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Embedded polar spaces revisited
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Abstract

Pseudo-quadratic forms have been introduced by Tits [10, Chapter 8]

in view of the classification of polar spaces. A slightly different notion is

proposed by Tits and Weiss [11, Chapter 11]. In this paper we propose a

generalization of the definition of [10], inspired by [11]. With its help we

will be able to clarify a few points in the classification of embedded polar

spaces. We recall that, according to [10], given a division ring K and an

admissible pair (σ, ε) in it, the codomain of a (σ, ε)-quadratic form is the

group K := K/Kσ,ε, where Kσ,ε := {t − tσε}t∈K . Our generalization

amounts to replace K with a quotient K/R for a subgroup R of K such

that λσRλ = R for any λ ∈ K. We call generalized pseudo-quadratic forms

(also generalized (σ, ε)-quadratic forms) the forms defined in this more gen-

eral way, keeping the words pseudo-quadratic form and (σ, ε)-quadratic form

for those defined as in [10]. Generalized pseudo-quadratic forms behave

just like pseudo-quadratic forms. In particular, every non-trivial generalized

pseudo-quadratic form admits a unique sesquilinearization, characterized

by the same property as the sesquilinearization of a pseudo-quadratic form.

Moreover, if q : V → K/R is a non-trivial generalized pseudo-quadratic

form and f : V × V → K is its sesquilinearization, the points and the

lines of PG(V ) where q vanishes form a subspace Sq of the polar space

Sf associated to f . In this paper, after a discussion of quotients and cov-

ers of generalized pseudo-quadratic forms, we shall prove the following,

which sharpens a celebretated theorem of Buekenhout and Lefèvre [3]. Let

e : S → PG(V ) be a projective embedding of a non-degenerate polar space

S of rank at least 2; then e(S) is either the polar space Sq associated to a

generalized pseudo-quadratic form q or the polar space Sf associated to an

alternating form f . By exploiting this theorem we also obtain an elemen-

tary proof of the following well known fact: an embedding e as above is

dominant if and only if either e(S) = Sq for a pseudo-quadratic form q or

char(K) 6= 2 and e(S) = Sf for an alternating form f .

Keywords: polar spaces, embeddings

MSC 2010: 51A50, 51A45, 51E12, 51E24.



32 A. Pasini

1 Introduction

1.1 Polar spaces and their embeddings

We refer to Tits [10, Chapters 7 and 8] and Buekenhout and Cohen [2, Chap-

ters 7–10] for the theory of polar spaces and their projective embeddings, but

we warn the reader that there are some differences between the setting chosen

by Tits [10] and the approach of Buekenhout and Cohen [2]. To begin with, the

definition of polar space adopted in [2] (which is the same as in Buekenhout

and Shult [4]) is more general than that of Tits [10]: a polar space as defined by

Tits [10, Chapter 7] is a non-degenerate polar space of finite rank in the sense

of [2]. In this paper we shall stick to the definition of [2], according to which a

polar space is a point-line geometry S = (P,L) such that for every point p ∈ P

and every line l ∈ L, the point p is collinear with either all or just one of the

points of l. The notion of projective embedding used in [10, Chapter 8] also

looks more restrictive than that of [2], although those two notions are in fact

equivalent, as we will see in a few lines. According to [2], an embedding of a

polar space S = (P,L) is an injective mapping e from the point-set P of S to

the set of points of the projective geometry PG(V ) of a vector space V , such

that e maps every line of S surjectively onto a line of PG(V ) and e(P ) spans

PG(V ) (compare our definition of embeddings in Subsection 1.3.3), while Tits

[10] also assumes the following:

(∗) The image e(S) = (e(P ), e(L)) of S by e is a subspace of the polar space

Sf associated to a (possibly degenerate) reflexive sesquilinear form f :

V × V → K.

Needless to say, K is the underlying division ring of V . As for the definition

of subspaces, we refer the reader to Subsection 1.3.1 of this paper. Note that

the hypothesis that e(S) is a subspace of Sf uniquely determines f modulo

proportionality (Tits [10, Chapter 8], Buekenhout and Cohen [2, Chapter 9]).

However, as we said above, these two definitions of embedding are practi-

cally the same. Indeed:

Theorem 1.1 (Buekenhout and Cohen [2, Chapter 9]). Let e be a projective

embedding of a polar space S, in the sense of [2]. Suppose that S is non-degenerate

of rank at least 2. Then (∗) holds for e.

To my knowledge, the earliest version of Theorem 1.1 that has appeared in

the literature is due to Dienst [6], who completed the work formerly done by

Buekenhout and Lefèvre [3] on embeddings of finite polar spaces of rank 2.
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Dienst still sticks to the rank 2 case in [6], but his arguments also work for

higher rank polar spaces, modulo a few obvious adjustments.

In view of the next theorem we need a few definitions. We state them now

for embeddings of polar spaces but we shall turn back to them in Subsection

1.3.3, in a more general context. Referring to Subsection 1.3.3 for quotients

and covers of embeddings, we say that a projective embedding of a polar space

S is dominant if it is not a proper quotient of any other embedding of S. In

other words, it is not properly covered by any other embedding. It is well

known that every embedding e is covered by a dominant embedding, uniquely

determined by e up to isomorphism and called the hull of e (see Section 1.3.3).

An embedding e of S is initial if all projective embeddings of S are quotients of

e. Clearly the initial embedding, if it exists, is unique up to isomorphism. It is in

fact the unique dominant embedding of S. In other words, S admits the initial

embedding if and only if all embeddings of S admit the same hull.

We refer to Tits [10, 8.2] (also Section 2 of the present paper) for the defini-

tion of pseudo-quadratic forms.

Theorem 1.2 (Tits [10, 8.6]). Let S be a non-degenerate polar space of rank at

least 2 and let e : S → PG(V ) be a projective embedding of S, with e(S) a subspace

of Sf as in (∗). Then e is dominant if and only if one of the following holds:

(1) The form f is alternating, the underlying field of V has characteristic other

than 2 and e(S) = Sf .

(2) The image e(S) of S is the polar space Sq associated to a non-singular

pseudo-quadratic form q such that f is the sesquilinearization of q.

Moreover, if e is dominant then it is also initial, except for two exceptional cases

where S has rank 2.

The two exceptional cases mentioned above will be described later in this

paper (Section 6, Theorem 6.4). We now turn to the most important theorem

of the theory of polar spaces.

Theorem 1.3 (Tits [10]). Let S be a non-degenerate polar space of rank at least 3.

Suppose that the planes of S are desarguesian. Moreover, when S has rank 3 and

every line of S belongs to exactly two planes, suppose also that the planes of S are

Pappian. Then S admits a projective embedding.

Tits proves Theorem 1.3 in Chapter 8 of [10]. A different proof, inspired by

the work of Veldkamp [12], is offered by Buekenhout and Cohen in [2, Chap-

ter 10]. Tits’s proof is rather algebraic in flavour. He constructs an embedding

of S by a free construction where vector spaces associated to the singular sub-

spaces of S containing a given point of S are amalgamated so that to obtain a
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vector space V which, extended by adding two copies of the underlying division

ring K of S, yields a vector space Ṽ = V ⊕ V (2,K) which hosts an embedding

ẽ of S. The embedding ẽ constructed in that way is initial. Explicitly, let f̃ be

the reflexive sesquilinear form on Ṽ such that ẽ is a subspace of Sf̃ (see (∗)). If

ẽ(S) = Sf̃ then f̃ is non-degenerate and ẽ is the unique projective embedding

of S. Otherwise, f̃ is the sesquilinearization of a non-singular pseudo-quadratic

form q̃, we have ẽ(S) = Sq̃ and all projective embeddings of S arise as quotients

of ẽ over a subspace of the radical Rad(f̃) of f̃ . Thus we also have a complete

classification of projective embeddings of non-degenerate polar spaces of rank

at least 3.

The proof by Buekenhout and Cohen is completely geometric. Following the

original approach by Veldkamp [12], they prove that the family of hyperplanes

of S = (P,L) (see Subsection 1.3.1 for the definition of hyperplanes) forms a

projective space, say it V(S), called the Veldkamp space of S. The hyperplanes

of S are the points of V(S) while the lines of V(S) are families of hyperplanes

consisting of all hyperplanes of S containing the intersection of two given hy-

perplanes. As S is non-degenerate by assumption, for every point p ∈ P the

set of points of S collinear with p is a hyperplane of S, hence a point of V(S),
usually denoted by the symbol p⊥. Let ê be the mapping from the point-set of S

to the set of points of V(S) defined by setting ê(p) = p⊥ for every p ∈ P . Then

ê is an embedding of S in the subspace V̂ of V(S) spanned by ê(P ). We call ê

the Veldkamp embedding of S.

In a sense, the Veldkamp embedding ê is the counterpart of the initial em-

bedding ẽ constructed by Tits. Indeed, while ẽ covers all embeddings of S, the

Veldkamp embedding is covered by all of them. In short, ê is terminal. We

obtain it from ẽ by factorizing ẽ over Rad(f̃).

In order to classify the embeddings of S we should now describe all covers

of ê. In particular, we must show how to recover ẽ from ê, but possibly without

exploiting Tits’s construction of ẽ. However, if we want to do so, Theorem 1.1 is

the only tool we have at hand. According to that theorem, if e is an embedding

of S then e(S) is a subspace of Sf for a suitable reflexive sesquilinear form f , but

it can happen that e(S) is a proper subspace of Sf as well as a proper overspace

of Sq for every pseudo-quadratic form q admitting f as the sequilinearization.

As a consequence, if f̂ is the (σ, ε)-sesquilinear form on V̂ such that ê(S) is

a subspace of S
f̂

and ẽ is the initial embedding of S, we can only claim that

ẽ(S) = Sq̃ for a suitable (σ, ε)-quadratic form q̃ defined on a suitable subspace Ṽ

of V̂ ⊕Kσ,ε/Kσ,ε (compare Buekenhout and Cohen [2, Theorem 10.12.5]). This

is admittedly a bit vague, even if in many particular cases we can easily explain

which subspace Ṽ actually is. It would be nice to have a precise description

of Ṽ , valid in general.
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1.2 Purpose and main results of this paper

The purpose of this paper is to overcome the difficulties discussed in the pre-

vious paragraph. We will succeed by using a definition of pseudo-quadratic

form more general than that of [10], inspired by Tits and Weiss [11, Chap-

ter 11]. We recall that, according to Tits [10, 8.2], given a division ring K,

an anti-automorphism σ of K and an element ε ∈ K∗ such that ε1+σ = 1 and

tσ
2

= εtε−1 for every t ∈ K, the codomain of a (σ, ε)-quadratic form is the

group K := K/Kσ,ε, where Kσ,ε := {t − tσε}t∈K . In our generalization we

keep the definition of [10, 8.2] but we replace K with a quotient K/R, where

R is any subgroup of K such that λσRλ = R for every λ ∈ K. In order to avoid

any confusion, we call the forms defined in this more general way generalized

(σ, ε)-quadratic forms (also generalized pseudo-quadratic forms, with no mention

of the pair (σ, ε) when possible), keeping the words (σ, ε)-quadratic form and

pseudo-quadratic form for pseudo-quadratic forms defined as in [10, 8.2].

As we shall show in Section 3, most of the properties of pseudo-quadratic

forms also hold for generalized pseudo-quadratic forms. In particular, every

non-trivial generalized pseudo-quadratic form admits a unique sesquilineariza-

tion, characterized by the same property as the sesquilinearization of a pseudo-

quadratic form. Moreover, if q : V → K/R is a non-trivial generalized pseudo-

quadratic form and f : V × V → K is its sesquilinearization, then the points

and the lines of PG(V ) where q vanishes form a subspace Sq of Sf . In Sec-

tion 5 (Theorems 5.5 and 5.8) we shall obtain the following improvement of

Theorem 1.1:

Theorem 1.4. Let e : S → PG(V ) be a projective embedding of a non-degenerate

polar space S of rank at least 2. Then e(S) is either the polar space Sq associated to

a non-trivial generalized pseudo-quadratic form q or the polar space Sf associated

to a non-degenerate alternating form f .

As said before, the hull of an embedding e is the unique dominant embed-

ding that covers e. With e and S as in Theorem 1.4, the hull of e is the initial

embedding of S, with the only exception of the two cases of rank 2 mentioned

in the last claim of Theorem 1.2.

Let e(S) = Sf for an alternating form f and let ẽ be the hull of e. It is well

known that in this case either ẽ = e (when char(K) 6= 2) or char(K) = 2 and

ẽ(S) = Sq̃ for a non-singular quadratic form q̃ : Ṽ → K, where Ṽ = V ⊕K, the

field K being regarded as a vector space over itself with scalar multiplication

◦ : K ×K → K defined as follows: t ◦ λ = tλ2 for every vector t ∈ K and every

scalar λ ∈ K.

On the other hand, let e(S) = Sq for a generalized pseudo-quadratic form

q : V → K/R. Let ◦ : R×K → K be defined as follows: r ◦ λ = λσrλ for every
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r ∈ R and every scalar λ ∈ K. We will prove in Section 3 that the group R

equipped with ◦ as the scalar multiplication is a K-vector space. (This amounts

to say that R ⊆ Kσ,ε/Kσ,ε.) Hence we can form a direct sum of K-vector

spaces Ṽ = V ⊕ R and, if f is the sesquilinearization of q, we can define a

reflexive sesquiliner form f̃ : Ṽ × Ṽ → K by declaring that R ⊆ Rad(f̃) and f̃

induces f on V × V . As we shall prove in Section 4, a pseudo-quadratic form

q̃ : Ṽ → K can be defined admitting f̃ as its sesquilinearization and such that

the projection π : Ṽ → Ṽ /R = V induces an isomorphism πS from Sq̃ to Sq. So,

the mapping ẽ := π−1
S · e is a projective embedding of S and π is a morphism

from ẽ to e. Moreover, ẽ is dominant by Theorem 1.2, since ẽ(S) = Sq̃ and q̃ is

pseudo-quadratic. Therefore:

Theorem 1.5. The hull of e is the embedding ẽ defined as above.

1.3 Subspaces and embeddings of point-line geometries

So far we have freely mentioned embeddings and subspaces. It is time to fix

these notions in a proper way.

Throughout this subsection G = (P,L) is a point-line geometry, with P and L

as the point-set and the line-set respectively. We regard lines as subsets of P and

we assume that no two distinct lines meet in more than one point and every line

has at least two points. The collinearity graph of G is the graph with P as the

vertex-set where two points a, b ∈ P are declared to be adjacent when they are

joined by a line of G. The geometry G is said to be connected if its collinearity

graph is connected.

Given two point-line geometries G = (P,L) and G′ = (P ′, L′), an isomor-

phism from G to G′ is a bijective mapping e : P → P ′ such that {e(l)}l∈L = L′,

where for a line l ∈ L we put e(l) := {e(p)}p∈l.

1.3.1 Subgeometries and subspaces

A point-line geometry G′ = (P ′, L′) is a subgeometry of G = (P,L) if P ′ ⊆ P

and for every line l′ ∈ L′ there exists a (necessarily unique) line l ∈ L such

that l′ = l ∩ P ′. If every line of G′ is also a line of G then G′ is called a full

subgeometry of G. On the other hand, if L′ = {l ∩ P ′ | l ∈ L, |l ∩ P ′| ≥ 2} then

G′ is called the subgeometry induced by G on P ′.

A subset P ′ ⊆ P is called a subspace of G if every line of G either is contained

in P ′ or meets P ′ in at most one point. We say that a geometry G′ = (P ′, L′) is

a subspace of (G,L) if P ′ is a subspace of G in the previous sense and G′ is the
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subgeometry induced by G on P ′. Clearly, subspaces in the latter sense are full

subgeometries.

We have mentioned hyperplanes in Subsection 1.1. A hyperplane of a point-

line geometry G = (P,L) is a proper subspace H ⊂ P such that every line of G

either meets H in a single point or is fully contained in H.

1.3.2 Notation for vector spaces and projective spaces

In view of the next subsection, it is convenient to fix some notation for vector

spaces and related projective spaces. Given a vector space V , we denote by

PG(V ) the projective space of 1- and 2-dimensional vector subspaces of V . For a

vector v ∈ V − {0}, we denote by [v] the projective point of PG(V ) represented

by v. If X is a subspace of V we put [X] = {[x]}x∈X−{0}, namely [X] is the

subspace of PG(V ) corresponding to X. Given a semilinear mapping f : V →
V ′, let Ker(f) := f−1(0) be the kernel of f . We denote by PG(f) the mapping

induced by f from PG(V )− [Ker(f)] to PG(V ′).

1.3.3 Projective embeddings

Let G = (P,L) be a connected point-line geometry. A projective embedding

of G (also called just embedding for short) is an isomorphism e from G to a

full subgeometry e(G) = (e(P ), e(L)) of the projective space PG(V ) of a vector

space V , such that e(P ) spans PG(V ). We write e : G → PG(V ) to mean that

e is a projective embedding of G in PG(V ). If K is the underlying division ring

of V then we say that e is defined over K, also that e is a K-embedding. If all

projective embeddings of G are defined over the same division ring K then we

say that G is defined over K and we call K the underlying division ring of G.

Given two K-embeddings e : G → PG(V ) and e′ → PG(V ′), a morphism

f : e → e′ is a semilinear mapping f : V → V ′ such that PG(f) · e = e′. As

e′(P ) spans PG(V ′), the mapping f is surjective. If f is bijective then f is said

to be an isomorphism from e to e′. If a morphism f : e → e′ exists then we say

that e′ is a homomorphic image of e (also that e covers e′) and we write e ≥ e′.

If moreover f is bijective then we write e ∼= e′ and we say that e and e′ are

isomorphic, otherwise we call f a proper morphism and we write e > e′. Note

that, as G is connected by assumption, if e ≥ e′ then the morphism f : e → e′ is

unique up to isomorphism.

Let U be a subspace of V such that e(P )∩ [U ] = ∅ and l∩ [U ] = ∅ for any line

l of PG(V ) such that |l ∩ e(P )| ≥ 2. Let πU be the projection of V onto V/U .

Then the mapping eU := PG(πU ) · e is an embedding of G in PG(V/U) and πU

is a morphism from e to eU . We say that U defines a quotient of e and we call
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eU the quotient of e over U . If f : e → e′ is a morphism then Ker(f) defines a

quotient of e and e′ ∼= eU . By a little abuse, we say that e′ is a quotient of e, thus

taking the word ‘quotient’ as a synonym of ‘homomorphic image’.

Following Tits [10, Chapter 8] we say that a projective embedding of G is

dominant if it cannot be obtained as a proper quotient from any other pro-

jective embedding of G. If all K-embeddings of G are quotients of a given

K-embedding e then we say that e is K-initial. If moreover G is defined over

K then we say that e is absolutely initial, also just initial for short. Thus, when

we say that G admits the (absolutely) initial embedding, without mentioning any

division ring explicitly, we understand that G is defined over some division ring.

Clearly, the (K-)initial embedding, if it exists, is uniquely determined up to

isomorphism. It is the unique dominant (K-)embedding of G.

Finally, every embedding e of G admits a hull ẽ, uniquely determined up to

isomorphism by the following property: ẽ ≥ e′ for every embedding e′ of G

such that e′ ≥ e. We refer the reader to Ronan [9] for an explicit construction

of ẽ. Clearly, the hull ẽ of e is dominant. Up to isomorphism, it is the unique

dominant embedding in the class of the embeddings that cover e. So, if G

admits the K-initial embedding and e is defined over K, then ẽ is also K-initial.

The terminology adopted in the previous definitions is essentially the same

as in Tits [10], but different terminologies are also used in the literature. For

instance, dominant and initial embeddings are often called relatively universal

and absolutely universal respectively (compare Kasikova and Shult [8]).

Added in Proof. When this paper was already at the final step of the editing

process by the journal, I have learned from Tom De Medts that generalized

pseudo-quadratic forms are considered also by A. J. Hahn and O. T. O’Meara in

their book The Classical Groups and K-Theory [7]. Indeed, at Section 5.1C of

that book, Hahn and O’Meara introduce Λ-quadratic forms, which are just the

same as generalized pseudo-quadratic forms as defined in this paper. Moreover,

arbitrary rings with unit are considered by Hahn and O’Meara instead of division

rings. It is also worth mentioning that Hahn and O’Meara give Bak credit for

having been the first to introduce this notion in full generality [1].

2 Preliminaries

In this section we fix some notation and recall a few basics on sesquilinear

and pseudo-quadratic forms, taken from Tits [10, Chapter 8] and Buekenhout

and Cohen [2, Chapters 7 and 10]. This recapitulation will be exploited in
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Section 3, where generalized pseudo-quadratic forms will be discussed. In-

deed many properties of pseudo-quadratic forms hold for generalized pseudo-

quadratic forms as well, even with the same proofs but for a few obvious modi-

fications. We could urge the reader to look for those proof in the literature and

check that they remain valid in the more general setting of Section 3, but we

have preferred to take a more friendly attitude. Thus, a few of those proofs will

also be sketched in this section, chosen among those that are presumably less

well known to non-specialists.

2.1 Admissible pairs

Throughout this paper K is a possibly non-commutative division ring, σ is an

anti-automorphism of K and ε ∈ K is such that εσε = 1 and tσ
2

= εtε−1 for

any t ∈ K. Following Buekenhout and Cohen [2, Chapter 10] we call (σ, ε) an

admissible pair of K. As in Tits [10, Chapter 8], we set

Kσ,ε := {t− tσε}t∈K , Kσ,ε = {t ∈ K | t = −tσε}.

Clearly Kσ,ε and Kσ,ε are subgroups of the additive group of K. Moreover,

λσKσ,ελ = Kσ,ε and λσKσ,ελ = Kσ,ε for every λ ∈ K − {0}, (1)

Kσ,ε ⊆ Kσ,ε, (2)

Kσ,ε = K if and only if σ = idK and ε = −1, (3)

Kσ,ε = K if and only if σ = idK , ε = −1 and char(K) 6= 2. (4)

The quotient group of the additive group of K over Kσ,ε is denoted by K(σ,ε) in

[10]. In this paper we shall denote it by the symbol K:

K := K(σ,ε) = K/Kσ,ε. (5)

We will also adopt the following convention. Given t ∈ K we denote by t̄ the

element of K represented by t:

t̄ := t+Kσ,ε. (6)

Accordingly, t+ s = t+ s+Kσ,ε, ts = ts+Kσ,ε and 0̄ is the null element of K.

If X ⊆ K we put X := {t̄}t∈X .
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2.1.1 Pairs of trace type

Clearly, if (σ, ε) is an admissible pair of a division ring K then the pair (σ,−ε)

is also admissible. So, we can consider the groups Kσ,−ε = {t + tσε}t∈K and

Kσ,−ε = {t ∈ K | t = tσε}. According to (2), Kσ,−ε ⊆ Kσ,−ε. Following

Buekenhout and Cohen [2], when Kσ,−ε = Kσ,−ε we say that the pair (σ, ε)

is of trace type. The following is well known (see Tits [10, Chapter 8], also

Buekenhout and Cohen [2, Chapter 10]).

Lemma 2.1. Assume that either char(K) 6= 2 or char(K) = 2 but σ acts non-

trivially on the center Z(K) of K. Then, for every element ε ∈ K forming an

admissible pair with σ, the pair (σ, ε) is of trace type.

2.1.2 A scalar multiplication in the group K

According to (1), λσKσ,ελ = Kσ,ε for every λ ∈ K. So, we can define a scalar

multiplication ◦ : K × K → K as follows: (t + Kσ,ε) ◦ λ = λσ(t + Kσ,ε)λ =

λσtλ+Kσ,ε, namely

t̄ ◦ λ = λσtλ for any t̄ ∈ K and λ ∈ K. (7)

Clearly the following hold for any t̄, s̄ ∈ K and λ, µ ∈ K:

(t̄ ◦ λ) ◦ µ = t̄ ◦ (λµ) and (t+ s) ◦ λ = t̄ ◦ λ+ s̄ ◦ λ. (8)

Given an element t̄ ∈ K (a subset H ⊆ K) we put t̄ ◦K := {t̄ ◦ λ}λ∈K (respec-

tively H ◦K := ∪t̄∈H t̄ ◦K). We say that t̄ is a ◦-vector if

t̄ ◦ (λ+ µ) = t̄ ◦ λ+ t̄ ◦ µ for any λ, µ ∈ K. (9)

We denote by K
◦

the set of ◦-vectors of K. It is easy to see that K
◦
+K

◦
⊆ K

◦

and K
◦
◦K ⊆ K

◦
. Moreover, 0̄ ∈ K

◦
and −K

◦
= K

◦
. Thus, K

◦
can be regarded

as a right K-vector space, with ◦ taken as the scalar multiplication.

All claims gathered in the next lemma are well known. Claim (1) is the same

as Lemma 10.2.2 of Buekenhout and Cohen [2]. Claim (3) immediately follows

from (1) while (2) follows from (1) and Lemma 2.1.

Lemma 2.2. All the following hold.

(1) K
◦
= Kσ,ε/Kσ,ε.

(2) K
◦
= {0̄} if and only if the pair (σ, ε) is of trace type.

(3) K
◦
= K if and only if Kσ,ε = K.
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2.1.3 Closed subgroups of K

We say that a subgroup H of K is closed with respect to the scalar multiplication

◦ defined above (also ◦-closed or just closed, for short) if H ◦K ⊆ H.

We refer the interested reader to Chapter 11 of Tits and Weiss [11] for a

discussion of properties of closed subgroups. Here we only note that K, the

vector space K
◦

and all subspaces of K
◦

are closed subgroup of K and we

mention the following, to be exploited in Section 3. Let H be a closed subgroup

of K. The scalar multiplication ◦ of K naturally induces a scalar multiplication

on the quotient group K/H, which we shall denote by the same symbol ◦ used

for the scalar multiplication of K. Explicitly,

(t̄+H) ◦ λ := t̄ ◦ λ+H for every t̄ ∈ K. (10)

This definition is consistent, namely the coset t̄ ◦ λ+H does not depend on the

choice of the representative t̄ of t̄ + H. Moreover, if H ⊆ K
◦

then K
◦
/H is a

K-vector space, with scalar multiplication ◦ defined as above.

2.1.4 Proportionality of admissible pairs

Given an admissible pair (σ, ε) of K and a nonzero scalar κ ∈ K − {0}, let

ε′ := κκ−σε and let σ′ be the anti-automorphism of K defined as follows:

tσ
′

:= κtσκ−1 for every t ∈ K.

Both claims of the next lemma are well known (see Tits [10, Chapter 8]):

Lemma 2.3. The pair (σ′, ε′) is admissible. Moreover:

(1) κKσ,ε = Kσ′,ε′ and κKσ,ε = Kσ′,ε′ .

(2) κλσtλ = λσ′

κtλ for any t ∈ K.

By (1) of Lemma 2.3, left multiplication by κ induces a group isomorphism

from K/Kσ,ε to K/Kσ′,ε′ as well as from Kσ,ε/Kσ,ε to Kσ′,ε′/Kσ′,ε′ .

When dealing with two pairs (σ, ε) and (σ′, ε′) as above it is convenient to

keep a record of them in our notation. So we put K
σ,ε

= K/Kσ,ε, K
σ′,ε′

=

K/Kσ′,ε′ , K
◦,σ,ε

= Kσ,ε/Kσ,ε, K
◦,σ′,ε′

= Kσ′,ε′/Kσ′,ε′ , t̄
σ,ε = t+Kσ,ε, t̄

σ′,ε′ =

t + Kσ′,ε′ and we denote the scalar multiplications of K
σ,ε

and K
σ′,ε′

by the

symbols ◦σ and ◦σ′ respectively. This notation is admittedly rather clumsy. We

will avoid it as far as possible, but in the present context we need it. With the

above notation, claim (2) of Lemma 2.3 can be rewritten as follows:

κ(t̄σ,ε ◦σ λ) = (κ(t̄σ,ε)) ◦σ′ λ = ((κt)
σ′,ε′

) ◦σ′ λ. (11)
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Thus, left multiplication by κ is an isomorphism of K-vector spaces from K
◦,σ,ε

to K
◦,σ′,ε′

. With κ, (σ, ε) and (σ′, ε′) as in (11), we write (σ′, ε′) = κ · (σ, ε) and

we say that the pairs (σ, ε) and (σ′, ε′) are proportional.

Clearly, if (σ′, ε′) = κ · (σ, ε) then (σ, ε) = κ−1 · (σ′, ε′). If moreover (σ′′, ε′′) =

κ′ · (σ, ε) then (σ′′, ε′′) = (κ′κ) · (σ, ε). It is also clear that κ · (σ, ε) = (σ, ε) if and

only if κ ∈ Z(K) and κσ = κ.

2.2 Reflexive sesquilinear forms

Given a division ring K, a left K-vector space V and an anti-automorphism σ

of K, a σ-sesquilinear form is a mapping f : V × V → K such that

f(x1λ1 + x2λ2, y1µ1 + y2µ2)

= λσ
1f(x1, y1)µ1 + λσ

1f(x1, y2)µ2 + λσ
2f(x2, y1)µ1 + λσ

2f(x2, y2)µ2 (12)

for all x1, x2, y1, y2 ∈ V and λ1, λ2, µ1, µ2 ∈ K. We say that f is trivial when

f(x, y) = 0 for any choice of x, y ∈ V . Obviously, if f is non-trivial then σ is

uniquely determined by (12). When σ = idK (whence K is a field, namely it is

commutative) then f is said to be bilinear.

A sesquilinear form f is said to be reflexive if, for any choice of x, y ∈ V ,

we have f(x, y) = 0 if and only if f(y, x) = 0. It is well known (Tits [10,

Chapter 8]) that a non-trivial σ-sesquilinear form is reflexive if and only if there

exists a (uniquely determined) element ε ∈ K such that

f(y, x) = f(x, y)σε for all x, y ∈ V. (13)

If this is the case then (σ, ε) is an admissible pair and f is called a (σ, ε)-sesquilin-

ear form. A symmetric bilinear form is an (idK , 1)-sesquilinear form. A bilinear

form f is said to be alternating if

f(x, x) = 0 for any x ∈ V. (14)

Non-trivial alternating forms are (idK ,−1)-sesquilinear. Conversely, if K is a

field of characteristic char(K) 6= 2 then all (idK ,−1)-sesquilinear forms are

alternating. On the other hand, let char(K) = 2. Then 1 = −1. In this case an

(idK ,−1)-sesquilinear form is just a symmetric bilinear form. Obviously, not all

symmetric bilinear forms satisfy (14).

Let f : V × V → K be a (σ, ε)-sesquilinear form. By (13), f(x, x) ∈ Kσ,−ε

for every x ∈ V . The form f is said to be trace-valued if f(x, x) ∈ Kσ,−ε for

every x ∈ V . Clearly, if the pair (σ, ε) is of trace type then all (σ, ε)-sesquilinear

forms are trace-valued. Hence, by Lemma 2.1, when either char(K) 6= 2 or
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char(K) = 2 but σ acts non-trivially on Z(K), all (σ, ε)-sesquilinear forms are

trace-valued. When K is a field of characteristic 2 the pair (idK , 1) is not of

trace type. In this case an (idK , 1)-sesquilinear form is trace-valued if and only

if it is alternating.

The following characterization of trace-valued sesquilinear forms is well known

(Tits [10, Chapter 8], also Buekenhout and Cohen [2, Chapter 10]).

Lemma 2.4. A (σ, ε)-sesquilinear form f : V × V → K is trace-valued if and

only if there exists a σ-sesquilinear form g : V × V → K such that f(x, y) =

g(x, y) + g(y, x)σε for all x, y ∈ V .

2.2.1 Orthogonality and the polar space Sf

Given a (σ, ε)-sesquilinear form f : V ×V → K, we say that two vectors x, y ∈ K

are orthogonal (with respect to f) if f(x, y) = 0. If x and y are orthogonal then

we write x ⊥ y. Given a vector x ∈ V we put x⊥ := {y ∈ V | y ⊥ x} and, for a

subset X ⊆ V , we set X⊥ :=
⋂

x∈X x⊥. Clearly x⊥ is either a hyperplane or the

whole of V . Hence X⊥ is a subspace of V , for any X ⊆ V . We set

Rad(f) := V ⊥ = {x ∈ V | x⊥ = V }

and we call Rad(f) the radical of f . We say that f is degenerate if Rad(f) 6= {0}.

A vector x ∈ V is said to be isotropic for f (also f -isotropic) if f(x, x) = 0,

namely x ∈ x⊥. A subset X ⊆ V is totally isotropic for f (totally f -isotropic) if

X ⊆ X⊥. Clearly, Rad(f) is a totally isotropic subspace of V . We say that the

form f is strictly isotropic if it admits at least one isotropic vector x 6∈ Rad(f).

The following is well known (Tits [10, Chapter 8], Buekenhout and Cohen [2,

Chapter 10]).

Proposition 2.5. Let f : V × V → K be a strictly isotropic (σ, ε)-sesquilinear

form. Then f is trace-valued if and only if V is spanned by the set of f -isotropic

vectors.

As in Subsection 1.3.2, given a non-zero vector x ∈ V we denote by [x] the

point of PG(V ) represented by the vector x and, for a subspace X of V , we set

[X] = {[x]}x∈X−{0}. We also write [x1, x2, . . . , xk] for [〈x1, x2, . . . , xk〉].

Given a (σ, ε)-sesquilinear form f : V × V → K, a point [x] of PG(V ) is said

to be isotropic for f (also f -isotropic) if the vector x is f -isotropic. Similarly,

given a subspace X of V , the subspace [X] of PG(V ) is totally isotropic for f

(totally f -isotropic) if X is totally f -isotropic. We denote by Pf and Lf the set

of f -isotropic points and totally f -isotropic lines of PG(V ) and we put Sf :=

(Pf , Lf ).
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Assume that Pf 6= ∅ 6= Lf . Then Sf is a polar space (Buekenhout and

Cohen [2, Chapter 7]). We call it the polar space associated to f . The singular

subspaces of Sf are the totally f -isotropic subspaces of PG(V ). The subspace

[Rad(f)] is the radical of Sf . So, Sf is non-degenerate if and only if f is non-

degenerate. The set Pf spans PG(V ) if and only if f is either trivial or trace-

valued (Proposition 2.5).

Let ef : Sf → PG(V ) be the inclusion mapping of Sf in PG(V ). If Pf spans

PG(V ) then ef is a projective embedding in the sense of Subsection 1.3.3.

2.2.2 Proportionality of reflexive sesquilinear forms

Let f : V ×V → K be a non-trivial (σ, ε)-sesquilinear form and let κ ∈ K−{0}.

It is well known (Tits [10, Chapter 8]) that κf is a (σ′, ε′)-sesquilinear form

where (σ′, ε′) = κ · (σ, ε) (notation as in Subsection 2.1.4). We say that f and

f ′ are proportional.

Clearly, proportional reflexive sesquilinear forms define the same orthogonal-

ity relation. A partial converse of this fact also holds, but in order to state it we

need one more definition: the non-degenerate rank of a polar space S is the rank

of the quotient of S over its radical (Buekenhout and Cohen [2, 7.5.1]). The

next proposition is implicit in the theory developed in Chapter 9 of Buekenhout

and Cohen [2].

Proposition 2.6. For i = 1, 2, let (σi, εi) be an admissible pair of K and let

fi : V × V → K be a (σi, εi)-sesquilinear form. Suppose that PG(V ) admits a

full subgeometry S = (P,L) such that S is a polar space with non-degenerate rank

at least 2, it is a subspace of either Sf1 and Sf2 and the point-set P of S spans

PG(V ). Then the forms f1 and f2 are proportional.

In particular, if Sf1 = Sf2 and the polar space S := Sf1 = Sf2 has non-

degenerate rank at least 2, then f1 and f2 are proportional.

2.3 Pseudo-quadratic forms

Given a division ring K and an admissible pair (σ, ε) of K, let K = K(σ,ε), as

in (5) of Subsection 2.1. The scalar multiplication ◦ is defined as in (7) and, for

t ∈ K, we write t̄ for t+Kσ,ε, as in Subsection 2.1.

Let V be a right K-vector space. A (σ, ε)-quadratic form on V (also called a

pseudo-quadratic form) is a map q : V → K such that

(Q1) q(xλ) = q(x) ◦ λ for any x ∈ V and λ ∈ K;
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(Q2) a trace-valued (σ, ε)-sesquilinear form f : V × V → K exists such that

q(x+ y) = q(x) + q(y) + f(x, y) for any choice of x, y ∈ V.

We call f a sesquilinearization of q. Note that in the above definition we allow

K = {0̄} (namely Kσ,ε = K), but we warn that when K = {0̄} both conditions

(Q1) and (Q2) are vacuous. In particular, when K = {0̄} every trace-valued

(σ, ε)-sesquilinear form satisfies (Q2). On the other hand (Tits [10, Chapter

8]):

Lemma 2.7. Let K 6= {0̄}. Then q admits a unique sesquilinearization.

We say that a pseudo-quadratic form q is trivial if q(x) = 0̄ for any x ∈ V .

Clearly, if K = {0̄} then q is trivial. Finally, we warn that (idK , 1)-quadratic

forms are usually called quadratic forms, for short. In this paper we shall con-

form to that habit.

Remark 2.8. In the literature, pseudo-quadratic forms are defined only when

K 6= {0̄}. However, in the theory of generalized pseudo-quadratic forms, to be

exposed in Section 3, we shall allow forms with trivial codomain. Accordingly,

we have allowed K = {0̄} here.

2.3.1 Facilitating forms

Every (σ, ε)-quadratic form q admits a so-called facilitating form, namely a σ-

sesquilinear form g : V × V → K such that

q(x) = g(x, x) for any x ∈ V. (15)

If K = 0̄ every σ-sesquilinear form is a facilitating form for q. Let K 6= 0̄ and let

f be the sesquilinearization of q. Then all facilitating forms of q are obtained as

follows (Tits [10, Chapter 8]). Let (ei)i∈I be a basis of V . Assume that a total

ordering < is given on the index set I. For every i ∈ I let gi ∈ K be such that

q(ei) = ḡi. For any two vectors x =
∑

i∈I eiλi and y =
∑

i∈I eiµi of V , put

g(x, y) :=
∑

i<j

λσ
i f(ei, ej)µj +

∑

i∈I

λσ
i giµi. (16)

(Note that all sums occurring in (16) are well defined, since only finitely many

of the scalars λi and µi are different from 0.) Then the mapping g defined as

in (16) is a facilitating form for q. Moreover,

f(x, y) = g(x, y) + g(y, x)σε for any x, y ∈ V. (17)



46 A. Pasini

Conversely, given a σ-sesquilinear form g : V × V → K and an element ε ∈ K

forming an admissible pair with σ, let q : V → K be defined as in (15). Then

q is a (σ, ε)-quadratic form and the form f defined as in (17) is the sesquilin-

earization of q. Note that f is indeed trace-valued, by Lemma 2.4.

2.3.2 The polar space Sq

Let q : V → K be a (σ, ε)-quadratic form. A vector x ∈ V is said to be singular

for q (also q-singular) if q(x) = 0̄. A subspace X ⊂ V is totally singular for q

(also totally q-singular) if q(x) = 0̄ for every x ∈ X.

Clearly, if q(x) = 0̄ for a vector x ∈ V then q(xλ) = 0̄ for any λ ∈ K.

Therefore a point [x] of PG(V ) is totally q-singular as a 1-dimensional subspace

of V if and only if x is q-singular. If this is the case then we say that the point [x]

is singular for q (also q-singular). A subspace [X] of PG(V ) is said to be totally

singular for q (also totally q-singular) if all of its points are q-singular.

We denote by Pq and Lq the set of q-singular points and totally q-singular

lines of PG(V ) and we put Sq := (Pq, Lq). Note that Pq or Lq could be empty.

The opposite situation, where Sq = PG(V ), occurs when q is trivial.

For the rest of this subsection we assume that Pq 6= ∅ 6= Lq and K 6= 0̄.

We denote by f the sesquilinearization of q. All propositions to be stated in

the rest of this subsection are well known. Their proofs can be found in Tits

[10, Chapter 8] and Buekenhout and Cohen [2, Chapter 10]. However we shall

recall those proofs here, since in Section 3 we will need them for reference.

Proposition 2.9. The point-line geometry Sq = (Pq, Lq) is a subspace of the polar

space Sf associated to f . Explicitly:

(1) Pq ⊆ Pf ;

(2) a projective line [x, y] belongs to Lq if and only if q(x) = q(y) = 0̄ and

f(x, y) = 0.

Proof. This is one of the proofs we want to recall in view of Section 3. Let

q(x) = 0̄. Then q(x(λ + µ)) = 0̄ as well, for any choice of scalars λ, µ ∈ K.

It follows from (Q2) with x and y replaced by xλ and xµ respectively that

λσf(x, x)µ ∈ Kσ,ε. If f(x, x) 6= 0 the arbitrariness of λ and µ forces Kσ,ε = K,

contradicting the assumption that K 6= 0̄. Therefore f(x, x) = 0. Claim (1) is

proved.

Turning to claim (2), let [x, y] ∈ Lq. Then q(xλ + yµ) = 0̄ for any choice of

λ, µ ∈ K. According to (Q2), this forces λσf(x, y)µ ∈ Kσ,ε. Hence f(x, y) = 0,

since Kσ,ε ⊂ K. The ‘only if’ part of (2) is proved. The ‘if’ part is trivial. �
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By Proposition 2.9, a subspace [x1, x2, . . . , xk] of PG(V ) is totally q-singular

if and only if it is totally isotropic for f and q(x1) = q(x2) = · · · = q(xk) = 0̄.

Moreover:

Corollary 2.10. The point-line geometry Sq is a polar space. Its singular subspaces

are the totally q-singular subspaces of PG(V ). The set Pq ∩ [Rad(f)] is the radical

of Sq.

The radical Pq∩[Rad(f)] of Sq is a subspace of [Rad(f)]. We call it the radical

of q and we denote it by the symbol Rad(q). Following Buekenhout and Cohen

[2, Chapter 10] and Tits and Weiss [11, Chapter 11], we call Rad(f) the defect

of q (but we warn that this word is used with a different meaning in Tits [10]).

The form q is said to be singular (also degenerate) if Rad(q) 6= {0}.

If Pq spans PG(V ) then the inclusion mapping eq : Sq → PG(V ) is a projec-

tive embedding in the sense of Subsection 1.3.3. A sufficient condition for Pq to

span PG(V ) is given by the next proposition.

Proposition 2.11. If Pq 6⊆ [Rad(f)] then Pq spans PG(V ).

Proof. In view of Section 3, we also give a sketch of this proof. Suppose that

Pq 6⊆ [Rad(f)]. Then there exists a q-singular point [a] 6∈ [Rad(f)]. As a 6∈
Rad(f), the space a⊥ is a hyperplane of V . Let l = [a, b] be a projective line of

PG(V ) through [a] not contained in [a⊥]. Then f(a, b) 6= 0. Moreover,

q(aλ+ b) = q(a) ◦ λ+ q(b) + λσf(a, b) = q(b) + λσf(a, b) (18)

by (Q2) and since q(a) = 0̄. As f(a, b) 6= 0, there exists a scalar λ ∈ K such that

q(b) + λσf(a, b) = 0̄. Then q(aλ+ b) = 0̄ by (18). So, the vector bl := aλ+ b is

q-singular and [bl] 6= [a].

Let Λa be the set of lines of PG(V ) that contain [a] but are not contained in

[a⊥]. By the previous paragraph, every line l ∈ Λa contains a q-singular point

[bl] 6= [a]. Let Πa := {[bl]}l∈Λa
. Then Πa is contained in Pq and spans PG(V ).

Hence 〈Pq〉 = PG(V ). �

We know that Sq is a subspace of Sf (Proposition 2.9), but it could be a

proper subspace of Sf , namely the equality f(x, x) = 0 does not force q(x) = 0̄.

The following is all we can say in general about q(x) when f(x, x) = 0.

Lemma 2.12. For x ∈ V , if f(x, x) = 0 then q(x) ∈ K
◦
.

Proof. We will give a sketch of this proof, too. Recall that K
◦
= Kσ,ε/Kσ,ε

(Lemma 2.2(1)). Let f(x, x) = 0. Then

q(x) ◦ (λ+ µ) = q(x(λ+ µ)) = q(xλ) + q(xµ) + λσf(x, x)µ

= q(xλ) + q(xµ) = q(x) ◦ λ+ q(x) ◦ µ.
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Let t ∈ K be such that q(x) = t̄. By the above,

(λ+ µ)σt(λ+ µ) ≡ λσtλ+ µσtµ (mod Kσ,ε).

Hence λσtµ+µσtλ ∈ Kσ,ε. Recalling that λσtµ−(λσtµ)σε ∈ Kσ,ε and (λσtµ)σε =

µσtσελ, we obtain that µσtλ+ µσtσελ ∈ Kσ,ε, namely

µσ(t+ tσε)λ ∈ Kσ,ε. (19)

Since Kσ,ε 6= K by assumption and (19) holds for any choice of λ, µ ∈ K, it

follows that t+ tσε = 0, namely t ∈ Kσ,ǫ. Hence t̄ ∈ Kσ,ε/Kσ,ε = K
◦
. �

Proposition 2.13. Let (σ, ε) be of trace type. Then Sq = Sf .

Proof. Let (σ, ε) be of trace type. Then K
◦
= 0̄ by claim (2) of Lemma 2.2. The

conclusion follows from Lemma 2.12. �

2.3.3 Proportionality of pseudo-quadratic forms

In this subsection we adopt the notation of Subsection 2.1.4, thus denoting the

group K = K/Kσ,ε by the symbol K
σ,ε

. Assuming Kσ,ε 6= K, let q : V → K
σ,ε

be a non-trivial (σ, ε)-quadratic form and let f be its sesquilinearization. Given a

scalar κ ∈ K−{0}, let (σκ, εκ) := κ · (σ, ε). Let κq : V → K
σκ,εκ

be the function

mapping every x ∈ V onto κq(x) ∈ K
σκ,εκ

(well defined by Lemma 2.3). Then

κq is a (σκ, εκ)-quadratic form and κf is the sesquilinearization of κq (Tits [10,

Chapter 8]). Clearly, Sκq = Sq. We say that q and κq are proportional.

Proposition 2.14. For i = 1, 2, let qi : V → K
σi,εi

be a non-trivial (σi, εi)-

quadratic form such that Sqi has non-degenerate rank at least 2. Suppose that

Sq1 = Sq2 . Then q1 and q2 are proportional.

Proof. This proposition is well known (see e.g. Tits [10, Chapter 8]). Never-

theless we give a sketch of the proof here, since in Section 3 we will need it for

reference.

Let f1 and f2 be the sesquilinearizations of q1 and q2. By Proposition 2.11, the

set Pqi spans PG(V ). for i = 1, 2. Moreover Sqi is a subspace of Sfi . By assump-

tion, the polar space Sqi has non-degenerate rank at least 2. Hence the equality

Sq1 = Sq2 forces f1 and f2 to be proportional, by Proposition 2.6. It follows

that q1 and q2 admit proportional facilitating forms (defined by equation (16),

applied to a basis of singular vectors). Hence they are proportional. �
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3 Generalized pseudo-quadratic forms

3.1 Definition

Given a division ring K and an admissible pair (σ, ε) of K, let R be a ◦-closed

subgroup of K (see Subsection 2.1.2). We denote by R the pre-image of R

under the projection t 7→ t̄ = t+Kσ,ε of K onto K = K/Kσ,ε, namely:

R := {t | t̄ ∈ R}. (20)

We recall that a scalar multiplication is induced by ◦ on the factor group K/R,

as explained in (10). Clearly R is the null element of K/R. When R is given

this role, we denote it by the symbol 0R.

Given a K-vector space V , a generalized (σ, ε)-quadratic form (also general-

ized pseudo-quadratic form) is a map q : V → K/R such that

(Q’1) q(xλ) = q(x) ◦ λ for any x ∈ V and λ ∈ K;

(Q’2) a trace-valued (σ, ε)-sesquilinear form f : V × V → K exists such that

q(x+ y) = q(x) + q(y) + (f(x, y) +R)??? for all x, y ∈ V.

We call R the co-defect of q. Thus, a pseudo-quadratic form is just a generalized

pseudo-quadratic form with trivial co-defect.

Remark 3.1. In Subsection 4.2.2 we will show that the co-defect R of q is

involved as a summand in the defect of a suitable pseudo-quadratic form, called

the dominant cover of q. This is a motivation for calling R the co-defect of q.

A sesquilinear form f as in (Q’2) is called a sesquilinearization of q. The next

lemma is a generalization of Lemma 2.7. Claim (2) of this lemma is obvious.

Claim (1) can be proved by the same argument used for pseudo-quadratic forms

in [10], but for replacing Kσ,ε with the group R defined in (20). (See also Tits

and Weiss [11, 11.19].)

Lemma 3.2. Let q : V → K/R be a generalized pseudo-quadratic form.

(1) If R 6= K then q admits exactly one sesquilinearization.

(2) Let R = K. Then every trace-valued (σ, ε)-sesquilinear form on V is a

sesquilinearization of q.

Every generalized (σ, ε)-quadratic form also admits a facilitating form, namely

a σ-sesquilinear form g : V × V → K such that

q(x) = g(x, x) +R for any x ∈ V. (21)
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If R = K then every σ-sesquilinear form is a facilitating form for q. Let R 6= K

and let f be the sesquilinearization of q. It is straightforward to prove that all

facilitating forms of q are obtained as follows (compare [11, 11.29]). Let (ei)i∈I

be a basis of V and < a total ordering of I. For every i ∈ I let gi ∈ K be such

that q(ei) = ḡi + R. For x, y ∈ V let g(x, y) be defined as in (16). Then g is a

facilitating form for q. Moreover f(x, y) = g(x, y) + g(y, x)σε, as in (17).

Conversely, given a σ-sesquilinear form g : V ×V → K and an element ε ∈ K

forming an admissible pair with σ, let q : V → K be defined as in (21). Then

q is a generalized (σ, ε)-quadratic form and the form f defined as in (17) is the

sesquilinearization of q.

3.2 Basic properties

In this subsection and the following ones we shall discuss properties of gener-

alized pseudoquadratic forms. Many (but not all) of them are straightforward

generalizations of analogous properties of pseudo-quadratic forms. We begin

with the following theorem.

Theorem 3.3. Let R 6= K. Let q : V → K/R be a generalized (σ, ε)-quadratic

form, let f be its sesquilinearization and let R be as in (20). Then all the following

hold:

(1) R ⊆ K
◦
. In other words, R is a vector subspace of K

◦
.

(2) For every vector x ∈ V , if q(x) = 0R then f(x, x) = 0.

(3) Let x ∈ V be such that f(x, x) = 0. Then q(x) ∈ K
◦
/R (well defined in view

of claim (1)).

Proof. In view of (Q’1) and (Q’2), we have

q(x) ◦ (λ+ µ) +R = q(x(λ+ µ)) = q(x) ◦ λ+ q(x) ◦ µ+ λσf(x, x)µ

for any choice of λ, µ ∈ K. Therefore, given t ∈ K such that t̄ + R = q(x),

we have λσtµ + µσtλ − λσf(x, x)µ ∈ R. As Kσ,ε ⊆ R and µσtλ − λσtσεµ =

µσtλ− (µσtλ)σε ∈ Kσ,ε we obtain that λσtµ+λσtσεµ−λσf(x, x)µ ∈ R, namely

λσ(t+ tσε− f(x, x))µ ∈ R for any choice of λ, µ ∈ K. (22)

As R 6= K by assumption, (22) forces

t+ tσε = f(x, x). (23)

However we can replace t with t + r in (23), for any r ∈ R. By comparing the

new equation thus obtained with (23) we obtain that r+ rσε = 0 for any r ∈ R,
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namely R ⊆ Kσ,ε. Equivalently, R ⊆ Kσ,ε/Kσ,ε = K
◦
, as claimed in (1). As R

is ◦-closed by assumption, R is a vector subspace of the K-vector space K
◦
.

Claims (2) and (3) can be proved in the same way as claim (1) of Proposi-

tion 2.9 and Lemma 2.12, by replacing Kσ,ε with R in those proofs. �

Note that f(x, x) ∈ Kσ,−ε for any x ∈ V because f is trace-valued. If

char(K) = 2 then ε = −ε. In this case f(x, x) ∈ Kσ,ε ⊆ R for any x ∈ V .

Corollary 3.4. Let (σ, ε) be of trace type and R 6= K. Then R = {0̄}, whence q is

pseudo-quadratic.

Proof. By claim (2) of Lemma 2.2, the pairs (σ, ε) is of trace type if and only if

K
◦
= {0̄}. Moreover, by claim (1) of Theorem 3.3, either R = K or R ⊆ K

◦
.

Therefore, if R ⊂ K and K
◦
= {0̄} then R = {0̄}. �

A generalized pseudo-quadratic form q : V → K/R is said to be trivial if

q(x) = 0R for every x ∈ V .

Proposition 3.5. The form q is trivial if and only if one of the following holds:

(1) R = K.

(2) We have R 6= K but the sesquilinearization of q is trivial and there exists a

basis (ei)i∈I of V such that q(ei) = 0R for every i ∈ I.

Proof. Clearly, if R = K then q is trivial. Assume that R ⊂ K. Then q admits

a unique sesquilinearization f , by Lemma 3.2. Suppose that nevertheless q is

trivial. Then f(x, y) ∈ R for any x, y ∈ V . Accordingly,

λσf(x, y)µ ∈ R for any choice of λ, µ ∈ K and x, y ∈ V. (24)

If f(x, y) 6= 0 for a pair (x, y), then (24) forces R = K, contrary to the assump-

tions made on R. It follows that f is the trivial form.

Conversely, let f be trivial and q(ei) = 0R for every i ∈ I. Then the form

g defined as in (17) but with gi = 0 for every i ∈ I, is trivial. However g is a

facilitating form of q. Hence q is trivial as well. �

3.3 The polar space Sq

For the rest of this section we assume that q is non-trivial. In particular, R 6= K.

As above, f stands for the sesquilinearization of q. The symbol R is given the

meaning stated in (20).
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As in the case of pseudo-quadratic forms, we say that a vector x ∈ V is

singular for q (also q-singular) if q(x) = 0R. A subspace X of V is totally singular

for q (also totally q-singular) if q(x) = 0R for every x ∈ X. Clearly, if q(x) = 0R
for a vector x ∈ V then q(xλ) = 0R for any λ ∈ K. We say that a point [x]

of PG(V ) is singular for q (also q-singular) if x is q-singular. A subspace of

PG(V ) is said to be totally singular for q (totally q-singular) if all of its points

are q-singular.

Let Pq be the set of q-singular points of PG(V ). By claim (2) of Theorem 3.3,

if a point of PG(V ) is q-singular then it is f -isotropic. In short, Pq ⊆ Pf . The

following can be proved in the same way as claim (2) of Proposition 2.9, but for

replacing Kσ,ε with R.

Proposition 3.6. A line [x, y] of PG(V ) is totally q-singular if and only if q(x) =

q(y) = 0R and f(x, y) = 0.

Proposition 3.6 immediately implies the following:

Corollary 3.7. A subspace [x1, x2, . . . , xk] of PG(V ) is totally q-singular if and

only if it is totally isotropic for f and q(x1) = q(x2) = · · · = q(xk) = 0R.

By Corollary 3.4, if (σ, ε) is of trace type then the form q is pseudo-quadratic.

By this remark combined with Proposition 2.13 we immediately obtain the fol-

lowing:

Corollary 3.8. Let (σ, ε) be of trace type. Then a subspace of PG(V ) is totally

q-singular if and only it is totally f -isotropic.

Assuming that Pq 6= ∅, let Lq be the set of totally q-singular lines of PG(V )

and put Sq := (Pq, Lq). In view of Proposition 3.7, the point-line geometry Sq

is a subspace of the polar space Sf = (Pf , Lf ) associated to f . Hence Sq is

itself a polar space. Its radical is a possibly empty subspace of [Rad(f)], equal

to Pq ∩ [Rad(f)]. If (σ, ε) is of trace type then Sq = Sf , by Corollary 3.8.

We call Sq the polar space associated to q. The q-singular vectors of Rad(f)

form a subspace of Rad(f), henceforth called the radical of q and denoted by

the symbol Rad(q). We say that q is singular (also degenerate) if Rad(q) 6= {0},

namely Sq is degenerate. In any case, we call Rad(f) the defect of q.

Let q|Rad(f) be the mapping induced by q on Rad(f). Clearly q|Rad(f) is addi-

tive. This fact and claim (3) of Theorem 3.3 imply the following:

Proposition 3.9. The mapping q|Rad(f) is a homomorphism of K-vector spaces

from Rad(f) to K
◦
/R and Rad(q) is the kernel of this homomorphism.

Consequently, the quotient space Rad(f)/Rad(q) is isomorphic to the image

Im(q|Rad(f)) of q|Rad(f) and the latter is a vector subspace of K
◦
/R.
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Finally, the same argument used to prove Proposition 2.11 but with R in the

role of Kσ,ε, yields the following:

Proposition 3.10. Either Pq is a subspace of PG(V ) or it spans PG(V ).

3.4 A facilitating form

We keep the hypotheses and the notation of the previous subsection. In par-

ticular, R 6= K, f is the sesquilinearization of q and Pq is the set of q-singular

points of PG(V ). We also assume that Pq spans PG(V ). Hence V admits a basis

formed by q-singular vectors. We call such a basis a q-singular basis.

Let E = (ei)i∈I be a q-singular basis of V . Given a total ordering < on the set

I of indices, let gE : V × V → K be the σ-sequilinear form defined as follows:

gE(
∑

i

eiλi,
∑

j

ejµj) :=
∑

i<j

λσf(ei, ej)µj . (25)

Since q(ei) = 0R̄ for every i ∈ I, the form gE is a facilitating form for q, namely

q(x) = gE(x, x) +R =
∑

i<j

λσ
i f(ei, ej)λj +R

for every vector x =
∑

i∈I eiλi of V . Clearly, the coset gE(x, x) + R does not

depend on the choice of the q-singular basis E but the scalar gE(x, x) obviously

depends on that choice. The value gE(x, x) also depends on it, to some extent.

In order to make this remark less vague, we need a few additional definitions.

Let E = (ei)i∈I and E′ = (e′i)i∈I be two ordered q-singular bases of V . Let

RE,E′ be the ◦-closed subgroup of K spanned by the family {gE′(ei, ei)}i∈I and

let δE,E′ : V ∈ K be the mapping defined as follows:

δE,E′(x) := gE(x, x)− gE′(x, x).

Clearly, δE,E′(x) + R = q(x) − q(x) = 0R. Therefore δE,E′(V ) ⊆ R. Recall that

R is a vector subspace of K
◦
, as we know from claim (1) of Theorem 3.3.

Lemma 3.11. The group RE,E′ , equipped with the scalar multiplication ◦, is

a vector subspace of R and δE,E′ is a surjective linear map from V to RE,E′ .

Moreover δE′,E = −δE.E′ and RE,E′ = RE′,E .

Proof. For x ∈ V let x =
∑

i eiλi =
∑

i e
′
iλ

′
i. Then

{
gE(x, x) =

∑
i<j λ

σ
i f(ei, ej)λj ,

gE′(x, x) =
∑

i<j(λ
′
i)

σf(e′i, e
′
j)λ

′
j .

(26)
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Moreover, there exist scalars αij (i, j ∈ I) such that

ek =
∑

i e
′
iαik for all k ∈ I. (27)

Hence

λ′
k =

∑
i αkiλi for all k ∈ I. (28)

Substituting (27) in the first equality of (26) and (28) in the second one we get

{
gE(x, x) =

∑
i<j

∑
k,h λ

σ
i α

σ
k,if(e

′
k, e

′
h)αh,jλj ,

gE′(x, x) =
∑

i<j

∑
k,h λ

σ
kα

σ
i,kf(e

′
i, e

′
j)αj,hλh.

(29)

By changing indices in the second equation of (29), we can rewrite the two

equations (29) as follows:

{
gE(x, x) =

∑
i,j,k,h; i<j λ

σ
i α

σ
k,if(e

′
k, e

′
h)αh,jλj ,

gE′(x, x) =
∑

i,j,k,h; k<h λ
σ
i α

σ
k,if(e

′
k, e

′
h)αh,jλj .

(30)

Recalling that f(e′h, e
′
k) = f(e′k, e

′
h)

σε, that

λσ
i α

σ
k,if(e

′
k, e

′
h)αh,jλj − λσ

j α
σ
h,jf(e

′
k, e

′
h)

σεαk,iλi

= (λσ
i α

σ
k,if(e

′
k, e

′
h)αh,jλj)− (λσ

i α
σ
k,if(e

′
k, e

′
h)αh,jλj)

σε ∈ Kσ,ε,

and f(e′k, e
′
k) = 0 (by (2) of Theorem 3.3 and since q(e′k) = 0R by assumption),

we can rewrite the two equalities (30) as follows:

gE(x, x) =
∑

i<j,k<h λ
σ
i α

σ
k,i(f(e

′
k, e

′
h) + f(e′k, e

′
h)

σε)αh,jλj ,

gE′(x, x) +Kσ,ε =
∑

i<j,k<h λ
σ
i α

σ
k,i(f(e

′
k, e

′
h) + f(e′k, e

′
h)

σε)αh,jλj

+
∑

k,h,i;k<h λ
σ
i α

σ
k,if(e

′
k, e

′
h)αh,iλi +Kσ,ε.

Consequently,

gE(x, x)− gE′(x, x) = −
∑

k,h,i;k<h α
σ
k,if(e

′
k, e

′
h)αh,i ◦ λi. (31)

However
∑

k<h α
σ
k,if(e

′
k, e

′
k)αh,i = gE′(

∑
k e

′
kαk,i,

∑
k e

′
kαk,i) = gE′(ei, ei) by

(27) and the definition of gE′ . Substituing in (31) we obtain:

gE(x, x)− gE′(x, x) = −
∑

i gE′(ei, ei) ◦ λi. (32)

According to (32), we have RE,E′ = δE,E′(V ) (⊆ R, as previously remarked).

Therefore RE,E′ is a vector subspace of R. Equation (32) also shows that δE,E′

is a linear mapping from V to RE,E′ . Clearly, δE′,E = −δE,E′ . Whence RE,E′ =

RE′,E . �
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We call δE,E′ and RE,E′ the difference-map and the difference-space relative

to the pair (E,E′) of q-singular bases.

Remark 3.12. Only q-singular bases are considered in Lemma 3.11, but the

statement of Lemma 3.11 holds for any pair of bases formed by f -isotropic

vectors, except that in this more general setting no closed subgroup R is given

in advance. Instead of R we must consider the closed subgroups RE and RE′ of

K generated by the sets {gE(x, x)}[x]∈Pf
and {gE′(x, x)}[x]∈Pf

respectively. The

proof of Lemma 3.11 shows that δE,E′(V ) = RE,E′ ⊆ RE′ , whence RE ⊆ RE′ .

By symmetry, RE ⊇ RE′ . Finally RE = RE′ .

For every x ∈ V , put γE(x) := gE(x, x) and γE′(x) := gE′(x, x). Then both

γE and γE′ are pseudo-quadratic forms. By Lemma 2.12, the group RE = RE′

is a vector subspace of K
◦
.

3.5 Isomorphisms and weak isomorphisms

Given two generalized (σ, ε)-quadratic forms q : V → K/R and q′ : V ′ → K/R

with the same co-defect R, we say that q and q′ are isomorphic if there exists a

bijective linear mapping α : V → V ′ such that q′(α(x)) = q(x) for every x ∈ V .

A broader notion of isomorphism can also be considered, but before to state it

we need a few preliminary remarks on automorphisms of K.

We say that an automorphism ρ of K stabilizes a given admissible pair (σ, ε)

if ρσ = σρ and ερ = ε. Let ρ ∈ Aut(K) stabilize (σ, ε). Then ρ stabilizes both

Kσ,ε and Kσ,ε. Thus ρ induces on the group K = K/Kσ,ε an automorphism

ρ̄ stabilizing K
◦
= Kσ,ε/Kσ,ε. Moreover, (t̄ ◦ λ)ρ̄ = t̄ρ̄ ◦ λρ for every element

t̄ ∈ K and every scalar λ ∈ K. Hence the automorphism of K
◦

induced by ρ̄ is

a bijective ρ-semi-linear mapping of the K-vector space K
◦
.

Given a ◦-closed subgroup R of K, let R
ρ̄

be the image of R by ρ̄. Then R
ρ̄

is

◦-closed and ρ̄ induces an isomorphism from K/R to K/R
ρ̄
. Clearly, for every

element t̄+R of K/R and every λ ∈ K we have

((t̄+R) ◦ λ)ρ̄ = (t̄ρ̄ +R
ρ̄
) ◦ λρ = (t̄+R)ρ̄ ◦ λρ.

We can now weaken our previous definition of isomorphism. Let R and R
′

be two ◦-closed subgroups of K. We say that two generalized (σ, ε)-quadratic

forms q : V → K/R and q′ : V ′ → K/R
′

are weakly isomorphic if there exists

an automorphism ρ of K stabilizing (σ, ε) and such that R
ρ̄
= R

′
and a ρ-semi-

linear map α : V → V ′ such that q′(α(x)) = q(x)ρ̄ for every x ∈ V .
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3.6 Proportionality

For i = 1, 2 let (σi, εi) be an admissible pair of K and Ri a ◦σi
-closed subgroup of

K
σi,εi

= K/Kσi,εi (notation as in Subsection 2.1.4). Let qi : V → K
σi,εi

/Ri be

a non-trivial generalized (σi, εi)-quadratic form and let fi be its sesquilineariza-

tion. We say that q1 and q2 are proportional if there exists a scalar κ ∈ K − {0}
such that (σ2, ε2) = κ · (σ1, ε1), R2 = κR1 and q2(x) = κq1(x) for every x ∈ V .

If this is the case then we write q2 = κq1. Clearly, if q2 = κq1 then f2 = κf1 and

Sq1 = Sq2 .

Theorem 3.13. Let q1 : V → K
σ1,ε1

/R1 and q2 : V → K
σ2,ε2

/R2 be generalized

pseudo-quadratic forms such that Sq1 = Sq2 . Assume that the polar space S :=

Sq1 = Sq2 has non-degenerate rank at least 2. Then q1 and q2 are proportional.

Proof. By the same argument used in the proof of Proposition 2.14 we obtain

that f1 and f2 are proportional. Thus, modulo replacing q1 with κq1 for a suit-

able κ ∈ K−{0} me may assume that f1 = f2 = f , say. Hence (σ1, ε1) = (σ2, ε2)

and K
σ1,ε1

= K
σ2,ε2

=: K. We must prove that we also have q1 = q2. As

f1 = f2 = f , we can choose the same facilitating form g for q1 and q2, defining

it as in (25) of Subsection 3.4. So, for every x ∈ V , we can choose the same

representative t̄x ∈ K for both q1(x) and q2(x). In order to prove that q1 = q2
we must only show that R1 = R2.

Let r̄ ∈ R1. Let a and b be two vectors such that f(a, b) = 1 and [a], [b] ∈ S

(= Sq1 = Sq2). Such a pair of vectors exists in view of the hypotheses made

on S. Let r ∈ K be such that r̄ ∈ R1. Then q1(a + br) = r̄ + R1 = R1. Hence

[a+ br] ∈ S. On the other hand, q2(a+ br) = r̄ +R2. As [a+ br] ∈ S = Sq2 , the

vector a+br is q2-singular, hence r̄ ∈ R2. It follows that R1 ⊆ R2. By symmetry,

R2 ⊆ R1. Finally, R1 = R2. �

4 Quotients and covers

In this section q : V → K/R is a given non-trivial generalized (σ, ε)-quadratic

form, f : V × V → K is its sesquilinearization and Sq = (Pq, Lq) is the polar

space associated to q. As q is non-trivial, the form f is non-trivial as well, by

Proposition 3.5. Moreover, R is a vector subspace of K
◦
, by Theorem 3.3, (1).

We assume that Pq is not totally singular. Hence it spans PG(V ) (Proposi-

tion 3.10). Therefore the inclusion mapping eq : Sq → PG(V ) is an embedding

of Sq in PG(V ). Recall that [Rad(q)] = [Rad(f)] ∩ Pq is the radical of Sq.
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4.1 Quotients

According to the definitions stated in Subsection 1.3.3, a subspace U of V de-

fines a quotient of the embedding eq : Sq → PG(V ) precisely when [U ]∩Pq = ∅
and [U ] ∩ [a, b] = ∅ for any two distinct points [a], [b] ∈ Pq.

Proposition 4.1. A subspace U of V defines a quotient of the embedding eq if and

only if U ⊆ Rad(f) and U ∩ Rad(q) = 0.

Proof. As said in Subsection 1.3.3, a subspace U of V defines a quotient of eq
if and only if [U ] ∩ Pq = ∅ and every line of PG(V ) meeting [U ] non-trivially

meets Pq in at most one point. So, in order to prove Proposition 4.1 we only

must prove that a point [v] of PG(V ) − Pq belongs to [Rad(f)] if and only if

every projective line through [v] meets Pq in at most one point.

Given a point [v] 6∈ Pq, assume firstly that every projective line through [v]

meets Pq in at most one point. Let [a] ∈ Pq. Then q(a) = 0R̄. Hence q(aλ+ v) =

q(v) + (λσf(a, v) +R) for any λ ∈ K. It follows that if f(a, v) 6= 0 then a scalar

λ ∈ K exists such that q(aλ+ v) = 0R̄. If this is the case then [a, v] meets Pq in

at least two points, namely [a] and [aλ+ v], a contradiction with the hypotheses

made on [v]. Therefore f(a, v) = 0. As this holds for any [a] ∈ Pq, it follows that

Pq ⊆ [v⊥]. However Pq spans PG(V ), by assumption. Hence V = v⊥, namely

v ∈ Rad(f).

Conversely, let v ∈ Rad(f). Let [a] ∈ Pq. Then q(a) = 0R̄ and f(a, v) = 0

while q(v) 6= 0R̄ as [v] 6∈ Pq by assumption. Hence q(aλ + v) = q(v) 6= 0R̄ for

any λ ∈ K. This shows that [a, v] ∩ Pq = {[a]}. Therefore every projective line

through [v] meets Pq in at most one point. �

The next corollary immediately follows from Proposition 4.1.

Corollary 4.2. If Rad(q) = Rad(f) then the embedding eq does not admit any

proper quotient.

For the rest of this subsection we assume that Rad(q) 6= Rad(f). Hence Sq is a

proper subspace of Sf . Consequently, (σ, ε) is not of trace type, by Corollary 3.8.

In particular, char(K) = 2.

Let U be a subspace of Rad(f) with U ∩ Rad(q) = 0. By Proposition 3.9,

the restriction of q to U is an injective linear mapping from U to the K-vector

space K
◦
/R. Hence the image q(U) of U by q is a vector subspace of K

◦
/R.

Therefore there exists a unique subspace RU of K
◦

containing R and such that

RU/R = q(U). Let qU : V/U → K/RU be the mapping defined as follows:

qU (x+ U) = t̄+RU for an element t ∈ K such that t̄+R = q(x).
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Lemma 4.3. The mapping qU is well defined.

Proof. The coset t̄ + RU does not depend on the choice of the representative t̄

of q(x). It remains to prove that it neither depends on the choice of the vector

x in the coset x+ U .

Given u ∈ U , let x′ = x + u and let t̄′ be a representative of q(x′). Then

q(x′) = q(x + u) = q(x) + q(u) + (f(x, u) + R) = q(x) + q(u) because u ∈ U ⊆
Rad(f). However q(u) ∈ RU/R by definition of RU . Therefore t̄ − t̄′ ∈ RU ,

namely t̄+RU = t̄′ +RU . �

The sesquilinearization f of q induces a trace-valued (σ, ε)-sesquilinear form

fU on V/U . Explicitly,

fU (x+ U, y + U) := f(x, y).

This definition is consistent. Indeed, since U ⊆ Rad(f), we have f(x+u, y+v) =

f(x, y) for any choice of u, v ∈ U . It is clear that, since f is trace-valued and

non-trivial, fU is trace-valued and non-trivial as well. The proof of the following

lemma is straightforward.

Lemma 4.4. The mapping qU is a generalized (σ, ε)-quadratic form. The form fU
induced by f on V/U is a sesquilinearization of qU .

As fU is non-trivial, the form qU is non-trivial if and only if RU 6= K, by

Proposition 3.5. If this is the case then fU is the unique sesquilinearization of

qU , by Lemma 3.2. Finally, Lemma 4.4 and claim (1) of Theorem 3.3 imply the

following:

Corollary 4.5. Let qU be non-trivial. Then RU ⊆ K
◦
.

We call qU the quotient of q by U . According to the notation of Subsection 3.3,

when qU is non-trivial PqU and LqU are the set of qU -singular points and the set

of totally qU -singular lines of PG(V/U) respectively and SqU = (PqU , LqU ) is the

polar space associated to qU in PG(V/U).

Theorem 4.6. Let πU : V → V/U be the projection of V onto V/U .

(1) Let qU be non-trivial. Then πU induces an isomorphism from Sq to SqU .

(2) Let qU be trivial. Then both forms f and fU are alternating and πU induces

an isomorphism from Sq to the polar space SfU associated to fU .

Proof. As U defines a quotient of Sq, every coset x + U of U in V contains at

most one q-singular vector. Therefore πU induces and injective mapping on Pq.

We firstly prove the following:
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(∗) For every non-zero vector x ∈ V , qU (x + U) = 0R̄U
if and only if x + u is

q-singular for some u ∈ U .

The coset x + U contains a q-singular vector if and only if q(x + u) = 0R for

some vector u ∈ U , namely q(x) + q(u) = 0R. (Recall that f(x, u) = 0 since

U ⊆ Rad(f)). If this is the case then q(x) ∈ RU/R, namely qU (x + U) = 0R̄U
.

Conversely, let qU (x+U) = 0R̄U
. Then there exists an element t̄ ∈ RU such that

q(x) = t̄+R. By definition of RU , we have t̄+R = q(u) for some u ∈ U . Hence

q(x− u) = 0R̄, namely x− u is q-singular. Claim (∗) is proved.

Let qU be non-trivial. By (∗), the projection πU induces a bijection from Pq

to PqU . Two qU -singular points [x+ U ] and [y + U ] of PG(V/U) are collinear in

SqU if and only if fU (x+U, y+U) = 0. By the definition of fU , this condition is

equivalent to f(x, y) = 0, which in its turn characterizes the collinearity of [x]

and [y]. Claim (1) of the theorem is proved.

Let qU be trivial. Then (∗) shows that πU induces a bijection from Pq to the

set of points of PG(V/U). In other words, every coset x + U of U other than

U contains exactly one q-singular vector. We may assume that in a symbol as

x + U the letter x stands for the unique q-singular vector of x + U . With this

convention, fU (x + U, x + U) = f(x, x) (by definition of fU) and f(x, x) = 0

because x is q-singular, whence f -isotropic. It follows that fU (x+U, x+U) = 0

for every coset x+U . Thus, fU is alternating. Moreover, for any vector x ∈ V we

have f(x, x) = fU (x+U, x+U) by definition of fU and fU (x+U, x+U) = 0 since

fU is alternating. Hence f(x, x) = 0 for every x ∈ V , namely f is alternating

as well. Turning to Sq, two points [x], [y] ∈ Sq are collinear in Sq if and only

if f(x, y) = 0, equivalently fU (x + U, y + U) = 0, namely x + U and y + U

represent collinear points of SfU . Therefore πU maps Sq isomorphically onto

SfU , as claimed in (2). �

4.2 Covers

Let S ⊕ T = R be a direct sum decomposition of the K-vector space R. Put

V S := V ⊕ S (direct sum of K-vector spaces). Define fS : V S × V S → K as

follows:

fS(x+ r̄, y + s̄) = f(x, y) for all x, y ∈ V and r̄, s̄ ∈ S.

It is easy to see that fS is a trace-valued (σ, ε)-sesquilinear form with Rad(fS) =

Rad(f)⊕S. Clearly, f is isomorphic to the form induced by fS on V S/S (∼= V ).

Let E = (ei)i∈I be a q-singular basis of V and let gE be the facilitating

form associated to E (Subsection 3.4, definition (25)). We define a mapping
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qS,T
E : V S → K/T as follows:

qS,T
E (x+ r̄) = gE(x, x) + r̄ + T for any x ∈ V and any r̄ ∈ S.

In particular, qS,T
E (x) = gE(x, x) + T and qS,T

E (r̄) = r̄ + T .

Theorem 4.7. The map qS,T
E is a non-trivial generalized (σ, ε)-quadratic form and

fS is its sesquilinearization.

Proof. Let x =
∑

i eiλi and r̄ ∈ S. According to the definition of qS,T
E we have

qS,T
E ((x+ r̄)λ) = qS,T

E (xλ+ r̄ ◦ λ) =
∑

i<j λ
σλσ

i f(ei, ej)λjλ+ r̄ ◦ λ+ T

= (
∑

i<j λ
σ
i f(ei, ej)λj) ◦ λ+ r̄ ◦ λ+ T = qS,T

E (x+ r̄) ◦ λ.

So, qS,T
E satisfies condition (Q’1). Turning to (Q’2), let x =

∑
i eiλi, y =

∑
i eiµi

and r̄, s̄ ∈ S. Then

qS,T
E ((x+ r̄) + (y + s̄)) = qS,T

E ((x+ y) + (r̄ + s̄))

=
∑

i<j f(ei, ej) ◦ (λj + µj) + r̄ + s̄+ T . (33)

On the other hand,

qS,T
E (x+ r̄) + qS,T

E (y + s̄)

=
∑

i<j f(ei, ej)λj +
∑

i<j f(ei, ej)µj + r̄ + s̄+ T . (34)

Moreover,

fS(x+ r̄, y + s̄) = f(x, y) =
∑

i<j(λ
σ
i f(ei, ej)µj . (35)

By (33), (34) and (35) and recalling that

µσ
i f(ei, ej)λj − λσ

j f(ej , ei)µi = µσ
i f(ei, ej)λj − λσ

j f(ei, ej)
σεµi

= µσ
i f(ei, ej)λj − (µσ

i f(ei, ej)λi)
σε ∈ Kσ,ε

we obtain

qS,T
E ((x+ r̄) + (y + s̄))− qS,T

E (x+ r̄)− qS,T
E (y + s̄)− (f(x+ r̄, y + s̄) + T )

=
∑

i<j(λ
σ
j f(ej , ei)µi + λσ

i f(ei, ej)µj −
∑

i,j λ
σf(ei, ej)µj + T

=
∑

i λ
σ
i f(ei, ei)µi + T = T .

(Recall that f(ei, ei) = 0 since q(ei) = 0R by assumption.) Finally,

qS,T
E ((x+ r̄) + (y + s̄))− qS,T

E (x+ r̄)− qS,T
E (y + s̄)− (f(x+ r̄, y + s̄) + T ) = T .

Property (Q’2) is proved. The non-triviality of qS,T
E immediately follows from

the fact that q is non-trivial by assumption. �
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We say that qS,T
E is the cover of q via (S, T ) based at E (a cover of q, for short).

A motivation for this definition is given by the following theorem.

Theorem 4.8. The subspace S of V S defines a quotient (qS,T
E )S of qS,T

E . With an

obvious identification of V S/S with V , we have (qS,T
E )S = q.

The proof of Theorem 4.8 is straightforward. We leave it to the reader. By

this theorem and Theorem 4.6 we immediately obtain the following:

Corollary 4.9. The polar space associated to qS,T
E in PG(V S) is isomorphic to the

polar space Sq associated to q.

For r̄ ∈ R, let θ(r̄) be the projection of r̄ onto S along T , namely θ(r̄) is the

unique element of S ∩ (r̄ + T ). For every q-singular vector x ∈ V , the subspace

〈x, S〉 of V S contains a unique qS,T
E -singular point, represented by the vector

x− θ(gE(x, x)). Put

eS,T
q,E ([x]) := [x− θ(gE(x, x))]. (36)

We can now rephrase Theorem 4.8 as follows.

Theorem 4.10. The mapping eS,T
q,E is a projective embedding of Sq in PG(V S).

The image eS,T
q,E (Sq) of Sq by eS,T

q,E is the polar space associated to qS,T
E in PG(V S).

Moreover, if πS is the projection of V S onto V S/S, then the canonical isomorphism

from V S/S to V yields an isomorphism from the composition πS · eS,T
q,E to the

inclusion embedding eq : Sq → PG(V ).

We call eS,T
q,E the lifting of eq to V S based at E.

Remark 4.11. We have assumed that q is non-trivial since the very beginning of

Section 4, however the previous construction can be repeated when q is trivial.

In that case we choose a sesquilinearization f of q and we define qS,T
E with

the help of f , as in the non-trivial case, but the form qS,T
E now depends on the

particular choice of f . The form qS,T
E is non-trivial provided that S 6= {0̄}. It

is still true that q is a quotient of qS,T
E , but Corollary 4.9 must be rephrased

as follows: the polar space associated to qS,T
E in PG(V S) is isomorphic to Sf

(compare Theorem 4.6(2)).

4.2.1 Independence of q
S,T
E from the choice of E

Our definition of qS,T
E rests on the choice of a particular ordered q-singular ba-

sis E. In this subsection we shall prove that this choice is ultimately irrelevant:

different choices lead to isomorphic forms.



62 A. Pasini

Given two q-singular bases E and E′, let δE,E′ be the difference-map of

the pair (E,E′) (see Subsection 3.4). Recall that δE,E′(x) ∈ RE,E′ ⊆ R, by

Lemma 3.11. Hence θ(δE,E′(x)) is defined for every x ∈ V , where θ is the pro-

jection of R onto S along T , as in (36). In view of the definition of δE,E′ , the

following holds for every vector x ∈ V :

x− θ(gE′(x, x)) = x− θ(gE(x, x)) + θ(δE,E′(x)).

Let ∆E,E′ : V S → V S be the mapping defined as follows, for x ∈ V and r̄ ∈ S:

∆E,E′(x+ r̄) = x+ θ(δE,E′(x)) + r̄.

Theorem 4.12. The mapping ∆E,E′ is linear and bijective, it fixes S elementwise

and yields an isomorphism from qS,T
E to qS,T

E′ . Explicitly,

qS,T
E (x+ r̄) = qS,T

E′ (∆E,E′(x+ r̄)) (37)

for any x ∈ V and r̄ ∈ S. Consequently, ∆E,E′ is an isomorphism of embeddings

from the lifting eS,T
q,E of eq based at E to the lifting eS,T

q,E′ of eq based at E′.

Proof. By Lemma 3.11, δE,E′ is a linear mapping from V to RE,E . Hence ∆E,E′

is linear. Clearly, ∆E,E′ fixes S elementwise. Moreover the composition of

∆E,E′ with the projection of V S onto V along S induces the identity mapping

on V . Therefore ∆E,E′ is bijective. We have

qS,T
E (x+ r̄) = gE(x, x) + r̄ + T

= gE′(x, x) + (gE(x, x)− gE′(x, x)) + r̄ + T

= gE′(x, x) + δE,E′(x) + r̄ + T

= gE′(x, x) + θ(δE,E′(x)) + r̄ + T = qS,T
E′ (∆E,E′(x+ r̄)).

(Recall that δE,E′(x) + T = θ(δE,E′(x)) + T , by the definition of θ.) Equa-

tion (37) is proved. Exploiting (37), it is not difficult to prove that ∆E,E′ is an

isomorphism from eS,T
q,E to eS,T

q,E′ . �

Theorem 4.12 allows us to drop the index E in our notation, thus writing

qS,T and eS,T
q for qS,T

E and eS,T
q,E whenever the particular choice of the basis E is

irrelevant for what we are saying. Accordingly, we call qS,T and eS,T
q the cover

of q via (S, T ) and the lifting of eq to V S respectively, with no mention of E.



Embedded polar spaces revisited 63

4.2.2 Dominant covers

As S ⊕ T = R, we have S = R if and only if T = {0̄}. When T = {0̄} the form

qS,T = qR,{0̄} is pseudo-quadratic with defect equal to Rad(f) ⊕ R. Improper

covers are allowed too. We get them by taking S = {0̄} (whence T = R).

Clearly, q{0̄},R = q.

We have not assumed that R 6= {0̄}. Indeed the construction of qS,T makes

sense even if R = {0̄}. In this case q is pseudo-quadratic and S = T = {0̄},

hence qS,T = q, namely q does not admit any proper cover. Conversely, if q

does not admit any proper cover then R = {0̄}. We say that q is dominant if it

does not admit any proper cover. So, the form qS,T is dominant if and only if

T = {0̄}. We call qR,{0} the dominant cover of q.

4.2.3 Quotients versus covers

According to Theorem 4.8, if q̃ : Ṽ → K/T is a cover of q : V → K/R then q is

a quotient of q̃. A converse of this statement also holds.

Theorem 4.13. Given a subspace T of K
◦

and a generalized (σ, ε)-quadratic form

q̃ : Ṽ → K/T , let U be a subspace of Ṽ defining a quotient of ẽ. Then q̃ is

isomorphic to a cover of the quotient q̃U of q̃ by U .

Proof. Put V := Ṽ /U and q := q̃U : V → K/R, where R := TU is the subspace

of K
◦

such that R/T = q̃(U) (see Subsection 4.1). Let S be a complement

of T in the K-vector space R and W a complement of U in Ṽ . Let π̃U be the

projection of Ṽ onto V = Ṽ /U and θ the projection of R onto S along T . Let

α : Ṽ → V S = V ⊕ S be the linear mapping defined by the following clauses:

α(w) = π̃U (w) for every w ∈ W and α(u) = θ(q̃(u)) for every u ∈ U . As the

reader can check, α is an isomorphism from q̃ to qS,T . �

Corollary 4.14. Let q : V → K/R be a non-trivial generalized (σ, ε)-quadratic

form. Given a vector subspace T of R, let S and S
′
be two complements of T in R.

Then qS,T ∼= qS
′

,T .

Proof. The conclusion follows from the proof of Theorem 4.13 with V S
′

, qS
′

,T

and S
′

in the roles of Ṽ , q̃ and U respectively, recalling that, by Theorem 4.8,

q is the quotient of qS
′

,T over S
′
. �

4.2.4 Partial independence of qS,T from the choice of S and T

In general, if R = S ⊕ T and R = S
′
⊕ T

′
are two decompositions of R then

qS,T 6∼= qS
′

,T
′

. However, with a suitable choice of T
′

the forms qS,T and qS
′

,T
′
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are weakly isomorphic in the sense of Subsection 3.5. Explicitly:

Proposition 4.15. With S, T , S
′

and T
′

as above, suppose that K admits an

automorphism ρ stabilizing (σ, ε) and such that the automorphism ρ̄ of K induced

by ρ stabilizes R and maps T onto T
′
. Then the forms qS,T and qS

′

,T
′

are weakly

isomorphic.

Proof. Given a q-singular basis E of V let ρE be the ρ-semi-linear mapping

of V that fixes all vectors of E and, for x ∈ V and r̄ ∈ S, set ρE(x + r̄) :=

ρE(x) + r̄ρ̄. Then ρE is a bijective ρ-semilinear mapping from V S to V S
ρ̄

and

(qS,T
E (x + r̄))ρ̄ = qS

ρ̄
,T

ρ̄

E (ρE(x + r̄)) for every vector x + r̄ of V S . Hence qS,T

and qS
ρ̄
,T

ρ̄

are weakly isomorphic. However qS
ρ̄
,T

ρ̄ ∼= qS
′

,T
′

by Corollary 4.14

and because R
ρ̄
= R and T

ρ̄
= T

′
by assumption. Therefore qS,T and qS

′

,T
′

are

weakly isomorphic. �

5 Forms for embedded polar spaces

Throughout this section S = (P,L) is a non-degenerate polar space of rank at

least 2 and e : S → PG(V ) is a projective embedding. So, the image e(S) =

(e(P ), e(L)) of S by e is a full subgeometry of PG(V ), it spans PG(V ) and it is

isomorphic to S.

Let K be the underlying divison ring of V . By Theorem 1.1, an admissible

pair (σ, ε) of K and a (σ, ε)-sesquilinear form f : V × V → K exist such that

e(S) is a subspace of the polar space Sf = (Pf , Lf ) associated to f . Explicitly,

(E1) e(P ) ⊆ Pf and, for any two points [x], [y] ∈ e(P ), the line [x, y] of PG(V )

belongs e(L) if and only if f(x, y) = 0.

Property (E1) implies both the following:

(E2) For any two points [x] and [y] of PG(V ) with [y] ∈ e(P ), we have f(x, y) =

0 if and only if either the line [x, y] belongs to e(L) or [x, y]∩ e(P ) = {[y]}.

(E3) e(P ) ∩ [Rad(f)] = ∅.

As for (E3), recall that S is non-degenerate by assumption while f might be

degenerate. By (E1), (E2) and (E3) and recalling that e(P ) spans PG(V ), we

also obtain the following:

(E4) A point [x] of PG(V ) belongs to [Rad(f)] if and only if every line of PG(V )

through [x] meets e(P ) in at most one point.
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The form f is uniquely determined up to proportionality (Proposition 2.6).

Moreover f is trace-valued by Proposition 2.5, since Pf ⊇ e(P ) and e(P ) spans

PG(V ). Let E = (ei)i∈I be a basis of V such that [ei] ∈ e(P ) for any i ∈ I. Such

a basis exists since e(P ) spans PG(V ). We call E an e(S)-basis of V . Given a

total ordering < on I, let gE(x, y) be defined as in (25) of Subsection 3.4 and

put

γE(x) := gE(x, x) =
∑

i<j λ
σ
i f(ei, ej)λj for every vector x =

∑
i eiλi ∈ V.

Lemma 5.1. The mapping γE is a (possibly trivial) (σ, ε)-quadratic form, gE is a

facilitating form for γE and f is a sesquilinearization of γE . The form γE is trivial

if and only if σ = idK , ε = −1 and char(K) 6= 2.

Proof. The first three claims of this lemma are obvious. The last one follows

from (4) of Subsection 2.1. �

Let R be the closed subgroup of K generated by the set {γE(x)}[x]∈e(P ) and

define a mapping q : V → K/R as follows:

q(x) := γE(x) +R. (38)

Lemma 5.2. The mapping q defined in (38) is a (possibly trivial) generalized

(σ, ε)-quadratic form. If q is non-trivial then f is the sequilinearization of q. In

this case e(S) is a subspace of the polar space Sq = (Pq, Lq) associated to q.

Proof. The first two claims of this lemma are straightforward. As for the third

one, note firstly that Sq is a subspace of Sf since f is the sesquilinearization

of q. Clearly, e(P ) ⊆ Pq. Therefore e(S) is a subspace of Sq, as both e(S) and

Sq are subspaces of Sf . �

Lemma 5.2 and Corollary 3.4 imply the following:

Corollary 5.3. If (σ, ε) is of trace type then either R = K or R = {0̄}.

Note that, while γE depends on the choice of the ordered basis E, neither R

nor q depend on that choice (see the final remark of Subsection 3.4).

Corollary 5.4. The form q is trivial if and only if R = K. If γE is trivial then

R = K (whence q is also trivial)

Proof. The form f is non-trivial, since e(S) is a subspace of Sf and it is non-

degenerate. This fact and Proposition 3.5 imply the first claim of the corollary.

According to the last claim of Lemma 5.1, the form γE is trivial if and only if f

is alternating and char(K) 6= 2. If this is the case then R = K. �
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Theorem 5.5. Either q is trivial or e(S) = Sq.

Proof. Suppose that q is non-trivial. By Corollary 5.4, R is a proper subgroup

of K. Moreover e(S) is a subspace of Sq, by the last claim of Lemma 5.2.

Let q̃ := qR,{0̄} be the dominant cover of q based at E, let f̃ := fR be its

sesquilinearization and put Ṽ := V ⊕ R. The embedding e : S → PG(V ) lifts

to an embedding ẽ : S → PG(Ṽ ), obtained as the composition of e with the

lifting of the inclusion embedding eq : Sq → PG(V ) to Ṽ (see definition (36) of

Subsection 4.2). Let V̂ be the subspace of Ṽ spanned by ẽ(P ). We shall prove

that V̂ = Ṽ .

Put R̂ := R∩V̂ and let q̂ and f̂ be the forms induced by q̃ and f̃ on V̂ . Clearly,

all points of ẽ(P ) are q̂-singular. As V̂ +R = Ṽ , we have V̂ /R̂ ∼= Ṽ /R ∼= V and

R̂ defines a quotient q̂
R̂

of q̂. Via an obvious identification of V with V̂ /R̂,

we may assume that q̂
R̂

is defined over V . Accordingly, all points of e(P ) are

q̂
R̂

-singular. It follows that γE(x) belongs to the co-defect R̂ of q̂
R̂

, for every

point [x] ∈ e(P ). However, R is generated by {γ(x)}[x]∈e(P ). Therefore R̂ = R.

Hence R ⊆ V̂ . It is now clear that V̂ = Ṽ , namely ẽ(P ) spans PG(Ṽ ).

Since e(S) is a subspace of Sq, the image ẽ(S) of S by ẽ is a subspace of

the polar space Sq̃ = (Pq̃, Lq̃) associated to q̃. The latter is a subspace of the

polar space Sf̃ = (Pf̃ , Lf̃ ) associated to f̃ . Hence ẽ(S) is also a subspace of Sf̃ ,

namely ẽ(S) and f̃ satisfy (E1), whence (E2), (E3) and (E4) too.

We shall now prove that e(S) = Sq. Suppose the contrary, namely e(P ) ⊂
Pq. Then we also have ẽ(P ) ⊂ Pq̃. Let [a] ∈ Pq̃ − ẽ(P ). Suppose firstly that

[a] 6∈ [Rad(f̃)]. By (E4), there exist two distinct points [b], [c] ∈ ẽ(P ) such that

the line [b, c] contains [a]. We have f̃(a, a) = f̃(b, b) = f̃(c, c) = 0 since all of

[a], [b] and [c] belong to Pf̃ . On the other hand, the line [b, c] does not belong

to ẽ(L), since it contains [a] which, by assumption, does not belong to ẽ(P ).

Then f̃(b, c) 6= 0 by (E1). Since f̃(b, b) = f̃(c, c) = 0 while f̃(b, c) 6= 0, the

form f̃ induces a non-degenerate form on the subspace 〈b, c〉 of Ṽ . Thus we

can apply Proposition 10.3.10 of Buekenhout and Cohen [2]. By claim (i) of

that proposition, Pq̃ ∩ [b, c] is the smallest subset of Sf̃ ∩ [b, c] containing [b]

and [c] and perspective with respect to the polarity δf̃ ,[b,c] defined by f̃ on the

line [b, c]. (We refer the reader to [2, Section 10.3] for the definition of sets

perspective with respect to a polarity in a projective line.) However, [b], [c] ∈
ẽ(P )∩ [b, c] ⊆ Pq̃∩ [b, c] and ẽ(P )∩ [b, c] is also perspective with respect to δf̃ ,[b,c]
by Proposition 10.3.4 of [2]. Hence ẽ(P ) ∩ [b, c] = Pq̃ ∩ [b, c]. In particular,

[a] ∈ ẽ(P ), contrary to our choice of [a]. Therefore [a] ∈ [Rad(f̃)], namely

[a] ∈ [Rad(q̃)], as [a] ∈ Pq̃. It follows that Pq̃ − ẽ(P ) ⊆ [Rad(q̃)].

Still with [a] ∈ Pq̃ − ẽ(P ) ⊆ [Rad(q̃)], let [b] ∈ ẽ(P ). As both [b] and [a] are
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q̃-singular and [a] ∈ [Rad(q̃)], the line [a, b] belongs to Lq̃. Hence it is totally

f̃ -isotropic. By (E1), if [a, b] contains a point of ẽ(P ) different from [b] then it

also belongs to ẽ(L), but this contradicts the choice of [a] ∈ Pq̃−ẽ(P ). Therefore

[a, b] ∩ ẽ(P ) = {[b]}, namely [a, b] − {[b]} ⊆ Pq̃ − ẽ(P ). However Pq̃ − ẽ(P ) ⊆
[Rad(q̃)] and the latter is a subspace of PG(Ṽ ). It follows that [a, b] ⊆ [Rad(q̃)].

This forces [b] ∈ [Rad(q̃)] ∩ ẽ(P ) ⊆ [Rad(f̃)] ∩ ẽ(P ), a contradiction with (E3).

We have reached a final contradiction. Therefore e(S) = Sq. �

Let R 6= K. Then both q and γE are non-trivial (Corollary 5.4). Let SγE
=

(PγE
, LγE

) be the polar space associated to γE in PG(V ). Clearly, SγE
is a

subspace of Sf .

Corollary 5.6. Let R 6= K. Then SγE
is a subspace of e(S). If moreover (σ, ε) is

of trace type then SγE
= e(S) = Sf .

Proof. The polar space SγE
is a subgeometry of Sq. Moreover both SγE

and Sq

are subspaces of Sf . Hence SγE
is a subspace of Sq. However Sq = e(S) by

Theorem 5.5. Therefore SγE
is a subspace of e(S). Let (σ, ε) be of trace type.

Then SγE
= Sf by Proposition 2.13. Hence SγE

= e(S) = Sf , since SγE
is a

subspace of e(S) = Sq which in its turn is a subspace of Sf . �

Remark 5.7. When (σ, ε) is not of trace type it can happen that SγE
⊂ e(S). If

that is the case then SγE
depends on the choice of the basis E.

Theorem 5.8. Let R = K. Then f is an alternating form and e(S) = Sf .

Proof. As R = K, the group K is generated by the elements γE(x) for [x] ∈
e(S). However e(S) is a subspace of Sf . Hence K is also generated by the

elements γE(x) for x ∈ V such that f(x, x) = 0. Given x =
∑

i eiλi, let t :=∑
i<j λ

σ
i f(ei, ej)λj . Then

f(x, x) =
∑

i,j

λσ
i f(ei, ej)λj =

∑

i6=j

λσ
i f(ei, ej)λj +

∑

i

λσ
i f(ei, ei)λi.

However f(ei, ei) = 0 for every i ∈ I because [ei] ∈ e(P ) ⊆ Pf . Therefore

0 =
∑

i6=j λ
σ
i f(ei, ej)λj =

∑
i<j λ

σ
i f(ei, ej)λj +

∑
i>j λ

σ
i f(ei, ej)λj

=
∑

i<j λ
σ
i f(ei, ej)λj +

∑
j>i λ

σ
j f(ej , ei)λi

=
∑

i<j λ
σ
i f(ei, ej)λj +

∑
i<j(λ

σ
i f(ei, ej)λj)

σε

=
∑

i<j λ
σ
i f(ei, ej)λj + (

∑
i<j λ

σ
i f(ei, ej)λj)

σε = t+ tσε.

Hence f(x, x) = 0 if and only if t = −tσε, namely t ∈ Kσ,ε. However K is

generated by {γE(x) | f(x, x) = 0}. Therefore K = Kσ,ε. The latter holds
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precisely when ε = −1 and σ = idK , by (3) of Subsection 2.1. So, σ = idK and

ε = −1. In particular, K is a field. If char(K) 6= 2 then f is alternating. Let

char(K) = 2. Then f is a symmetric bilinear form. However, f is also trace-

valued and the alternating forms are the only trace-valued symmetric bilinear

forms in characteristic 2. Hence f is alternating.

We still must prove that e(S) = Sf . This can be proved with the help of The-

orem 1.2, but we shall do without it. Instead of Theorem 1.2, we shall exploit

properties (E1)–(E4) and a few results from [2, Chapter 10] on perspectivities

of projective lines.

We firstly assume that char(K) 6= 2. By way of contradiction, suppose that

Pf 6⊆ e(P ) and let [a] ∈ Pf − e(P ). Assume that [a] 6∈ [Rad(f)]. By (E4),

there exists at least one line l of PG(V ) containing [a] and intersecting e(P )

in at least two points. By Proposition 10.3.4 of Buekenhout and Cohen [2],

the set e(P ) ∩ l is perspective with respect to the polarity δf,l defined by f on

the line l. However, according to [2, Proposition 10.3.10(ii)], the line l does

not contain any proper subset of size at least 2 and perspective with respect

to δf,l. Therefore l = e(P ) ∩ l. This contradicts the choice of [a] 6∈ e(P ). We

must conclude that [a] ∈ [Rad(f)]. So, Pf − e(P ) ⊆ [Rad(f)]. With [a] ∈
Pf − e(P ) ⊆ [Rad(f)], let [b] ∈ e(P ). Then [a, b] ∩ e(P ) = {[b]} by (E1).

Consequently [a, b] − {[b]} ⊆ [Rad(f)]. However Rad(f) is a subspace of V .

Hence [b] ∈ [Rad(f)], in contradiction with (E3). Therefore e(S) = Sf .

Let now char(K) = 2. Then Kσ,ε = 0, Kσ,ε = K and K = K
◦
= K. In

particular, the scalar multiplication ◦ is defined over K and t ◦ λ = tλ2 for any

t, λ ∈ K. The additive group of K equipped with ◦ as the scalar multiplication

is a K-vector space. In order to distinguish between this vector space and the

field K itself we denote the latter by the letter K, keeping the symbol K for the

vector space (K, ◦). Given an element t ∈ K, if we regard it as a vector of K then

we write t̄ rather than t. Put Ṽ := V ⊕K. The set W := {x+ γE(x)}[x]∈e(P ) is a

subset of Ṽ and contains E. However E spans V , the latter being now regarded

as a subspace of Ṽ . Therefore 〈W 〉 ⊇ V . It follows that 〈W 〉 also contains the

set {γE(x)}[x]∈e(P ). The latter spans R and R = K, by assumption. Therefore

W spans Ṽ . We now define a quadratic form q̃ and an alternating form f̃ on Ṽ ,

as follows:

q̃(x+ t̄) = γE(x) + t for all x ∈ V and t̄ ∈ K.

f̃(x+ t̄, y + s̄) = f(x, y) for all x, y ∈ V and t̄, s̄ ∈ K.

It is readily seen that q̃ is indeed a quadratic form and f̃ is its sesquilinearization.

Note that Rad(f) = K and K contains no q̃-singular point. Hence q̃ is non-

singular. Accordingly, the polar space Sq̃ = (Pq̃, Lq̃) associated to q̃ in PG(Ṽ ) is
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non-degenerate. Moreover Sq̃ is a subspace of the polar space Sf̃ associated to

f̃ , as f̃ is the sesquilinearization of q̃.

For x ∈ V and t̄ ∈ K we have q̃(x + t̄) = 0 if and only if t = γE(x). Hence

the set P̃ := {[v]}v∈W is contained in Pq̃. It is not difficult to see that P̃ is a

subspace of Sq̃. Let S̃ be the polar space induced by Sq̃ on P̃ . Clearly, S̃ is

a subspace of Sq̃. Hence it is also a subspace of Sf̃ , since Sq̃ is a subspace of

Sf̃ . Since P̃ spans Ṽ and S̃ is a subspace of Sq̃, the radical of S̃ is contained in

the radical of Sq̃. However Sq̃ is non-degenerate. Hence S̃ is non-degenerate.

Consequently, property (E1), whence (E2), (E3) and (E4) hold for S̃ and f̃ .

We shall prove that S̃ = Sq̃. By way of contradiction, let [a] ∈ Pq̃ − P̃ .

Note that a 6∈ Rad(f̃), because Sq̃ is non-degenerate. Then, by (E4) applied

to S̃ and f̃ , there is a line l of PG(Ṽ ) containing [a] and two distinct points

[b], [c] ∈ P̃ . The line l belongs to Lq̃, since it contains at least three distinct

points of Pq̃ and q̃ is quadratic. Consequently, l is totally singular for q̃. Hence l

is also totally isotropic for f̃ . In particular f(b, c) = 0. This forces l to be a line

of S̃ too, a contradiction with the choice of [a] 6∈ P̃ . Therefore S̃ = Sq̃.

The projection πK : Ṽ → Ṽ /K = V induces an isomorphism from S̃ to e(S).

On the other hand, the quotient q̃K of q̃ by K is trivial. Hence πK induces an

isomorphism from Sq̃ to Sf , by claim (2) of Theorem 4.6. However Sq̃ = S̃.

Therefore e(S) = Sf . �

6 Initial embeddings

In this section we shall revisit Theorem 1.2, giving an elementary proof of the

fact that the embeddings considered in that theorem are dominant.

With e : S → PG(V ) and f : V × V → K as in the previous section, let

q : V → K/R be the generalized pseudo-quadratic form defined as in (38). By

Theorems 5.5 and 5.8, either q is non-trivial and e(S) = Sq or K is a field, f is

alternating and e(S) = Sf . The existence of the cover qR,{0̄} makes it clear that,

if e(S) = Sq, then e is dominant only if R = {0̄}, namely q is pseudo-quadratic.

Conversely,

Lemma 6.1. Suppose that either q is pseudo-quadratic or f is alternating and

char(K) 6= 2. Then e is dominant.

Proof. This lemma is contained in Theorem 1.2 but, since we are revisiting The-

orem 1.2, we shall give a proof independent of that theorem.

Let ẽ : S → PG(Ṽ ) be the hull of e. Then there exists a reflexive sesquilinear

form f̃ : Ṽ × Ṽ → K such that ẽ(S) is a subspace of Sf̃ . Let q̃ : Ṽ → K/R
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be the generalized pseudo-quadratic form defined as in (38) but with V and f

replaced with Ṽ and f̃ respectively. By Theorems 5.5 and 5.8, either R ⊂ K

and ẽ(S) = Sq̃ or R = K and ẽ(S) = Sf̃ .

As ẽ is the hull of e, there exists a subspace U of Rad(f̃) such that e ∼= ẽ/U . If

ẽ(S) = Sf̃ then f̃ is non-degenerate. In this case U = {0}, whence e ∼= ẽ, namely

e is dominant. Suppose now that R ⊂ K. Then ẽ(S) = Sq̃ and e(S) = Sq̃U ,

where q̃U is the quotient of q̃ by U , regarded as a generalized pseudo-quadratic

form on V via an obvious identification of V with Ṽ /U . Then q and q̃U are

proportional, by Theorem 3.13. Hence q̃U is a pseudo-quadratic form. However

pseudo-quadratic forms do not admit proper covers (Subsection 4.2.2), while

q̃ is a cover of q̃U by Theorem 4.13. Hence q̃U ∼= q̃, namely U = {0}. Again,

e ∼= ẽ. �

Turning back to the general case, when R ⊂ K we denote by ẽ the compo-

sition of e with the lifting of eq : Sq → PG(V ) to Ṽ := V R. Thus, ẽ(S) = Sq̃,

where q̃ := qR,{0̄} is the dominant cover of q, as in the proof of Theorem 5.5.

When R = K and char(K) 6= 2 we set Ṽ := V and ẽ := e. Finally, let R = K but

char(K) = 2. It is well known that in this case e is a quotient of an embedding

ẽ : S → PG(Ṽ ), where ẽ(S) = Sq̃ for a suitable quadratic form q̃ : Ṽ → K (see

e.g. De Bruyn and Pasini [5]).

Theorem 6.2. In each of the cases considered above the embedding ẽ is dominant,

whence it is the hull of e.

Proof. This statement immediately follows from Lemma 6.1, recalling that dom-

inat covers of generalized pseudo-quadratic forms are pseudo-quadratic forms

(Subsection 4.2.2). �

Corollary 6.3. With ẽ as above, assume moreover that S has rank at least 3. Then

ẽ is initial.

Proof. Embeddable polar spaces of rank at least 3 satisfy the conditions of the

main theorem of Kasikova and Shult [8], which are sufficient for the existence

of a K-initial embedding. Therefore the embedding ẽ, being dominant, is also

also K-initial (see Subsection 1.3.3). On the other hand, since K coordinatizes

the planes of S, all projective embeddings of S are K-embeddings, namely S is

defined over K. Hence ẽ is initial. �

The statement of Corollary 6.3 is included in Theorem 1.2, which is a rephras-

ing of Theorem 8.6 of Tits [10], but the proof given by Tits for that theorem is

rather different from our proof of Corollary 6.3. In our proof we exploit the

main result of Kasikova and Shult [8], which can be applied to polar spaces of
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rank at least 3 thanks to the fact that the maximal singular subspaces of such

a polar space are projective spaces of dimension at least 2, while Tits’s proof

relies on a deep investigation of projective lines (see [10, 8.12]) and also ap-

plies to polar spaces of rank 2, but for the two exceptional cases described in

the following theorem (and mentioned in Theorem 1.2).

Theorem 6.4. [Tits [10, 8.6]] The embedding ẽ is initial even if S has rank 2,

except in the following two cases:

(1) S is a grid and |K| > 4.

(2) K is a quaternion division ring, Ṽ = V (4,K) and, modulo proportionality

and isomorphisms, ε = −1, σ is the standard involution of K, we have

Kσ,ε = Z(K) and q̃(x1, x2, x3, x4) = xσ
1x2 + xσ

3x4 + Kσ,ε for every vector

(x1, x2, x3, x4) ∈ Ṽ .

In case (1) we have as many isomorphism classes of projective embeddings as the

cosets of PΓL(2,K) in the group of all permutations of the set PG(1,K). In

case (2) only two isomorphism classes of projective embeddings exist. In either

case, all projective embeddings of S are dominant.
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