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Finite elation Laguerre planes admitting a
two-transitive group on their set of

generators

Günter F. Steinke Markus J. Stroppel∗

Abstract

We investigate finite elation Laguerre planes admitting a group of auto-
morphisms that is two-transitive on the set of generators. We exclude the
sporadic cases of socles in two-transitive groups, as well as the alternat-
ing and Suzuki groups and the cases with abelian socle (except for the
smallest ones, where the Laguerre planes are Miquelian of order at most
four). The remaining cases are dealt with in a separate paper. We prove
that a finite elation Laguerre plane is Miquelian if its automorphism group
is two-transitive on the set of generators. Equivalently, each translation
generalized quadrangle of order q with a group of automorphisms acting
two-transitively on the set of lines through the base point is classical.

Keywords: Laguerre plane, elation group, translation generalized quadrangle, oval,
generalized oval, pseudo-oval, two-transitive group, socle

MSC 2000: 51E25, 51B15, 20B20, 51E12

1. Introduction

A finite Laguerre plane L of order n is an orthogonal array of strength 3 on n sym-
bols (levels), n+1 constraints and index 1, cf. [1], or equivalently, a transversal
design TD1(3, n+1, n). Since we have a more geometric point of view we rather
use the term Laguerre plane instead of orthogonal array or transversal design,
see Section 2 for an explicit definition.

∗This research was supported by a Visiting Erskine Fellowship from the University of Canterbury
for the second author.
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Models of finite Laguerre planes can be obtained as follows. Let O be an
oval in the Desarguesian projective plane P2 = PG(2, q), for a prime power q.
Embed P2 into 3-dimensional projective space P3 = PG(3, q) and let v be a
point of P3 not belonging to P2. Then P consists of all points of the cone with
base O and vertex v except the point v. Generators are the traces of lines of P3

through v that are contained in the cone. Circles are obtained by intersecting P

with planes of P3 not passing through v. In this way one obtains an ovoidal

Laguerre plane of order q. If the oval O one starts off with is a conic, one obtains
the Miquelian Laguerre plane of order q. All known finite Laguerre planes of
odd order are Miquelian and all known finite Laguerre planes of even order are
ovoidal. In fact, it is a long standing problem whether or not these are the only
finite Laguerre planes. (There are many non-ovoidal infinite Laguerre planes
though.)

Some partial results in this direction were obtained by combining the classifi-
cations for finite projective planes of small orders and their ovals, see Section 2
for a description of the relation of Laguerre planes to projective planes and
ovals. In this way it was shown that a Laguerre plane of order at most nine
must be ovoidal, see Theorem 2.2 below. In [7] and [30] it was shown by a
computer search that translation Laguerre planes and elation Laguerre planes
of order 16 must be ovoidal.

Finite elation Laguerre planes were introduced in [35] and [26], see Sec-
tion 2 for a description of the structure of finite elation Laguerre planes. They
are characterized by the existence of a group of automorphisms that acts triv-
ially on the set of generators and regularly on the set of circles. This group
of automorphisms, which we call the elation group of the Laguerre plane, is
unique and potentially plays a role analogous to the translation group of finite
translation planes. In fact, elation Laguerre planes are linked to dual translation
planes since such Laguerre planes can be described as dual translation planes
with collections of certain ovals, see Section 2.

Every ovoidal Laguerre plane is an elation Laguerre plane, but there are infi-
nite non-ovoidal elation Laguerre planes; see, for example, [25]. Hence elation
Laguerre planes form a proper generalization of the notion of ovoidal Laguerre
planes. In [14], elation Laguerre planes were further characterized as weakly
Miquelian Laguerre planes, that is, those Laguerre planes in which a certain
variation M2 of Miquel’s configuration, which characterizes the Miquelian La-
guerre planes, is satisfied. From this perspective, elation Laguerre planes are
‘closest’ to the Miquelian planes. Finally, a finite elation Laguerre plane of or-
der q is also equivalent to a generalized oval (or pseudo-oval) with q + 1 points
and thus to a translation generalized quadrangle of order q, i.e., with parame-
ters (q, q). See [4], [12], [36], and Remark 2.7 below for a brief discussion of
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this relationship. All of this indicates that elation Laguerre planes form a nice
subclass of Laguerre planes and that, if there are finite non-ovoidal Laguerre
planes, elation Laguerre planes certainly are a natural class to look for them.

Doubly transitive groups of automorphisms have been investigated for var-
ious geometries, see for example [6], [23], [11], [9], [13], [8], [36, 8.5]. In
this note we follow the program for finite translation planes to construct such
planes from information about a suitable group in the translation complement
of the collineation group and to classify all arising planes. The most homoge-
neous assumption one can make is that the automorphism group of the elation
Laguerre plane is doubly transitive on the set of generators. Formulated in the
language of translation generalized quadrangles [36, Theorem 8.5.1] shows
that such an elation Laguerre plane of even order must be Miquelian, see also
Theorem 3.2. Our main result is that if the automorphism group of the elation
Laguerre plane is doubly transitive on the set of generators, then the Laguerre
plane is Miquelian. Furthermore, the socles of the stabilizer of a circle are de-
termined, see Main Theorem 3.10 and its Corollary 3.11 in terms of translation
generalized quadrangles.

It should be noted that, on the one hand, there are infinite Laguerre planes
that are not elation Laguerre planes but whose automorphism groups are dou-
bly transitive on the set of generators, see [17]. On the other hand, there are
infinite elation Laguerre planes whose automorphism groups are not doubly
transitive on the set of generators, see for example [16]. However, the clas-
sification of topological, locally compact, 2- or 4-dimensional Laguerre planes
admitting large groups of automorphisms (see [28, Section 5] and the refer-
ences given there) shows that such an elation Laguerre plane is Miquelian if its
automorphism group is doubly transitive on the set of generators.

2. Elation Laguerre planes

Explicitly, a finite Laguerre plane L = (P, C,G) of order n, n ≥ 2, consists of a
set P of n(n+ 1) points, a set C of n3 circles and a set G of n+ 1 generators (or
parallel classes), where circles and generators are both subsets of P , such that
the following three axioms are satisfied:

(G) G partitions P and each generator contains n points.

(C) Each circle intersects each generator in precisely one point.

(J) Three points no two of which are on the same generator can be uniquely
joined by a circle.
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The internal incidence structure Ax at any point x of a Laguerre plane has
the collection of all points not on the generator through x as point set and, as
lines, all circles passing through x (without the point x) and all generators not
passing through x. From the definition of a Laguerre plane it readily follows
that each internal incidence structure is an affine plane of order n, the derived

affine plane at x. The projective completion Px of Ax will be called the derived

projective plane at x.

A circle C, not incident with the distinguished point x, induces an oval in Px:
we delete the unique point incident with C and the generator [x] through x

and add the point ω at infinity that corresponds to the set of generators. Note
that each oval arising in this way from circles of L passes through the common
point ω and has the line at infinity of Ax as a tangent. Thus a Laguerre plane
corresponds to a projective plane with sufficiently many of these ovals, pairwise
intersecting in at most two affine points. This planar description of a Laguerre
plane must then be extended by the points of one generator where one has to
adjoin a new point to each line and to each oval of the affine plane, as above.

Using Segre’s result [24] that every oval in a finite Desarguesian projective
plane of odd order is a conic, the following characterization of finite Miquelian
Laguerre planes was obtained in [5] or [21, VII.2].

Theorem 2.1. A finite Laguerre plane of odd order with one Desarguesian deriva-

tion is Miquelian. �

For small orders this and the results of [27] and [29] imply the following.

Theorem 2.2. A Laguerre plane of order at most ten is ovoidal and, in fact,

Miquelian except in case of order eight. �

An automorphism of a Laguerre plane L is a permutation of the point set that
maps circles onto circles and generators to generators. All automorphisms of L
form a group with respect to composition, the automorphism group Aut(L)

of L. This group acts on the set G of generators; the kernel of that action
is denoted by ∆. The collection of all automorphisms that fix each generator
globally but fix no circle, together with the identity forms a normal subgroup E

in Aut(L), see [26]. If L is an elation Laguerre plane then E has maximal order
and is the elation group of L, acting regularly on the set of circles. An element
of E induces an elation with center ω in the derived projective plane at any of
its fixed points. Indeed, one has the following, compare [25].

Theorem 2.3. Let L be an elation Laguerre plane of finite order q.

1. Each derived projective plane of L is a dual translation plane; the translation

center is the point ω at infinity of vertical lines.
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2. The order q is a prime power.

3. If q is a prime then L is Miquelian.

4. Each oval induced by a circle of L in a derived projective plane passes through

the translation center ω and has the line at infinity as a tangent. �

For elation Laguerre planes of order 16 a computer search was conducted
in [30] and the following result was obtained.

Theorem 2.4. An elation Laguerre plane of order 16 is ovoidal. �

Extending the usual representation of dual translation planes, a description
of elation Laguerre planes in terms of a matrix-valued map was developed
in [26, Theorem 3], see also [35]. Let M(3m,m;F) denote the set of all 3m×m

matrices over F, and let ∞ be any symbol not in F
m.

Theorem 2.5. Let L = (P, C,G) be a elation Laguerre plane of order q = re. There

are a divisor m of e and a matrix-valued map D : Fm∪{∞} → M(3m,m;F) where

F := Fre/m , such that L can be represented in the following form.

1. The point set is P = (Fm ∪ {∞})× Fm ,

2. the generators are the verticals {a} × Fm of P for a ∈ Fm ∪ {∞},

3. the set of circles is C = {Kc | c ∈ F3m}, where a circle Kc is described as

Kc =
{
(x, c ·D(x)) ∈ P

∣∣ x ∈ Fm ∪ {∞}
}

.

4. The elation group E consists of all maps (x, y) 7→ (x, y + c · D(x)),

for c ∈ F 3m.

5. For each t ∈ F r {0} the map δt : (x, y) 7→ (x, t · y) belongs to ∆ (i.e., is an

automorphism that fixes each generator globally) and fixes the circle K0.

The special value m = 1 yields an ovoidal Laguerre plane. Also note (cf. [26,
3.5 a)]) that every elation Laguerre plane of order q has a representation as in
Theorem 2.5 over the prime field Fr, that is, for m = e.

Remark 2.6. For any point x on the circle K, the stabilizer ∆K induces a group
of homologies in the derived projective plane Px. By [18, Theorem 1.12] these
homologies form a subgroup of the multiplicative group of the kernel of the
translation plane obtained as dual of Px. This subgroup is the multiplicative
group of a field F (embedded in Fq), and we can represent the elation Laguerre
plane over F as in the theorem above. In analogy to the situation in translation
planes we call the largest field over which L can be represented as in Theo-
rem 2.5 the kernel of L. The group ∆K is the multiplicative group of the kernel
of L and thus cyclic; its order divides q − 1.
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Remark 2.7. In the representation of an elation Laguerre plane over F = Fr

where r = pe/m (so that q = rm) as in the theorem above the elation group E

is a 3m-dimensional vector space over F, and the stabilizer Ex of each point x
on K0 is a 2m-dimensional vector subspace of E. The geometric axioms of a
Laguerre plane imply that the collection of q+1 vector subspaces of E is a dual
pseudo-oval in the notation of [12] and [15].

Under a duality the Ex yield a family of q+1 vector subspaces of dimension m

in F
3m. Passing over to projective notation one sees that, geometrically, a finite

elation Laguerre plane of order q as described above is equivalent to a (q+1)-set
of (m− 1)-dimensional subspaces in the (3m− 1)-dimensional projective space
PG(3m−1, r) over F, compare [4], [35] and [26, Theorem 4]. In [36] such a set
is called a generalized oval. More precisely, a generalized oval in PG(3m− 1, r)

is a collection of rm + 1 projective subspaces πi of dimension m − 1 such that
any three of the πi generate the entire PG(3m − 1, r). It follows that for each
i = 0, . . . , rm there is a (2m−1)-dimensional projective subspace τi, the tangent
space of the generalized oval at πi, that contains πi and is disjoint from any πj

where j 6= i.

One obtains a translation generalized quadrangle of order q from a general-
ized oval, and on the other hand, every translation generalized quadrangle of
order q arises from a generalized oval in this way, see [36, Section 3.5] or [22,
Section 8.7]. In fact, a generalized oval is just a Kantor system (or fourgonal
family) in an abelian group, cf. [37, 4.9.2, 4.9.5].

Note that the Lie geometry of a Laguerre plane of odd order q yields a gener-
alized quadrangle of order q, see [22, Theorem 2.4.2]. However, this construc-
tion does not work when q is even. In the case of an elation Laguerre plane, the
generalized quadrangle obtained in this way even is a translation generalized
quadrangle.

3. Doubly transitive groups

We consider a finite elation Laguerre plane L. We assume that Aut(L) is doubly
transitive on the set G of generators of L. Since ∆ acts trivially on G, our as-
sumptions imply that the stabilizer Aut(L)K is doubly transitive on G or, equiv-
alently, on the points of the fixed circle K.

In order to make our results more readily applicable, we will study a two-
transitive subgroup Γ of Aut(L)K . The pointwise stabilizer (i.e., the intersection
of Γ with ∆) will be denoted by Γ[K]. Let Q := Γ/Γ[K] and π : Γ → Q be the
natural homomorphism.
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As the group Aut(L) is two-transitive on G, it is also point-transitive and
in fact transitive on the incident point-circle pairs. Hence all derived planes
of the elation Laguerre plane L are isomorphic to each other and L can be
reconstructed as a coset geometry from Aut(L) ([10], see also [33]).

We begin with the ovoidal case.

Theorem 3.1. A finite ovoidal Laguerre plane whose automorphism group is dou-

bly transitive on the set of generators is Miquelian.

Proof. An ovoidal Laguerre plane L of order q is embedded in 3-dimensional
projective space PG(3, q). Thus each derived affine plane is Desarguesian. If L
has odd order then L is Miquelian by Theorem 2.1. If q is even then the tran-
sitivity assumption on L implies that the oval O in PG(2, 2h), which forms the
base of the cone that is the point set of L, has a collineation group which is dou-
bly transitive on O. The two-transitive ovals are known to be conics, see [19,
Theorem 1.3 and the remark following it]. But then L is again Miquelian. �

In the even order case the above Theorem has been generalized in [36, The-
orem 8.5.1] to generalized ovals (and thus to finite elation Laguerre planes)
without the use of the classification of finite simple groups. We reformulate
[36, Theorem 8.5.1] in the language used here:

Theorem 3.2. A finite elation Laguerre plane of even order whose automorphism

group is doubly transitive on the set of generators is Miquelian.

Proof. As outlined in Remark 2.7 a finite elation Laguerre plane L of order q is
equivalent to a generalized oval O in PG(3m − 1, r) for some subfield Fr of Fq

where q = rm. If the automorphism group of L is doubly transitive on the set of
generators, then O is a two-transitive generalized oval in the notation of [36].
By [36, Theorem 8.5.1] the translation generalized quadrangle T(O) which
arises from a two-transitive generalized oval O is isomorphic to the classical
generalized quadrangle Q(4, q) whose points and lines are the points and lines
of a nonsingular quadric of projective index 1 in PG(4, q). Hence O is classical.
But then the elation Laguerre plane is Miquelian. �

The authors of [36] have informed us that the following argument should
be added in order to complete the proof of their Theorem 8.5.1. The set-up
in that proof (we are using the notation of [36, Theorem 8.5.1] here; their q

corresponds to our r and n is our m) is that α is an involution which leaves O

invariant and fixes precisely one element π ∈ O; such an α is considered as an
element of PΓL(3n, q). The following lines are to show that α is induced by a
linear bijection of F3n

q .
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Assume otherwise, then α induces a Baer involution on the PG(3n − 1, q)

containing the generalized oval O. Let η be the nucleus of O. The fixed points
of α in PG(3n − 1, q) are not all contained in the subspace 〈π, η〉, so there is a
second space 〈π′, η〉 fixed by α with π′ ∈ O. Hence π and π′ are fixed by α. This
contradiction leaves only the possibility that α is induced by a linear bijection.

Abelian socles

A first step towards the understanding of the double transitive groups is already
due to Burnside [2, p. 202]; compare also [3, Prop. 5.2]:

Theorem 3.3. If Ψ is a finite doubly transitive and effective group on v points,

then Ψ contains a transitive normal subgroup Σ (the socle of G) and either Σ is

elementary abelian or Σ is a non-abelian simple group. �

For the case of an elementary abelian socle the following straightforward
result (see [20, Lemma 19.3]) will be helpful.

Lemma 3.4. Let r, s be primes and e, f be positive integers such that re + 1 = sf .

Then one of the following holds:

1. s = 2, e = 1 (r is a Mersenne prime);

2. r = 2, f = 1 (s is a Fermat prime);

3. r = 2, e = 3, s = 3, f = 2.

Proposition 3.5. Let L be a finite elation Laguerre plane admitting a group Γ of

automorphisms fixing a circle K and two-transitive on K. If the socle of Q :=

Γ/Γ[K] is abelian then L is a Miquelian Laguerre plane of order q ∈ {2, 3, 4}.

Proof. Let re be the order of L. The socle has order sf for some prime s and acts
regular on G, see Theorem 3.3. Thus we have re+1 = |G| = sf , and Lemma 3.4
leaves three cases to consider.

Case 1: s = 2, e = 1. Then L has prime order q = r and is Miquelian
by Theorem 2.3. Any Sylow 2-subgroup S of PΓL(2, r) = PGL(2, r) has or-
der 2(r + 1) = 2f+1, and contains a cyclic subgroup of order 2f (from the mul-
tiplicative group of a field of order r2 contained in the matrix ring M(2, 2;Fr)).
The elementary abelian socle Σ of Q then meets that cyclic group in a cyclic
subgroup of order at least 2f−1. This yields f ≤ 2, and q = r = 3 follows.

We note that PΓL(2, 3) = PGL(2, 3) ∼= S4 contains a unique candidate for Q,
namely the alternating group A4

∼= AGL(1, 4).
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Case 2: r = 2, f = 1. In this case L has even order and is Miquelian by
Theorem 3.2.

The socle has prime order s = 2e+1 and thus is cyclic. Hence Q is contained
in the affine group AΓL(1, q) = AGL(1, q) and then actually coincides with
AGL(1, q) because it has the same order (being two-transitive). In particular,
the stabilizer of a point in K is cyclic, and is a Sylow 2-subgroup of Q.

Let G be a Sylow 2-subgroup of Γ. The order of ∆K divides 2e − 1, see
Remark 2.6. Thus it is odd, and G has trivial intersection with ∆K . Thus
G ∼= π(G) is cyclic of order q − 1 = 2e. Furthermore, G is faithfully and linearly
represented on E∞

∼= F2e
2 , that is, we have an embedding ρ : G → GL(2e, 2).

Since a generator g of G has order 2e and because x → x2 is injective in any
field of characteristic 2, we see that 1 is the only eigenvalue of ρ(g) and that ρ(g)
is unipotent in GL(2e, 2). Hence (ρ(g) + I)2e = 0 . If e ≥ 4 one sees by
induction that 2e ≤ 2e−1 so that ρ(g)2

e−1

= I, contradicting the fact that the
order of g is 2e. Hence e ≤ 3 and q ∈ {2, 4, 8}. As 8 + 1 is not a prime, only the
cases q ∈ {2, 4} remain. (Note that Theorem 2.2 then again implies that L is
Miquelian.)

We identify the group Q inside the group PΓL(2, q) induced by the stabilizer
of the circle in the Miquelian plane, as follows.

• For q = 2 we have PΓL(2, 2) = PGL(2, 2) ∼= S3, and Q = PGL(2, 2)

follows.

• For q = 4 we have PΓL(2, 4) ∼= S5, and Q is the normalizer of a Sylow
5-subgroup.

Note that Q is substantially different from the other minimally two-transi-
tive subgroup of S5, namely the simple group A5. One may interpret
the group Q as the smallest (and non-simple) example Sz(2) of a Suzuki
group.

Case 3: r3 = 8, sf = 9. Then L has order 8, is ovoidal by Theorem 2.2,
and Miquelian by Theorem 3.1 or Theorem 3.2. In this case, the Sylow 3-
subgroup Σ of Q is elementary abelian of order 9, and the Sylow 2-subgroups
of Q induce subgroups of order 8 in Aut(Σ) ∼= GL(2, 3). One of the candidates
is the multiplicative group of a field of order 9, this is cyclic and intersects each
other group of order 8 in GL(2, 3) in a cyclic subgroup of order 4 at least because
the Sylow 2-subgroups of GL(2, 3) have order 24.

The group PΓL(2, 8) induced by the stabilizer of a circle in the Miquelian
plane of order 8 has elementary abelian Sylow 2-subgroups, and contains no
elements of order 4. Thus the present case is indeed impossible. �



I I G

◭◭ ◮◮

◭ ◮

page 10 / 17

go back

full screen

close

quit

ACADEMIA

PRESS

The simple non-abelian case

The two-transitive groups with non-abelian socle are also known explicitly (thanks
to the classification of finite simple groups). The list given in Table 1 can be
found1, for instance, in [3] or [13].

Σ v remarks/restrictions
An n n ≥ 6, (two representations if n = 6)
PSL(d, f) (fd − 1)/(f − 1) d ≥ 2, (d, f) /∈ {(2, 2), (2, 3)}

(two representations if d > 2)
PSU(3, f2) f3 + 1 f > 2

Sz(22a+1) 24a+2 + 1 a > 0, Suzuki groups: 2B2(2
2a+1)

R(32a+1) 36a+3 + 1 a > 0, Ree groups: 2G2(3
2a+1)

PSp(2d, 2) 22d−1 ± 2d−1 d > 2

PSL(2, 11) 11 (two representations)
A7 15 (two representations)
PSL(2, 8) 28 socle of R(3)
Mn n Mathieu groups, n ∈ {11, 12, 22, 23, 24}

(two representations if n = 12)
M11 12 Mathieu group
Co3 276 Conway group
HS 176 Higman-Sims group (two representations)

Table 1: Non-abelian socles: all possibilities

Theorem 3.6. Let Q be a finite group that acts two-transitively and faithfully on

a set with v points. If the socle Σ is not abelian then Σ is one of the groups listed

in Table 1. �

Note that the value of f in the different cases in Table 1 will always be a
prime power. The group Q will be contained in the automorphism group of its
socle.

There are some isomorphisms between these groups. For example, one has
PSL(2, 4) ∼= A5

∼= PSL(2, 5), PSL(2, 7) ∼= PSL(3, 2), PSL(2, 9) ∼= A6, and
PSL(4, 2) ∼= A8, which shows that a group may have two non-equivalent two-
transitive permutation representations. The second permutation representation
of A6 arises from PSp(4, 2) ∼= S6, cf. [34] or [32]. We have left out the natu-
ral action of A5 in the first row because that action is equivalent to the action
of PSL(2, 4) occurring in the second (and we will treat the action of PSL(2, 2e)
systematically in [31]).

1 We have modified the names for the parameters to avoid confusion with our fixed meaning
for q. Also, we use the order f2 of the quadratic extension field for the unitary groups.
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Proposition 3.7. Let L be a finite elation Laguerre plane of order q admitting

a group Γ of automorphisms fixing a circle K and acting two-transitively on K.

Assume that Q := Γ/Γ[K] has non-abelian socle Σ. Then Σ is one of the groups

listed in Table 2 (and q is a prime power).

Σ q restrictions reference
Aq+1 q prime power q ≥ 4 Proposition 3.8
PSL(2, q) q q 6= 2, 3, d = gcd(2, q − 1) [31]
PSU(3, f2) f3 f > 2, d = gcd(3, f + 1) [31]
R(32a+1) 36a+3 a > 0 [31]
PSL(2, 8) 33 socle of R(3) [31]
PSp(6, 2) 33 Proposition 3.9

Table 2: Non-abelian socles: the restricted list

Proof. If Q arises from a circle stabilizer in the automorphism group of an ela-
tion Laguerre plane L then q = v−1 must be a prime power re by Theorem 2.3.
If v − 1 is actually a prime r then L is the Miquelian plane of order r, and the
socle Σ occurs as a subgroup of PSL(2, r). These two observations exclude all
the Mathieu groups (Mn for n ∈ {11, 12, 22, 23, 24}), the Conway group Co3 and
the Higman-Sims group HS.

Of the other groups not occurring in families in Table 1 only the socle PSL(2, 8)

of R(3) acts on a set of the right size, that is, of the form 1 plus a proper prime
power.

Finally, we discuss the groups occurring in families.

• PSL(d, f): If (fd − 1)/(f − 1) = fd−1 + · · ·+ f +1 = f(fd−2 + · · ·+1)+1

is of the form 1 plus a prime power, then the prime involved must be the
same as in f and the sum in the parentheses fd−2 + · · · + 1 must be 1.
Hence d = 2.

• PSp(2d, 2): Let ε = ±1. Then re = 22d−1 + ε2d−1 − 1 = (2d − ε)(2d−1 + ε)

and r is odd. Furthermore, because d > 2, we find that 2d−ε ≥ 2d−1 > 1

and 2d−1 + ε ≥ 2d−1 − 1 > 1. Hence 2d − ε = rl and 2d−1 + ε = rk for
some 1 ≤ k ≤ l < m. But then rk divides pl + pk = 2d−1 · 3 so that r = 3

and k = 1. Thus 2d−1 + ε = 3 which implies ε = −1 and d = 3. Therefore
only PSp(6, 2) acting on a set of size 25 − 22 = 28 = 33 + 1 can possibly
occur.

• Sz(22a+1): In this case L has even order and thus is Miquelian by The-
orem 3.2. Since Sylow 2-subgroups of Sz(22a+1) are non-abelian when
a > 1 (see, for example, [18, Theorem 24.2]) whereas those of PSL(2, q),
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the socle of a circle stabilizer in the automorphism group of the Miquelian
Laguerre plane or order q, are, one sees that this case cannot occur. �

In the present paper, we are going to eliminate the groups An (for n > 5,
see Proposition 3.8) and PSp(6, 2) (see Proposition 3.9) from Table 2. The
remaining cases (PSL(2, q), unitary groups, Ree groups, and the socle PSL(2, 8)

of the smallest Ree group R(3)) are treated in a separate paper [31]. There
we show that only the groups PSL(2, q) actually occur, and the corresponding
Laguerre planes are Miquelian.

Proposition 3.8. Let L be a finite elation Laguerre plane of order q > 4 admitting

a group Γ of automorphisms fixing some circle K and two-transitive on K. Then

the socle of Q := Γ/Γ[K] is not isomorphic to Aq+1.

Proof. Aiming at a contradiction, we assume that the socle Σ of Q is isomorphic
to Aq+1. Let π : Γ → Q be the restriction map, and let G := π−1(Σ) ≤ Γ denote

the full pre-image of the socle. The order of that pre-image is then |G| = (q+1)!
2 d

where d = |Γ[K]| divides q − 1, see Remark 2.6. In particular, 1 ≤ d ≤ q − 1.

For u ∈ K we consider the stabilizer Gu in G. Then π(Gu) ≤ Σ is the
stabilizer of u in Σ. Thus π(Gu) ∼= Aq is simple, and |Gu| =

q!
2 d. The group Gu

acts on the set [u]r{u} of q−1 points. The kernel Nu of that action is not trivial
because (q − 1)! < |Gu|.

As ∆K acts semi-regularly outside K, the intersection ∆K ∩Nu is trivial, and
π(Nu) ∼= Nu is a normal subgroup of the simple group Σu

∼= Aq. We have just
noted that Nu is not trivial; so π(Nu) = Σu has order q!

2 .

Now pick three different points x, y, z ∈ K. Then

|Nx ∩Ny| =
|Nx| · |Ny|

|NxNy|
≥

|Nx|
2

|G|
=

q!

2d(q + 1)
and

|Nx ∩Ny ∩Nz| =
|Nx ∩Ny| · |Nz|

|(Nx ∩Ny)Nz|
≥

q!

2(d(q + 1))2
≥

q!

2(q + 1)2(q − 1)2
;

we have used d ≤ q − 1 for the last inequality. The sequence whose n-th term
is n!

2(n+1)2(n−1)2 is strictly increasing for n ≥ 5. Therefore, |Nx ∩ Ny ∩ Nz| ≥
7!

2·82·62 = 35
32 > 1 for q ≥ 7. This shows that Nx ∩ Ny ∩ Nz is non-trivial.

However, any automorphism in Nx ∩ Ny ∩ Nz fixes every circle of L and thus
must be the identity—a contradiction.

The case q = 6 cannot occur because it is not a prime power.

It remains to discuss q = 5; then L is Miquelian, see Theorem 2.2. In the
automorphism group of the Miquelian Laguerre plane of order 5, the stabilizer
of a circle induces a group isomorphic to PΓL(2, 5) = PGL(2, 5) on K, acting
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two-transitively with a socle isomorphic to PSL(2, 5) ∼= A5. However, we are
considering a two-transitive group Q with socle Aq+1 = A6, and arrive at a
contradiction because |A6| = 720 > 120 = |PΓL(2, 5)|. �

Proposition 3.9. Let L be a finite elation Laguerre plane of order 27, and let Γ

be a group of automorphisms fixing some circle K. Then Q := Γ/Γ[K] does not

contain a normal subgroup isomorphic to PSp(6, 2) that is two-transitive on K.

Proof. Assume, to the contrary, that there is such a subgroup Σ ∼= PSp(6, 2)

in Q. The order 29 · 34 · 5 · 7 = 1451520 of PSp(6, 2) is divisible by 5 but |∆K | is
not because it divides 27−1. However, by Theorem 2.5.5 we have an involution
δ ∈ ∆K ; clearly this involution is centralized by Γ.

We consider a Sylow 5-subgroup S of the pre-image G := π−1(Σ) ≤ Γ. This
group has order 5, and has orbits of lengths 1 or 5. Therefore S fixes at least 3
points on K, and for each fixed point u ∈ K there is at least one more fixed
point v ∈ [u] r {u}, where [u] denotes the generator containing u. The central
involution δ acts semi-regularly on [u]r {u}, so δ(v) is another fixed point of S.
But then S fixes at least 7 points in [u].

Let x, y, z be three distinct fixed points of S in K. If x′ ∈ [x] and y′ ∈ [y]

are fixed by S then the circle L(x′, y′, z) through x′, y′ and z is fixed by S. This
gives 72 fixed circles through z.

Now let w ∈ Kr{x, y, z} be arbitrary. Since [w] has 27 points, there exists at
least one point w′ ∈ [w] lying on two of the fixed circles. These two circles have
the two points w′ and z in common. Thus S fixes w′, the generator [w′] = [w],
and then also the point w in [w]∩K. We obtain that S ≤ ∆K , contradicting the
fact that |∆K | is not divisible by 5. �

Main Theorem 3.10. If the automorphism group of an elation Laguerre plane of

order q contains a subgroup Γ fixing a circle and acting two-transitively on that

circle, then the Laguerre plane is Miquelian.

The socle of the group induced on the fixed circle is either isomorphic to PSL(2, q),

or we have q = 4 and the socle is isomorphic to AGL(1, 5).

Proof. The socle is either abelian, or a simple group contained in the list shown
in Table 1. The abelian case has been discussed in Proposition 3.5. By the
arguments given in Proposition 3.7 the list in Table 1 has been reduced to the
list in Table 2. Propositions 3.8 and 3.9 have excluded the groups Aq+1 (for
q > 4) and PSp(6, 2).

There remain the series PSL(2, q), PSU(3, f2), and R(32a+1) for prime pow-
ers q, f and positive integers a, respectively (i.e., the groups of Lie type A1(q),
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2A2(f
2), and 2G2(3

2a+1)), and the commutator group R(3)′ ∼= PSL(2, 8) with
its transitive action on 28 points; these are all treated in [31]. �

Each translation generalized quadrangle of order q arises from a generalized
oval O in PG(3n − 1, r), where q = rn (see [21, 8.7.1]). Under the corre-
spondence between translation generalized quadrangles of order q and elation
Laguerre planes of order q, the action on the set of lines through the base point
corresponds to the action on the set of generators of the Laguerre plane. Using
that correspondence immediately gives us the following

Corollary 3.11. If the automorphism group of a translation generalized quadran-

gle of order q is two-transitive on the set of lines through the base point then the

quadrangle is isomorphic to the classical generalized quadrangle Q(4, q).
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