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Dimensional doubly dual hyperovals and

bent functions

Ulrich Dempwolff

Abstract

We show that dimensional doubly dual hyperovals over F2 define bent

functions. We also discuss some known and a few new examples of dimen-

sional doubly dual hyperovals and study the associated bent functions.
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1. Introduction

A set D of n-dimensional subspaces of a finite dimensional vector space V over

a finite field (say V = V (m, q)) is called a dual hyperoval of rank n, we use the

symbol DHO as an abbreviation, if |D| = (qn − 1)/(q − 1) + 1, dimX ∩ Y = 1

and X ∩ Y ∩ Z = 0 for three different X,Y, Z ∈ D. The DHO splits over the

subspace W if V = X ⊕ W for all X ∈ D. In this paper we are interested in

DHOs, which are also DHOs with respect to the dual space: We call D a doubly

dual hyperoval of rank n, we abbreviate DDHO, if m = 2n and D is also a DHO

with respect to the dual space, i.e. if dimX + Y = 2n− 1 and X + Y + Z = V

for three different X,Y, Z ∈ D.

Remark 1.1. (i) A set of (qn − 1)/(q − 1) + 1 subspaces of rank n such that

any two generate a hyperplane and any three the whole space V is called

a dimensional hyperoval in [3] and [8]. So our notion of a DDHO is com-

patible with the notation in the literature.

(ii) Usually DHOs of rank n are called (n − 1)-dimensional dual hyperovals.

However in our context it seems more natural to use the notions of vector

spaces than the language of projective geometry. DHOs are only known for
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vector spaces of even characteristic and the majority of examples are DHOs

over F2. In this paper we look exclusively at DHOs over F2, in particular

|D| = 2n.

Seemingly unrelated to DHOs is the notion of a bent function. Let V =

V (2n, 2) be an 2n-dimensional space over F2. A function f : V → F2 is called

a bent function, if its support is a difference set in V . Equivalently, a function f

is bent, if the absolute value of the Fourier transform has the constant value 2n,

i.e. if

|f̂(v)| =

∣∣∣∣∣
∑

x∈V

(−1)f(x)+x·v

∣∣∣∣∣ = 2n, v ∈ V.

There is a vast literature on bent functions. DHOs have been studied intensively

too. Yoshiara [23] is a survey article on DHOs. Investigations of DDHOs are

contained in Taniguchi [16] and Yoshiara [22].

Starting point of our paper is a connection between DDHOs and bent func-

tions, which is proved in the next section:

Theorem 1.2. Let D be a dual hyperoval in V = V (2n, 2) of rank n.

(a) Set

B = (
⋃

S∈D

S)− 0.

Then the characteristic function of B is bent iff D is doubly dual.

(b) Assume that D splits with respect to the subspace W . Set

B = W ∪
⋃

S∈D

S.

Then the characteristic function of B is bent iff D is doubly dual.

This motivates a search for DDHOs. In the third section we define symplectic

and orthogonal DHOs (called DHOs of polar type in [22]), discuss their repre-

sentations and some of their properties. Such DHOs are automatically doubly

dual (see Corollary 3.5). In Section 4 we present examples of DDHOs. Some

of them are known but others appear to be new. The main emphasis will lie

on the construction of symplectic DHOs, which are not orthogonal DHOs. In

Section 5 we investigate the bent functions associated to these DDHOs (in the

sense of Theorem 1.2). We also will discuss possible isomorphisms between the

examples of Section 4.

This article is a predecessor of a forthcoming paper [6] by Kantor and the

author. There it is shown that orthogonal DDHOs can be produced in large

numbers by projections from orthogonal spreads. This is a variation of Kantor’s

technique, which uses projections of orthogonal spreads to produce symplectic

spreads (see for instance [12, 13, 14]).
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2. Bent functions and doubly dual hyperovals

Definitions. Set V = V (m, 2). For f ∈ Fm = F
V
2 and x ∈ V define the Fourier

coefficient at v by

f̂(v) =
∑

x∈V

(−1)f(x)+x·v

and call the function f̂ : V → C the Fourier transform of f . We sometimes

identify f with its support {x ∈ V | f(x) = 1} and write v ∈ f if f(v) = 1

(i.e. if v ∈ f−1(1)). For v ∈ V define v⊥ : V → F2 by v⊥(x) = v · x (usual dot

product). Finally we set |f | = |f−1(1)|. Let m = 2n. The function f ∈ F2n is

a bent function if f̂(x) ∈ {±2n} for all x ∈ V . The next two results with their

proofs come from [1].

Lemma 2.1. For f ∈ Fm and v ∈ F :

(a)
∑

x∈V (−1)f(x) = 2m − 2|f |

(b) f̂(v) = 2m − 2|f + v⊥|

Proof. We observe

∑

x∈V

(−1)f(x) =
∑

x∈V−f

1−
∑

x∈f

1 = 2m − 2|f |,

which implies (a). From (a) we get f̂(v) =
∑

x(−1)f(x)+v·x = 2m − 2|f + v⊥|,
which is assertion (b). �

Proposition 2.2. Let f ∈ F2n. Equivalent are:

(a) f is bent.

(b) |f + v⊥| = 22n−1 ± 2n−1 for all v ∈ V .

(c) There exists ǫ ∈ {±1} such that |f | = 22n−1 + ǫ2n−1 and |f ∩ v⊥| = 22n−2 +

ǫ2n−1 or = 22n−2 for all 0 6= v ∈ V .

Proof. (a)⇒(b). We have, by Lemma 2.1, ±2n = f̂(v) = 22n − 2|f + v⊥|.

(b)⇒(c). From (b) we get |f | = |f + 0⊥| = 22n−1 + ǫ2n−1 with some ǫ = ±1.

Moreover for v 6= 0 we use

|f ∩ v⊥| =
1

2
(|f |+ |v⊥| − |f + v⊥|).

This implies assertion (c).
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(c)⇒(a). Now we use

f̂(v) = 22n − 2|f + v⊥| = 22n − 2(|f |+ |v⊥| − 2|f ∩ v⊥|).

Using (c) we get assertion (a). �

We use Proposition 2.2 to verify Theorem 1.2:

Proof of Theorem 1.2. First we note, that |D| = 2n by the definition of a DHO,

and that every nontrivial vector of V lies either in 2 or none elements from D.

(a) An application of the sieve formula shows |B| = 22n−1−2n−1. Let v ∈ V −0.

Let S1, . . . , Sk be the spaces of D which are in v⊥; note that k can be 0. Set

B0 = (S1 ∪ · · · ∪ Sk)− 0. By the sieve formula

|B0| = k(2n − 1)−

(
k

2

)
=

k

2
(2n+1 − k − 1).

Set D′ = D− {S1, . . . , Sk}. Then |S′ ∩B0| = k for S′ ∈ D
′. Set B1 = (B ∩

v⊥)−B0. Since |S′∩v⊥| = 2n−1−1 we see |B1∩S
′| = 2n−1−k−1. Consider

the incidence structure (B1,D
′). We deduce 2|B1| = (2n−k)(2n−1−k−1).

This implies

|B ∩ v⊥| = |B0|+ |B1| = 22n−2 + 2n−2(k − 2).

If D is doubly dual then always k = 0 or = 2, i.e. |B ∩ v⊥| = 22n−2 or

= 22n−1 − 2n−1. Hence fB is bent by Proposition 2.2. If D is not doubly

dual, then we can choose v such that 0 6= k 6= 2. Then |B ∩ v⊥| 6= 22n−2

and 6= 22n−2 − 2n−1. So fB is not bent in this case.

(b) Now B is partitioned into W and (
⋃

S∈D
S) − 0. We deduce from (a) that

|B| = 22n−1 + 2n−1.

Let v ∈ V − 0. Assume first W ⊆ v⊥. Then S 6⊆ v⊥ for all S ∈ D. As

B ∩ v⊥ is partitioned into W and ((
⋃

S∈D
S)− 0) ∩ v⊥ we deduce from (a)

|B ∩ v⊥| = 2n + 22n−2 − 2n−1 = 22n−2 + 2n−1.

Assume next W 6⊆ v⊥. Then |W ∩ v⊥| = 2n−1. If v⊥ contains precisely k

spaces from D, we deduce from (a)

|B ∩ v⊥| = 22n−2 + 2n−2(k − 2) + 2n−1.

If D is doubly dual, we have k = 0 or 2 and |B ∩ v⊥| = 22n−2 or = 22n−2 +

2n−1. Again fB is bent by Proposition 2.2. If however D is not doubly

dual, we can choose v such that 0 6= k 6= 2. Thus |B ∩ v⊥| 6= 22n−2 nor

6= 22n−2 + 2n−1 and fB is not bent in this case. �
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Remark 2.3. (a) All known DHOs do split over some subspace of its ambient

space. So the extra assumption of a splitting DHO in part (b) of Theo-

rem 1.2 seems to be not very restrictive.

(b) The definition of bent functions of partial spread type (see [9], [10, Corol-

lary 1]) agrees formally completely with the definition of bent functions

associated with DDHOs.

3. Representations

We first review some basic facts about splitting DHOs and introduce some nota-

tion. We will see that representations of translation planes and splitting DHOs

are closely related. We then discuss in particular symplectic and orthogonal

DHOs. The following lemma is useful.

Lemma 3.1. Let V be a 2n-dimensional vector space over a field F , β : V ×V → F

be a nondegenerate, symplectic bilinear form, and U0, U1 isotropic subspaces such

that V = U0 ⊕ U1.

(a) One can identify V = U × U , U0 = U × 0, and U1 = 0× U with an n-dimen-

sional F -space U . Moreover β can be written in the form

β((x, y), (x′, y′)) = σ(x, y′)− σ(y, x′),

where σ is a nondegenerate, symmetric bilinear form on U .

(b) Let W be an isotropic subspace of V of the form W = {(x, xR) | x ∈ U},

R ∈ End(U) and let β be represented as in (a).

(1) Then R is a self-adjoint operator with respect to σ.

(2) Let β′ be a nondegenerate, symplectic bilinear form on V such that U ×0,

0× U , and W are isotropic. Then there exist T, S ∈ GL(U) such that

β′((x, y), (x′, y′)) = β((xS, yT ), (x′S, y′T )).

Moreover (ST ⋆)R⋆ = R(ST ⋆)⋆. Here a symbol Q⋆ denotes the operator

adjoint with respect to σ to Q ∈ End(U).

Proof. (a) This follows from basic properties of symplectic spaces (see for in-

stance [20, p. 69]): As the Witt-index of V is n, one can choose bases

{u1, . . . , un} of U0 and {w1, . . . , wn} of U1 such that β(ui, wj) = δij , 1 ≤
i, j ≤ n. Making the obvious identifications we obtain the assertion.

(b) Assertion (1) follows from the description of β. For the second assertion

we use Witt’s theorem, i.e. all nondegenerate, symplectic bilinear forms
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are equivalent. So by Witt’s theorem we find an equivalence mapping P ∈
GL(V ), which fixes 0×U and U × 0 which transforms β into β′. If we write

P = diag(S, T ), S, T ∈ GL(U), we get the first assertion of (2). Since W is

isotropic with respect to β′ too we have for all x, x′ ∈ U

0 = β′((x, xR), (x′, x′R)) = σ(x, x′RTS⋆)− σ(x, x′ST ⋆R⋆)),

which leads to the second assertion of (2). �

Definition 3.2. Let V = U ×U , U = V (n, 2), be a 2n-dimensional F2-space and

D a DHO of rank n on V .

(a) We call the DHO symplectic, if V admits a nondegenerate, symplectic from

such that all spaces of D are isotropic with respect to this bilinear form. We

call the DHO orthogonal, if V admits a nondegenerate, quadratic from such

that all spaces of D are totally singular with respect to this quadratic form.

In the case of a splitting DHO we also assume that this DHO splits over an

isotropic subspace or a totally singular subspace respectively.

(b) Assume that D splits over 0 × U . Then the DHO can be represented in the

form

D = DB = {Sa | a ∈ U}, Sa = {(x, xB(a)) | x ∈ F
n
2},

with an injection

B : U → End(U), B(0) = 0.

We will also call (simulating the language of translation planes) the set

ΨB = {B(a) | a ∈ U} of endomorphisms a DHO-set. If the mapping B is

linear, one calls D a bilinear dimensional dual hyperoval.

On the other hand a set 0 ∈ Ψ = {B(a) | a ∈ U} ⊆ End(U) is a DHO-set iff

(1) rk(B(a) +B(b)) = n− 1 for all a, b ∈ U , a 6= b.

(2) Let a ∈ U . Then {ker(B(a) +B(b)) | b ∈ U − {a}} is the set of 1-spaces

in U .

A bilinear DHO admits an elementary abelian group T group of automorphisms

whose elements are the transformations Ta, a ∈ U , defined by

(x, y)Ta = (x, xB(a) + y).

This group is called the translation group of the DHO. Note that the DHO splits

over the fixed point set CV (T ) (which is = 0 × U) of the translation group. In

the case of a bilinear symplectic or orthogonal DHO we do assume by definition

that this fixed point set is an isotropic or totally singular subspace respectively.
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Remark 3.3. Assume that D is symplectic, that the DHO-set ΨB represents the

DHO (as under (b)), and that 0×U is isotropic. We assume that the symplectic

form has the shape

((x, y), (x′, y′)) = σ(x, y′) + σ(y, x′),

where σ is a nondegenerate, symmetric bilinear form on U (see Lemma 3.1).

Then all operators B(a) are symmetric (self-adjoint) with respect to σ, i.e.

σ(x, yB(a)) = σ(xB(a), y)

x, y ∈ U . Assume now that the DHO is orthogonal and 0× U is totally singular

with respect to a quadratic form Q where

Q(x, y) = σ(x, y),

i.e. Q polarizes to the above symplectic form. Then all B(a)’s are skew symmetric

with respect to σ, i.e.

σ(x, xB(a)) = 0

for x ∈ U .

Lemma 3.4. Let D be a DHO of rank n on V = U ×U , U = V (n, 2), which splits

over 0 × U and let σ be a symmetric, nondegenerate bilinear form on U . Let ΨB

be a DHO-set associated with D. Equivalent are:

(a) D is doubly dual.

(b) Ψ⋆
B = {B⋆(a) | a ∈ U} is a DHO-set. Here B⋆(a) = B(a)⋆ is adjoint to B(a)

with respect to σ.

Proof. Define on V a symplectic bilinear form by ((x, y), (x1, y1)) = σ(x, y1) +

σ(y, x1). Then the symplectic form induces a duality on V and D is doubly dual

iff D⊥ = {X⊥ | X ∈ D} is a DHO. Now

S⊥
a = {(x, xB(a)) | x ∈ U}⊥ = {(xB⋆(a), x) | x ∈ U}.

So D
⊥ is a DHO (which splits over U × 0) iff Ψ⋆

B is a DHO-set. �

This implies:

Corollary 3.5. Symplectic DHOs are doubly dual.

Remark 3.6. With the above notation define σ(x, y) = x · y, x, y ∈ U , (usual

dot product) and identify End(U) with the matrix space F
n×n
2 . Then a DHO-set

ΨB defines a symplectic DHO, if all operators B(a) are symmetric, i.e. B(a)t =
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B(a). The DHO will be even orthogonal, if in addition the diagonal elements of

B(a) are 0.

A variation: identify U with F = F2n and define on F a nondegenerate,

symmetric bilinear form σ by taking the trace form

σ(x, y) = Tr(xy),

where Tr : F → F2 is the absolute trace. Then a symplectic form (·, ·) is defined

on F × F by

((x, y), (x1, y1)) = σ(x, y1) + σ(x1, y) = Tr(xy1) + Tr(x1y).

A linear operator L on F has the form

L =

n−1∑

i=0

Ti(ai),

where the operator Tj(b) is defined by

xTj(b) = bx2j .

The adjoint operators of Tj(b) and L with respect σ have the form

Tj(b)
⋆ = T−j(b

2−j

) and L⋆ =

n−1∑

i=0

Ti(a
2i

−i)

(indices are read modulo n). In particular L is self-adjoint iff ai = a2
i

−i for all i

and L is skew symmetric iff in addition a0 = 0 holds.

Example 3.7. Let Ψ = Sk(3,F2) be the set of skew symmetric 3 × 3-matrices

over F2. We check immediately that Ψ is a DHO-set. Hence by Corollary 3.5 Ψ

defines a DDHO on V = F
6
2.

Bilinear DHOs and the Knuth operations. Let D be a splitting, bilinear DHO

in V = U × U , U = V (n, 2), of rank n. In this case we may assume that there

is an additive mapping B : U → End(U), such that the DHO is described by the

DHO-set ΨB = {B(y) | y ∈ U}. For y ∈ F define the operator Bo(y) ∈ End(U)

by

xBo(y) = yB(x).

Then ΨBo = {Bo(y) | y ∈ U} is a DHO-set too and the bilinear DHO D
o

defined by Bo is the opposite DHO. We know that the set B⋆ (see Lemma 3.4)

only defines a DHO iff D is doubly dual. We call in this case the associated
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DHO D
⋆ the dual DHO. In analogy to the terminology of semifields we call the

operations D 7→ D
o and D 7→ D

⋆ the Knuth operations. It then follows that a

bilinear DDHO produces six bilinear DDHOs D, Do, D⋆, Do⋆, D⋆o, Do⋆o. All

these facts follow from [11, Sec. 5]. In particular we record:

Lemma 3.8 (Y. Edel). Let D be a bilinear DDHO and assume the notation from

above.

(a) Equivalent are:

(1) D is a symplectic DHO.

(2) D
o⋆ is a symmetric DDHO, i.e xBo⋆(y) = yBo⋆(x) for all x, y ∈ U .

(b) Equivalent are:

(1) D is an orthogonal DHO.

(2) D
o⋆ is an alternating DDHO, i.e xBo⋆(x) = 0 for all x ∈ U .

Remark 3.9. A main result in Taniguchi [16, Thm. 11] (with a somewhat tech-

nical proof) essentially states that alternating DHOs are doubly dual, iff their

rank is odd. But skew symmetric operators have an even rank, i.e. orthogonal

DHOs must have an odd rank. So Lemma 3.8 provides a simple explanation of

Taniguchis result.

We end this section with two uniqueness properties of symplectic and orthog-

onal DHOs.

Lemma 3.10. Let U = V (n, 2), V = U × U , and D a DHO which splits over

0 × U . Then there is at most one symplectic form on V such that 0 × U and the

spaces in D are isotropic.

Proof. Write D = {Sa | a ∈ U}, Sa = {(x, xB(a)) | x ∈ U} as usual and

assume that β and β′ are nondegenerate, symplectic forms, which satisfy the

assumptions of the lemma. We represent these symplectic forms as in (b) of

Lemma 3.1. Then B(a) = B⋆(a) (with respect to σ) for a ∈ U and B(a)X⋆ =

XB(a) where X = ST ⋆. Thus

kerB(a) = kerB(a)X⋆ = kerXB(a).

Hence X fixes kerB(a) for all a ∈ U . We obtain X = 1 or T = (S⋆)−1 where

P = diag(S, T ) as in the proof of Lemma 3.1. But a computation shows that

then P is an isometry with respect to β, i.e. β′ = β. �

Lemma 3.11. Let U = V (n, 2), V = U × U , and D a DHO which splits over

0 × U . Let β be a symplectic form on V such that 0 × U and the spaces in D are

isotropic. Assume that β is represented by the symmetric bilinear form σ on U as
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in (a) of Lemma 3.1. Suppose that Q is a quadratic form, which polarizes to β

such that 0 × U and the spaces in D are totally singular. Then Q(x, y) = σ(x, y)

for all (x, y) ∈ V .

Proof. Clearly, the quadratic form given in the lemma polarizes to β. It is well

known (and easily verified) that any other quadratic form which polarizes to β

has the shape Q + λ where λ is a linear form on V . But as Q vanishes on the

spaces 0 × U and U × 0 ∈ D, we see that λ vanishes on this spaces too, i.e.

λ = 0. �

Remark 3.12. Assume that the DHO in Lemma 3.11 is represented as usual by

D = {Sa | a ∈ U}, Sa = {(x, xB(a)) | x ∈ U}. We already know that the B(a)’s

are self-adjoint with respect to σ. If D is even orthogonal and 0 × U is totally

singular too, the operators B(a) are even skew symmetric, i.e. σ(x, xB(a)) = 0

for all x ∈ U .

4. Examples

In this section we discuss some old and some new DDHOs. The main empha-

sis lies on symplectic examples. Throughout this section we fix the following

notation:

ν ∈ F4 − F2, n is an odd number > 3, F = F2n , and V = F × F .

By Tr : F → F2 we denote the absolute trace. When we say that an operator on

F is self-adjoint, we always refer to the trace form.

Example 4.1 (Yoshiara, [21]). We consider the DHOs of [21] in a slightly dif-

ferent representation. Let 1 ≤ r, t < n. For y ∈ F define a F2-linear operator

B(y) on F by

xB(y) = x(Tr(y) + T−r(y
2t)) = x2ry + x2−r

y2
t

.

Finally define D = Dr,t = {Sa | a ∈ F}, Sa = {(x, xB(a)) | x ∈ F}, as usual. It

was shown in [16] that D defines a DDHO iff

(t, n) = (2r, n) = (t+ 2r, n) = 1.

Note that B(y)⋆ = B(y) if t = −r. In that case D is symplectic, even orthogonal

since B(y) is even skew symmetric. Do other parameters lead to symplectic

DHOs? The answer is provided by [22, Proposition 6]. We give an an alternative

proof of this result.
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Proposition 4.2 (S. Yoshiara). Let (t, n) = (2r, n) = (2r + t, n) = 1. Then the

DHO Dr,t is symplectic iff t = −r.

Proof. By Lemma 3.1 the DDHO Dr,t can only be symplectic if there exists a

A ∈ GLF2
(F ) such that

AB(y)⋆ = B(y)A⋆ for all y ∈ F.

Let A =
∑n−1

i=0 Ti(ai). Then A⋆ =
∑n−1

i=0 Ti(a
2−i

−i ) and B(y)⋆ = Tr(y
2t+r

) +

T−r(y
2−r

). Evaluating the condition B(y)A⋆ = AB(y)⋆ leads to the equations

a2
r

i−ry
2r+t

+ a2
−r

i+ry
2−r

= a2
r−i

r−i y
2i−r

+ a2
−i−r

−i−r y
2i+r+t

for all y ∈ F

and 0 ≤ i < n. The coefficients in such an equation can only be nontrivial if

exponents of y on the LHS occur also on the RHS, i.e. one has i = 0,±(r + t).

Inspecting the equation for i = 2r + t shows a3r+t = a−3r−t = 0. Then these

three equations show that the only nontrivial coefficients can be a±r or a±(r+t).

The equation for i = 2r involves a±r and it follows ar = a−r = 0 as the

respective exponents of y for these coefficient occur only once in this equation.

So the only possible nontrivial coefficients are ar+t and a−r−t. The remaining

equations which involve these coefficients occur for i = ±t. An inspection of

these two equations shows, that ar+t or a−r−t can only be nontrivial if r = −t

and a2
t

0 = a0. But we observed already that for r = −t the DHO Dr,−r is

symplectic. The proof is complete. �

The next four examples describe bilinear DHOs, which are symplectic but

not orthogonal (see Proposition 4.16). The symmetric Knuth image of the first

example has been studied already by Taniguchi and Yoshiara [19].

Example 4.3. For y ∈ F we define a F2-linear mapping B(y) on F by

xB(y) = x(y + y2
n−1

) + x4y + (xy)2
n−2

.

Set

D = {Sy | y ∈ F}, Sy = {(x, xB(y)) | x ∈ F}.

That D is a symplectic DDHO follows from:

Lemma 4.4. The set D is a symplectic, bilinear DHO on V .

Proof. Clearly, the operators B(y) are all self-adjoint with respect to the trace

form. So we have only to show that D is a DHO, i.e. we have to show that each

B(y), y 6= 0 has rank n−1 and that kerB(y) 6= kerB(z) for 0 6= y 6= z 6= 0. Now
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x ∈ kerB(y) iff x(y + y2
n−1

) + x4y + (xy)2
n−2

= 0 or after taking the fourth

power we see that (x, y) is a root of

f(X,Y ) = (XY )4 +X4Y 2 +X16Y 4 +XY.

Or after dividing by XY and multiplying with Y −3 we see that (x, y−1) is a root

of

g(X,Y ) = Y 3 +X3Y 2 +X15 +X3,

which factorizes over E = F22n as g(X,Y ) = g0(X,Y )g1(X,Y )g−1(X,Y ) with

g0(X,Y ) = Y +X5 +X3 +X

and

gi(X,Y ) = X5 + νiX3 + ν−iX + νiY

for i = ±1. We show that g1(X,Y )g−1(X,Y ) has no root in (F ⋆)2 and that

x 7→ x5 + x3 + x is bijective on F which in turn will prove our claim.

Suppose (x, y) ∈ (F ⋆)2 is a root of g1(X,Y )g−1(X,Y ), say of g1(X,Y ). As

(x, y) is fixed by the involutory automorphism of E and since this automor-

phism interchanges g1(X,Y ) with g−1(X,X), we see that (x, y) is a root of both

polynomials. Hence

0 = g1(x, y) + g−1(x, y) = x3 + x+ y or y = x3 + x.

But then 0 = g(x, y) = x15 + x7 and x = 1 and y = 0, a contradiction.

Now we show that the polynomial X5+X3+X is a permutation polynomial.

Assume the converse. Then the polynomial h(X,Y ) = X5+X3+X+Y 5+Y 3+Y

has a root (x, y), x 6= y. But h(X,Y ) = (X + Y )h1(X,Y )h−1(X,Y ) with

hi(X,Y ) = X2 + νiXY + Y 2 + ν−i

for i = ±1. So if (x, y) is a root of hi(X,Y ) then also of h−i(X,Y ). This in turn

shows

0 = h1(x, y) + h2(x, y) = xy + 1

or y = x−1. But then x2 + x−2 +1 = h1(x, x
−1) = 0, which implies x ∈ F4 −F2,

a contradiction. �

Remark 4.5. Since the DHOs from Example 4.3 are bilinear DDHOs one can

use the Knuth operations. By Lemma 3.8 the mapping Bo∗ defines a symmetric,

bilinear DHO of the form

xBo∗(y) = xy + x4y + xy4 + (xy)2.
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This shows that that the symmetric DHO is a DHO described by Taniguchi and

Yoshiara in [19, Sec. 3]. The verification that the mapping Bo∗ defines a DHO

in [19] is simpler than our verification of the DHO property. But the proof of

Taniguchi and Yoshiara does not show that Bo∗ defines a doubly dual DHO. So

our result needs a separate verification.

Example 4.6. For y ∈ F we define a F2-linear mapping B(y) on F by

xB(y) = x(y +Tr(y)) + x2y + (xy)2
n−1

.

Set

D = {Sy | y ∈ F}, Sy = {(x, xB(y)) | x ∈ F}.

Then D is a symplectic, bilinear DDHO. This follows from follows from:

Lemma 4.7. The set D is a symplectic, bilinear DHO on V .

Proof. Clearly, all operators B(y) are self-adjoint with respect to the trace form.

We have to show that each B(y), y 6= 0 has rank n − 1 and that kerB(y) 6=
kerB(z) for 0 6= y 6= z 6= 0. Now x ∈ kerB(y) iff x(y+Tr(y))+x2y+(xy)2

n−1

=

0 or after squaring we see that (x, y) is a root of

f(X,Y ) = XY + (XY )2 +X2Tr(Y ) +X4Y 2.

Clearly, for y = 1 we get x = 1 as the unique root of f(X, 1). So we assume

from now on y ∈ F − {0, 1}.

For the case Tr(y) = 0 we substitute the variable Y by Y 2+Y in f(X,Y ) and

obtain the polynomial f0(X,Y ) = f(X,Y 2+Y ), which factorizes as f0(X,Y ) =

XY (Y + 1)g(X,Y ) with

g(X,Y ) = X3Y 2 +X3Y +XY 2 +XY + 1 = Y 2(X3 +X) + Y (X3 +X) + 1.

Note that this polynomial has no roots of the form (1, y). Multiply with X−3

and substitute X by Z = X−1. Then

g(Z, Y ) = Z3 + (Y 2 + Y )Z2 + Y 2 + Y.

So for a solution (z, y) ∈ (F − {0, 1})2 we have y2 + y = z3

z2+1 . Substitute

u = 1
1+z

. Then y2 + y = u2(u+1
u

)3 = u2 + u + 1 + u−1. Hence Tr(u−1) = 1 or

Tr(x−1) = Tr(z) = 0 where x = z−1. We set F0 = {x ∈ F ⋆ | Tr(x) = 0}. We

have already seen that the mapping φ

F0 ∋ z 7→ φ(z) =
z3

z2 + 1
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sends F0 into F0.

CLAIM: This mapping is bijective.

If not, then the polynomial X3(Y 2+1)+Y 3(X2+1) and hence the polynomial

k(X,Y ) = (X2 +X)3(Y 4 + Y 2 + 1) + (Y 2 + Y )3(X4 +X2 + 1)

has a nontrivial root in F 2
0 − {(x, x) | x ∈ F0}. Here we use that the mapping

x 7→ x2 + x is bijective on F0. This polynomial factorizes over E = F22n as

k(X,Y ) = (X + Y )(X + Y + 1)k1(X,Y )k−1(X,Y )ℓ1(X,Y )ℓ−1(X,Y ) with

ki(X,Y ) = XY + νiX + νiY + νi

and

ℓi(X,Y ) = XY + νiX + ν−iY

for i = ±1. Let (x, y) ∈ F 2
0 , x 6= y, be a root of k(X,Y ). Then (x, y) is a

root of one of the ki(X,Y )’s or ℓi(X,Y )’s. The involutory automorphism of E

interchanges the polynomials k1(X,Y ) and k−1(X,Y ) as well as ℓ1(X,Y ) and

ℓ−1(X,Y ) but fixes x and y. So if (x, y) is a root of ki(X,Y ) (ℓi(X,X)), it is

also a root of k−i(X,Y ) (ℓ−i(X,Y )). If (x, y) is a root of ki(X,Y ), we get

0 = k1(x, y) + k−1(x, y) = x+ y + 1, i.e. y = x+ 1

and Tr(x) 6= Tr(y), a contradiction.

If (x, y) is a root of ℓi(X,Y ), we get

0 = ℓ1(x, y) + ℓ−1(x, y) = x+ y, i.e. y = x,

again a contradiction. So the claim holds. This shows that for each y ∈ F0 we

have a unique x ∈ F with f(x, y) = 0. Moreover Tr(x−1) = 0.

For the case Tr(y) = 1 we substitute the variable Y by Y 2 + Y +1 in f(X,Y )

and obtain the polynomial f1(X,Y ) = f(X,Y 2 + Y + 1), which factorizes over

E as f1(X,Y ) = Xh(X,Y )h1(X,Y )h−1(X,Y ) with

h(X,Y ) = XY 2 +XY +X + 1

and

hi(X,Y ) = XY + νiX + Y + ν−i

for i = ±1. As before: If (x, y) is a root of hi(X,Y ) it is also a root of h−i(X,Y ).

In that case we have

0 = h1(x, y) + h−1(x, y) = x+ 1, i.e. x = 1,
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a contradiction. So a root (x, y) of f1(X,Y ) is a root of h(X,Y ), i.e.

x =
1

y2 + y + 1
.

In particular Tr(x−1) = 1.

So a root x for Tr(y) = 1 is never a root for Tr(y) = 0. Since the maps φ and

x 7→ 1
x2+x+1 are injective on the sets F0 and F0 + 1, the proof is complete. �

Remark 4.8. Again the DDHOs from Example 4.6 are bilinear. Using the Knuth

operations we obtain symmetric, bilinear DHOs defined by the mapping Bo∗ of

the form

xBo∗(y) = xy + x2y + xy2 +Tr(xy).

Example 4.9. For y ∈ F we define a F2-linear mapping B(y) on F by

xB(y) = (x+ x2)(y +Tr(y)) + (x4 + x2n−2

)Tr(y) + x2n−1

(y2
n−1

+Tr(y)).

Set

D = {Sy | y ∈ F}, Sy = {(x, xB(y)) | x ∈ F}.

Then D is a symplectic DDHO. This follows from follows from:

Lemma 4.10. The set D is a symplectic, bilinear DHO on V .

Proof. Clearly, all operators B(y) are self-adjoint with respect to the trace form.

We have to show that each B(y), y 6= 0 has rank n − 1 and that kerB(y) 6=
kerB(z) for 0 6= y 6= z 6= 0. Now x ∈ kerB(y) iff

(x+ x2)(y +Tr(y)) + (x4 + x2n−2

)Tr(y) + x2n−1

(y2
n−1

+Tr(y)) = 0. (∗)

For y = 1 we get x + x2n−2

= 0 or x16 = x and hence x = 1 as n is odd. So we

assume from now on y ∈ F0 = F − {0, 1} and that (x, y), x 6= 0, is a solution of

equation (∗).

CASE Tr(y) = 0. After squaring the equation we see that (x, y) is a root of

the polynomial (X2 + X4)Y 2 + XY . Since y has a trivial trace we can write

y = y1 + y21 . Substituting Y by Y + Y 2 we see that (x, y1) is a root of the

polynomial f(X,Y ) = X(Y +Y 2)+(X2+X4)(Y 2+Y 4) = XY (Y +1)g(X,Y ),

where

g(X,Y ) = Y 2(X3 +X) + Y (X3 +X) + 1

is the same polynomial which occurred in the case Tr(y) = 0 in the proof of

Lemma 4.7. We use this part: So if Tr(y) = 0, y ∈ F0, then there is a unique

x = xy ∈ F0 such that f(x, y) = 0. Moreover the mapping y 7→ xy is injective

and Tr(x−1) = 0.
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CASE Tr(y) = 1. After taking the fourth power of (∗) we see that (x, y) is a root

of (X4 +X8)(Y 4 + 1) +X2(Y 2 + 1) +X16 +X. We can write y = 1 + y1 + y21 .

Substitute in the polynomial Y by 1 + Y + Y 2. Then (x, y1) is a root of the

polynomial f(X,Y ) = (X4 +X8)(Y 4 + Y 8) +X2(Y 2 + Y 4) +X16 +X which

factorizes over E = F22n as f(X,Y ) = Xf0(X,Y )f1(X,Y )f−1(X,Y ) with

f0(X,Y ) = X5 +X3 +XY 4 +XY 2 +X + 1

and

fi(X,Y ) = X5 +X3Y 2 + νiX3 +X2 +XY 2 + νiX + 1

for i = ±1. If (x, y1) is a root of one of the last two factors, it is also a root of

the other factor. But then

0 = f1(x, y1) + f−1(x, y1) = x3 + x or x = 1.

But then f1(1, y1) = 1, a contradiction. Hence (x, y1) is a root of f0(X,Y ).

Multiply f0(x, y1) = 0 with x−1. We get 0 = x4 + x2 + y41 + y21 + x−1 + 1 or

Tr(x−1) = 1. Set z = x−1. Then (z, y1) is a root of Z5+Z4(Y 2+Y +1)2+Z2+1.

We write z = z21 + z1 + 1 and observe that (z1, y1) is a root of

g(Z, Y ) = (Z2 + Z + 1)5 + (Z2 + Z + 1)4(Y 2 + Y + 1)2 + (Z2 + Z + 1)2 + 1,

which factorizes as g(Z, Y ) = g1(Z, Y )g2(Z, Y ) with

g1(Z, Y ) = Z5 + Z4Y 2 + Z3 + Z2Y 2 + Z + Y 2 + 1

and

g2(Z, Y ) = Z5 + Z4Y 2 + Z4 + Z3 + Z2Y 2 + Z2 + Z + Y 2.

This implies

y21 =
z51 + z31 + z1 + 1

z41 + z21 + 1
or y21 =

z51 + z31 + z1 + 1

z41 + z21 + 1
+ 1.

We claim:

(1) The mapping φ : z 7→ z5+z3+z+1
z4+z2+1 is a bijection on F0.

(2) If z1, z2 ∈ F0 and
z5
1+z3

1+z1+1

z4
1
+z2

1
+1

=
z5
2+z3

2+z2+1

z4
2
+z2

2
+1

+ 1, then z2 = z1 + 1.

In case (2) we have z1 + z21 = z2 + z22 . So if the claim is verified, we see that

for y ∈ F0, Tr(y) = 1 there is a unique 0 6= x = xy ∈ F0 such that equation (∗)

holds, Tr(x−1) = 1, and y 7→ xy is a injection.
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We first prove claim (1). The polynomial h(X,Y ) = (X5+X3+X+1)(Y 4+

Y 2+1)+(Y 5+Y 3+Y +1)(X4+X2+1) factorizes over E = F22n as h(X,Y ) =

(X + Y )h1(X,Y )h−1(X,Y ) with

hi(X,Y ) = X2Y 2 + νiX2 +X + νiY 2 + Y + νi

for i = ±1. If φ(z1) = φ(z2), then (z1, z2) is a root of the polynomial h(X,Y ).

Assume z1 6= z2. Then (z1, z2) is a root of one of the hi(X,Y )’s and so of both

of them. We get

0 = h1(z1, z2) + h−1(z1, z2) = z21 + z22 + 1, or z2 = z1 + 1.

But h1(z1, z1 + 1) = z41 + z21 + 1 = 0 which is impossible. So (1) holds.

We now prove claim (2). If (2) holds, then (z1, z2) is a root of the polynomial

ℓ(X,Y ) = h(X,Y ) + (X4 +X2 + 1)(Y 4 + Y 2 + 1), which factorizes over E as

ℓ(X,Y ) = (X + Y + 1)ℓ1(X,Y )ℓ−1(X,Y ) with

ℓi(X,Y ) = X2Y 2 + νiX2 +X + νiY 2 + Y + 1

for i = ±1. If (z1, z2) is a root of one ℓi(X,Y ), then, as usual, it is a root of both

factors. This implies

0 = ℓ1(z1, z2) + ℓ−1(z1, z2) = z21 + z22 , or z2 = z1.

But ℓ1(z1, z1) = z41 + 1 = 0, which is impossible. So (2) holds.

From case 1 and 2 we conclude that for y ∈ F0 there is a unique x = xy 6= 0

such that (x, y) is a solution of equation (∗). Moreover xy ∈ F0 and Tr(x−1) = 0,

if Tr(y) = 0 and Tr(x−1) = 1, if Tr(y) = 1. Then using (1) and (2) we conclude

that the mapping y 7→ xy is a bijection of F ⋆. The proof is complete. �

Remark 4.11. Using the Knuth operations we obtain a symmetric, bilinear DHO

defined by Bo∗. It has the form

xBo∗(y) = xy + x2y + xy2 +Tr(x4y + x2y + xy + xy2 + xy4).

Example 4.12. For y ∈ F we define a F2-linear, self-adjoint mapping B(y) on

F by

xB(y) = xTr(y) + Tr(x)y2
n−2

+Tr(x4y) + xy2
n−1

+ x2y2
n−2

+ x2n−1

y2
n−3

.

Set

D = {Sy | y ∈ F}, Sy = {(x, xB(y)) | x ∈ F}.

Then D is a symplectic, bilinear DDHO: Taking the 8-th power of the equation

0 = xB(y) and replacing (by abusing the notation) x4 by x we obtain

0 = x2Tr(y) + Tr(x)y2 +Tr(xy) + x4y2 + x2y4 + xy.

The assertion follows from two results of Peter Müller [15].
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Proposition 4.13 (P. Müller). Let 5 ≤ n be an odd integer, F = F2n , and Tr :

F → F2 is the absolute trace. Set

f(X,Y ) = X2Tr(Y ) + Tr(X)Y 2 +Tr(XY ) +X2Y 4 +X4Y 2 +XY. (1)

Then for any 0 6= x ∈ F there is a unique 0 6= y = y(x) ∈ F with f(x, y) = 0.

Furthermore, the map x 7→ y(x) is bijective on F ⋆.

We also need:

Lemma 4.14 (P. Müller). Let F be a finite extension of F2 of odd degree, and

Tr : F → F2 the trace map. Then for each 0 6= x ∈ F with Tr(x) = 0, there is a

unique t in F with x = (t+1)3

t
.

We start with the proof of the lemma.

Proof. We have x = u2 +u where u is unique up to adding 1 and we assume for

the moment that a t has been found as required and show the uniqueness. Since

x = (t+1)3

t
= t2 + t + 1 + 1

t
we have Tr( 1

t
) = 1. So we have a v in F (unique

up to adding 1) with t = 1
v2+v+1 . Replacing in the equation 0 = x + (t+1)3

t
the

term x by u2 + u and t by the fraction in v we obtain the equation

0 = (uv2 + v3 + uv + u)(uv2 + v3 + uv + v2 + u+ v + 1).

So u = v3

v2+v+1 or u = (v+1)3

v2+v+1 . Note that the latter expression arises from the

former by replacing v by v + 1 and also by adding 1 to the former expression.

But replacing v by v + 1 does not change t. This shows the uniqueness of t.

Reverting the previous steps shows the existence of the desired t. �

We are now in the position to prove the proposition.

Proof of Proposition 4.13. The function f(X,Y ) is symmetric in X and Y . If we

show the first assertion of Proposition 4.13, the second one does follow. We first

claim that if f(x, y) = 0 one has:

Tr(xy) = Tr(x)Tr(y) (2)

Tr(x2y) = Tr(xy2) (3)

Equation (3) follows if we apply the trace to the equation f(x, y) = 0. We write

the equation 0 = x2f(x, y) as x4Tr(y) = (xy)2Tr(x)+x2Tr(xy)+x6y2+(xy)4+

x3y and apply again the trace. This shows

Tr(x)Tr(y) = Tr(x6y2 + (xy)4 + x3y) = Tr(xy) + Tr((x3y)2 + x3y) = Tr(xy)
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and equation (2) is true too. We now distinguish the cases Tr(x) = 1 and

Tr(x) = 0.

CASE Tr(x) = 1. In this case we have

Tr(
1

x
) = Tr(y). (4)

Assume first Tr(y) = 1. By (2) also Tr(xy) = 1. Then

0 = f(x, y) = (xy + 1)(xy + x2 + 1)(xy + y2 + 1).

The trace of the last two factors is 1. So the first factor vanishes and y = 1
x

which implies (4).

Assume now Tr(y) = 0. So Tr(xy) = 0 too. We get

0 = f(x, y) = (x3y + x2y2 + 1)(x+ y)y.

The latter two factors do not vanish, i.e. 0 = x3y + x2y2 + 1. We divide by x

and take the trace. Using equation (3) we get Tr( 1
x
) = 0 as required.

We also note that for Tr( 1
x
) = 1 the unique solution of f(x, Y ) = 0 is y = 1

x
.

It remains to show that for Tr( 1
x
) = 0 the is a unique y such that 0 = x3y +

x2y2 + 1 and Tr(y) = Tr(xy) = 0. First, it is clear that there is at most one

such y, because if y1 and y2 are roots of x3Y + x2Y 2 + 1, then x = y1 + y2,

contradicting Tr(x) = 1 and Tr(yi) = 0. It remains to show that there is at

least one solution. Since Tr( 1
x
) = 0, there is a t ∈ F ⋆ such that 1

x
= t2 + t, so

x = 1
t
+ 1

t+1 . Since Tr(x) = 1 we have Tr( 1
t
) 6= Tr( 1

t+1 ). As the expression for x

does not change upon replacing t with t+ 1, we may assume Tr( 1
t+1 ) = 1. Set

y =
t3

t+ 1
.

A calculation shows that indeed x3y+x2y2+1 = 0. Moreover y = t2+t+1+ 1
t+1 ,

hence Tr(y) = 0. Also Tr(xy) = Tr( 1
t2+t

· t3

t+1 ) = Tr( 1
t+1 ) + 1 = 0, as required.

CASE Tr(x) = 0. From (2) we deduce Tr(xy) = 0. We first show that for any

such x ∈ F ⋆, there is at least one y ∈ F ⋆ with f(x, y) = 0. In the present case y

is then a root of the polynomial

f(x, Y ) = xTr(Y ) + x3Y 2 + xY 4 + Y.

If we look for roots with Tr(y) = 0, then we need to solve x3Y + xY 3 + 1 = 0.

The curve X3Y +XY 3 + 1 = 0 is parametrized by

x =
(t+ 1)3

t
, y =

t3

t+ 1
.
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Similarly, for Tr(y) = 1 we have to consider the curve X3Y 2+XY 4+X+Y = 0

which is parametrized by

x =
(t+ 1)3

t
, y =

1

t2 + t
=

1

t
+

1

t+ 1
.

By Lemma 4.14 (as Tr(x) = 0) there is a t ∈ F ⋆ with x = (t+1)3

t
= t2+ t+1+ 1

t
.

Set

y1 =
t3

t+ 1
= t2 + t+ 1 +

1

t+ 1
and y2 =

1

t2 + t
=

1

t
+

1

t+ 1
.

The condition Tr(x) = 0 implies Tr( 1
t
) = 1. Thus

Tr(y1) = 1 + Tr(
1

t+ 1
) and Tr(y2) = 1 + Tr(

1

t+ 1
) = Tr(y1).

So if Tr( 1
t+1 ) = 0, then Tr(y2) = 1 and we set y = y2. If Tr( 1

t+1 ) = 1, then

Tr(y1) = 0 and we set y = y1. At any rate, we get a solution y of f(x, Y ) = 0 in

the case of Tr(x) = 0.

We need to show the uniqueness of y. Suppose there is another y′ with

f(x, y′) = 0. From the parametrizations, which give in both cases a bijection

between the pairs (x, y) and the parameter t, it is clear that y and y′ must

correspond to different cases. So Tr(y) 6= Tr(y′). By Lemma 4.14 t is uniquely

determined by x. So the parameter t is the same for y and y′. But then Tr(y) =

Tr(y′) (as we have seen above), a contradiction. The proof is complete. �

Remark 4.15. Since our DHO is bilinear, one can use the Knuth operations and

obtains a symmetric, bilinear DHO Bo∗ of the form

xBo∗(y) = x4Tr(y) + Tr(x)y4 +Tr(xy) + x2y2 + x8y4 + x4y8.

Proposition 4.16. The DHOs of Examples 4.3, 4.6, 4.9, and 4.12 are symplectic

but not orthogonal.

Proof. Apply Lemma 3.10, Lemma 3.11 and Remark 3.12. �

There is an alternative way to verify this fact: Use the associated symmet-

ric DHOs obtained from the Knuth operations. If one of our DHOs would be

orthogonal, its associated symmetric DHO would even be alternating. Assume

that the additive map B′ : F → End(F ) defines the additively closed DHO-set

of this alternating DHO. Then define a mapping κ : F → F by setting κ(0) = 0

and defining κ(a) as the nontrivial element in kerB′(a) for a 6= 0. Then by

Taniguchis [17, Prop. 3] κ would be linear. So one needs to rule out the linear-

ity of κ. However to verify this non-linearity seems to be somewhat unpleasant.

We close this section with a simple series of orthogonal, non-bilinear DHOs.
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Example 4.17. For y ∈ F define a F2-linear mapping B(y) by

xB(y) = xy2 +Tr(xy)y

and set

D = {Sy | y ∈ F}, Sy = {(x, xB(y)) | x ∈ F}.

Then D is an orthogonal DDHO. Indeed, this follows immediately from the

projection method in [6]. However an ad hoc verification is simple too:

Lemma 4.18. The set D is an orthogonal DHO. The group M = {µa : (x, y) 7→
(a−1x, ay) | a ∈ F ⋆} is a group of automorphisms of D.

Sketch of the proof. Clearly, the operators B(y) are skew symmetric. Note that

(x, xB(y))µa = (z, zB(ya)) for y = z−1x, i.e. Syµa = Sya. So in order to show

that D is a DHO it is enough to show

(1) {S0 ∩ Sy | y 6= 0} is the set of 1-spaces of S0 and

(2) {S1 ∩ Sy | y 6= 1} is the set of 1-spaces of S1.

But clearly S0 ∩ Sy = 〈(y−1, 0)〉 for y 6= 0 and (1) follows.

We now prove (2). We already know S0 ∩ S1 = 〈(1, 0)〉. Let y ∈ F − {0, 1}
and (x, xB(1)) ∈ Sy. Then

xy2 +Tr(xy)y = x+Tr(x).

We determine the non-trivial solutions of this equation.

Note first that Tr(xy) 6= Tr(x): If Tr(xy) = Tr(x) = 0, we get y = 1, a

contradiction. If Tr(xy) = Tr(x) = 1, we get x = y/(y2+1) and then Tr(x) = 0,

a contradiction.

If Tr(1/(1 + y2)) = 1, we see that x = 1/(1 + y2) is a solution, whereas if

Tr(1/(1 + y2)) = 0, then x = y/(1 + y2) is a solution. Since 1/(1 + y2) and

y2/(1 + y2) have different traces we see that all solutions are different. Also

from the fact Tr(xy) 6= Tr(x) one deduces that for a fixed y there is at most one

non-trivial solution. �

Lemma 4.19. The DHOs from Example 4.17 are not bilinear.

Proof. We take the notation from Example 4.17 and assume that D is a bilin-

ear DHO of rank n. Then there exists a translation group T in the automor-

phism group with the following properties: The group is an elementary abelian

2-group of order 2n which acts regularly on D, the DHO splits over W = CV (T ),

and T acts trivially on V/W . By [5, Thm. 4.10] the translation group is normal

in the automorphism group of the DHO. Therefore the cyclic group M of order
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2n − 1 from the proof of Lemma 4.18 fixes W . The only proper M -spaces in V

are S0 = F × 0 and S′ = 0 × F : After tensoring with F we see that µa ∈ M

has the eigenvalues a−1, a−2, a−4, . . . on F ⊗ S and on F ⊗ S′ the eigenvalues

are a, a2, a4, . . . . This shows W = S′. As T is elementary abelian there exists

an isomorphism τ : (F,+) → T such that S0τy = Sy. From the properties of the

translation group we deduce

(x1, x2)τy = (x1, x1B(y) + x2).

But then {B(y) | y ∈ F} is an additive subgroup of End(F ). It is easily checked

that this is not true. So D is not bilinear. �

5. Associated bent functions, isomorphisms

We now determine the bent functions which are associated with the examples

of the previous section (in the sense of Theorem 1.2).

Let D be a DDHO of rank n in the space V = V (2n, 2), which splits over the

subspace W of V . We call the characteristic function of the set (
⋃

S∈D
S) − 0

the small bent function and the characteristic function of the set W ∪
⋃

S∈D
S

the big bent function associated with the DDHO.

We recall from [4]: Let Q be a quadratic form of (+)-type on V = V (2n, 2),

S(V ) the set of singular vectors, and U a totally singular subspace of dimension

m. Then the characteristic function of (S(V ) ∩ U⊥) ∪ (V − U⊥ − S(V )) is a

bent function, which was called standard parabolic of degree m in [4]. Finally,

we recall that two boolean functions f1 and f2 on V are called equivalent iff

there exist T ∈ GL(V ), v ∈ V , a linear functional λ on V , and a ∈ F2 such that

f2(x) = f1(xT + v) + λ(x) + a.

The bent functions associated with the the orthogonal DHOs, in particular

the DDHOs Dr,−r from Example 4.1 and the DDHOs from Example 4.17 are

determined by the following result.

Proposition 5.1. The big bent function of an orthogonal DHO of rank n is equiv-

alent to a nondegenerate, quadratic form in 2n-variables. The small bent function

is equivalent to a standard parabolic bent function of degree n.

Proof. Let Q be a nondegenerate, quadratic form of (+)-type on V = V (2n, 2).

Let D be an orthogonal DHO of rank n in V , which splits over the totally singular

subspace W . Since |S(V )| = |W ∪
⋃

S∈D
S| we have that the big bent function

is Q + 1. Now W = W⊥. This shows that the characteristic function of the

complement of (
⋃

S∈D
S) − 0 consists of W and the non-singular vectors in
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V − W and is therefore standard parabolic of degree n. So the small bent

function is equivalent to a standard parabolic bent function of degree n. �

Proposition 5.2. Let f be a bent function associated with a DDHO D = Dr,t,

t 6= −r, from Example 4.1. Then f is a small or big bent function of cyclic trace type

(in the sense of [4, (3.2)]) according as to whether f is big or small respectively.

Proof. We use the terminology of Example 4.1, i.e D = {Sy | y ∈ F} with

Sy = {(x, x2ry+x2−r

y2
t

) | x ∈ F} is a DDHO of rank n. We set B =
⋃

a∈F Sa−0

and want to show that the characteristic function is a bent function of cyclic

trace type in the sense of [4].

Let 0 < k < 2n be the unique number such that

k(2r+t − 2r) ≡ 22r+t − 1 (mod 2n − 1).

By the choice of k for any x ∈ F ⋆ we have

x(2r−k)2t = x2−r
−k,

which shows

Tr(x−k(x2ry + x2−r

y2
t

)) = Tr(x2r−ky + x2−r
−ky2

t

))

= Tr(x2r−ky + (x2r−ky)2
t

) = 0.

So

B = {(a, akb) | a ∈ F ⋆, b ∈ F0}, with F0 = {x ∈ F | Tr(x) = 0},

whose characteristic function is a small bent function of cyclic trace type in the

terminology of [4, (3.2)]. Similarly, one sees that the characteristic function of

B ∪ 0× F is a big bent function of cyclic trace type. �

In order to describe the bent functions associated with Examples 4.3, 4.6,

and 4.9, we introduce a series of bent functions related to the bent functions of

parabolic type from [4].

Proposition 5.3. Let Q be a quadratic form of (+)-type on V = V (2n, 2), n > 3.

Let S(V ) be the set of singular vectors and W be a totally singular subspace of

dimension n.

(a) Let W0 be a n-dimensional subspace such that (S(V ) −W ) ∩W0 = ∅. Then

the characteristic function of B = (S(V ) −W ) ∪W0 is a bent function. Fur-

thermore, W0 = A ⊕ (W ∩ W0) with an anisotropic space A of dimension

≤ 2.
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(b) There exist subspaces W0 and A satisfying the assertions of (a), such that

dimA = 0, 1, or 2 holds.

(c) Let W0, A, and B be as in (a). Let T ∈ GL(V ) be a transformation which

leaves B invariant. Then T is an isometry. More precisely, T is contained

in O(V,Q)W∩W0,W0
, the common stabilizer in the orthogonal group of the

subspaces W ∩W0 and W0.

Proof. (a) Assume first n ≡ 0 (mod 2). Then V has an orthogonal spread S

which contains W (see for instance [12, Sec. 4]). Then (S− {W}) ∪ {W0}
is a partial spread of size 2n−1 + 1. So the characteristic function of B is a

bent function of partial spread type (see [9], [10, Corollary 1]).

Assume now n ≡ 1 (mod 2). Then there exists an orthogonal DHO D which

splits over W . For instance we can choose a DHO Dr,−r of Example 4.1 or

the DHO of Example 4.17. But then we can apply Theorem 1.2 to B.

Write W0 = Rad(W0)⊕A where Rad(W0) = {x ∈ W0 ∩W⊥
0 | Q(x) = 0} is

the radical of W0. Form the choice of W0 we know that the singular vectors

of this space lie in W . If A is not anisotropic, then A contains a hyperbolic

pair {v, w} of singular vectors, i.e. v and w are not perpendicular to each

other. This follows from the well known classification of quadratic forms

over finite fields. But then v and w cannot both lie in W , a contradiction.

Thus A is anisotropic, W0 ∩W = Rad(W0), and again by the classification

of quadratic forms over finite fields we have dimA ≤ 2.

(b) We need to find W0 such that the anisotropic part has dimension 1 or 2. Let

{v1, . . . , vn, w1, . . . , wn} be a basis of singular vectors, such that β(vi, wj) =

δij , and β(vi, vj) = β(wi, wj) = 0 for all 0 ≤ i, j ≤ n, where β is obtained by

polarization from Q. Set W0 = 〈v1+w1, v2, . . . , vn〉 and W ′
0 = 〈v1+w1, v1+

v2 +w2, v3, . . . , vn〉. Then dimRad(W0) = n− 1 and dimRad(W ′
0) = n− 2.

(c) We claim that ST is totally singular for S ∈ D: Assume ST is not to-

tally singular. From the classification of quadratic forms over finite fields

we deduce that ST contains at least 2n−1 − 2n−2 = 2n−2 nonsingular

vectors. Since ST ⊆ B these vectors must lie in W0 − (W0 ∩ W ). As-

sume dim(ST ∩ W0) = m. As W0 ∩ W has codimension dimA in W0

we see that ST contains at most 2m−1 nonsingular vectors, if dimA = 1

and at most 3 · 2m−2 nonsingular vectors, if dimA = 2. In any case we

deduce m ≥ n − 1. Let S 6= S′ ∈ D. If S′T is not singular, we get

n − 2 ≤ dim(ST ∩ S′T ∩ W0) ≤ 1, a contradiction. Hence S′T is sin-

gular and the nontrivial vector in ST ∩ S′T is singular too. But for any

0 6= uT ∈ ST we can find S′ ∈ D such that S ∩ S′ = 〈u〉, which shows

that all elements of ST are singular, contradicting the assumption. So the

claim holds. In particular, singular vectors which are covered by the DHO,
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are still singular after the application of T .

For 0 6= w ∈ W and S ∈ D the space Sw = S ∩ 〈w〉⊥ is a hyperplane and

thus U = 〈w〉 ⊕ Sw is a totally singular n-space such that U − 〈w〉 lies in

B −W0. So UT contains at least 2n − 2 singular vectors, i.e. UT is totally

singular too. This shows that T leaves the set of singular vectors invariant,

i.e. T is an isometry. Also T preserves W0−(W0∩W ), the set of nonsingular

vectors in B. Thus T fixes W0 = 〈W0− (W0 ∩W )〉 and Rad(W0) = W0 ∩W

too. The proof is complete. �

Definition 5.4. Let f be a bent function defined as in Proposition 5.3 and let

d = dimA. We call f a bent function of standard type with defect d.

Here we recall that the nondegenerate, quadratic forms were called bent

functions of standard type in [4]. I.e. ”standard type with defect 0” means

that the bent function is a nondegenerate, quadratic form. Bent functions of

standard type with defect 1 (or 2) resemble closely standard parabolic bent

functions of degree n− 1 (or n− 2): It follows from (c) of Proposition 5.3 that

the automorphism groups are non-isomorphic but that the lowest term of the

derived series of the automorphism groups are isomorphic.

Proposition 5.5. Let f be a bent function associated with a DHO from Exam-

ple 4.3, 4.6, or 4.9 and let n be its rank. The bent function is equivalent to a

standard parabolic bent function of degree n, if f is small, and it is of standard

type with defect 1, if f is big.

Proof. As in the examples we identify V = F × F , F = F2n , and we define two

quadratic forms Q and Q1 on V by

Q(x, y) = Tr(xy), Q1(x, y) = Q(x, y) + Tr(y).

So both quadratic forms polarize to the same symplectic form β, which is de-

scribed in Remark 3.6. We claim that Q1 vanishes on the supports of the small

bent functions. First we consider Example 4.3 and apply Q1 to a typical vector

of the support:

Q1(x, xB(y)) = Q(x, xB(y)) + Tr(xB(y))

= Tr(x2y + x2y2
n−1

+ x5y + x2n−2+1y2
n−2

)

+ Tr(xy + xy2
n−1

+ x4y + (xy)2
n−2

)

= Tr(x2y) + Tr(x2y2
n−1

) + Tr(x4y) + Tr(xy2
n−1

)

= 0.
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In the case of Example 4.6 we get

Q1(x, xB(y)) = Q(x, xB(y)) + Tr(xB(y))

= Tr(x2y + x2Tr(y) + x3y + x2n−1+1y2
n−1

)

+ Tr(xy + xTr(y) + x2y + (xy)2
n−1

)

= 0.

In the case of Example 4.9 we have

Q1(x, xB(y)) = Q(x, xB(y)) + Tr(xB(y))

= Tr(x(xy + xTr(y)) + Tr(xy + x2y + (xy)2
n−1

+ x2n−1

Tr(y))

= 0.

The first assertion follows.

The fixed point set of the translation group is W = 0 × F and the subspace

{(0, y) | Tr(y) = 0} is the radical of W with respect to Q1. The second assertion

follows from Proposition 5.3. �

Lemma 5.6. Let f be a small bent function associated with a DHO from Exam-

ple 4.12. Let n be the rank of the DHO. Then f is not standard parabolic of

degree n.

Proof. As usual we identify V = F × F , F = F2n , and define a quadratic form

Q by

Q(x, y) = Tr(xy).

Assume that f is standard parabolic of degree n. Then there exists a nondegen-

erate, quadratic form Q1 such that the spaces of our DHO D are totally singular

with respect to Q1. By Lemma 3.10 both quadratic form must polarize to the

same bilinear form, i.e. Q1 = Q + λ with a linear functional λ. Since F × 0 =

S0 ∈ D we have 0 = Q1(x, 0) = λ(x, 0). This shows Q1(x, y) = Q(x, y)+λ(0, y).

So we can identify λ with a linear functional on F . Such a linear functional can

be written uniquely as y 7→ Tr(ay). Hence there is a uniquely determined a ∈ F

such that

Q1(x, y) = Q(x, y) + Tr(ay).

Elements in S1 ∈ D have the form (x, x + Tr(x) + Tr(x) + x + x2 + x2n−1

) =

(x, x2 + x2n−1

). Thus Tr(a(x2 + x2n−1

)) = 0 for all x ∈ F . This implies a = 1.

So for all x, y ∈ F we have

0 = Q1(x, xB(y)) = Tr(x · xB(y)) + Tr(xB(y)).
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Firstly,

Tr(x · xB(y)) = Tr
(
x2Tr(y) + xy2

n−2

Tr(x) + xTr(x4y)

+ x2y2
n−1

+ x3y2
n−2

+ x2n−1+1y2
n−3)

= Tr(x)Tr(y) + Tr(x2y2
n−1

)

= Tr
(
x(Tr(y) + y2

n−2

)
)

and secondly

Tr(xB(y)) = Tr
(
xTr(y) + y2

n−2

Tr(x) + Tr(x4y)

+ xy2
n−1

+ x2y2
n−2

+ x2n−1

y2
n−3)

= Tr
(
x(y2

n−1

+ y2
n−3

)
)
.

Clearly, the mapping y 7→ Tr(y) + y2
n−2

+ y2
n−1

+ y2
n−3

has non-zero values

(consider the degree of this polynomial). So for such a y we can choose x such

that

1 = Tr
(
x(Tr(y) + y2

n−2

+ y2
n−1

+ y2
n−3

)
)
= Q1(x, xB(y)).

But this contradicts the assumption, the proof is complete. �

Isomorphisms. We now show that the examples of Section 4 produce essen-

tially nonisomorphic DHOs.

First of all, the DHOs Dr,t, r 6= −t, form Example 4.1 cannot be isomor-

phic to DHOs Dr,−r or to DHOs from Examples 4.3, 4.6, 4.9, 4.12, or 4.17 by

Lemma 4.2. The orthogonal DHOs from Example 4.17 cannot be isommorphic

to the examples from 4.1, 4.3, 4.6, 4.9, or 4.12 by Lemma 4.19. Also the iso-

morphism problem for two DHOs from Example 4.1 has been solved in [21]

and [18].

Since the DHOs from Examples 4.3, 4.6, 4.9, 4.12 are symplectic but not

orthogonal (Proposition 4.16) we only have to exclude isomorphisms between

these examples. A possible isomorphism between DDHOs maps the support of

one small bent function to the support of the small bent function of the other

DDHO. So by Proposition 5.5 and Lemma 5.6 the DHOs from Examples 4.3, 4.6,

and 4.9 cannot be isomorphic to DHOs from Example 4.12.

Finally, to a DHO D on V one can associate a semi-biplane (V,L), L = {S+v |
S ∈ D, v ∈ V }. For the Examples 4.3, 4.6, and 4.9 and dimensions n = 5 and 7

we calculated with the help of a computer the 2-rank of the incidence matrix:

n Example 4.3 Example 4.6 Example 4.9

5 326 327 326

7 3766 3818 3828
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This shows that the DHOs from these examples are pairwise not isomorphic

for dimension 7. Another computer calculation showed that in dimension 5

the DHO from Example 4.3 is isomorphic to the DHO from Example 4.9. We

conjecture, that for dimension ≥ 7 the DHOs from Examples 4.3, 4.6, and 4.9 are

pairwise not isomorphic.

Final remarks.

(a) The selection of the examples of Section 4 was influenced by the author’s

search for bilinear symplectic DHOs of rank 5, which are defined over F2,

i.e. it was assumed that the expression xB(y) is a polynomial in x and y

with coefficients in F2. Some of the examples found by this search lead to

the series in Examples 4.3, 4.6, 4.9, and 4.12.

(b) Since the examples of Section 4 are defined over F2, one observes that the

mapping φ : F × F ∋ (x, y) 7→ (x2, y2) ∈ F × F (F = F2n as usual) induces

an automorphism of order n the DHO. The automorphism groups of the

DHOs of Example 4.1 are determined in [21] and [18]. Using the methods

of [7] it is not hard to show that a DHO of rank n from Example 4.17 has

an automorphism group of the form

M · 〈φ〉 ≃ F
⋆
2n ·Gal(F2n : F2)

(M has the same meaning as in the proof of Lemma 4.18). The computation

of the automorphism groups of DHOs from from Examples 4.3, 4.6, 4.9,

and 4.12 appears to be rather difficult. Computer calculations indicate that

the automorphism group should have the form T · 〈φ〉 (T is the translation

group of the DHO). However the DHO D from Example 4.12 for n = 5

seems to play an exceptional role. In this case the automorphism group has

the form (computer calculation) Aut(D) ≃ T ·Alt(5).

(c) The MAGMA software package [2] was very useful for the computation of

small examples (for instance computations of isomorphisms and automor-

phisms of semi-biplanes) and the investigation of specific polynomials in

two variables over finite fields (for instance finding factorizations).

(d) A computer search of the author for DDHOs of rank 4 was not successful.

We conjecture that DDHOs only exist for odd ranks.

(e) In [6] it will be shown that orthogonal DHOs exist in large numbers. Or-

thogonal DHOs are in particular symplectic. Computer experiments for

rank 5 indicate that the number of symplectic but not orthogonal DHOs

of rank n should be larger than the number of orthogonal DHOs of this

rank. Unfortunately the constructions of [6] are restricted to orthogonal

DHOs only.
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