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Semiarcs with a long secant in PG(2, q)

Bence Csajbók∗ Tamás Héger† György Kiss‡

Abstract

A t-semiarc is a point set St with the property that the number of tangent

lines to St at each of its points is t. We show that if a small t-semiarc St

in PG(2, q) has a large collinear subset K, then the tangents to St at the

points of K can be blocked by t points not in K. In fact, we give a more

general result for small point sets with less uniform tangent distribution. We

show that in PG(2, q) small t-semiarcs are related to certain small blocking

sets and give some characterization theorems for small semiarcs with large

collinear subsets.
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1. Introduction

Ovals, k-arcs and semiovals of finite projective planes are interesting geometric

structures which also have applications to coding theory and cryptography. For

details we refer the reader to [3, 14, 22, 24, 27].

Semiarcs are natural generalizations of arcs. Throughout the paper Πq de-

notes an arbitrary projective plane of order q. By PG(2, q) and AG(2, q) we

denote the desarguesian projective and affine planes. A non-empty point set
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⊂ Πq is called a t-semiarc if for every point P ∈ there exist exactly t ≥ 1 lines

ℓ1, ℓ2, . . . , ℓt such that ∩ ℓi = {P} for i = 1, 2, . . . , t. These lines are called the

tangents to at P . If a line ℓ meets in k points, then ℓ is called a k-secant of ;

a 0-secant is also called a skew line to . We say that a k-secant is long, if q − k

is a small number (which will be given a precise meaning later). The classical

examples of t-semiarcs are the k-arcs (with t = q + 2 − k), subplanes (with

t = q −m, where m is the order of the subplane) and semiovals (i.e. semiarcs

with t = 1, e.g. ovals or unitals). Note that if we allowed t = 0, a 0-semiarc

would be a set without tangents (a so-called untouchable set); see [11, 9, 38].

The complete classification of semiarcs is hopeless. The aim of this paper is

to investigate and characterize semiarcs having some additional properties. In

Section 2 we consider a very special class, namely t-semiarcs of size k + q − t

having a k-secant. These point sets are closely related to the widely studied

structures defining few directions [1, 6, 7, 35]. In Section 3 we prove that

in PG(2, q) if a small t-semiarc has a large collinear subset K, then the tan-

gent lines at the points of K belong to t pencils whose carriers are not in K.

This result generalizes the main result in Kiss [26]. Small semiovals with large

collinear subsets were studied in arbitrary projective planes as well, see Bartoli

[2] and Dover [18]. The essential part of our proof is algebraic, it is based on

an application of the Rédei polynomial and the Szőnyi–Weiner Lemma. In fact,

the main result of this section is more general as it is valid for small point sets

with less uniform tangent distribution as well. In Section 4 we associate to each

t-semiarc a blocking set. If is small and has a long secant, then the associated

blocking set is small. Applying theorems about the structure of small blocking

sets we prove some characterization theorems for semiarcs.

When t ≥ q − 2, then it is easy to characterize t-semiarcs. If t = q + 1, q

or q − 1, then is a single point, a subset of a line of size at least two, or three

non-collinear points, respectively; see [16, Proposition 2.1]. Hence, if no other

bound is specified, we usually assume that t ≤ q− 2. If t = q− 2, then it follows

from [16, Proposition 3.1] that is one of the following three configurations:

four points in general position, the six vertices of a complete quadrilateral, or

a Fano subplane. Thus sometimes we may assume that t ≤ q − 3, which we

indicate individually.

Throughout the paper we use the following notation. We denote points at

infinity of PG(2, q), i.e. points on the line ℓ∞ = [0 : 0 : 1], by (m) instead of the

homogeneous coordinates (1 : m : 0). We simply write Y∞ and X∞ instead of

(0 : 1 : 0) and (1 : 0 : 0), respectively. The points of ℓ∞ are also called directions.

For affine points, i.e. points of PG(2, q) \ ℓ∞, we use the Cartesian coordinates

(a, b) instead of (a : b : 1). If P and Q are distinct points in Πq, then PQ denotes

the unique line joining them. If A and B are two point sets in Πq, then A△B
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denotes their symmetric difference, i.e. (A \ B) ∪ (B \ A).

Blocking sets play an important role in our proofs. For the sake of complete-

ness we collect the basic definitions and some results about these objects. A

blocking set B in a projective or affine plane is a set of points which intersects

every line. If B contains a line, then it is called trivial. A point P in a blocking

set B is essential if B \ {P} is not a blocking set, i.e. there is a tangent line to B
at the point P . A blocking set is said to be minimal when no proper subset of

it is a blocking set or, equivalently, each of its points is essential. If ℓ is a line

containing at most q points of a blocking set B in Πq, then |B| ≥ q + |ℓ ∩ B|. In

case of equality B is a blocking set of Rédei type and ℓ is a Rédei line of B. Note

that we also consider a line to be a blocking set of Rédei type. A blocking set

in PG(2, q) is said to be small if its size is less than 3(q + 1)/2. We close this

section by collecting some results on blocking sets by Szőnyi; Polverino, Sziklai

and Szőnyi; and Blokhuis, Bruen, Storme and Szőnyi.

Theorem 1.1 ([34, Remark 3.3 and Corollary 4.8]). Let B be a blocking set in

PG(2, q), q = ph, p prime. If |B| ≤ 2q, then B contains a unique minimal blocking

set. If B is a small minimal blocking set, then each line intersects B in 1 (mod p)

points.

Note that a blocking set contains a unique minimal blocking set if and only

if the set of its essential points is a blocking set. The next result generalizes the

second part of the above theorem.

Theorem 1.2 ([32, Corollary 5.1], [31, 34]). Let B be a small minimal blocking

set in PG(2, q), q = ph, p prime. Then there exists a positive integer e, called the

exponent of B, such that e divides h, and

q + 1 + pe
⌈

q/pe + 1

pe + 1

⌉

≤ |B| ≤ 1 + (pe + 1)(q + 1)−
√
D

2
,

where D = (1 + (pe + 1)(q + 1))2 − 4(pe + 1)(q2 + q + 1).

If pe 6= 4 and |B| lies in the interval belonging to e, then each line intersects B
in 1 (mod pe) points.

Theorem 1.3 ([4, 10, 13]). Let B be a minimal blocking set in PG(2, q), q = ph,

p prime. Let |B| = q + 1 + k, and let cp = 2−1/3 for p = 2, 3 and cp = 1 for p > 3.

Then the following hold.

1. If h = 1 and k ≤ (q+1)/2, then B is a line, or k = (q+1)/2 and each point

of B has exactly (q − 1)/2 tangent lines.

2. If h = 2d+ 1 and k < cpq
2/3, then B is a line.
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3. If k ≤ √
q, then B is a line, or k =

√
q and B is a Baer subplane (i.e. a

subplane of order
√
q).

We remark that the third point of the above theorem holds in arbitrary finite

projective planes.

2. Semiarcs and the direction problem

In this section we give and characterize several examples of semiarcs with a

particular extremal property. We will often need the following basic observation.

Proposition 2.1. Let be a t-semiarc in Πq, and let ℓ be an arbitrary line. Then

|| ≥ q − t+ |ℓ ∩ |. If equality holds, then for any line ℓ′ intersecting \ ℓ in at least

two points we have ℓ ∩ ℓ′ /∈ .

Proof. Let k = |ℓ ∩ |. As through any point of there are q + 1 − t non-tangent

lines to , we clearly have || ≥ q+2−t; thus the assertion trivially holds for k ≤ 1.

Suppose k ≥ 2. For any point P ∈ ∩ ℓ there are q + 1 − t non-tangent lines

to through P , one of which is ℓ, and each of the remaining q − t non-tangent

lines contains at least one point from \ ℓ. In case of equality we see that lines

through the points of ℓ∩ different from ℓ contain either one or zero points from

\ ℓ. �

If k is the size of the largest collinear subset of a semioval , then, by the above

proposition, we may always assume that || = k + q − t+ ε where ε ≥ 0. In this

section we investigate the case ε = 0.

Definition 2.2. We call a t-semiarc tight if || = q− t+ |ℓ∩ | holds for some line

ℓ. Such lines are called maximal secants (of ). For a semiarc , κ() denotes the

largest number k such that admits a k-secant.

Notice that for any t-semiarc , t < q implies κ() ≤ q + 1− t. Csajbók investi-

gated the case of equality.

Theorem 2.3 ([15, Theorem 4]). In PG(2, q), if a t-semiarc with a (q + 1 − t)-

secant exists, then t ≥ (q − 1)/2.

Thus, if t is small, then κ() ≤ q − t follows, and hence a tight t-semiarc has

at most 2(q − t) points.
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Example 2.4 (Vt-configuration). Let ℓ1 and ℓ2 be two distinct lines in Πq, and

let T1 ⊂ ℓ1 \ ℓ2, T2 ⊂ ℓ2 \ ℓ1, |T1| = |T2| = t and 1 ≤ t ≤ q − 2. Then

= (ℓ1△ℓ2)\ (T1∪T2) is a t-semiarc. Such semiarcs are called Vt-configurations;

they are tight and have 2(q − t) points.

Proposition 2.5 ([16, Proposition 2.2]). Let Πq be a projective plane of order q,

and let t ≤ q− 2. If a t-semiarc in Πq is contained in the union of two lines, then

is a Vt-configuration.

It is easy to give a combinatorial characterization of t-semiarcs of size 2(q−t)

with a (q − t)-secant. For semiovals, this was also done by Bartoli [2, Corol-

lary 9].

Proposition 2.6. Let Πq be a projective plane of order q, and let t ≤ q − 2. If

is a t-semiarc of size 2(q − t) with a (q − t)-secant ℓ (i.e. a tight t-semiarc of size

2(q − t)), then is a Vt-configuration.

Proof. Let U = \ ℓ. Recall that if ℓ′ is a line joining two points of U , then

ℓ∩ ℓ′ /∈ . Now suppose to the contrary that there exist three non-collinear points

in U . They determine three lines, each of which intersects ℓ in ℓ \ ; hence at

these three points of U there are at most t − 1 tangents to , a contradiction.

Thus the points of U are contained in a line ℓ′ and ℓ ∩ ℓ′ /∈ . �

The following example shows the existence of tight t-semiarcs with three

maximal secants for odd values of t.

Example 2.7. Let C denote the set of non-squares in the field GF(q), q odd. The

point set {(0 : 1 : s), (s : 0 : 1), (1 : s : 0) : −s ∈ C} is a semioval in PG(2, q) of

size 3(q − 1)/2 with three (q − 1)/2-secants, see Blokhuis [5]. We refer to this

construction as Blokhuis’ semioval. If we delete r < (q − 1)/2 − 2 points from

each of the (q − 1)/2-secants, then the remaining point set is a tight t-semiarc

with three maximal secants, where κ() = (q − 1)/2− r and t = 2r + 1.

There also exist examples if t is even. To give their construction, we need

some notation. A (k, n)-arc is a set of k points such that each line contains at

most n of these points. A set T of q + t points in Πq for which each line meets

T in 0, 2 or t points (t 6= 0, 2) is either an oval (for t = 1), or a (q + t, t)-arc

of type (0, 2, t). Korchmáros and Mazzocca [29, Proposition 2.1] proved that

(q + t, t)-arcs of type (0, 2, t) exist in Πq only if q is even and t | q. They also

provided infinite families of examples in PG(2, q) whenever the field GF(q/t) is

a subfield of GF(q). It is easy to see that through each point of T there passes

exactly one t-secant. In [21] new constructions were given by Gács and Weiner,
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and they proved that in PG(2, q) the q/t + 1 t-secants of T pass through one

point, called the t-nucleus of T (for t = 1 and arbitrary projective plane of even

order, see e.g. [24, Lemma 8.6]). Recently Vandendriessche [39] found a new

infinite family with t = q/4. Using linear sets, De Boeck and Van de Voorde have

reinterpreted this family, and also described a new family with t = q/4 [17].

Example 2.8. Let T be a (q + τ, τ)-arc of type (0, 2, τ) in Πq. Delete 1 ≤ r <

τ − 2 points from each of the τ -secants of T . The remaining points form a tight

t-semiarc with q/τ + 1 maximal secants, t = rq/τ and κ() = τ − r .

Since (q + q/2, q/2)-arcs of type (0, 2, q/2) exist in PG(2, q), q even, this

construction gives t-semiarcs for each t ≤ q − 6, t even.

The so-called direction problem is closely related to tight semiarcs. We briefly

collect the basic definitions and some results about this problem. Consider

PG(2, q) = AG(2, q) ∪ ℓ∞. Let U be a set of points of AG(2, q). A point P

of ℓ∞ is called a direction determined by U if there is a line through P that con-

tains at least two points of U . The set of directions determined by U is denoted

by DU . If |U| = q, then U ∪DU is a blocking set of Rédei type. If Y∞ /∈ DU , then

U can be considered as a graph of a function. Note that all these definitions

make sense in non-desarguesian planes as well. Using these notions, we first

give a general example of tight semiarcs.

Example 2.9. Let ℓ be a line of Πq, and let U be a set of m < q points in

the affine plane Πq \ ℓ. Consider directions with respect to ℓ = ℓ∞. Assume

|DU | < m, and denote q − m by t. Let D = ℓ∞ \ DU and let T ⊂ D be a

set of t points. Suppose that U ∪ DU does not have 2-secants. Then the set

St = U ∪ (D \ T ) is a tight t-semiarc with κ(St) = m− |DU |+ 1.

Proof. As |ℓ∞∩St| = q+1−|DU |−t = m−|DU |+1 > 1, ℓ∞ is not tangent to St.

If P ∈ D \ T , then all lines through P , except ℓ∞, intersect U in either zero or

one point, hence the number of tangents through P to St is q−|U| = t. Now let

P ∈ U , and consider a line ℓ through P . According to whether ℓ intersects ℓ∞ in

DU , D \ T or T , |ℓ ∩ St| is at least two, exactly two or exactly one, respectively.

Thus there pass precisely |T | = t tangents to St through P . �

We will consider two particular examples.

Example 2.10 (Altered Baer subplane). Let Π√
q be a Baer subplane in the

projective plane Πq, q ≥ 9, and let ℓ be an extended line of Π√
q. Let P be a set

of 1 ≤ t ≤ q −√
q − 2 points in Π√

q \ ℓ such that no line intersects P in exactly√
q−1 points. For example, a (t,

√
q−2)-arc is a good choice for P. Example 2.9

with U = Π√
q \ (ℓ ∪ P) gives a tight t-semiarc with κ() = q −√

q − t.
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The other particular semiarc obtained from Example 2.9 is based on the fol-

lowing result of Blokhuis et al. [6] and Ball [1].

Theorem 2.11 ([6, 1]). Let U ⊂ AG(2, q), q = ph, p prime, be a point set of

size q. Let z = pe be maximal having the property that if P ∈ DU and ℓ is a

line through P , then ℓ intersects U in 0 (mod z) points. Then one of the following

holds:

1. z = 1 and (q + 3)/2 ≤ |DU | ≤ q + 1,

2. GF(z) is a subfield of GF(q) and q/z + 1 ≤ |DU | ≤ (q − 1)/(z − 1),

3. z = q and |DU | = 1.

Let B be a small blocking set of Rédei type in PG(2, q), q = ph, p prime, and

let ℓ be one of its Rédei lines. Since |B| < 3(q+1)/2, we have |ℓ∩B| < (q+3)/2.

Hence the previous theorem implies that there exists an integer e such that e

divides h, 1 < pe ≤ q holds, and each affine line intersects B in 1 (mod pe)

points.

Example 2.12 (Altered Rédei type blocking set). Let B be a small minimal

blocking set of Rédei type in PG(2, q), q = ph, p prime, and let ℓ be a Rédei line

of B. Let P be a set of 1 ≤ t ≤ q − |B ∩ ℓ| − 1 points in B \ ℓ such that for each

line ℓ′ intersecting B in more than one point we have |ℓ′ ∩P| 6= |ℓ′ ∩ B| − 2. For

example, if z = pe denotes the maximal number such that each line intersects

B in 1 (mod z) points (cf. Theorem 2.11) and z ≥ 3, then a (t, z − 2)-arc is a

good choice for P. Example 2.9 with U = B\ (ℓ∪P) gives a tight t-semiarc with

κ() = 2q + 1− |B| − t. (Note that if B is a line, then is a Vt-configuration.)

Next we show that a tight semiarc in PG(2, q), if t is small and κ() is large,

is an altered Rédei type blocking set. To this end, besides the results about the

number of directions determined by a set of q affine points, we also need results

on the extendability of a set of almost q affine points to a set of q points such that

the two point sets determine the same directions. The first such extendability

theorem was proved by Blokhuis [5]; see also Szőnyi [35].

Theorem 2.13 ([5, Proposition 2], [35, Remark 7]). Let U ⊂ AG(2, q), q ≥ 3,

be a point set of size q − 1. Then there exists a unique point P such that the point

set U ∪ {P} determines the same directions as U .

Extending a result of Szőnyi [35, Theorem 4], Sziklai proved the following

theorem.

Theorem 2.14 ([33, Theorem 3.1]). Let U ⊂ AG(2, q) be a point set of size q−n

where n ≤ α
√
q for some 1/2 ≤ α < 1. If |DU | < (q + 1)(1 − α), then U can be

extended to a set U ′ of size q such that U ′ determines the same directions as U .
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We also need the following lemma.

Lemma 2.15. Let z and t be two positive integers such that z ≥ 3 and t ≤
√

q(z − 1)/z. Let U ⊂ AG(2, q) be a set of q − t affine points, and let E ⊆ F be

two sets of directions satisfying the following properties:

1. there are at least t tangents to U with direction in F through each point of U ;

2. there exists a suitable set of t affine points, P, such that U ∩P = ∅ and each

tangent to U with direction not in E intersects U ∪ P in 0 (mod z) points.

Then |E| ≥ t.

Proof. If ℓ is a tangent to U intersecting F \ E, then |P ∩ ℓ| ≡ −1 (mod z). The

maximum number of such tangent lines is
t(t−1)

(z−1)(z−2) . Hence at least (q − t)t −
t(t−1)

(z−1)(z−2) tangents to U have direction in E. This implies

|E|q ≥ (q − t)t− t(t− 1)

(z − 1)(z − 2)
, thus (|E| − t)q ≥ −t2 − t(t− 1)

(z − 1)(z − 2)
.

If |E| − t is a negative integer, then this inequality gives q < t2 (z−1)(z−2)+1
(z−1)(z−2) ≤

t2z/(z − 1), contradicting the assumption t ≤
√

q(z − 1)/z. �

Theorem 2.16. Let be a tight t-semiarc in PG(2, q), q = ph, p prime. Suppose

that one of the following conditions hold:

• t = 1, q > 4 and κ(S1) > (q − 1)/2, or

• 2 ≤ t ≤ α
√
q and κ() > α(q + 1) for some 1/2 ≤ α ≤

√

(p− 1)/p if p is an

odd prime, and 1/2 ≤ α ≤
√
3/2 if p = 2.

Then is an altered Rédei type blocking set.

Proof. Let k = κ() and let ℓ be a k-secant of . Take ℓ as the line at infinity

and let U = \ ℓ ⊆ AG(2, q). The directions in ∩ ℓ are not determined by U ,

hence |DU | ≤ q + 1 − k. We can apply Theorem 2.13 when t = 1; if t ≥ 2,

then the conditions of Theorem 2.14 hold since |U| = q − t, t ≤ α
√
q and

|DU | < (q + 1)(1 − α). Let P = {P1, P2, . . . , Pt} be a set of t points such that

U ∪ P determines the same directions as U .

First consider the case t ≥ 2. We have |DU | < (q + 1)/2, thus applying

Theorem 2.11 we get that there exists an integer z = pe ≥ 3 such that each

affine line with direction in DU intersects U ∪ P in 0 (mod z) points. We can

apply Lemma 2.15 with F = ℓ \ and E = ℓ \ ( ∪ DU ) to obtain |E| ≥ t. Note
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that in the case p = 2 we have z ≥ 4, hence α ≤
√
3/2 is enough to apply

Lemma 2.15. On the other hand the lines joining any point of E with any point

of U are tangents to , thus |E| ≤ t. The same observation implies that each

of the tangents to at the points of U meets E. Let B = U ∪ P ∪ DU , which

is a small blocking set of Rédei type. Let ℓ′ 6= ℓ be a line intersecting B in

more than one point and let M = ℓ′ ∩ ℓ. Then M ∈ DU ⊆ B and M /∈ E. If

|ℓ′∩P| = |ℓ′∩B|−2, then ℓ′ would be a tangent to at the unique point of ℓ′∩U ,

but this is a contradiction since M /∈ E. We obtained Example 2.12.

If t = 1, then in the same way (using Theorem 2.13 instead of 2.14) we get

that there exists an integer z = pe ≥ 2 such that each affine line with direction

in DU intersects U ∪ {P1} in 0 (mod z) points. If z ≥ 3, then we can finish the

proof as above; otherwise Theorem 2.11 implies |DU | ≥ q/2 + 1. Compared to

|DU | < (q + 3)/2, we get |DU | = q/2 + 1 and hence k = q/2. This means that

each of the q − 1 tangent lines to S1 at the points of U intersects ℓ in DU . Thus

these lines have 0 (mod z = 2) points in U ∪ {P1}, so they pass through P1. If

q > 4, then q − 1 > q/2 + 1, thus at least one of these tangents would intersect

ℓ in S1, a contradiction. �

In desarguesian planes of prime or prime square order, there are stronger results

regarding the direction problem. As a corollary, we get the characterization of

Blokhuis’ semioval and the altered Baer subplane semioval. The three cases of

the next theorem were proved by Lovász and Schrijver [30], by Gács [19], and

by Gács, Lovász and Szőnyi [20], respectively.

Theorem 2.17 ([30, 19, 20]). Let U be a set of q points in AG(2, q), q = ph,

h ≤ 2, p prime.

1. If h = 1 and |DU | = (p+ 3)/2, then U is affinely equivalent to the graph of

the function x 7→ x
p+1

2 .

2. If h = 1 and |DU | > (p+ 3)/2, then |DU | ≥ ⌊2(p− 1)/3⌋+ 1.

3. If h = 2 and |DU | ≥ (p2 + 3)/2, then either |DU | = (p2 + 3)/2 and U
is affinely equivalent to the graph of the function x 7→ x

p2+1

2 , or |DU | ≥
(p2 + p)/2 + 1.

Corollary 2.18. Let S1 be a tight semioval in PG(2, q), 3 ≤ q = ph, h ≤ 2,

p prime. Then we have the following.

1. If h = 1 and κ(S1) > min{(p − 3)/2, (p + 4)/3}, then there are two possi-

bilities:

• S1 is a V1-configuration,
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• S1 is Blokhuis’ semioval (cf. Example 2.7).

2. If h = 2 and κ(S1) > (p2 − p)/2, then there are four possibilities:

• S1 is of a V1-configuration,

• S1 is Blokhuis’ semioval,

• S1 is an altered Baer subplane,

• p = 2 and S1 is an oval in PG(2, 4).

Proof. Let k = κ(S1), and let ℓ be a k-secant of S1. Consider ℓ as the line at

infinity and let U = S1 \ ℓ. The points of ℓ ∩ S1 are not determined directions,

hence we have k + |DU | ≤ q + 1. As the point set U has size q − 1, it follows

from Theorem 2.13 that there exists a point P such that U ∪{P} determines the

same directions as U .

First consider the case h = 1. If k > min{(p − 3)/2, (p + 4)/3}, then |DU | <
max{⌊2(p− 1)/3⌋+ 1, (p+ 5)/2} and thus Theorems 2.11 and 2.17 imply that

either |DU | = 1 and U is contained in a line, or |DU | = (p + 3)/2 and U ∪ {P}
is affinely equivalent to the graph of the function x 7→ x

p+1

2 . In the first case

it is easy to see that S1 is a V1-configuration. In the latter case the graph of

x 7→ x
p+1

2 is contained in two lines, namely [1 : 1 : 0] and [1 : −1 : 0], and these

lines are (p+1)/2-secants of U ∪{P}. It is easy to see that P has to be the point

(0 : 0 : 1), thus S1 has (at least) two (p − 1)/2-secants, and it is contained in

a vertexless triangle. Such semiovals were characterized by Kiss and Ruff [28,

Theorem 3.3]; it follows from their characterization that S1 must be Blokhuis’

semioval.

Now suppose that h = 2. If k > (p2 − p)/2, then |DU | < (p2 + p)/2 + 1,

thus |DU | ∈ {1, (p2 + 3)/2} or 1 < |DU | < (p2 + 3)/2. If |DU | = 1 or |DU | =
(p2 + 3)/2, then we can argue as before. In the remaining case it follows from

Theorems 2.11 and 1.3 (or already from [34, Theorem 5.7]), that |DU | = p+ 1

and U ∪ {P} ∪DU is a Baer subplane. If p > 2, then S1 has exactly p2 − p − k

tangents at each point of U , hence k = p2 − p − 1 and S1 is an altered Baer

subplane. Finally, if p = 2, then k ≥ 2 and |DU | = p+ 1 = 3, thus k = 2 and S1

is an oval in PG(2, 4). �

3. Proof of the main lemma

First we collect the most important properties of the Rédei polynomial. Consider

a point set U = {(ai, bi) : i = 1, 2, . . . , |U|} of the affine plane AG(2, q). The
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Rédei polynomial of U is

H(X,Y ) =

|U|
∏

i=1

(X + aiY − bi) ∈ GF(q)[X,Y ].

For any fixed value y ∈ GF(q), the univariate polynomial H(X, y) ∈ GF(q)[X]

is fully reducible and it reflects some geometric properties of U .

Lemma 3.1 (folklore). Let H(X,Y ) be the Rédei polynomial of the point set U ,

and let y ∈ GF(q). Then X = x is a root of H(X, y) with multiplicity r if and only

if the line with equation Y = yX + x meets U in exactly r points.

We need another result on polynomials which will be crucial in the proof. For

r ∈ R, let r+ = max{0, r}.

Theorem 3.2 (Szőnyi–Weiner Lemma, [37, Corollary 2.4], [23, Appendix, Re-

sult 6]). Let f and g be two-variable polynomials in GF(q)[X,Y ]. Let d = deg f

and suppose that the coefficient of Xd in f is non-zero. For y ∈ GF(q), let

hy = deg gcd (f(X, y), g(X, y)), where gcd denotes the greatest common divisor of

the two polynomials in GF(q)[X]. Then for any y0 ∈ GF(q),

∑

y∈GF(q)

(hy − hy0
)
+ ≤ (deg f(X,Y )− hy0

)(deg g(X,Y )− hy0
).

A partial cover of PG(2, q) with h > 0 holes is a set of lines in PG(2, q) such

that the union of these lines covers all but h points. We will also use the dual of

the following result due to Blokhuis, Brouwer and Szőnyi [8].

Theorem 3.3 ([8, Proposition 1.5]). A partial cover of PG(2, q) with h > 0 holes,

not all on one line if h > 2, has size at least 2q − 1− h/2.

Note that the following, main lemma is not restricted to t-semiarcs. The

carrier of a pencil is the common point of the lines belonging to the pencil.

Lemma 3.4. Let S be a set of s points in PG(2, q), let ℓ be a k-secant of S with

2 ≤ k ≤ q, and let 1 ≤ t ≤ q − 3 be an integer. Suppose that through each point

of S ∩ ℓ there pass exactly t tangent lines to S, and let s = k + q − t+ ε for some

ε ≥ 0. Let A(n) be the set of those points in ℓ \S through which there pass at most

n skew lines to S. Then the following hold.

• If t = 1, then

1. ε < k
2 − 1 implies that the k tangent lines at the points of S ∩ ℓ and

the skew lines through the points of A(2) belong to a pencil (hence

A(2) \A(1) is empty),
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2. ε < 2k
3 − 2 implies that the k tangent lines at the points of S ∩ ℓ either

belong to two pencils or they form a dual arc K. If k < q, then the skew

lines through the points of A(2) belong to the same pencils or extend K
to a larger dual arc.

• If t ≥ 2 and k > q − q
t + 1, then

3. ε < k
t+1 − t

2 implies that the kt tangent lines at the points of S ∩ ℓ and

the skew lines through the points of A(t + 1) belong to t pencils whose

carriers are not on ℓ (hence A(t+ 1) \A(t) is empty),

4. ε < k
t+1 − 1 and t ≤ √

q imply that the kt tangent lines at the points of

S ∩ ℓ belong to t+ 1 pencils whose carriers are not on ℓ. If k < q, then

the skew lines through the points of A(t+1) belong to the same pencils.

Proof. Consider the line set

L = {r ∈ PG(2, q) : r ∩ ℓ ∈ ((S ∩ ℓ) ∪A(t+ 1)), r ∩ (S \ ℓ) = ∅},

i.e. the set of tangent lines to S at the points of S ∩ ℓ together with the set of

skew lines to S through the points of A(t+1). For each point P ∈ PG(2, q)\ℓ we

define the index of P , in notation ind(P ), as the number of lines of L that pass

through P . Finally, let δ = |{r ∈ L : r ∩ ℓ ∈ A(t+1)}| and let a = |A(t+1)|. For

technical reasons, we also need a variant of these definitions. For any Q ∈ ℓ, let

LQ = {r ∈ L : Q /∈ r}, kQ = |(ℓ∩S)\{Q}|, δQ = |{r ∈ L : r∩ℓ ∈ A(t+1)\{Q}}|
and aQ = |A(t+1) \ {Q}|. The Q-index of P , indQ(P ), is the number of lines of

LQ that pass through P . If P = (m), we write e.g. ind(m) instead of ind((m)).

Note that if Q ∈ ℓ\(S∪A(t+1)), then indQ(P ) = ind(P ) for all P ∈ PG(2, q)\ℓ.
First we are about to estimate the possible values of the Q-index of a point

P ∈ PG(2, q) \ (S ∪ ℓ) for an arbitrarily chosen Q ∈ ℓ. Choose the system of

reference so that P ∈ ℓ∞ \ {Y∞}, Q = Y∞ and ℓ is the line [1 : 0 : 0]. Then

P = (y0) for some y0 ∈ GF(q). Let {(0, c1), . . . , (0, ckQ+aQ
)} be the set of points

of ((S ∩ ℓ) ∪ A(t + 1)) \ {Q}, let D = (ℓ∞ \ {Y∞}) ∩ S, |D| = d and let U =

S\(ℓ∪ℓ∞) = {(a1, b1), . . . , (as−d−k, bs−d−k)}. Consider the Rédei polynomials of

((S∩ℓ)∪A(t+1))\{Q} and U . Let us denote them by f(X,Y ) =
∏kQ+aQ

j=1 (X−cj)

and g(X,Y ) =
∏s−d−k

j=1 (X + ajY − bj), respectively. Let D = ℓ∞ \ (D ∪ {Y∞}).
Then for any point (y) ∈ D,

hy := deg gcd (f(X, y), g(X, y)) = kQ + aQ − indQ (y).

Applying the Szőnyi–Weiner Lemma for the polynomials f(X,Y ) and g(X,Y )
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we get

∑

(y)∈D

(indQ (y0)− indQ (y)) ≤
∑

(y)∈GF(q)

(indQ (y0)− indQ (y))
+

≤ indQ (y0)(s− d− k − kQ − aQ + indQ (y0)).

After rearranging it we obtain

0 ≤ indQ (y0)
2 − indQ (y0)(q + k + kQ + aQ − s) +

∑

(y)∈D

indQ (y). (1)

As
∑

(y)∈D indQ (y) = kQt+ δQ and s = k + q − t+ ε, we have

0 ≤ indQ (y0)
2 − indQ (y0)(kQ + aQ + t− ε) + kQt+ δQ. (2)

First we simultaneously prove parts 1, 3 and 4. Here we always choose Q

so that Q ∈ ℓ \ S, whence kQ = k follows. Thus the condition ε < k
t+1 − 1

and the obvious fact δQ ≤ (t + 1)aQ imply that (2) gives a contradiction for

t + 1 ≤ indQ (y0) ≤ k + aQ − ε − 1. We say that a point P has large Q-index if

indQ (P ) ≥ k+aQ−ε holds. Let PQ denote the set of points with large Q-index.

Now we are going to prove that each line ℓ′ of LQ contains a point of PQ.

First suppose that ℓ′ ∈ LQ is a tangent to S at a point T ∈ ℓ∩S. Suppose to the

contrary that each point of ℓ′ has Q-index at most t. Then
∑

P∈ℓ′\T
indQ (P ) ≤ tq. (3)

On the other hand, as every tangent to S through the points of (S ∩ ℓ) \ T

intersects ℓ′, the sum on the left-hand side is at least (k − 1)t+ q, contradicting

our assumption on k. Similarly, if ℓ′ is a skew line to S passing through a point

T ∈ A(t + 1) \ {Q}, then the right-hand side of (3) remains the same and the

left-hand side is at least kt + q, which is a contradiction, too. Hence LQ is

contained in the union of pencils with carriers in PQ.

Clearly, |PQ| ≥ t. On the other hand, suppose that there are more than t

points with large Q-index and let R1, R2, . . . , Rt+1 be t+ 1 of them. Then

(t+ 1)(k + aQ − ε) ≤
t+1
∑

j=1

indQ (Rj) ≤ tk + (t+ 1)aQ +

(

t+ 1

2

)

.

This is a contradiction if ε < k
t+1 − t

2 , which holds in parts 1 and 3. Regarding

part 4, if there were more than t + 1 points with large Q-index, then an analo-

gous argument and ε < 2k
t+2 − t+1

2 would yield a contradiction. As ε < k
t+1 − 1,

the bound on ε follows from the condition on k and t ≤ √
q .
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If k + |A(t + 1)| < q + 1, then let Q be any point of ℓ \ (S ∪ A(t + 1)). Thus

the lines of LQ = L are contained in t pencils (or t+1 in part 4) whose carriers

have large Q-index. In this case parts 1, 3 and 4 are proved.

Assume now k + |A(t+ 1)| = q + 1. If k = q, then let Q be the unique point

contained in A(t + 1). In case of part 4, the pencils with carriers with large Q-

index contain the lines of LQ, which was to be shown. In case of parts 1 and 3

we obtain a contradiction in the following way. The kt tangents at the points of

ℓ∩S are contained in t pencils having carriers with large Q-index. If t = 1, then

through the point R ∈ PQ there pass q tangent lines, hence the points of S \ ℓ
are contained in the line RQ. Thus through Q there pass only two non-skew

lines, ℓ and RQ. The condition q − 3 ≥ t = 1 implies (q + 1) − 2 > 2, hence

Q /∈ A(2), a contradiction. If t > 1, then it is easy to see that PQ ∪ (S \ ℓ) is

contained in a line through Q. Again q − 3 ≥ t implies that through Q there

pass more than t+ 1 skew lines, hence Q /∈ A(t+ 1), a contradiction.

If k < q, then let Q1 and Q2 be two distinct points of A(t + 1). As seen

before, the lines of LQi are blocked by the points of PQi for i = 1, 2, hence, by

LQ1
∪ LQ2

= L, it is enough to show that PQ1
= PQ2

. If a point is in PQi , then

its Qi-index is at least k+aQi−ε = q−ε, while the other points have Qi-index at

most t for i = 1, 2. The inequality |indQ1
(P ) − indQ2

(P )| ≤ 1 obviously holds,

thus it is enough to show that q− ε− t > 1, which follows from the assumptions

ε < k
t+1 − 1 and t ≤ q − 3.

Finally, we prove part 2. We distinguish three cases.

(a) If k+ |A(2)| < q+1, then let Q be any point of ℓ\(S∪A(2)). Here LQ = L.

(b) If k + |A(2)| = q + 1 and k ≤ q − 1, then the choice of Q will depend on

the point P ∈ PG(2, q) \ (ℓ ∪ S) whose index is to be estimated. In this

case let Q be any point of ℓ such that PQ intersects S \ ℓ (as S \ ℓ is not

empty, Q can be chosen in this way). Note that PQ /∈ L, thus in this case

indQ(P ) = ind(P ).

(c) If k + |A(2)| = q + 1 and k = q, then let Q be the unique point contained

in A(2).

In cases (a) and (b) we are to prove that L is either a dual arc or is contained in

the union of two pencils; in case (c) we have to prove the same regarding the

line set LQ. In all cases

2k

3
− 2 ≤ 2kQ

3
− 2 +

aQ
3

(4)

follows from kQ = k, except in case (b), where (4) follows from kQ ≥ k− 1 and
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aQ ≥ 2. Thus our assumption ε < 2k/3− 2 yields

ε <
2kQ
3

− 2 +
aQ
3
, (5)

and so (2) gives a contradiction for 3 ≤ indQ (P ) ≤ kQ + aQ − 2− ε.

In cases (a) and (c) it follows that the lines of LQ either form a dual arc and

we are finished, or there is a point R with Q-index at least kQ + aQ − 1− ε. In

case (b) either L is a dual arc and we are finished, or there is a point R with

index at least q− 1− ε (since in this case kQ + aQ = q). So it remains to handle

the case when such a point R exists. Let B = (ℓ \ (S ∪ A(2))) ∪ (S \ ℓ) ∪ R and

denote by h the number of lines of PG(2, q) not blocked by B. It is easy to see

that, apart from ℓ, B blocks all but at most (k + 2|A(2)|) − (kQ + aQ − 1 − ε)

lines of PG(2, q). In case (a) B blocks ℓ and k + |A(2)| = kQ + aQ, hence

h ≤ |A(2)|+ 1 + ε. (6)

In cases (b) and (c) B does not block ℓ and k + |A(2)| = (kQ + aQ) + 1, thus

h ≤ |A(2)|+ 3 + ε. (7)

Suppose to the contrary that these h lines do not pass through one point. Then

by the dual of Theorem 3.3 we have

|B| = q + 1− (k + |A(2)|) + (q − 1 + ε) + 1 ≥ 2q − 1− h/2.

Rearranging it we obtain ε ≥ k+ |A(2)|−2−h/2. In case (a), together with (6),

this would imply ε ≥ 2k/3− 5/3 + |A(2)|/3. In cases (b) and (c), together with

(7), ε ≥ (q+ k)/3− 2 would follow. Both cases yield a contradiction because of

our assumption on ε. Hence the corresponding lines can be blocked by R and

one more point, thus they belong to two pencils. �

Although the forthcoming applications in this paper all use Lemma 3.4, we

shall give another, more general but less detailed result whose proof is based on

the very same ideas.

Theorem 3.5. Suppose that S ⊂ PG(2, q) is a point set, ℓ is a line, and let

s = |S \ ℓ|. Let K ⊂ ℓ \S be a set of k ≤ q points. Denote by L the set of skew lines

to S through the points of K, not including ℓ, and let δ = |L|. Let m be an integer

such that any point of K is incident with at most m lines of L. Suppose that there

exists an integer t such that (t − 1)q + m < δ < (t + 1)(k + q − s − t − 1). If

δ < (n+ 1)(k + q − s− t− n/2) for some integer n, then the lines of L belong to

n pencils whose carriers are not on ℓ.
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Proof. Let the index of a point P , ind(P ), be the number of lines of L incident

with P . Similarly as in the proof of Lemma 3.4, let P ∈ PG(2, q) \ (S ∪ ℓ); we

may assume that ℓ is the line [1 : 0 : 0], P = (y0) ∈ ℓ∞ \ {Y∞} and Y∞ /∈ K. Let

D = (ℓ∞ \ {Y∞}) ∩ S, |D| = d and let U = S \ (ℓ ∪ ℓ∞). Again, let g(X,Y ) and

f(X,Y ) be the Rédei polynomials of K and U ; their degrees are k and s − d,

respectively. Let D = ℓ∞ \ (D ∪ {Y∞}). Then for any point (y) ∈ D,

hy := deg gcd (f(X, y), g(X, y)) = k − ind(y).

Applying the Szőnyi–Weiner Lemma we get

(q − d)ind(y0)− δ =
∑

(y)∈D

(ind(y0)− ind(y)) ≤ ind(y0)(s− d− k + ind(y0)).

After rearranging it we obtain

0 ≤ ind(P )2 − ind(P )(q + k − s) + δ. (8)

Assuming ind(P ) = t+1, (8) contradicts δ < (t+1)(k+q−s−t−1), hence either

ind(P ) ≤ t or ind(P ) ≥ q+k−s− t. Suppose that there is a line of L containing

no point with large index. Then δ ≤ m + q(t − 1) follows, a contradiction.

Hence the lines of L are blocked by the points with large index. If there were

at least n+ 1 such points, then δ ≥ (n+ 1)(q + k − s− t)−
(

n+1
2

)

would follow,

contradicting δ < (n+ 1)(k + q − s− t− n/2). �

In [36, Section 3], among other techniques, Szőnyi and Weiner also use their

lemma (Lemma 3.2) in basically the same way to derive a result roughly saying

that if a small point set has only a few skew lines to it, then it can be extended

to a blocking set by adding a few points to it. Now, with the notation of The-

orem 3.5, extending the set (S ∪ ℓ) \ K to a blocking set by adding n points to

it is equivalent to finding n pencils that contain the lines of L. However, the

points found using the result of [36] might also be on ℓ. Now let us give some

immediate consequences of Lemma 3.4.

Corollary 3.6. Let S1 be a semioval in PG(2, q) and let ℓ be a k-secant of S1. If

|S1| < q+ 3k
2 −2, then the k tangent lines at the points of S1∩ ℓ belong to a pencil.

If |S1| < q + 5k
3 − 3, then the k tangent lines at the points of S1 ∩ ℓ either belong

to two pencils or they form a dual k-arc.

If k = q − 1, then we get a stronger result than the previous characterization

of Kiss [26, Corollary 3.1].

Corollary 3.7. Let S1 be a semioval in PG(2, q). If S1 has a (q − 1)-secant ℓ and

|S1| < 5q
2 − 7

2 holds, then S1 is contained in a vertexless triangle and it has two

(q − 1)-secants.
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Proof. Let ℓ \ S1 = {A,B}. It follows from Corollary 3.6 that the tangents at

the points of S1 ∩ AB are contained in a pencil with carrier C. Thus S1 is

contained in the sides of the triangle ABC. Suppose to the contrary that AC

and BC both intersect S1 in less than q − 1 points. Then there exist P , Q

such that P ∈ AC \ (S1 ∪ {A,C}) and Q ∈ BC \ (S1 ∪ {B,C}). The point

E := PQ ∩ AB is in S1 and PQ is a tangent to S1 at E. This is a contradiction

since C /∈ PQ. �

Note that for a t-semiarc , as t < q implies κ() ≤ q + 1 − t, the assumption

q − q
t + 1 < k in Lemma 3.4 can hold only if t <

√
q.

Corollary 3.8. Let be a t-semiarc in PG(2, q), q ≥ 7, with 1 < t <
√
q. Suppose

that has a k-secant ℓ and k > q − q
t + 1. If || < (q − t+ k) + k

t+1 − 1, then the kt

tangent lines at the points of ∩ℓ belong to t+1 pencils. If || < (q−t+k)+ k
t+1 − t

2 ,

then the kt tangent lines at the points of ∩ ℓ belong to t pencils.

Remark 3.9. Theorem 2.13 follows from Lemma 3.4 with t = 1 and ε = 0.

To see this, let S = U ∪ (ℓ∞ \ DU ). Then through each point of ℓ∞ ∩ S, there

passes a unique tangent to S. According to Lemma 3.4, these tangent lines are

contained in a pencil, whose carrier can be added to U .

Example 3.10. It follows from Theorem 3.3 that a cover of the complement of

a conic in PG(2, q), q odd, by external lines, contains at least 3(q − 1)/2 lines,

see [8, Proposition 1.6]. Blokhuis et al. also remark that this bound can be

reached for q = 3, 5, 7, 11 and there is no other example of this size for q < 25,

q odd. Now, let ℓ be a tangent to a conic C at the point P ∈ C and let U be a

set of 3(q − 1)/2 interior points of the conic such that these points block each

non-tangent line. From the dual of Blokhuis et al.’s result we know that such

set of interior points exists in case of q = 3, 5, 7, 11. Let S = (U ∪ ℓ) \ {P}. Then

the tangents to S at the points of ℓ∩ S obviously do not pass through one point

and this shows that part 1 of Lemma 3.4 is sharp if k = q and q = 5, 7, 11.

Example 3.11 ([28, Theorem 3.2]). In PG(2, 8), there exists a semioval S1 of

size 15 contained in a triangle without two of its vertices. The side opposite

to the one vertex contained in S1 is a 6-secant and the other two sides are

5-secants. The tangents at the points of the 6-secant do not pass through one

point. Hence Corollary 3.6 is sharp at least for q = 8.

In the following we give some examples for small t-semiarcs with long se-

cants in the cases t = 1, 2, 3 such that the tangents at the points of a long

secant do not belong to t pencils. These assertions can be easily proved using

Menelaus’ Theorem. Denote by GF(q)+ and GF(q)× the additive and multiplica-

tive groups of the field GF(q), q = ph, p prime, respectively, and by A ⊕ B the

direct sum of the groups A and B.
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Example 3.12 ([28, p. 104]). Consider GF(q), q square, as the quadratic exten-

sion of GF(
√
q) by i. Then the point set

S1 = ([1 : 0 : 0] ∪ [1 : 0 : 1] ∪ [0 : 0 : 1])

\ {Y∞, (0 : s : 1), (1 : si : 1), (1 : s+ si : 0) : s ∈ GF(
√
q)} (9)

is a semioval in PG(2, q) with three (q −√
q)-secants if q > 4.

Example 3.13 ([16, p. 689]). Let GF(q)+ = A⊕B, where A and B are proper

subgroups of GF(q)+ and let X = A ∪B. The point set

S2 = {(0 : s : 1), (1 : s : 1), (1 : s : 0) : s ∈ GF(q) \X}

is a 2-semiarc in PG(2, q) with three (q + 1 − |A| − |B|)-secants if q > 4. Note

that 2
√
q ≤ |A|+ |B| ≤ q/p+ p.

Example 3.14. Similarly, let GF(q)× = A⊕B and X = A ∪B, where A and B

are proper subgroups of GF(q)×. The point set

S3 = {(0 : s : 1), (s : 0 : 1), (1 : −s : 0) : s ∈ GF(q) \ (X ∪ {0})}

is a 3-semiarc in PG(2, q) with three (q − |A| − |B|)-secants if q > 7. Note that

2
√
q ≤ |A|+ |B| ≤ (q + 3)/2.

4. Semiarcs and blocking sets

In this section we associate blocking sets to semiarcs. Using strong characteriza-

tion results on blocking sets, we characterize small semiarcs with long secants.

Note that the next lemma is not restricted to t-semiarcs.

Lemma 4.1. Let S be a set of points in Πq, let ℓ be a k-secant of S with 2 ≤ k ≤ q,

and let 1 ≤ t ≤ q − 3 and n ≥ t be integers. Suppose that through each point of

S ∩ ℓ there pass exactly t tangent lines to S, and let |S| = k + q − t + ε for some

ε ≥ 0. Let A(n) be the set of those points in ℓ \S through which there pass at most

n skew lines to S. Assume that the kt tangent lines to S at the points of S ∩ ℓ and

the skew lines through the points of A(n) belong to n pencils. Let P be the set of

carriers of these pencils and assume that P ∩ ℓ = ∅. Define the point set Bn(S, ℓ)
in the following way:

Bn(S, ℓ) := (ℓ \ (A(n) ∪ S)) ∪ (S \ ℓ) ∪ P.

Then Bn(S, ℓ) has size 2q + 1 + ε + n − t − k − |A(n)|. If ℓ ∩ Bn(S, ℓ) = ∅
(i.e. ℓ ⊆ A(n) ∪ S), then Bn(S, ℓ) is an affine blocking set in the affine plane

Πq \ ℓ; otherwise Bn(S, ℓ) is a blocking set in Πq. In the latter case the points of

ℓ ∩ Bn(S, ℓ) are essential points.
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Proof. Let ℓ′ 6= ℓ be any line in Πq and let E be the point ℓ ∩ ℓ′. If ℓ′ meets

(ℓ \ (A(n) ∪ S))∪(S \ℓ), then ℓ′ is blocked by Bn(S, ℓ). Otherwise ℓ′ is a tangent

to S at a point of ℓ ∩ S or ℓ′ is a skew line to S that intersects A(n). In both

cases ℓ′ is blocked by P, hence it is also blocked by Bn(S, ℓ).
If ℓ ⊆ A(n) ∪ S, then Bn(S, ℓ) is an affine blocking set in the affine plane

Πq \ ℓ. Otherwise ℓ is blocked by ℓ \ (A(n)∪S) and hence Bn(S, ℓ) is a blocking

set in Πq. In the latter case through each point of ℓ ∩ Bn(S, ℓ) there pass at

least n+ 1 skew lines to S and hence through each of them there is at least one

tangent to Bn(S, ℓ). �

In PG(2, q) we will combine Lemma 4.1 with Lemma 3.4 in the cases n = t or

n = t+1 to obtain small blocking sets from small semiarcs having a long secant.

The point set Bn(S, ℓ) is an affine blocking set if and only if k + |A(n)| = q + 1,

and in this case |Bn(S, ℓ)| = q+ ε+n− t. An affine blocking set in AG(2, q) has

at least 2q − 1 points (see [12] or [25]; also follows from Theorem 3.3). Hence

if we consider PG(2, q), then ε < q − n + t − 1 implies that Bn(S, ℓ) is not an

affine blocking set. This condition will always hold for n = t or n = t+ 1.

Example 4.2. If S1 is Blokhuis’ semioval and ℓ is one of the (q − 1)/2-secants

of S1, then S1 and ℓ satisfy the conditions of Lemma 4.1 with n = 1 and the

obtained blocking set B1(S1, ℓ) is a minimal blocking set called the projective

triangle (see e.g. [24, Lemma 13.6]).

Lemma 4.3. Let be a t-semiarc in PG(2, q), q = ph, p prime, with t ≤
√

2q/3.

Let ℓ be a k-secant of and suppose that and ℓ satisfy the conditions of Lemma 4.1

with n = t. With the notation of Lemma 4.1, if p = 2 and ε < k − 4
5 (q − 1), or p

is odd and ε < k − 1
2 (q − 1), then |A(t)| ≥ t.

Proof. In both cases we have |Bt(, ℓ)| = 2q+1+ε−k−|A(t)| < 3(q+1)/2, hence

Bt(, ℓ) is a small blocking set. Let B be the unique (cf. Theorem 1.1) minimal

blocking set contained in it and let e be the exponent of B (cf. Theorem 1.2).

Note that if ε < k− 4
5 (q−1), then pe ≥ 8 follows from Theorem 1.2. Also pe ≥ 3

holds when p is odd.

The points of ℓ∩Bt(, ℓ) are essential points of Bt(, ℓ) hence ℓ∩Bt(, ℓ) = ℓ∩B.

The size of B ∩ ( \ ℓ) is at least q − t; let U be q − t points from this point set.

Consider ℓ as the line at infinity. We wish to apply Lemma 2.15 with E = A(t),

F = ℓ \ , z = pe and with P defined as in Lemma 4.1. Note that the points of P
are essential (thus P ⊂ B) and t ≤

√

2q/3 ≤
√

q(z − 1)/z. Through each point

of U there pass t tangents to . These lines are also tangents to U and they have

direction in F . Let ℓ′ be one of these tangents; then ℓ′ ∩ (B \ ℓ) = ℓ′ ∩ (P ∪ U).
Thus, by |ℓ′ ∩ B| ≡ 1 (mod z), we have that if ℓ′ has direction in F \ E, then
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|ℓ′ ∩ (P ∪ U)| ≡ 0 (mod z). Hence the two required properties of Lemma 2.15

hold, thus |A(t)| ≥ t. �

To proceed, we need some results on semiarcs with two long secants proved

by Csajbók.

Lemma 4.4 ([15, Theorem 13]). Let be a t-semiarc in the projective plane Πq,

1 < t < q. Suppose that there exist two lines ℓ1 and ℓ2 such that |ℓ1 \ ( ∪ ℓ2)| = n

and |ℓ2\(∪ℓ1)| = m. If ℓ1∩ℓ2 /∈ , then n = m = t or q ≤ min{n,m}+2nm/(t−1).

We cite only three particular cases of the complete characterization of t-semi-

arcs in PG(2, q) with two (q−t)-secants whose common point is not in the semi-

arc. Such semiarcs are called semiarcs of V ◦
t type. Note that the tight semiarcs

of V ◦
t type are precisely the Vt-configurations.

Theorem 4.5 ([15, Theorem 22]). Let be a t-semiarc of V ◦
t type in PG(2, q),

q = ph, p prime, and let t ≤ q − 2. Then the following hold.

1. If gcd(q, t) = 1, then is contained in a vertexless triangle.

2. If gcd(q, t) = 1 and gcd(q − 1, t− 1) = 1, then is a Vt-configuration.

3. If gcd(q − 1, t) = 1, then is contained either in a vertexless triangle, or in

the union of three concurrent lines with their common point removed.

Now we are ready to prove our main characterization theorems for small

semiarcs with a long secant. We distinguish two cases as the results on blocking

sets in PG(2, q) are stronger if q is a prime.

Theorem 4.6. Let be a t-semiarc in PG(2, p), p prime.

1. If t = 1, p ≥ 5 and κ(S1) ≥ p−1
2 , then

• S1 is contained in a vertexless triangle and has two (p− 1)-secants, or

• S1 is projectively equivalent to Blokhuis’ semioval, or

• |S1| ≥ min
{

3κ(S1)
2 + p− 2, 2κ(S1) +

p+1
2

}

.

2. If t = 2, p ≥ 7 and κ(S2) ≥ p+3
2 , then

• S2 is a V2-configuration, or

• |S2| ≥ min
{

4κ(S2)
3 + p− 3, 2κ(S2) +

p−1
2

}

.
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3. If 3 ≤ t <
√
p, p ≥ 23 and κ() > p− p

t + 1, then

• is contained in a vertexless triangle and has two (p− t)-secants, or

• || ≥ κ() t+2
t+1 + p− t− 1.

Proof. Let k = κ() and let ℓ be a k-secant of . Note that as t is small enough,

Theorem 2.3 implies that k ≤ q − t. We define A(n) ⊂ ℓ as usual.

PART 1. Assume that |S1| < min
{

3k
2 + p− 2, 2k + p+1

2

}

. If |S1| = k+p−1+ε,

then we have ε < min
{

k
2 − 1, k − p−3

2

}

, hence Lemma 3.4 implies that the

tangents at the points of ℓ∩S1 and the skew lines through the points of A(1) are

contained in a pencil with carrier P . Construct the small blocking set B1(S1, ℓ)

as in Lemma 4.1 with n = 1. The size of B1(S1, ℓ) is 2p + 1 + ε − k − |A(1)| <
3(p+ 1)/2 + 1, thus Theorem 1.3 implies that B1(S1, ℓ) either contains a line or

it is a minimal blocking set of size 3(p + 1)/2 and each of its points has exactly

(p− 1)/2 tangents.

In the first case, let ℓ1 be the line contained in B1(S1, ℓ). Since no p points

of S1 can be collinear, it follows from the construction of B1(S1, ℓ) that ℓ1 is a

(p− 1)-secant of S1. The assertion now follows from Corollary 3.7. In the latter

case, as the number of tangents to B1(S1, ℓ) through P is k + |A(1)|, we have

that k + |A(1)| = (p− 1)/2. Then ε = 0 follows from 3(p+ 1)/2 = |B1(S1, ℓ)| =
2p+ 1+ ε− k− |A(1)|, hence S1 is a tight semioval and, by Corollary 2.18, it is

projectively equivalent to Blokhuis’ semioval.

PART 2. Assume that |S2| < min
{

4k
3 + p− 3, 2k + p−1

2

}

. If |S2| = k+p−2+ε,

then we have ε < min
{

k
3 − 1, k − p−3

2

}

, hence Lemma 3.4 implies that the

tangents at the points of ℓ ∩ S2 and the skew lines through the points of A(2)

are contained in two pencils whose carriers we denote by P1 and P2. Construct

the blocking set B2(S2, ℓ) as in Lemma 4.1. Theorem 1.3 implies that B2(S2, ℓ)

either contains a line ℓ1 or it is a minimal blocking set of size 3(p + 1)/2 and

each of its points has exactly (p− 1)/2 tangents.

In the first case, since S2 cannot have more than p − 2 collinear points, it

follows from the construction of B2(S2, ℓ) that ℓ1 is a (p − 2)-secant of S2, and

hence so is ℓ. Then Theorem 4.5 implies that S2 is a V2-configuration. In the

latter case, both P1 and P2 have exactly (p− 1)/2 tangent lines to B2(S2, ℓ). But

this is a contradiction since these two points together have at least 2k tangents

to B2(S2, ℓ), which is greater than p− 1.

PART 3. Assume that || < k t+2
t+1 + p − t − 1. Then || = k + p − t + ε, where

ε < k
t+1 − 1, hence Lemma 3.4 implies that the tangents at the points of ℓ∩ are

contained in t+1 pencils. Construct the blocking set Bt+1(, ℓ) as in Lemma 4.1.

Since ε < k
t+1 −1 < k− p+1

2 holds by t ≥ 3 and k > p−p/t+1, Bt+1(, ℓ) is small.
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Then Theorem 1.3 implies that it contains a line ℓ1. Note that ℓ1 ∩ ℓ /∈ . Since

cannot have more than p − t collinear points, by the construction of Bt+1(, ℓ)

we have that ℓ1 is a (p − t)-secant or a (p − t − 1)-secant of , and hence so is

ℓ. Then (using p ≥ 23 and t <
√
p) Lemma 4.4 implies that both ℓ and ℓ1 are

(p− t)-secants. Since gcd(t, p) = 1, Theorem 4.5 implies that is contained in a

vertexless triangle. �

For non-prime values of q, our next theorem roughly says that if t is small,

then small t-semiarcs with a long secant are of V ◦
t type. If q is a square, then

we can characterize altered Baer subplanes (Example 2.10) as well. Recall that

altered Baer subplanes are t-semiarcs of size (q −√
q − t) + (q − t) with a (q −√

q − t)-secant.

Theorem 4.7. Let be a t-semiarc in PG(2, q), q = ph, h ≥ 2 if p is an odd prime

and h ≥ 6 if p = 2. Suppose that

κ() ≥
{

q − √
q − t if h is even,

q − cpq
2/3 − t if h is odd,

where cp = 2−1/3 for p = 2, 3 and cp = 1 for p > 3 (cf. Theorem 1.3). Then the

following hold.

1. If h = 2d and t < (
√
5− 1)(

√
q − 1)/2, then

• || < 2κ() +
√
q implies that is of V ◦

t type;

• || = 2κ()+
√
q and q > 9 implies that is either of V ◦

t type or an altered

Baer subplane.

2. If h = 2d+1, || < 2κ()+ cpq
2/3 and t < q1/3−3/2 (or t < (2q)1/3−2 when

p = 2, 3), then is of V ◦
t type.

Proof. Let k = κ() and let ℓ be a k-secant of . Note that as t is small enough,

Theorem 2.3 implies that k ≤ q − t. We define A(n) ⊂ ℓ as usual. To apply

Lemma 3.4, we need k > q − q
t + 1; furthermore, ε < k/2 − 1 for t = 1 and

ε < k/(t + 1) − t/2 for t ≥ 2. Let us first consider the condition on k. If q

is a square, then k ≥ q − √
q − t > q − q

t + 1 holds if t < Φ(
√
q − 1), where

Φ =
√
5−1
2 ≈ 0.618034. If q is not a square, then t < q1/3−3/2 (or t < (2q)1/3−2

when p = 2, 3) and k ≥ q − cpq
2/3 − t imply k > q − q

t + 1.

Next we treat the condition on ε. Let us define b(q) as follows:

b(q) :=

{ √
q if h is even,

cpq
2/3 if h is odd.
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As || = k + q − t+ ε, || ≤ 2k + b(q) implies ε ≤ k − q + b(q) + t.

Suppose first that t ≥ 2. As ε ≤ k − q + b(q) + t, it is enough to prove

k − q + b(q) + t < k
t+1 − t

2 . After rearranging we get that this is equivalent to

k < (q − t) +

(

q − b(q)

t
− t

2
− b(q)− 3

2

)

,

thus it is enough to see (as k ≤ q − t holds automatically) that

q − b(q)

t
− t

2
− b(q)− 3

2
> 0.

As a function of t the left hand side decreases monotonically. It is positive

when t is maximal (under the respective assumptions), hence the condition of

Lemma 3.4 on ε is satisfied for t ≥ 2.

If t = 1, then the upper bounds on t imply q ≥ 9 for h = 2d and q ≥ 27 for

h = 2d + 1. From these lower bounds on q and from k ≤ q − 1 it follows that

k/2 ≤ (q − 1)/2 ≤ q − b(q) − 2, whence we obtain k − q + b(q) + 1 ≤ k
2 − 1. If

|S1| < 2k + b(q), then ε < k − q + b(q) + 1 ≤ k
2 − 1. If |S1| = 2k + b(q), then

ε = k − q + b(q) + 1 and we are in the case h = 2d; here the assumption q > 9

implies ε = k− q+ b(q)+ 1 < k
2 − 1. Thus the condition of Lemma 3.4 on ε also

holds for t = 1.

For || < 2k+ b(q), we prove the h even and h odd cases of the theorem simul-

taneously. Construct the blocking set Bt(, ℓ) as in Lemma 4.1. The conditions

in Lemma 4.3 hold, hence the size of A(t) is at least t. The size of Bt(, ℓ) is

2q + 1 + ε − k − |A(t)| < q + b(q) + 1, thus Theorem 1.3 implies that Bt(, ℓ)

contains a line ℓ1. Since cannot have more than q − t collinear points, by the

construction of Bt(, ℓ) we get that ℓ1 is a (q − t)-secant of , and hence so is ℓ.

Thus is of V ◦
t type.

Now consider the case || = 2k+
√
q (hence ε = k− q+

√
q+ t), and suppose

that does not have two (q − t)-secants. We can repeat the above arguing and

get that Bt(, ℓ) is a Baer subplane because of Theorem 1.3. Then |Bt(, ℓ)| =

q +
√
q + 1 = 2q + 1 + ε − k − |A(t)| yields |A(t)| = t. The size of ℓ ∩ Bt(, ℓ)

is either 1 or
√
q + 1. In the latter case k = q − √

q − t and is an altered Baer

subplane. In the first case k = q − t; we show that this cannot occur. Denote

by R the common point of ℓ and Bt(, ℓ) and let P be any point of Bt(, ℓ) \ (ℓ ∪ ).

Among the lines of the Baer subplane Bt(, ℓ) there are
√
q+1 lines incident with

P . One of them is PR, which meets in at least
√
q − t > 1 points; each of the

other
√
q lines of the subplane intersects in at least

√
q+1− t > 1 points. Thus
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these
√
q + 1 lines cannot be tangents to . But the pencil of lines through P

contains k = q − t tangents to , one at each point of ℓ ∩ , too. Thus the total

number of lines through P is at least
√
q+1+ q− t > q+1, a contradiction. �
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