k and ηgrn,k on Dn,k.

The inclusion 〈Cn,k〉Gk
⊆ 〈Dn,k〉Gk

is proved in [9] by exploiting the fact that,

since Cn ∼= Bn (because F is assumed to be perfect) and Dn,1 is a hyperplane

of Bn,1, the subgeometry Dn,1 is in fact a hyperplane of Cn,1. We refer the reader

to [9] for the details of this proof.

When F is non-perfect the conclusion of the theorem can be obtained as in

the proof of Theorem 4.2, by descent to the prime subfield F2 of F. �

Remark 4.8. We have defined ηgrn,k with the help of the Grassmann embedding

εSpn,k of Cn,k. It is worth remarking that εSpn,k is in fact a Weyl embedding (see e.g.

Blok [1]).



I I G

◭◭ ◮◮

◭ ◮

page 16 / 27

go back

full screen

close

quit

ACADEMIA

PRESS

4.2. The Veronese-spin embedding

The next theorem is Theorem 1 of [10].

Theorem 4.9. We have εvern
∼= εWn,n for every choice of the field F.

Sketch of the proof. The group SL(2n,F) can be lifted from V2n = V (2n,F) to

V
((

2n+1
2

)
,F

)
via the Veronesean quadratic map. Thus, V

((
2n+1

2

)
,F

)
can be

regarded as an SL(2n,F)-module. One can prove that this module is isomor-

phic to the Weyl module V (2 · ω1) for SL(2n,F), where ω1, . . . , ω2n−1 are the

fundamental dominant weights of the root system of type A2n−1. Next, re-

garding V (2 · ω1) as a Spin(2n + 1,F)-module, as we can in view of the inclu-

sion Spin(2n + 1,F) ≤ SL(2n,F), we can recognize V (2 · λn) inside V (2 · ω1)

as a Spin(2n + 1,F)-submodule. Finally, it is proved that the isomorphism

V (2 · ω1) ∼= V
((

2n+1
2

)
, F

)
induces an isomorphism from V (2 · λn) to W ver

n . �

Assumption. For the rest of this subsection we assume that char(F) = 2.

We firstly recall a number of known facts about the quadratic Veronesean

map ν2n : V2n → V
((

2n+1
2

)
,F

)
. This map induces a Veronesean embedding

of PG(2n − 1,F) in V
((

2n+1
2

)
,F

)
, which we still denote by ν2n . The image

ν2n(PG(2n − 1,F)) of PG(2n − 1,F) by ν2n is called a Veronesean variety. As

noticed in the sketch of the proof of Theorem 4.9, the group SL(2n,F) lifts to

V (
(
2n+1

2

)
,F). Clearly, it stabilizes the Veronesean variety ν2n(PG(2n−1,F)). For

every line l of PG(2n − 1,F) let nl be the nucleus of the conic ν2n(l). The nu-

cleus subspace of V
((

2n+1
2

)
,F

)
relative to ν2n is the subspace N of V

((
2n+1

2

)
,F

)

spanned by the nuclei nl, for l a line of PG(2n−1,F) (Thas and Van Maldeghem

[26]). The subspace N is stabilized by SL(2n,F) in its action on V
((

2n+1
2

)
,F

)
.

Moreover, N∩〈ν2n(l)〉 = nl for every line l of PG(2n−1,F). Hence N∩ν2n(p) =
0 for every point p of PG(2n−1,F).

Put N ver
n,0 := N2n ∩ W ver

n . For every (n − 1)-element X ∈ Bn,n−1 of Bn, let

lX be the line of Bn,n correspondig to X and let nX be the nucleus of the conic

εvern (lX) = ν2n(ε
spin
n (lX)). We put N ver

n,1 := 〈nX〉X∈Bn,n−1
.

Clearly, N ver
n,0 ⊇ N ver

n,1 and both these subspaces are stabilized by the group

G = Spin(2n + 1,F) in its action on W ver
n (∼= V (2 · λn) by Theorem 4.9). We

can also define two mappings εvern /N ver
n,0 and εvern /N ver

n,1 from Bn,n to the set of

1-dimensional linear subspaces of W ver
n /N ver

n,0 and W ver
n /N ver

n,1 respectively and
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a mapping ιvern,n−1 : Bn,n−1 → N ver
n,1 , as follows:

(εvern /N ver
n,0 )(X) := 〈εvern (X),N ver

n,0 〉/N
ver
n,0 for every point X of Bn,n;

(εvern /N ver
n,1 )(X) := 〈εvern (X),N ver

n,1 〉/N
ver
n,1 for every point X of Bn,n;

ιvern,n−1(X) := nX for every point X of Bn,n−1.

Lemma 4.10. Let n = 2.

(1) Suppose that F is perfect. Then N ver
2,0 defines a quotient of εver2 and we have

εvern /N ver
2,0

∼= εspin2 .

(2) In any case, N ver
2,1 defines a quotient of εver2 and dim(εver2 /N ver

2,1 ) = 5. If F

is perfect then εver/N ver
2,1

∼= εsp2,2. If F is non-perfect then εver/N ver
2,1 is laxly

projective.

(3) ιver2,1
∼= εW2,1 (∼= εgr2,1).

Sketch of the proof. Claim (3) is Lemma 2 of [10]. It can be rephrased as fol-

lows: ιver2,1(B2,1) is a copy of the quadric B2,1
∼= Q(4,F) in PG(N ver

2,1 )
∼= PG(4,F)

(notation as in Payne and Thas [24]). One of the points of PG(N ver
2,1 ) is the nu-

cleus of the quadric ιver2,1(B2,1). Both these claims admit straightforward proofs.

(We warn that in [10] it is assumed that F is perfect, but this hypothesis plays

no role in the proof of (3).) Moreover, denoted by N ver
2,2 the nucleus of the

quadric ιver2,1(B2,1), it is not difficult to see that N ver
2,2 = ker(π2,2), where π2,2 is

the projection of W ver
2 = V2(2λ2) onto W gr

2,2, as in Theorem 4.4. Accordingly,

N ver
2,1 /N

ver
2,2 = N gr

2,2 (notation as in Theorem 4.2). Claim (2) now follows from

Theorem 4.2.

Turning to (1), the crucial step in the proof of this claim is to prove that,

for every line l of B2,2, the intersection of N ver
2,0 with the plane 〈Cl〉 spanned

by the conic Cl := εver2 (l) is just the nucleus nl of Cl. This is proved in [10,

Lemma 3.2] under the hypothesis that F is perfect, exploiting the fact that,

when the underlying field is perfect, all lines through the nucleus of a conic are

tangent to the conic. Having proved that N ver
2,0 ∩ 〈Cl〉 = nl, it readily follows

that N ver
2,0 defines a quotient of εver2 and εvern /N ver

2,0
∼= εspin2 . �

So far we have defined N ver
n,0 , N ver

n,1 and ιvern,n−1. In the proof of Lemma 4.10 we

have also defined N ver
2,2 as the nucleus of the quadric ιver2,1(B2,1). This definition

can be generalized as follows.

Let n > 2. Given a k-element X of Bn with k ≤ n − 2, the upper residue

Res+(X) of X in Bn is a building of type Bn−k with {k + 1, . . . , n} as the set

of types. We can define the n-Grassmannian Res+n (X) of Res+(X) by taking the

n-elements of Res+(X) as points and the lines of Bn,n contained in Res+(X) as

lines.
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Let k = n − 2. Then Res+n (X) is isomorphic to the symplectic generalized

quadrangle W (3,F). We call it a quad of Bn,n. We have dim(〈εspinn (Res+n (X))〉) =
4, namely εspinn embeds Res+n (X) in the 4-space 〈εspinn (Res+n (X))〉 as a copy of

W (3,F). By claim (3) of Lemma 4.10, ιvern,n−1(Res
+
n (X)) is a copy of Q(4,F)

in the 5-dimensional subspace 〈ιvern,n−1(Res
+
n (X))〉 of W ver

n . We denote by nX

the nucleus of the quadric ιvern,n−1(Res
+
n (X)) in 〈ιvern,n−1(Res

+
n (X))〉 and we put

N ver
n,2 = 〈nX〉X∈Bn,n−2

, where we write X ∈ Bn,n−2 to say that X is an (n − 2)-

element of Bn. Clearly, N ver
n,2 ⊆ N ver

n,1 and N ver
n,2 is stabilized by G.

We can also introduce one more mapping, which could not be defined when

n = 2: we denote by ιvern,n−2 : Bn,n−2 → N ver
n,2 the mapping sending every point

X of Bn,n−2 to nX .

Theorem 4.11. Let n ≥ 2. Then the following hold.

(1) If F is perfect then N ver
n,0 defines a quotient of εvern . In any case, N ver

n,1 and N ver
n,2

define quotients of εvern .

(2) Let F be perfect. Then εvern /N ver
n,0

∼= εspinn .

(3) If F is perfect then εvern /N ver
n,1

∼= εspn,n. When F is non-perfect then εvern /N ver
n,1 is

laxly projective of dimension
(
2n
n

)
−

(
2n
n−2

)
.

(4) We have εvern /N ver
n,2

∼= εgrn,n.

(5) The mapping ιvern,n−1 is a projective embedding of Bn,n−1 in N ver
n,1 . Moreover

ιvern,n−1
∼= εWn,n−1.

(6) Let n > 2. Then ιvern,n−2 is a projective embedding of Bn,n−2 in N ver
n,2 . Moreover

ιvern,n−2
∼= εWn,n−2.

Sketch of the proof. All the above claimed are proved in [10], but under the

assumption that F is perfect. However, this assumption is only needed for claim

(2) and the first claims of (1) and (3). We firstly sketch the proof of (2), then

we shall turn to the rest.

Suppose that F is perfect. We know by Lemma 4.10 that for every quad

Q of Bn,n the image εvern /N ver
n,0 (Q) of Q by εvern /N ver

n,0 spans a 4-dimensional

vector space of W ver
n /N ver

n,0 . This fact, combined with a result of De Bruyn [16,

Theorem 1.6], implies that dim(εvern /N ver
n,0 ) = 2n. It follows that εvern /N ver

n,0
∼=

εspinn .

As for the remaining claims of the theorem, a proof simpler than in [10] can

be given with the help of [11]. It follows from the main result of [11] that

N ver
n,2 = ker(πn,n) ∼= Vn(λn−2). Claims (6) and (4) readily follow from this fact

and Theorem 4.2. It also follows that N ver
n,1/N

ver
n,2 = N gr

n,n. Hence (3) holds by

Theorem 4.2. Finally, N ver
n,1

∼= Vn(λn−1) still by the main result of [11]. Claim

(5) follows. �
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The previous construction of N ver
n,2 and ιvern,n−2 from N ver

n,1 and ιvern,n−1 can

be generalized as follows. Suppose that for a given k < n − 1 an embed-

ding ιvern,k+1 of Bn,k+1 in a suitable submodule N ver
n,n−k−1 of W ver

n has been de-

fined in such a way that for every k-element X ∈ Bn,k of Bn, the subspace

WX := 〈ιvern,k+1(Res
+
n (X))〉 is (2(n − k) + 1)-dimensional, and the restriction of

ιvern,k+1 to Res+n (X) ∼= Q(2(n − k),F) is isomorphic to the natural embedding

of Q(2(n − k),F) in V (2(n − k) + 1,F). Thus ιvern,k+1(Res
+
n (X)) is a quadric in

PG(WX) (∼= PG(2(n−k),F)). Let nX be its nucleus. Put N ver
n,n−k = 〈nX〉X∈Bn,k

and let ιn,k be the mapping which maps every X ∈ Bn,k to nX .

We have N ver
n,n−k

∼= Vn(λk) (isomorphism of G-modules) by the main result

of [11]. Therefore:

Theorem 4.12. For 0 < k < n− 2, the mapping ιn,k is a projective embedding of

Bn,k in N ver
n,n−k, isomorphic to the Weyl embedding εWn,k.

5. Universality

By Kasikova and Shult [20], the geometry Bn,k admits the universal projective

embedding for any k = 1, 2, . . . , n and Dn,k admits the universal projective em-

bedding for k = 1, 2, . . . , n− 2. The theory developed in [20] cannot be applied

to Dn,n−1, however this geometry admits the universal projective embedding

by Blok and Pasini [5]. It is well known that εWn,1 (∼= εgrn,1) and ηWn,1 (∼= ηgrn,1)

are universal (Tits [28, chapter 8]). So, we may assume k > 1. The following

conjecture is quite natural:

Conjecture 5.1. For k = 2, 3, . . . , n− 1 both εWn,k and ηWn,k are universal.

As for the case k = n, we have already remarked that εspinn is universal when

char(F) 6= 2, but εspinn is projective whereas in this paper we are more inter-

ested in Veronesean embeddings of Bn,n. We know nothing on the existence of

the absolutely universal Veronesean embedding of Bn,n. However, we may ask

whether εWn,n is relatively universal or not.

We begin our exposition with an elementary result on quasi-Veronesean em-

beddings of projective spaces, to be exploited more than one time in this section.

Next we will address two special cases of Conjecture 5.1. Eventually, we will

turn to εWn,n.

5.1. A lemma on quasi-Veronesean embeddings of PG(d, F)

We need some preliminaries on 3-subspaces and 3-generating sets of point-line

geometries. We say that a subset S of the point-set P of a point-line geome-
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try Γ = (P,L) is a 3-subspace of Γ, if S contains every line l of Γ such that

|l ∩ S| ≥ 3. Intersections of 3-subspaces are 3-subspaces. Hence we can con-

sider the 3-span 〈X〉
(3)
Γ of a subset X ⊆ P, defined as the smallest 3-subspace

of Γ containing X. We say that X 3-generates Γ if 〈X〉
(3)
Γ = P. The 3-generating

rank grk3(Γ) of Γ is the size of a smallest 3-generating set of Γ. Clearly, if Γ

admits a quasi-Veronesean embedding ε then dim(ε) ≤ grk3(Γ). If moreover

dim(ε) = grk3(Γ) < ∞ then ε is relatively universal.

Lemma 5.2. Let F 6= F2. Then grk3(PG(d,F)) =
(
d+2
2

)
for every integer d > 0.

The proof is very elementary. We refer to [9, Section 4.4] for it. Lemma 5.2

immediately implies the following.

Corollary 5.3. Let F 6= F2 and let d be a positive integer.

(1) Every quasi-Veronesean embedding of PG(d,F) is at most
(
d+2
2

)
-dimensional.

(2) The Veronesean embedding of PG(d,F) in V
((

d+2
2

)
,F

)
induced by the usual

quadratic map is relatively universal.

Remark 5.4. Remark 2.2 makes it clear that the restriction F 6= F2 cannot be

dropped from Lemma 5.2 and Corollary 5.3. Note also that, if Γ = (P,L) is a

point-line geometry with all lines of size 3 then every subset of P is a 3-subspace.

Hence grk3(Γ) = |P|.

5.2. Two special cases of Conjecture 5.1

The next theorem is proved in [9, Section 4].

Theorem 5.5. Let F be a perfect field of positive characteristic or a number field.

(1) If n > 2 then both εWn,2 and ηWn,2 are universal.

(2) Let n > 3 and F 6= F2. Then both εWn,3 and ηWn,3 are universal.

Sketch of the proof. For k = 2 or 3, with k < n, let ρn,k : Bn,k → Wρn,k
and σn,k :

Dn,k → Wσn,k
be given projective embeddings of Bn,k and Dn,k respectively,

for some F-vector spaces Wρn,k
and Wσn,k

. In order to avoid repetitions, we

introduce four auxiliary symbols X , ξ, Y and υ, to be read either as B, ρ, D and σ

respectively or as D, σ, B and ρ, both interpretations being allowed, except that

X = D only if n > k+1. With this convention, let H be a hyperplane of the polar

space Xn,1 such that the polar space Xn,1,H induced by Xn,1 on H is isomorphic

to Yn,1 if X = B and to Yn−1,1 if X = D. Let Xn,k,H be the subgeometry

of Xn,k induced on the set of k-elements of Xn contained in H. Then Xn,k,H

is isomorphic to either Yn,k or Yn−1,k, according to whether X stands for B
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or D. The embedding ξn,k induces on Xn,k,H a projective embedding ξn,k,H :

Xn,k,H → Wξn,k,H where Wξn,k,H := 〈ξn,k(Xn,k,H)〉. So, if we know an upper

bound for the dimension of υn,k (when X = B) or υn−1,k (when X = D), then

we also know an upper bound for dim(Wξn,k,H).

Let a be a point of Xn,1 exterior to H and Xn,k,a the subgeometry of Xn,k

induced on the set of k-elements of Xn incident to a. Then Xn,k,a is isomorphic

to the (k − 1)-Grassmannian Xn−1,k−1 of Xn−1. Let ξn,k,a : Xn,k,a → Wξn,k,a be

the embedding induced by ξn,k on Xn,k,a, where Wξn,k,a := 〈ξn,k(Xn,k,a)〉. This

embedding can be regarded as a projective embedding of Xn−1,k−1. So, if we

know an upper bound for the dimension of a projective embedding of Xn−1,k−1,

then we also know an upper bound for dim(Wξn,k,a).

When k = 2 let l0 be a line of Xn,1 not contained in H ∪ a⊥ and such that

a⊥ ∩ l0 6= H ∩ l0. Put S2 := {l0} ∪ Xn,2,a ∪ Xn,2,H .

When k = 3 the subgeometry Xn,1,a,H of Xn,1 induced on a⊥ ∩H is isomor-

phic to the polar space Xn−1,1. This polar space admits a generating set of f(n)

points, where f(n) = 2n − 1 or f(n) = 2n − 2 according to whether X stands

for B or D. Hence the same holds for Xn,1,a,H . Let {p1, . . . , pf(n)} be a spanning

set of f(n) points of Xn,1,a,H . For every i = 1, . . . , f(n) let αi be a plane of Xn,1

through pi such that αi ∩H ∩ a⊥ = {pi}. Put S3 := {αi}
f(n)
i=1 ∪ Xn,3,a ∪ Xn,3,H .

It is proved in [9] that Sk spans Xn,k, both for k = 2 and k = 3. So, if

we know an upper bound d1 for the dimension of a projective embedding of

Xn−1,k−1 and an upper bound d2 for the dimension of υn,k (when X = B) or

υn−1,k (when X = D), then we obtain that dim(ξn,k) ≤ d1 + d2 + 1 when k = 2

and dim(ξn) ≤ d1 + d2 + f(n) when k = 3. In this way, by an inductive argu-

ment and going back and forth from Dn to Bn we can compute upper bounds

for dim(ρn,k) and dim(σn,k) for k = 2 and k = 3 and any n > k, provided

that we know upper bounds for dim(σ3,2) and dim(σ4,3). Explicitly, assume the

following:

(1∗) dim(σ3,2) ≤ 15 (=
(
6
2

)
);

(2∗) dim(σ4,3) ≤ 56 (=
(
8
3

)
).

Then dim(σn,k) ≤
(
2n
k

)
and dim(ρn,k) ≤

(
2n+1

k

)
for k = 2 as well as k = 3. As

dim(ηWn,k) =
(
2n
k

)
and dim(εWn,k) =

(
2n+1

k

)
, the universality of ηWn,2, εWn,2, ηWn,3 and

εWn,3 follows.

So, (1∗) and (2∗) remain to be proved. It follows from Völklein [30] that (1∗)

holds true when F is either a perfect field of positive characteristic or a number

field. So, claim (1) of the theorem is proved.

Let us turn to (2∗). We still assume that F is either perfect of positive char-

acteristic or a number field, but now we also suppose that F 6= F2. Let a and
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b be two non-collinear points of D4,1. Let D4,3,a and D4,3,b be the subgeome-

tries induced by D4,3 on set of the planes of the polar space D4,1 containing

a or b respectively. (Note that the planes of D4,1 are just the points of D4,3.)

Let σ4,3,a and σ4,3,b be the restrictions of σ4,3 to D4,3,a and D4,3,b respectively.

We have D4,3,a
∼= D4,3,b

∼= D3,2. Therefore, by (1∗), each of σ4,3,a and σ4,3,b

is at most 15-dimensional. Let Sa,b be the set of planes of D4,1 contained in

a⊥ ∩ b⊥. It is shown in [9] that Sa,b can be regarded as the direct sum of two

copies of PG(3,F) and σ4,3 induces a quasi-Veronesean embedding on each of

them. The embedding induced by σ4,3 on Sa,b, being the direct sum of two

quasi-Veronesean embeddings of PG(3,F), is at most 20-dimensional by Corol-

lary 5.3 (which can be applied, since we have assumed that F 6= F2). So far

we have constructed a subset S := D4,3,a ∪ D4,3,b ∪ Sa,b of the point-set of D4,1

such that dim(〈σ4,3(S)〉) ≤ 50. However, S is not yet a generating set of D4,3.

As shown in [9], in order to generate D4,3 we only must add to S a suitable set

of six points of D4,3. So, dim(σ4,3) ≤ 50 + 6 = 56, as claimed in (2∗). �

Remark 5.6. There are two main obstacles to overcome when we try to adapt

the strategy described above to the case k > 3. Firstly, it is not clear how to

define an analogous of the set {αi}
f(n)
i=1 , used in the above sketch to construct

S3. Starting from a generating set of a polar space as Xn,1,a,H does not seem to

work. We should rather consider a generating set of the geometry Xn,k−2,a,H
∼=

Xn−1,k−2 induced by Xn,k−2 on the set of (k − 2)-elements of Xn contained in

a⊥ ∩ H, but if we choose this way then we need to know the generating rank

of Xn−1,k−2. We may inductively assume that we already know the absolutely

universal embedding of Xn−1,k−2, but the generating rank of Xn−1,k−2 might be

larger than the dimension of that embedding. In particular, it might also depend

on the underlying field F (see Blok and Pasini [4]; see also below, Remark 5.7).

Secondly, in order to start the induction we should prove that dim(σk+1,k) ≤(
2k+2

k

)
for every projective embedding σk+1,k of Dk+1,k, at least for suitable

choices of F. This is perhaps the hardest point.

Remark 5.7. Cooperstein [14] has proved that if F is a prime field then Bn,2

and Dn,2 have generating ranks equal to
(
2n+1

2

)
and

(
2n
2

)
respectively. Claim (1)

of Theorem 5.5 follows from this fact too, but provided that F is a prime field.

The arguments exploited by Cooperstein in [14] do not seem to work for larger

fields.

Remark 5.8. When F = C (the field of complex numbers), if εWn,k is not univer-

sal then its hull is infinite dimensional. The same holds for ηWn,k.

Indeed, let F = C and let ε̃ : Bn,k → W̃ be the hull of εWn,k. Put λ = λk if

k < n and λ = 2 ·λn if k = n. Let f : W̃ → Vn(λ) be the projection of ε̃ onto εWn,k
and ṽ0 ∈ f−1(v0), where v0 is a highest weight vector for Vn(λ). Then ṽ0 has just
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the same properties as v0, namely h(ṽ0) = λ(h) · ṽ0 for every element h of the

Cartan subalgebra of the Lie algebra LG of G and Xα(ṽ0) = 0 for every positive

root α, where Xα is the 1-dimensional subalgebra of LG corresponding to α.

Hence W̃ is a quotient of the cyclic LG-module Z(λ) (notation as in Humphreys

[19]). If π is the projection of Z(λ) onto W̃ , then ker(π) is a submodule of the

maximal proper submodule J(λ) of Z(λ). Clearly, dim(W̃ ) is equal to the index

|Z(λ) : ker(π)| of ker(π) in Z(λ).

Suppose that dim(W̃ ) is finite, namely |Z(λ) : ker(π)| < ∞. Since F = C,

every finite dimensional reducible LG-module is completely reducible. Hence

Z(λ)/ker(π) splits as a direct sum Z(λ)/ker(π) = X⊕J(λ)/ker(π), for a suitable

submodule X of Z(λ)/ker(π). Clearly, X = X/ker(π) for a submodule X of

Z(λ). If J(λ)/ker(π) 6= 0 then X is a proper submodule of Z(λ) not contained

in J(λ), contrary to the maximality of J(λ). Therefore ker(π) = J(λk), namely

f is an isomorphism.

So, if ε̃ 6∼= εWn,k then dim(ε̃) is infinite. We cannot claim that this is impossible,

but it is hard to believe, at least when k < n.

5.3. Positive and negative results on εW
n,n

We shall now turn to εWn,n but only focusing on the following two special cases:

n = 2 with F a finite field of odd order; any n, but with char(F) = 2. The first

case is settled by the following theorem (Theorem 5 of [10]).

Theorem 5.9. Let n = 2. Let F be a finite field of odd order q > 3. Then εW2,2 is

relatively universal.

Sketch of the proof. Recall that εW2,2
∼= εver2 (= ν4·ε

spin
2 ) by Theorem 4.9. The spin

embedding εspin2 embeds B2,2 in V4 = V (4,F) as a copy of the generalized quad-

rangle W (3,F) of symplectic type. The quadratic Veronesean map ν4 induces

a Veronesean embedding ν̄4 of W (3,F). Since W (3,F) and PG(3,F) have the

same set of points, the embeddings ν4 and ν̄4 coincide if regarded just as func-

tions from that set of points to PG(9,F). In particular, dim(ν̄4) = dim(ν4) = 10.

Nevertheless, ν4 and ν̄4 are different embeddings, since they have different do-

mains, namely PG(3,F) and W (3,F) respectively. This difference becomes fully

clear if we consider their hulls: the presheaf associated to ν̄4, to be used to con-

struct the hull of ν̄4, is a proper sub-presheaf of the one associated to ν4. Thus,

although ν4 is relatively universal when F 6= F2 (Corollary 5.3), it might happen

that the hull of ν̄4 is larger than ν̄4 even if F 6= F2.

The embedding ν̄4 is G-homogeneous (note that G = Spin(5,F) ∼= Sp(4,F)).

Hence the hull of ν̄4 is G-homogeneous. Thus, in order to prove the theorem,
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we only must prove that if ν : W (3,F) → W is a G-homogeneous Veronesean

embedding of W (3,F) such that ν ≥ ν̄4, then dim(ν) = 10 = dim(ν̄4). Let ν

be such an embedding. We recall that the hyperbolic lines of W (3,F) are lines

of PG(3,F) (see Payne and Thas [24] for the definition of hyperbolic lines).

Moreover, every line of PG(3,F) either is totally isotropic (namely it is a line

of the generalized quadrangle W (3,F)) or it is a hyperbolic line of W (3,F).

All lines of PG(3,F) are mapped by ν4 onto conics. Therefore, since ν ≥ ν̄4
and ν4(p) = ν̄4(p) for every point p of PG(3,F), if l is a hyperbolic line of

W (3,F) either ν(l) is a conic or dim(〈ν(l)〉) > 3. As G is transitive on the

set of hyperbolic lines of W (3,F) and ν is assumed to be G-homogeneous, the

same situation occurs for all hyperbolic lines. So, if we can prove that ν maps

a hyperbolic line of W (3,F) onto a conic of PG(W ) then ν is also a Veronesean

embedding of PG(3,F). Hence it is at most 10-dimensional by Corollary 5.3,

and we are done.

In [10], by combinatorial arguments and some elementary group theory, it

is proved that when F is a finite field of odd order q > 3 the assumption that

dim(〈ν(l)〉) > 3 for a hyperbolic line l of W (3,F) leads to a contradiction, which

is what we need to finish the proof. We are not going to expose the arguments

used in [10] to prove the above. We only say that, if K is the kernel of the

projection of ν onto ν̄4, the hypothesis that q > 3 is exploited to prove that

K ⊆ 〈ν(l)〉 for every hyperbolic line l of W (3,F). A contradiction is eventually

obtained from this fact. �

When char(F) = 2 we have the following, where we assemble Theorems 6

and 7 of [10].

Theorem 5.10. Let char(F) = 2.

(1) Let n = 2. Then εW2,2 is not relatively universal.

(2) Let F be perfect. Then εWn,n is not relatively universal, for any n ≥ 2.

Sketch of the proof. When char(F) = 2 and either n = 2 or F is perfect, the

embedding εspinn is not universal. Indeed when F is perfect and n > 2 then

εspinn is a proper quotient of εSpn,n, as remarked at the end of Subsection 3.1.

When n = 2, B2,2
∼= C2,1, whence εspin2

∼= εSp2,1. The latter embedding is never

universal, no matter if F is perfect or not (see e.g. De Bruyn and Pasini [17] for

the non-perfect case). Let ε̂ : Bn,n → Ŵ be the hull of εspinn . By the above, d :=

dim(Ŵ ) > 2n. Let νd be the quadratic Veronesean map from Ŵ to V
((

d+1
2

)
,F

)

and put ε̂ver = νd · ε̂. Then εvern (∼= εWn,n by Theorem 4.9) is a proper quotient

of ε̂ver. �
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Conjecture 5.11. We guess that the hypothesis that F is perfect is superfluous

in claim (2) of Theorem 5.10.

Problems 5.12. (1) Compute the hull of εW2,2 for F = F3.

(2) Can we remove the hypothesis that F is finite from Theorem 5.9?

(3) Let F be such that εW2,2 is relatively universal (whence char(F) 6= 2). Does

the universality of εW2,2 imply that εWn,n is relatively universal for any n > 2?

(4) Does Bn,n admit the absolutely universal Veronesean embedding?

(5) Corollary 5.3, when F 6= F2 the quadric Veronesean embedding of PG(d,F)

in V (
(
d+2
2

)
,F) is relatively universal. Is it absolutely universal?
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